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TWO BOUNDARY RIGIDITY RESULTS FOR HOLOMORPHIC MAPS

By ANDREW ZIMMER

Abstract. In this paper we establish two boundary versions of the Schwarz lemma. The first is for

general holomorphic self maps of bounded convex domains with C2 boundary. This appears to be

the first boundary Schwarz lemma for general holomorphic self maps that requires no strong pseu-

doconvexity or finite type assumptions. The second is for biholomorphisms of domains who have an

invariant Kähler metric with bounded sectional curvature. This second result applies to holomorphic

homogeneous regular domains and appears to be the first boundary Schwarz lemma that makes no

assumptions on the regularity of the boundary.

1. Introduction. In 1931 Cartan proved the following generalization of the

Schwarz lemma:

THEOREM 1.1. (Cartan’s Uniqueness Theorem) If Ω ⊂ C
d is a bounded do-

main, f : Ω→ Ω is a holomorphic map, and there exists z0 ∈Ω such that

f(z) = z+o(‖z− z0‖) ,

then f = id.

It seems natural to ask if a similar result holds when z0 ∈ ∂Ω. In this case the

problem is much harder and already in the very special case of biholomorphisms

of the unit disk a higher order error term is necessary for rigidity.

In this paper we prove two new boundary versions of Theorem 1.1. Our first

main result, see Theorem 1.5 below, extends a well-known theorem of Burns and

Krantz [BK94] to any bounded convex domain with C2 boundary (assuming a

slightly worse error term). This appears to be the first boundary Schwarz lemma

for general holomorphic self maps that requires no strong pseudoconvexity or fi-

nite type assumptions. Our second main result, see Theorem 1.13 below, estab-

lishes a boundary Schwarz lemma for biholomorphisms of domains which have an

invariant Kähler metric with certain bounded geometry properties. This applies to

holomorphic homogeneous regular domains and appears to be the first boundary

Schwarz lemma that makes no assumptions on the regularity of the boundary.

1.1. General holomorphic self maps. The first boundary Schwarz lemma

for general holomorphic self maps appears to be the following:
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120 A. ZIMMER

THEOREM 1.2. (Burns-Krantz [BK94]) Suppose Ω⊂C
d is a bounded strongly

pseudoconvex domain with C6 boundary. If f : Ω→ Ω is a holomorphic map and

there exists ξ0 ∈ ∂Ω such that

f(z) = z+o
(
‖z− ξ0‖3

)
,

then f = id.

As observed by Burns and Krantz, the error term in Theorem 1.2 is already

optimal when Ω is the unit disk (see Remark 1 in [BK94]).

A number of similar boundary Schwarz lemmas for holomorphic self maps

have been established, see for instance [Oss00, Che01, BZZ06, Bol08, LT16,

TLZ17] and the survey article [Kra11]. However most of these results either

assume that d = 1 or that the domain is strongly pseudoconvex. For weakly

pseudoconvex domains, the following conjecture has been attributed to Burns and

Krantz (see [Hua93, p. 312]).

Conjecture 1.3. (Burns-Krantz) Let Ω ⊂ C
d be a pseudoconvex domain of

finite type and suppose that ξ0 ∈ ∂Ω. Then there exists some m which depends on

the geometry of ∂Ω at ξ0 such that: if f : Ω→ Ω is a holomorphic map and

f(z) = z+o
(
‖z− ξ0‖m

)
,

then f = id.

Huang gave a positive answer to the above conjecture for convex domains of

finite type. In his result the error term depends on the line type, denoted by �(ξ0),

of the boundary point ξ0 ∈ ∂Ω (see Section 6 for the definition). More precisely:

THEOREM 1.4. (Huang [Hua95, Theorem 0.4]) Suppose that Ω ⊂ C
d is a

bounded convex domain of finite type. If f : Ω → Ω is a holomorphic map and

there exists ξ0 ∈ ∂Ω such that

f(z) = z+o
(
‖z− ξ0‖m

)

for some m> 5�(ξ0), then f = id.

Despite the high order error term in Huang’s result, to the best of our knowl-

edge there is no example of a smoothly bounded pseudoconvex domain Ω ⊂ C
d

with a holomorphic map f : Ω→Ω and a boundary point ξ0 ∈ ∂Ω such that f �= id

and

f(z) = z+o
(
‖z− ξ0‖m

)

for some m > 3. So exactly how finite type relates to the existence of boundary

Schwarz lemmas and the optimal error term is completely mysterious.
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In the first main theorem of this paper, we establish a boundary Schwarz lemma

for convex domains which sheds some light on this mystery and in particular shows

that when the domain is convex, finite type conditions are not necessary.

THEOREM 1.5. (see Section 5) Suppose Ω ⊂ C
d is a bounded convex domain

with C2 boundary. If f : Ω → Ω is a holomorphic map and there exists ξ0 ∈ ∂Ω

such that

f(z) = z+o
(
‖z− ξ0‖4

)
,

then f = id.

Remark 1.6.

(1) Theorem 1.5 is new even in the very special case when f is a biholomor-

phism, ∂Ω is C∞, and d= 2.

(2) To the best of our knowledge, Theorem 1.5 is the only known boundary

Schwarz lemma for general holomorphic self maps that makes no strong pseudo-

convexity or finite type assumptions.

(3) It is unclear whether ‖z− ξ0‖4
can be improved to ‖z− ξ0‖3

.

In the case when ∂Ω is smooth and ξ0 ∈ ∂Ω has finite line type we can give a

slight improvement to the error term.

THEOREM 1.7. (see Section 6) Suppose Ω ⊂ C
d is a bounded convex domain

with C∞ boundary and f : Ω → Ω is a holomorphic map. If there exists ξ0 ∈ ∂Ω

such that �(ξ0)<+∞ and

f(z) = z+o
(
‖z− ξ0‖4−1/�(ξ0)

)
,

then f = id.

Motivated by Theorem 1.5 we make the following conjecture.

Conjecture 1.8. Suppose Ω ⊂ C
d is a bounded convex domain and ξ0 ∈ ∂Ω.

Then there exists m = m(ξ0) which only depends on the tangent cone of Ω at ξ0

such that: if f : Ω→ Ω is a holomorphic map and

f(z) = z+o
(
‖z− ξ0‖m

)
,

then f = id.

In the d= 1 case the conjecture follows from the Burns-Krantz theorem for the

unit disk, the Riemann mapping theorem, and estimates on the Kobayashi distance.

In Corollary 1.16 below, we show that the conjecture is true in the special case

when f is a biholomorphism.
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1.2. The special case of biholomorphisms. For a bounded domain Ω⊂C
d

let Aut(Ω) denote the automorphism group of Ω, that is the group of biholomorphic

maps Ω→ Ω.

In the special case when f : Ω→ Ω is a biholomorphism, there are many ex-

tensions of the Burns-Krantz theorem, see for instance [BK94, BER00, ELZ03,

LM07a, LM07b, Juh09, BBC14]. Many of these results are in the setting of CR-

manifolds and so to apply them to bounded domains, one first needs to show that

the biholomorphism extends to a CR-automorphism of the boundary and then use

the CR-geometry of the boundary to obtain a rigidity result.

For instance, Bell and Ligocka [BL80] proved that if Ω ⊂ C
d is a bounded

pseudoconvex domain with real analytic boundary, then every ϕ ∈ Aut(Ω) extends

to a CR-automorphism ∂Ω→ ∂Ω. Then, using the CR-geometry of the boundary,

Baouendi, Ebenfelt, and Rothschild proved the following.

THEOREM 1.9. (Baouendi-Ebenfelt-Rothschild [BER00, Theorem 5]) Sup-

pose Ω ⊂ C
d is a bounded pseudoconvex domain with real analytic boundary and

ξ0 ∈ ∂Ω. Then there exists L= L(ξ0)> 0 such that: if ϕ ∈ Aut(Ω) and

ϕ(z) = z+O
(
‖z− ξ0‖L

)
,

then ϕ= id.

Remark 1.10. With the hypothesis of Theorem 1.9, Lamel and Mir [LM07b,

Corollary 1.4] proved that L can be chosen to depend only on ∂Ω.

In the second main theorem of this paper, we establish an alternative approach

to these types of results which makes no assumptions about the CR-geometry of

the boundary and instead only makes assumptions about the intrinsic complex ge-

ometry of the domain. In particular, we will assume that there exists an invariant

Kähler metric with certain bounded geometry properties.

Given a domain Ω⊂ C
d and z ∈ Ω define

δΩ(z) = inf
{
‖w− z‖ : w ∈ ∂Ω

}
.

Definition 1.11. Suppose Ω ⊂ C
d is a bounded domain. A complete Kähler

metric g on Ω has property-(BG) if

(1) the sectional curvature of g is bounded in absolute value by some κ > 0

and

(2) there exists A> 0 such that

√
gz(v,v) ≤A

‖v‖
δΩ(z)

for all z ∈ Ω and v ∈ C
d.
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We will also assume that the boundary satisfies a weak accessibility condition.

Given z0 ∈ C
d, v ∈ C

d with ‖v‖ = 1, θ ∈ (0,π/2], and r > 0 define the truncated

cone:

C
(
z0,v,θ,r

)
=

{
z ∈ C

d : 0 < ‖z− z0‖< r, ∠
(
z− z0,v

)
< θ

}
.

Definition 1.12. If Ω⊂C
d is a domain and ξ ∈ ∂Ω, then we say ∂Ω satisfies an

interior cone condition at ξ with parameters θ ∈ (0,π/2] and r > 0 if there exists

v ∈C
d with ‖v‖= 1 such that C(ξ,v,θ,r)⊂ Ω.

Our second main result is the following.

THEOREM 1.13. (see Theorem 11.1) Suppose Ω ⊂ C
d is a bounded domain,

ϕ ∈ Aut(Ω), ∂Ω satisfies an interior cone condition at ξ0 ∈ ∂Ω with parameter

θ, and there exists an ϕ-invariant Kähler metric g on Ω with property-(BG) with

parameters κ,A.

If

L > 4d+2+

√
κA

sin(θ)

and

ϕ(z) = z+O
(
‖z− ξ0‖L

)
,

then ϕ= id.

Remark 1.14.

(1) We will prove a slightly more general result in Theorem 11.1 below.

(2) Notice that the theorem does not assume that ∂Ω has any regularity (beyond

the interior cone condition at ξ) and we do not assume that ϕ extends continuously

to the boundary.

(3) In the case when the injectivity radius of (Ω,g) is positive we can choose

L > 2+

√
κA

sin(θ)
.

Based on Theorem 1.13 it seems natural to ask:

Question. If Ω⊂C
d is a bounded pseudoconvex domain with finite type, does

there exists a Aut(Ω)-invariant complete Kähler metric on Ω with property-(BG)?

We should note that McNeal [McN89] showed that the Bergman metric has

bounded sectional curvature on any bounded pseudoconvex domain with finite type

in C
2.
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1.3. Examples. Every bounded pseudoconvex domain Ω⊂C
d has a unique

complete Kähler-Einstein metric gΩ with Ricci curvature −1. This was constructed

by Cheng and Yau [CY80] when Ω has C2 boundary and by Mok and Yau [MY83]

in general. In this subsection we describe two situations where this metric has

property-(BG).

1.3.1. HHR domains. Following Liu, Sun, and Yau [LSY04, LSY05], a

domain Ω is said to be holomorphic homogeneous regular (HHR) if there exists

s > 0 with the following property: for every z ∈ Ω there exists a holomorphic

embedding ϕ : Ω→ C
d such that ϕ(z) = 0 and

sBd ⊂ ϕ(Ω)⊂ Bd

where Bd ⊂C
d is the unit ball. In the literature, a HHR domain is sometimes called

a domain with the uniform squeezing property, see for instance [Yeu09].

Examples of HHR domains include:

(1) T g,n, the Teichmüller space of hyperbolic surfaces with genus g and n

punctures (by the Bers embedding, see [Gar87]),

(2) bounded convex domains or more generally bounded C-convex domains

[Fra91, KZ16, NA17],

(3) bounded domains where Aut(Ω) acts co-compactly on Ω, and

(4) strongly pseudoconvex domains [DFW14, DGZ16].

Every HHR domain is pseudoconvex [Yeu09, Theorem 1] but not every

pseudoconvex domain is an HHR domain. For instance, Fornæss and Rong

have constructed smoothly bounded pseudoconvex domains in C
3 which are not

HHR [FR18].

Results of Yeung [Yeu09] imply that the Kähler-Einstein metric on a HHR do-

main has property-(BG), see Section 12 for details, and so we have the following

corollary of Theorem 11.1.

THEOREM 1.15. Suppose Ω ⊂ C
d is a bounded HHR domain and ξ0 ∈ ∂Ω

satisfies an interior cone condition. Then there exists L> 0 such that: if ϕ∈Aut(Ω)

and

ϕ(z) = z+O
(
‖z− ξ0‖L

)
,

then ϕ = id. Moreover, we can choose L to depend only on: the dimension d, the

s in the definition of a HHR domain, and the θ in the definition of interior cone

condition.

Every bounded convex domain Ω ⊂ C
d is a HHR domain and work of

Frankel [Fra91] (also see [KZ16, NA17]) implies that for every d ∈ N there

exists sd > 0 such that: if Ω ⊂ C
d is a bounded convex domain, then the HHR
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parameter of Ω is bounded below by sd. So we have the following partial answer

to Conjecture 1.8.

COROLLARY 1.16. For every d,θ > 0 there exists L= L(d,θ)> 0 such that:

if Ω⊂ C
d is a bounded convex domain, ϕ ∈ Aut(Ω), ∂Ω satisfies an interior cone

condition at ξ0 ∈ ∂Ω with parameter θ, and

ϕ(z) = z+O
(
‖z− ξ0‖L

)
,

then ϕ= id.

1.3.2. Pinched negative curvature. Let (M,J) be a complex manifold

with Kähler metric g and let R denote the curvature tensor of (M,g). Then the

holomorphic sectional curvature of a non-zero X ∈ TpM is given by

H(g)(X) =
R(X,JX,X,JX)

g(X,X)g(X,X)
.

Using work of Wu and Yau [WY20], see Section 12, we will establish the

following variant of Theorem 11.1.

THEOREM 1.17. Suppose Ω ⊂ C
d is a bounded domain and there exists a

complete Kähler metric g on Ω such that

−a≤H(g)≤−b

for some a,b > 0. Assume ∂Ω satisfies an interior cone condition at ξ0 ∈ ∂Ω. Then

there exists L > 0 such that: if ϕ ∈ Aut(Ω) and

ϕ(z) = z+O
(
‖z− ξ0‖L

)
,

then ϕ= id. Moreover, we can choose L to depend only on: d, a, b, and the θ in the

definition of interior cone condition.

Remark 1.18. In it worth noting that the metric g in Theorem 1.17 is not as-

sumed to be Aut(Ω)-invariant.

1.4. Sketch of the proofs. The proofs of Theorems 1.5 and 1.13 use very

different techniques: the former relies on Lempert’s theory of complex geodesics

while the latter uses tools from Riemannian geometry. However, similar ideas are

used in both. In this section, we sketch the proof of Theorem 1.13 and then describe

some of the ideas used to prove Theorem 1.5.

1.4.1. Sketch of the proof of Theorem 1.13. The central idea in the proof

is that curvature controls how fast geodesics can spread apart. For simplicity we
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will only describe the argument in the special case where g is a Kähler metric with

positive injectivity radius and

sup
{
|∇qR| : x ∈ Ω, q = 0,1,2

}
< ∞(1)

where R is the curvature tensor of g.

Let dΩ denote the distance induced by g. In this case, we prove that there exist

C1, τ > 0 such that: if γ1,γ2 : [0,∞) → Ω are unit speed geodesics and 0 < ε < τ ,

then

dΩ
(
γ1(t),γ2(t)

)
≤ C1

ε
exp

(
κ+1

2
t

)
max
t∈[0,ε]

dΩ
(
γ1(t),γ2(t)

)
(2)

for t > 0 (see Proposition 7.2 and Theorem 10.2 below).

Using the interior cone condition and the upper bound on g, we find a sequence

of points pn converging to ξ0 such that

dΩ
(
pn,p0

)
≤ A

sin(θ)
log

1

‖pn− ξ0‖
.

We then fix a point z0 ∈Ω and consider unit speed geodesics γn : [0,Tn]→Ω with

γn(0) = pn and γn(Tn) = z0. Using the interior cone condition, the upper bound

on g, and the fact that

ϕ(z) = z+O
(
‖z− ξ0‖L

)
,

we show that there exist εn,C2 > 0 such that

max
t∈[0,εn]

dΩ
(
γn(t),

(
ϕγn

)
(t)

)
≤ C2 ‖pn− ξ0‖L−1

and εn ≥ ‖pn− ξ0‖/C2. Then from Equation (2) we have

dΩ
(
z0,ϕ

(
z0

))
= dΩ

(
γn

(
Tn

)
,
(
ϕγn

)(
Tn

))
≤ C2 exp

(
κ+1

2
Tn

)
‖pn− ξ0‖L−2 .

However,

Tn ≤ dΩ
(
p0,z0

)
+

A

sin(θ)
log

1

‖pn− ξ0‖

and ‖pn− ξ0‖→ 0. So if

L > 2+
(κ+1)A

2sin(θ)
,

then dΩ(z0,ϕ(z0)) = 0. Hence ϕ(z0) = z0. Since z0 ∈Ω was arbitrary, this implies

that ϕ= id.
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This argument actually shows that any

L > 2+

√
κA

sin(θ)

suffices. One simply replaces g with κg. Then repeating the above argument shows

that if

L > 2+

(
κ
κ +1

)√
κA

2sin(θ)
= 2+

√
κA

sin(θ)

then ϕ= id.

When the injectivity radius of (Ω,g) is not assumed to be positive, some of the

estimates are worse which forces us to assume that

L > 4d+2+

√
κA

sin(θ)
.

When g does not satisfy Equation (1), we use classical results about the Ricci flow

to deform g to obtain a metric that does, see Section 9 for details.

The most difficult part of the argument is establishing the estimate in Equa-

tion (2). This requires a number of results about Riemannian manifolds which are

discussed in Sections 7, 8, 9, and 10.

1.4.2. Ideas in the proof of Theorem 1.5. Like Burns and Krantz’s proof

of Theorem 1.2, we study complex geodesics and their images under f . For

strongly convex domains, complex geodesics are very well understood thanks to

Lempert’s deep work [Lem81, Lem82, Lem84]. However, for convex domains

with C2 boundary and no finite type assumptions, complex geodesics are less

understood and can have unpleasant behavior. For example, it is possible for a

complex geodesic to not extend continuously to the boundary (see [Bha16, Exam-

ple 1.2]). A key part of the proof of Theorem 1.5 is establishing some new results

about complex geodesics which gives us some control over their behavior. The

results are somewhat technical and we delay further discussion until Section 3.

A second key part in the proof is a recent estimate of Christodoulou and Short.

To state their result we need some notation: let KD be the Kobayashi distance on

D and let BD(z;r) be the open metric ball centered at z ∈ D of radius r > 0 in

(D,KD).

THEOREM 1.19. (Christodoulou-Short [CS19]) There exists C > 0 such that:

if f : D→ D is holomorphic, z0 ∈ D, and 0 < ε < 1, then

KD

(
f(z),z

)
≤ C

ε
exp

(
4KD

(
z0,z

))
sup

w∈BD(z0;ε)

KD

(
f(w),w

)

for all z ∈ D.
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Remark 1.20. Christodoulou and Short actually proved a stronger estimate, see

Theorem 2.5 for the precise statement.

As we explain in Section 4, this estimate can be used to give a new proof of

the Burns-Krantz theorem for the unit disk. We will use Theorem 1.19 to prove

Theorem 1.5 in a similar way to how Equation (2) is used to prove Theorem 1.13.

1.5. Notations. (1) For z ∈C
d let ‖z‖ be the standard Euclidean norm and

dEuc(z1,z2) = ‖z1 − z2‖ be the standard Euclidean distance.

(2) For z0 ∈ C
d and r > 0 let

Bd

(
z0;r

)
=

{
z ∈C

d : ‖z− z0‖< r
}
.

Then let Bd = Bd(0;1) and D= B1.

(3) Given an open set Ω⊂ C
d and p ∈ Ω let

δΩ(p) = inf
{
dEuc(p,x) : x ∈ ∂Ω

}
.

Part 1. The proof of Theorem 1.5

2. Preliminaries for the proof of Theorem 1.5.

2.1. The Kobayashi metric. In this expository section we recall the def-

inition of the Kobayashi metric. More background can be found in [Kob05] or

[Aba89].

Given a domain Ω ⊂ C
d the (infinitesimal) Kobayashi metric is the pseudo-

Finsler metric

kΩ(x;v) = inf
{
|ξ| : f ∈ Hol(D,Ω), f(0) = x, d(f)0(ξ) = v

}
.

By a result of Royden [Roy71, Proposition 3] the Kobayashi metric is an upper

semicontinuous function on Ω×C
d. In particular, if σ : [a,b]→ Ω is an absolutely

continuous curve (as a map [a,b]→ C
d), then the function

t ∈ [a,b]−→ kΩ
(
σ(t);σ′(t)

)

is integrable and we can define the length of σ to be

�Ω(σ) =

∫ b

a
kΩ

(
σ(t);σ′(t)

)
dt.

One can then define the Kobayashi pseudo-distance to be

KΩ(x,y) = inf
{
�Ω(σ) : σ : [a,b]−→ Ω is abs. cont., σ(a) = x, and σ(b) = y

}
.

This definition is equivalent to the standard definition using analytic chains by a

result of Venturini [Ven89, Theorem 3.1].
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When Ω is a bounded domain, KΩ is a non-degenerate (possibly incomplete)

distance. For general domains there is no known characterization of when the

Kobayashi distance is complete, but for convex domains we have the following

result of Barth.

THEOREM 2.1. [Bar80] Suppose Ω is a convex domain. Then the following are

equivalent:

(1) Ω does not contain any complex affine lines,

(2) KΩ is a non-degenerate distance on Ω,

(3) (Ω,KΩ) is a Cauchy complete metric space,

(4) (Ω,KΩ) is a proper geodesic metric space.

One of the most important properties of the Kobayashi metric is the following

distance decreasing property (which is immediate from the definition).

PROPOSITION 2.2. Suppose Ω1 ⊂C
d1 and Ω2 ⊂C

d2 are domains. If f : Ω1 →
Ω2 is a holomorphic map, then

kΩ2

(
f(z);d(f)z(v)

)
≤ kΩ1

(z;v)

for all z ∈ Ω1 and v ∈ C
d. In particular,

KΩ2

(
f(z),f(w)

)
≤KΩ1

(z,w)

for all z,w ∈ Ω1.

We will also frequently use the following elementary estimate (which follows

from considering holomorphic maps of the form Bd ↪→ Ω).

Observation 2.3. If Ω⊂ C
d is a domain, then

kΩ(z;v) ≤ ‖v‖
δΩ(z)

for all z ∈ Ω and v ∈ C
d.

Finally, we make the following definition.

Definition 2.4. For a domain Ω⊂ C
d, z0 ∈ Ω, and R≥ 0 let BΩ(z0;R) be the

open metric ball of radius R centered at z0 with respect to the Kobayashi metric,

that is

BΩ

(
z0;R

)
=

{
z ∈Ω : KΩ

(
z,z0

)
<R

}
.

2.2. A quantitative estimate for maps of the disk. If f : D→ D is holo-

morphic and fixes two distinct points in D, then the Schwarz lemma implies that

f = id. Recently, Christodoulou and Short established the following quantitative

version of this uniqueness result.
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THEOREM 2.5. (Christodoulou-Short [CS19]) Suppose f : D → D is a holo-

morphic map and a,b,z ∈ D with a �= b. Then

KD

(
f(z),z

)
≤ Ca,b(z)

(
KD

(
f(a),a

)
+KD

(
f(b), b

))

where

Ca,b(z) =
1

2KD(a,b)
exp

(
2KD(z,a)+2KD(z,b)+2KD(a,b)

)
.

As a corollary we have the following.

PROPOSITION 2.6. Suppose that fn : D→ D are holomorphic maps, zn ∈ D,

and 0 < rn < 1. If

lim
n→∞

e4KD(zn,0)

rn
sup

w∈BD(zn;rn)

KD

(
fn(w),w

)
= 0,

then fn converges locally uniformly to the identity map.

Proof. Pick an, bn ∈ D such that

KD

(
an,zn

)
=KD

(
bn,zn

)
=

1

2
KD

(
an, bn

)
= rn.

Then

KD

(
fn(z),z

)
≤ Cn(z)

(
KD

(
fn

(
an

)
,an

)
+KD

(
fn

(
bn
)
, bn

))

where

Cn(z) =
1

2KD(an, bn)
exp

(
2KD

(
z,an

)
+2KD

(
z,bn

)
+2KD

(
an, bn

))
.

By construction

KD

(
f
(
an

)
,an

)
+KD

(
f
(
bn
)
, bn

)
≤ 2 sup

w∈BD(zn;rn)

KD

(
fn(w),w

)

and

Cn(z)≤
1

4rn
exp

(
4KD

(
z,zn

)
+8rn

)
≤ e8

4rn
e4KD(z,0)e4KD(0,zn).

Hence

KD

(
fn(z),z

)
≤ e8

2
e2KD(z,0)

e4KD(zn,0)

rn
sup

w∈BD(zn;rn)

KD

(
fn(w),w

)

and fn converges locally uniformly to the identity map. �
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2.3. Complex geodesics in convex domains. A holomorphic map ϕ : D→
Ω is called a complex geodesic if

KΩ

(
ϕ(z),ϕ(w)

)
=KD(z,w)

for all z,w ∈ D. A left inverse of a complex geodesic ϕ is a holomorphic map

π : Ω→ D such that π ◦ϕ= id. In this section we recall a result of Lempert.

THEOREM 2.7. (Lempert [Lem81, Lem82, Lem84]) Suppose that Ω is a

strongly convex domain with C∞ boundary. If z,w ∈ Ω are distinct, then there

exists a unique complex geodesic ϕ : D → Ω with z,w ∈ ϕ(D). Further, ϕ has a

left inverse π and for every ζ ∈ D

π−1(ζ) = Ω∩Hζ

for some complex affine hyperplane Hζ ⊂ C
d.

The fact that

π−1(ζ) = Ω∩Hζ.

for some complex affine hyperplane Hζ follows from the description of π given in

the proof of the Lemma in [Lem82]. In particular, if ϕ̃ : D→ Ω is the dual map of

ϕ, then π(z) ∈ D is the unique solution to the equation

[
z−ϕ(ζ), ϕ̃(ζ)

]
= 0

where [a,b] =
∑d

i=1aibi. Thus

π−1(ζ) = Ω∩
{
z ∈ C

d :
[
z−ϕ(ζ), ϕ̃(ζ)

]
= 0

}
.

If Ω is a bounded convex domain, then Ω can be written as an increasing union

of smoothly bounded strongly convex domain. Thus Montel’s theorem implies the

following corollary of Lempert’s theorem.

COROLLARY 2.8. Suppose that Ω is a bounded convex domain. If z,w ∈Ω are

distinct, then there exists a complex geodesic ϕ : D→Ω with z,w ∈ϕ(D). Further,

ϕ has a left inverse π such that for every ζ ∈D

π−1(ζ) = Ω∩Hζ

for some complex affine hyperplane Hζ .

Remark 2.9. For a general convex domain Ω, it is possible for two points z,w ∈
Ω to be contained in many different complex geodesics.

The left inverses with this hyperplane preimage property play a fundamental

role in the proof of Theorem 1.5 and so we make the following definition.
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Definition 2.10. Suppose that Ω is a bounded convex domain and ϕ : D→ Ω

is a complex geodesic. Then we say π : Ω→ D is a good left inverse of ϕ if π is a

left inverse of ϕ and for every ζ ∈ D

π−1(ζ) = Ω∩Hζ

for some complex affine hyperplane Hζ .

3. The Gromov product and complex geodesics. In a metric space (X,d),

the Gromov product of x,y ∈X at z ∈X is defined to be

(x|y)z =
1

2

(
d(x,z)+d(z,y)−d(x,y)

)
.

When (X,d) is a proper geodesic Gromov hyperbolic metric space, there is a com-

pactification X ∪X(∞) of X, called the ideal boundary, with the following prop-

erty.

PROPOSITION 3.1. Suppose (X,d) is a proper geodesic Gromov hyperbolic

metric space. Suppose xm,yn are sequences in X such that xm → ξ ∈X(∞) and

yn → η ∈X(∞). Then ξ = η if and only if

lim
m,n→∞

(
xm|yn

)
z
= ∞

for any z ∈X.

For the Kobayashi metric on convex domains the Gromov product behaves

almost as nicely near the topological boundary. Given a domain Ω⊂C
d we define

the Gromov product of points z,w,o ∈ Ω to be

(z|w)Ωo =
1

2

(
KΩ(z,o)+KΩ(o,w)−KΩ(z,w)

)
.

We also need the following definition.

Definition 3.2. Given a convex domain Ω⊂C
d with C1 boundary and x ∈ ∂Ω

let Hx∂Ω denote the unique complex affine hyperplane tangent to ∂Ω at x.

Remark 3.3. Since Ω is convex, if x∈ ∂Ω, then ∂Ω∩Hx∂Ω is a closed convex

set which is sometimes called the closed complex face of ∂Ω containing x.

We then have the following.

THEOREM 3.4. [Zim17, Theorem 4.1] Suppose Ω ⊂ C
d is a bounded convex

domain with C1,α boundary and pn,qm ∈Ω are sequences such that pn → x ∈ ∂Ω

and qm → y ∈ ∂Ω.

(1) If x= y, then limn,m→∞(pn|qm)Ωo = ∞,

(2) If limsupn,m→∞(pn|qm)Ωo = ∞, then Hx∂Ω=Hy∂Ω.
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In [Zim17], the behavior of the Gromov product was used to understand holo-

morphic self maps of Ω and real geodesics in (Ω,KΩ). In this section, we adapt

those arguments to study the behavior of complex geodesics.

Our first application establishes a boundary extension property of complex

geodesics. For a smooth strongly convex domain Ω ⊂ C
d, Lempert [Lem81]

showed that every complex geodesic ϕ : D→ Ω extends to a smooth map D→ Ω.

However, this fails when Ω is not strongly convex: there exist examples of

smoothly bounded convex domains Ω ⊂ C
d and complex geodesics ϕ : D → Ω

which do not even extend to a continuous map D → Ω, see for instance [Bha16,

Example 1.2].

For a convex domain Ω with C1 boundary define

H(∂Ω) =
{
Hx∂Ω : x ∈ ∂Ω

}
.

Then H(∂Ω) is a closed subset of the Grassmanian of complex affine hyperplanes

in C
d.

PROPOSITION 3.5. Suppose Ω ⊂ C
d is a bounded convex domain with C1,α

boundary. If ϕ : D→ Ω is a complex geodesic, then there exists a continuous map

ϕ̂ : ∂D→H(∂Ω) such that

lim
z→ζ

dEuc

(
ϕ(z),∂Ω∩ ϕ̂(ζ)

)
= 0

for every ζ ∈ ∂D.

Proof. Suppose ζ ∈ ∂D, then

lim
z,w→ζ

(
ϕ(z)|ϕ(w)

)Ω
ϕ(0)

= lim
z,w→ζ

(z|w)D0 = ∞

by applying Theorem 3.4 to D. So by Theorem 3.4 applied to Ω, there exists some

ϕ̂(ζ) ∈H(∂Ω) such that

lim
z→ζ

dEuc

(
ϕ(z),∂Ω∩ ϕ̂(ζ)

)
= 0.

It remains to show that the map ϕ̂ : ∂D→H(∂Ω) is continuous. Suppose that

ζn ∈ ∂D converges to ζ ∈ ∂D. We claim that

ϕ̂
(
ζn
)
−→ ϕ̂(ζ).

Since ∂Ω is compact, H(∂Ω) is also compact. So it is enough to show that every

convergent subsequence of ϕ̂(ζn) converges to ϕ̂(ζ). So without loss of generality

we can assume that ϕ̂(ζn) converges to some hyperplane H ∈H(∂Ω).

For each n pick a sequence zn,m ∈ D such that

lim
m→∞

zn,m = ζn.
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Then we can pick mn such that |zn,mn
− ζn|< 1/n and

dEuc

(
ϕ
(
zn,mn

)
,∂Ω∩ ϕ̂

(
ζn
))

< 1/n.

Then zn,mn
→ ζ and so

lim
n→∞

dEuc

(
ϕ(zn,mn

)
,∂Ω∩ ϕ̂(ζ)

)
= 0.

But by our construction of zn,mn
we also have

lim
n→∞

dEuc

(
ϕ
(
zn,mn

)
,∂Ω∩H

)
= 0.

So we must have ϕ̂(ζ) =H . �

Definition 3.6. Suppose Ω⊂C
d is a bounded convex domain with C1,α bound-

ary and ϕ : D → Ω is a complex geodesic. We call the map ϕ̂ : ∂D → H(Ω) in

Proposition 3.5 the hyperplane boundary extension of ϕ.

The next result shows that ϕ̂ depends continuously on ϕ.

PROPOSITION 3.7. Suppose Ω ⊂ C
d is a bounded convex domain with C1,α

boundary and ϕn : D→ Ω is a sequence of complex geodesics converging locally

uniformly to a complex geodesic ϕ : D→ Ω.

If zn ∈ D converges to ζ ∈ ∂D and ϕn(zn)→ x ∈ ∂Ω, then

ϕ̂(ζ) =Hx∂Ω.

Further, if ζn ∈ ∂D converges to ζ ∈ ∂D, then

ϕ̂(ζ) = lim
n→∞

ϕ̂n

(
ζn
)
.

Proof. Suppose zn ∈ D converges to ζ ∈ ∂D and ϕn(zn) → x ∈ ∂Ω. Fix 0 <

r < 1. Since ϕn and ϕ are complex geodesics

KΩ

(
ϕn

(
zn
)
,ϕn(0)

)
=KΩ

(
ϕn

(
zn
)
,ϕn

(
rzn

))
+KΩ

(
ϕn

(
rzn

)
,ϕn(0)

)

and

KΩ

(
ϕ
(
zn
)
,ϕ(0)

)
=KΩ

(
ϕ
(
zn
)
,ϕ

(
rzn

))
+KΩ

(
ϕ
(
rzn

)
,ϕ(0)

)
.

Thus, by the triangle inequality,

(
ϕn

(
zn
)
|ϕ
(
zn
))Ω

ϕ(0)
≥

(
ϕn

(
rzn

)
|ϕ
(
rzn

))Ω
ϕ(0)

− 1

2
KΩ

(
ϕn(0),ϕ(0)

)
.

Further,

lim
n→∞

(
ϕn

(
rzn

)
|ϕ
(
rzn

))Ω
ϕ(0)

=KΩ

(
ϕ(rζ),ϕ(0)

)
=KD(rζ,0).
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So

liminf
n→∞

(
ϕn

(
zn
)
|ϕ
(
zn
))Ω

ϕ(0)
≥KD(rζ,0).

Since 0 < r < 1 was arbitrary we see that

lim
n→∞

(
ϕn

(
zn
)
|ϕ
(
zn
))Ω

ϕ(0)
= ∞.

Then since ϕn(zn)→ x and

lim
n→∞

dEuc

(
ϕ
(
zn
)
,∂Ω∩ ϕ̂(ζ)

)
= 0,

Theorem 3.4 implies that Hx∂Ω= ϕ̂(ζ).

Now we prove the “further” part of the Proposition. Suppose that ζn ∈ ∂D

converges to ζ ∈ ∂D. We claim that

ϕ̂(ζ) = lim
n→∞

ϕ̂n

(
ζn
)
.

Since ∂Ω is compact, H(∂Ω) is also compact. So it is enough to show that every

convergent subsequence of ϕ̂(ζn) converges to ϕ̂(ζ). So without loss of generality

we can assume that ϕ̂(ζn) converges to some hyperplane H ∈H(∂Ω).

Now fix a sequence rn ↗ 1 such that

dEuc

(
ϕn

(
rnζn

)
,∂Ω∩ ϕ̂n

(
ζn
))

< 1/n.

By passing to a subsequence we can suppose that ϕn(rnζn) → x ∈ ∂Ω. Then

Hx∂Ω =H . So by the first assertion in the Proposition Hx∂Ω= ϕ̂(ζ). �

Consider the one-parameter subgroup {at : t ∈ R} ≤ Aut(D) given by

at(z) =
cosh(t)z+ sinh(t)

sinh(t)z+ cosh(t)
.

Then t→ at(0) is a geodesic in (D,KD) and so if ϕ :D→Ω is a complex geodesic,

then t→ ϕ(at(0)) is a geodesic in (Ω,KΩ).

The next result shows that geodesic segments whose endpoints are near bound-

ary points x,y ∈ ∂Ω with Hx∂Ω �=Hy∂Ω “bend” into Ω.

PROPOSITION 3.8. Suppose Ω ⊂ C
d is a bounded convex domain with C1,α

boundary and pn,qn ∈ Ω are sequences such that pn → x ∈ ∂Ω and qn → y ∈ ∂Ω

with Hx∂Ω �=Hy∂Ω.

If ϕn : D→ Ω is a complex geodesic with ϕn(0) = qn and ϕn(tn) = pn where

0< tn < 1, then there exists nk →∞ and sk ∈ [0, tnk
] so that the complex geodesics

ϕnk
◦ask converge locally uniformly to a complex geodesic ϕ : D→ Ω. Moreover,

lim
z→−1

dEuc

(
ϕ(z),∂Ω∩Hx∂Ω

)
= 0
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and

lim
z→1

dEuc

(
ϕ(z),∂Ω∩Hy∂Ω

)
= 0.

Proof. Since Hx∂Ω �= Hy∂Ω there exists open neighborhoods Ux of ∂Ω ∩
Hx∂Ω and Uy of ∂Ω∩Hy∂Ω such that Ux∩Uy = /0.

For n large, ϕn(0) ∈ Ux and ϕn(Tn) ∈ Uy. So there exists some sn ∈ (0,Tn)

such that

ϕn

(
sn
)
∈ Ω\

(
Ux∪Uy

)
.

By passing to a subsequence we can suppose that ϕn(sn)→ z ∈ Ω.

Claim: z ∈ Ω. Suppose not. Then z ∈ ∂Ω. Since z /∈ Ux ∪Uy, we see that

Hz∂Ω does not equal Hx∂Ω or Hy∂Ω. Fix some z0 ∈ Ω. Let

R1 = sup
{(

ϕn

(
sn
)
|ϕn(0)

)Ω
z0

: n= 1,2, . . .
}

and

R2 = sup
{(

ϕn

(
sn
)
|ϕn

(
tn
))Ω

z0
: n= 1,2, . . .

}
.

By Theorem 3.4, both R1 and R2 are finite. Then

KΩ

(
ϕn(0),ϕn

(
tn
))

=KΩ

(
ϕn(0),ϕn

(
sn
))

+KΩ

(
ϕn

(
sn
)
,ϕn

(
tn
))

≥KΩ

(
ϕn(0),z0

)
+2KΩ

(
z0,ϕn

(
sn
))

+KΩ

(
z0,ϕn

(
tn
))

−2R1 −2R2.

By the triangle inequality

KΩ

(
ϕn(0),ϕn

(
tn
))

≤KΩ

(
ϕn(0),z0

)
+KΩ

(
z0,ϕn

(
tn
))

and so we see that

KΩ

(
z0,ϕn

(
sn
))

≤R1 +R2.

But this is impossible since ϕn(sn)→ z ∈ ∂Ω and KΩ is a proper distance. So we

must have z ∈ Ω.

Now since z ∈ Ω, after possibly passing to a subsequence we can suppose

that φn = ϕn ◦asn converges to a complex geodesic ϕ : D→ Ω. Now since pn =

φn(a−sn(0)) → x and qn = φn(a−sn(tn)) → y, the previous Proposition implies

that

lim
z→−1

dEuc

(
ϕ(z),∂Ω∩Hx∂Ω

)
= 0
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and

lim
z→1

dEuc

(
ϕ(z),∂Ω∩Hy∂Ω

)
= 0. �

PROPOSITION 3.9. Suppose Ω ⊂ C
d is a bounded convex domain with C1,α

boundary, ϕ : D→ Ω is a complex geodesic, and π : Ω→ D is a good left inverse

of ϕ. For each z ∈ D, let Hz denote the complex affine hyperplane such that

π−1(z) = Ω∩Hz.

Then

ϕ̂(ζ) = lim
z→ζ

Hz

for every ζ ∈ ∂D.

Proof. Fix some ζ ∈ ∂D and suppose for a contradiction that

lim
z→ζ

Hz �= ϕ̂(ζ).

Then by compactness, we can find a sequence zn ∈ D converging to ζ such that

lim
n→∞

Hzn =H

and H �= ϕ̂(ζ). By passing to another subsequence we can suppose that ϕ(zn)→
x ∈ ∂Ω. Then x ∈ ϕ̂(ζ) and so Hx∂Ω = ϕ̂(ζ). Now each Hzn is a complex hyper-

plane containing ϕ(zn). So H is a complex hyperplane containing x. We next claim

that H ∩Ω= /0. If not, then after passing to a subsequence there exists w ∈H ∩Ω

and wn ∈Hzn ∩Ω such that wn → w. Then

ζ = lim
n→∞

zn = lim
n→∞

π
(
wn

)
= π(w)

which is impossible because π(Ω) =D. So H ∩Ω= /0. But then, since Ω is convex

and x ∈H , we have

H =Hx∂Ω= ϕ̂(ζ)

which is a contradiction. �

4. The one dimensional case. In this section we use Proposition 2.6 to

provide a new proof of the Burns-Krantz theorem for the disc. The one dimensional

result is not needed in the proof of Theorem 1.5, but this simple case motivates the

argument.
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THEOREM 4.1. (Burn-Krantz [BK94]) Suppose f :D→D is holomorphic and

there exists some ξ0 ∈ ∂D such that

f(z) = z+o
(
|z− ξ0|3

)
,

then f = id.

For the rest of the section suppose f : D→ D is holomorphic and there exists

some ξ0 ∈ ∂D such that

f(z) = z+o
(
|z− ξ0|3

)
.

Without loss of generality we can assume that ξ0 = 1. Then there exists a non-

decreasing function E : [0,∞)→ [0,∞) such that

|f(z)− z| ≤E
(
|z−1|

)

and

lim
r→0

E(r)

r3
= 0.

Fix a sequence 0 < rn < 1 with rn → 0. Then consider the points pn = 1− rn.

Then

KD

(
0,pn

)
=

1

2
log

1+ |z|
1−|z| ≤

1

2
log

2

rn
.

From the well-known explicit formula for the Kobayashi metric on D we have

|v|
2(1−|z|) ≤ kD(z;v) ≤ |v|

1−|z|

for all z ∈ D and v ∈ C. Using this estimate the next two lemmas are simple exer-

cises.

Given z ∈ C and r > 0 let D(z;r) = {w ∈C : |z−w|< r}.

LEMMA 4.2. There exists C > 0 such that: If w ∈D(pn;rn/4), then

KD

(
w,f(w)

)
≤ C

rn
E
(
5rn/4

)
.

For each n define

εn = sup
{
ε : BD

(
pn;ε

)
⊂D

(
pn;rn/4

)}
.

LEMMA 4.3. There exists some a > 0 such that εn ≥ a for all n.
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Then

lim
n→∞

e4KD(zn,0)

εn
sup

w∈BD(zn;εn)

KD

(
f(w),w

)
≤ 4C

a
lim
n→∞

1

r3
n

E
(
5rn/4

)
= 0.

So if we apply Proposition 2.6 to the constant sequence f , then we see that f = id.

5. Proof of Theorem 1.5. For the rest of the section suppose that Ω ⊂ C
d

is a bounded convex domain with C2 boundary, f : Ω → Ω is holomorphic map,

and there exists ξ0 ∈ ∂Ω such that

f(z) = z+o
(
‖z− ξ0‖4

)
.

Then there exists a non-decreasing function E : [0,∞)→ [0,∞) such that

‖f(z)− z‖ ≤ E
(
‖z− ξ0‖

)

and

lim
r→0

E(r)

r4
= 0.

The key step in the proof is the following proposition.

PROPOSITION 5.1. For any q ∈ Ω there exists a complex geodesic ϕ : D→ Ω

and a good left inverse π : Ω→ D such that ϕ(0) = q, π ◦f ◦ϕ= id, and

lim
z→1

dEuc

(
ϕ(z),∂Ω∩Hξ0

∂Ω
)
= 0.

The proof of the proposition will require some lemmas. Let nΩ(ξ0) denote the

inward pointing unit normal vector at ξ0. Then consider a sequence

pn = ξ0 + rnnΩ

(
ξ0

)
∈Ω

which converges to ξ0. Next fix a point z0 ∈ Ω. Then by [Aba89, Theorem 2.3.51]

there exists some C0 > 0 such that

KΩ

(
z0,pn

)
≤ C0 +

1

2
log

1

rn
.(3)

As before, given z ∈ C
d and r > 0 let Bd(z;r) = {w ∈ C

d : ‖z−w‖< r}.

LEMMA 5.2. There exists C1 > 0 such that: If w ∈ Bd(pn;rn/4), then

KΩ

(
w,f(w)

)
≤ C1

rn
E
(
5rn/4

)
.
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Proof. Pick N > 0 such that

E
(
5rn/4

)
≤ rn/4

for all n≥N .

If n≥N and w ∈ Bd(pn;rn/4), then

‖f(w)−w‖ ≤ E
(
‖w− ξ0‖

)
≤E

(
5rn/4

)
≤ rn/4.

Let σ : [0,1]→ Ω be the curve σ(t) = (1− t)w+ tf(w). Then

δΩ
(
σ(t)

)
≥ δΩ

(
pn

)
−‖σ(t)−pn‖ ≥ rn− rn/2 = rn/2

for all t ∈ [0,1]. So

KΩ

(
w,f(w)

)
≤ �Ω(σ) =

∫ 1

0

kΩ
(
σ(t);σ′(t)

)
dt≤

∫ 1

0

‖σ′(t)‖
δΩ

(
σ(t)

) dt

≤
∫ 1

0

2‖f(w)−w‖
rn

dt≤ 2

rn
E
(
5rn/4

)
.

So there exists C1 > 0 such that: If w ∈ Bd(pn;rn/4), then

KΩ

(
w,f(w)

)
≤ C1

rn
E
(
5rn/4

)
. �

For each n define

εn = sup
{
ε : BΩ

(
pn;ε

)
⊂ Bd

(
pn;rn/4

)}
.

LEMMA 5.3. There exists some a > 0 such that εn ≥ arn for all n.

Proof. Since Ω is a bounded domain, there exists some R > 0 such that Ω ⊂
Bd(0;R). Then

kΩ(z;v) ≥ kBd(0;R)(z;v)≥ 1

R
‖v‖

for all z ∈ Ω and v ∈ C
d. Then

KΩ(z,w)≥
1

R
‖z−w‖

for all z,w ∈ Ω. So if a= 1/(4R) and w ∈BΩ(pn;arn) then

‖pn−w‖ ≤RKΩ

(
pn,w

)
≤ rn/4.

Hence εn ≥ arn for all n. �
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Proof of Proposition 5.1. By Theorem 2.7, for each n there exists a complex

geodesic ϕn : D → Ω with a good left inverse πn : Ω → D such that ϕn(0) = q

and ϕn(tn) = pn for some tn ∈ (0,1). By Montel’s theorem and possibly passing

to a subsequence we can assume that ϕn and πn converge locally uniformly to

holomorphic maps ϕ and π. Then ϕ is a complex geodesic, π is a good left inverse

of ϕ, ϕ(0) = q, and by Proposition 3.7

lim
z→1

dEuc

(
ϕ(z),∂Ω∩Hξ0

∂Ω
)
= 0.

Define Fn : D→ D by Fn(z) = πn ◦f ◦ϕn. Then Fn converges to π ◦f ◦ϕ.

Suppose that w ∈BD(tn;εn). Then ϕn(w) ∈BΩ(pn;εn) since ϕn is a complex

geodesic. Then

KD

(
Fn(w),w

)
=KD

(
πn ◦f ◦ϕn(w),πn ◦ϕn(w)

)

≤KΩ

(
f
(
ϕn(w)

)
,ϕn(w)

)
≤ C1

rn
E
(
5rn/4

)
.

Further

KD

(
tn,0

)
=KΩ

(
pn,q

)
≤KΩ

(
pn,z0

)
+KΩ

(
z0,q

)

so by Equation (3)

e4KD(tn,0) ≤Ar−2
n

where A= exp(4KΩ(z0,q)+4C0). Thus

lim
n→∞

e4KD(tn,0)

εn
sup

w∈BD(tn;εn)

KD

(
Fn(w),w

)
≤ AC1

a
lim
n→∞

1

r4
n

E
(
5rn/4

)
= 0.

So Proposition 2.6 implies that Fn converges locally uniformly to id. Thus π ◦f ◦
ϕ= id. �

PROPOSITION 5.4. If η ∈ ∂Ω is a strongly convex point of ∂Ω and qn ∈Ω is a

sequence with qn → η, then f(qn)→ η.

Proof. The proposition is obvious if η = ξ0. So suppose that η �= ξ0.

Suppose for a contradiction that f(qn) does not converge to η. Then, by passing

to a subsequence, we can suppose that f(qn)→ η′ ∈Ω where η′ �= η.

By the previous proposition, for each qn there exists a complex geodesic ϕn :

D→ Ω and a good left inverse πn : Ω→D such that ϕn(0) = qn, πn ◦f ◦ϕn = id,

and

lim
z→1

dEuc

(
ϕn(z),∂Ω∩Hξ0

∂Ω
)
= 0.



142 A. ZIMMER

Then

KΩ

(
f ◦ϕn(z),f ◦ϕn(w)

)
≤KD(z,w)

and

KΩ

(
f ◦ϕn(z),f ◦ϕn(w)

)
≥KD

(
πn ◦f ◦ϕn(z),πn ◦f ◦ϕn(w)

)
=KD(z,w).

So f ◦ϕn is also a complex geodesic.

Since η is a strongly convex point,

∂Ω∩Hη∂Ω = {η}

and so Hη∂Ω �= Hξ0
∂Ω. Then by Proposition 3.8 and after possibly passing to a

subsequence, there exists sn ∈R such that ϕn ◦asn converges locally uniformly to

a complex geodesic ϕ : D→ Ω. Further

lim
z→1

dEuc

(
ϕ(z),∂Ω∩Hξ0

∂Ω
)
= 0

and

lim
z→−1

ϕ(z) = η

since ∂Ω∩Hη∂Ω = {η}.

The complex geodesics f ◦ϕn ◦asn converge locally uniformly to f ◦ϕ and

(
f ◦ϕn ◦asn

)(
a−sn(0)

)
= f

(
qn
)
−→ η′,

so Proposition 3.7 implies that

lim
z→−1

dEuc

(
f
(
ϕ(z)

)
,∂Ω∩Hη′∂Ω

)
= 0.

By Montel’s theorem and possibly passing to another subsequence we can as-

sume that a−sn ◦πn converges locally uniformly to some π : Ω→ D. Then π is a

good left inverse of ϕ and π ◦ f ◦ϕ = id. For each z ∈ D let Hz be the complex

hyperplane such that

π−1(z) =Hz ∩Ω.

Then since

lim
z→−1

ϕ(z) = η,

Proposition 3.9 implies that

lim
z→−1

Hz =Hη∂Ω.
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If z ∈D, then π(f(ϕ(z))) = z and so f(ϕ(z)) ∈Hz . Thus

lim
z→−1

dEuc

(
f
(
ϕ(z)

)
,∂Ω∩Hη∂Ω

)
= 0.

But η ∈ ∂Ω is a strongly convex point and so {η} = ∂Ω∩Hη∂Ω, thus

lim
z→−1

f
(
ϕ(z)

)
= η

which contradicts the fact that Hη′∂Ω �=Hη∂Ω and

lim
z→−1

dEuc

(
f
(
ϕ(z)

)
,∂Ω∩Hη′∂Ω

)
= 0. �

LEMMA 5.5. There exists a strongly convex point η0 ∈ ∂Ω.

Proof. Fix a point z0 ∈ Ω. Pick η0 ∈ ∂Ω such that

‖η0 − z0‖= max
{
‖η− z0‖ : η ∈ ∂Ω

}

and let R = ‖η0 − z0‖. Then Ω⊂ Bd(z0;R) and η0 ∈ ∂Ω∩∂Bd(z0;R). So η0 is a

strongly convex point of ∂Ω. �

We now claim that f is the identity map. Since Ω has C2 boundary, there exists

a neighborhood U of η0 where ∂Ω is strongly convex at every η ∈ U ∩∂Ω.

Fix a point w0 ∈ Ω. Consider the complex affine line L containing w0 and η0.

Then L∩Ω is a convex and hence simply connected, so by the Riemann mapping

theorem there exists a biholomorphism ψ : D → L∩Ω. Since L∩Ω is convex,

∂(L∩Ω) is a Jordan curve. So by Carathéodory’s extension theorem, ψ extends to

a continuous map D→ L∩Ω. Next consider the holomorphic map

F = (f ◦ψ−ψ) : D−→ C
d .

Since F is bounded, Fatou’s Theorem implies that there exists a measurable map

F∞ : S1 → C
d such that

F∞

(
eiθ

)
= lim

r↗1
F
(
reiθ

)

for almost every eiθ ∈ S1. However, Proposition 5.4 implies that

0 = lim
r↗1

F
(
reiθ

)

when eiθ ∈ V := ψ−1(U ∩∂Ω). Since η0 ∈ ψ(D), V is non-empty and since ψ is

continuous, V is open in S1. So F∞ = 0 on a set of positive measure in S1. So by

the Luzin-Privalov Theorem (see [CL66, Chapter 2]), F ≡ 0. Thus f(z) = z for

all z ∈ L∩Ω. In particular, f(w0) = w0. Since w0 ∈ Ω was arbitrary, we see that

f = id.
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6. Proof of Theorem 1.7. In this section we describe how to modify the

proof of Theorem 1.5 to obtain Theorem 1.7, but first we recall the definition of the

line type of a boundary point.

Given a function f : C→R with f(0) = 0 let ν(f) denote the order of vanish-

ing of f at 0. Suppose that Ω⊂ C
d is a domain and

Ω=
{
z ∈ C

d : r(z)< 0
}

where r is a C∞ function with ∇r �= 0 near ∂Ω. The line type of a boundary point

ξ ∈ ∂Ω, is defined to be

�(ξ) = sup
{
ν(r ◦ψ) | ψ : C−→ C

d is a non-constant complex affine map

with ψ(0) = ξ
}
.

Notice that ν(r ◦ψ) ≥ 2 if and only if ψ(C) is tangent to Ω. McNeal [McN92]

proved that if Ω is convex then ξ ∈ ∂Ω has finite line type if and only if it has finite

type in the sense of D’Angelo (also see [BS92]).

For the rest of the section suppose that Ω ⊂ C
d is a bounded convex domain

with C∞ boundary, f : Ω→ Ω is holomorphic map, and there exists ξ0 ∈ ∂Ω such

that �(ξ0)<+∞ and

f(z) = z+o
(
‖z− ξ0‖4−1/�(ξ0)

)
.

Then there exists a non-decreasing function E : [0,∞)→ [0,∞) such that

‖f(z)− z‖ ≤ E
(
‖z− ξ0‖

)

and

lim
r→0

E(r)

r4−1/�(ξ0)
= 0.

The rest of the proof is identical to the proof of Theorem 1.5 except that

Lemma 5.3 is replaced with the following stronger result.

LEMMA 6.1. There exists some a > 0 such that εn ≥ ar
1−1/�(ξ0)
n for all n.

Proof. By [AT02, Corollary 1.7] there exists a neighborhood U of ξ0 and some

α0 > 0 such that

kΩ(z;v) ≥ α0
‖v‖

δΩ(z)1/�(ξ0)

for all z ∈ U ∩Ω and v ∈ C
d.

Since pn → ξ0 and rn → 0, there exists N > 0 such that Bd(pn;rn/4) ⊂ U

when n≥N . So for z ∈ Bd(pn;rn/4) and n≥N we have

KΩ

(
z,pn

)
≥ α

r
1/�(ξ0)
n

‖z−pn‖
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where α= (4/5)1/�(ξ0)α0. So if a0 = 1/(4α) and z ∈BΩ

(
pn;a0r

1−1/�(ξ0)
n

)
then

‖z−pn‖ ≤
r

1/�(ξ0)
n

α
KΩ

(
z,pn

)
≤ rn/4.

So there exists a > 0 such that εn ≥ ar
1−1/�(ξ0)
n for all n. �

Part 2. Proof of Theorem 1.13

7. The geometry of the tangent bundle. In this section we recall the defi-

nition of the Sasaki metric and give some basic estimates.

Let (M,g) be a complete Riemannian manifold and let π : TM → M be the

tangent bundle. Define the vertical subbundle of TTM → TM by

V (X) = kerd(π)X .

Next let ∇ be the Levi-Civita connection on M . Given X ∈ TM , define the con-

nection map KX : TXTM → Tπ(X)M as follows: given some ξ ∈ TXTM let

σ : (−ε,ε)→ TM be a curve with σ′(0) = ξ. Then define

K(ξ) =
(
∇α′(0)σ

)
(0)

where α = π ◦σ and we view σ as a vector field along α. This is a well-defined

linear map (see for instance [Pat99, Lemma 1.13]). Then define the horizontal sub-

bundle of TTM → TM by

H(X) = kerKX .

Then for every X ∈ TM we have

TXTM = V (X)⊕H(X)

and the map

ξ ∈ TXTM −→
(
d(π)Xξ,KX(ξ)

)
∈ Tπ(X)M ⊕Tπ(X)M

is a vector space isomorphism (see for instance [Pat99, Lemma 1.15]).

Using the maps defined above we can define a Riemannian metric h on TM .

Given X ∈ TM and ξ ∈ TXTM define

hX(ξ,ξ) = gπ(X)

(
d(π)Xξ,d(π)Xξ

)
+ gπ(X)

(
KX(ξ),KX(ξ)

)
.

Then h is a complete Riemannian metric on TM called the Sasaki metric.

Next let dTM denote the distance on TM induced by h, let

T 1M =
{
X ∈ TM : ‖X‖g = 1

}
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denote the unit tangent bundle of M , and let dT 1M denote the distance on T 1M

induced by restricting h to T 1M .

We end this section with two estimates. Both are applications of basic methods

in Riemannian geometry, but we provide proofs in Appendix A.

PROPOSITION 7.1. If (M,g) is a complete Riemannian manifold and X,Y ∈
T 1M , then

dT 1M (X,Y )≤ (π+1)dTM (X,Y ).

PROPOSITION 7.2. If (M,g) is a complete Riemannian manifold with sec-

tional curvature bounded in absolute value by κ > 0 and γ1,γ2 : [0,∞) →M are

geodesics, then

dM
(
γ1(t),γ2(t)

)
≤ exp

(
κ+1

2
t

)
dT 1M

(
γ′1(0),γ

′
2(0)

)

for t > 0.

8. Two lower bounds. In this section we establish two lower bounds for

metrics with property-(BG).

PROPOSITION 8.1. Suppose that Ω ⊂ C
d is a bounded domain and g is a

complete Kähler metric on Ω whose sectional curvature is bounded in absolute

value by κ > 0. Then there exists some a > 0 such that

a‖v‖ ≤
√

gz(v,v)

for all z ∈Ω and v ∈ C
d.

Proof. By scaling Ω we may assume that Ω ⊂ Bd where Bd is the unit ball

in C
d. Let h be the Bergman metric on Bd. Then h has holomorphic bisectional

curvature bounded from above by a negative number. Further there exists some

δ > 0 such that

δ ‖v‖ ≤
√

hz(v,v)

for all z ∈ Bd and v ∈ C
d. Then applying the Yau Schwarz Lemma [Yau78] to the

inclusion map Ω ↪→ Bd shows that there exists some C > 0 such that

C
√
hz(v,v) ≤

√
gz(v,v)

for all z ∈ Ω and v ∈ C
d. �

Next we use a result of Cheeger, Gromov, and Taylor to provide a lower bound

on the injectivity radius. Suppose (M,g) is a Riemannian manifold. Given x ∈M



BOUNDARY RIGIDITY RESULTS 147

we define the injectivity radius at x to be

injg(x) = max
{
R > 0 : expx |Bx(s) is injective for all 0 < s < R

}

where Bx(s)⊂ TxM is the open ball of radius r centered at 0 in the inner product

space (TxM,gx).

PROPOSITION 8.2. Suppose that Ω ⊂ C
d is a bounded domain and g is a

complete Riemannian metric on Ω such that:

(1) sectional curvature of g is bounded in absolute value by κ > 0 and

(2) there exists a,A > 0 such that

a‖v‖ ≤
√
gz(v,v)≤A

‖v‖
δΩ(v)

for all z ∈ Ω and v ∈ C
d.

Then there exists some I0 > 0 such that

injg(z)≥ I0δΩ(z)
4d+1

for all z ∈ Ω.

Proof. For z ∈Ω and r > 0 let Bg(z,r) the open ball of radius r centered at z in

(Ω,g). Then let Vg(z,r) denote the volume of Bg(z,r) in (Ω,g). For n∈N, λ∈R,

and r > 0 let V n
λ (r) denote the volume of the ball of radius r in the n-dimensional

model space Mn
λ with constant curvature λ. With this notation, Theorem 4.7 in

[CGT82] implies that

injg(z)≥
r

2

Vg(z,r)

Vg(z,r)+V 2d
−κ(2r)

(4)

for all r < π/(4
√
κ). Finally, fix V0 > 0 such that

V 2d
−κ(2r)≤ V0

when r < 2.

Fix z ∈ Ω sufficiently close to ∂Ω and let

r =
δΩ(z)

2a
.

Then by the estimates on g,

{
w ∈ Ω : ‖z−w‖ ≤ 1

4aA
δΩ(z)

2

}
⊂Bg(z,r)⊂

{
w ∈ Ω : ‖z−w‖ ≤ 1

2
δΩ(z)

}
.

We can assume that r < min{1,1/(4
√
κ)}. Then

V 2d
−κ(2r)≤ V0.(5)
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Next we estimate Vg(z,r). Let Volg denote the Riemannian volume associated to

g. By the estimates on g, if

E ⊂
{
w ∈ Ω : ‖z−w‖ ≤ 1

2
δΩ(z)

}
,

then

a2dλ(E)≤ Volg(E)≤ 22dA2d

δΩ(z)2d
λ(E)

where λ(E) is the Lebesgue measure of E. So there exists a constant A0 > 1 such

that

1

A0

δΩ(z)
4d ≤ Vg(z,r)≤A0.(6)

Thus by Equations (4), (5), and (6) there exists a constant I0 > 0 such that

injg(z)≥ I0δΩ(z)
4d+1. �

9. Deforming metrics. In this section we recall a result that allows us to

deform a Riemannian metric with bounded sectional curvature to obtain a new

metric with better properties.

THEOREM 9.1. [Shi89, CZ06] Suppose (M,g) is a complete Riemannian man-

ifold whose sectional curvature is bounded in absolute value by κ > 0. Then for

every ε > 0 there exists a complete Riemannian metric g̃ on M such that:

(1) the sectional curvature of g̃ is bounded in absolute value by κ+ ε,

(2) the metrics g̃ and g are (1+ ε)-bi-Lipschitz,

(3) if R̃ is the curvature tensor of g̃, then

sup
x∈M

∣∣∣∇̃qR̃
∣∣∣< ∞

where ∇̃q denotes the qth covariant derivative with respect to g̃, and

(4) Isom(M,g) ≤ Isom(M,g̃).

The metric g̃ is obtained by considering the Ricci flow starting at g:

∂

∂t
g =−Ric(g).

Shi [Shi89] proved that there exists some T > 0 such that the Ricci flow starting at

g has a solution gt for t ∈ [0,T ] and for any t ∈ (0,T ] the metric gt satisfies parts

(2) and (3). Chen and Zhu [CZ06] proved that this solution is unique and hence that

Isom(M,g)≤ Isom(M,gt). For precise control over the sectional curvature see for

instance [Kap05].
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10. A distance estimate. The main result in this section says that given a

complete Riemannian manifold (M,g) and two geodesics γ,σ : I → M the dis-

tance between γ′(0) and σ′(0) can be estimated from the distance between γ(t)

and σ(t) over a short time interval. Before stating the theorem we need some more

notation.

A subset X in a Riemannian manifold (M,g) is said to be strongly convex if

any two points in X are joined by a unique minimal geodesic and this geodesic is

contained in X. Given x ∈M we define the convexity radius at x to be

rg(x) = max
{
R > 0 : Bg(x;s) is strongly convex for all 0 < s < R

}

where Bg(x;s)⊂M is the open ball of radius s centered at x.

The injectivity radius and convexity radius are related by the following result.

THEOREM 10.1. [Ber03, Proposition 20] Suppose (M,g) is a complete Rie-

mannian manifold with sectional curvature bounded in absolute value by κ > 0. If

x ∈M , then

min

{
π

2
√
κ
,
1

2
injg(x)

}
≤ rg(x)≤

1

2
injg(x).

We are now ready to state the main result of this section.

THEOREM 10.2. Suppose (M,g) is a complete Riemannian manifold and

sup
{
|∇qR| : x ∈M, q = 0,1,2

}
< ∞

where R is the curvature tensor of (M,g). Then there exists A > 1 such that: if

x ∈M ,

0 < ε < min
{

rg(x)/2,1
}
,

and γ,σ : [0, ε]→M are unit speed geodesics with γ(0) = x, then

dT 1M

(
γ′(0),σ′(0)

)
≤ A

ε
max
t∈[0,ε]

dM
(
γ(t),σ(t)

)
.

To prove the theorem we will use a result of Eichhorn. Recall, that a chart

(U,ϕ) of a Riemamnian manifold (M,g) is a normal chart centered at x with

radius r if U = Bg(x;r) and ϕ−1 = expx ◦I for some linear isometry I : Rd →
(TxM,gx).

THEOREM 10.3. [Eic91, Corollary 2.6] Suppose (M,g) is a complete Rie-

mannian manifold and

sup
{
|∇qR| : x ∈M, q = 0,1,2

}
< ∞
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where R is the curvature tensor of (M,g). For any r0 > 0 there exists C̃ > 0 such

that: if x ∈ M , (U,ϕ) is a normal chart centered at x of radius at most r0, and

h= ϕ∗g, then

sup
ϕ(U)

∣∣∣∣∣
∂|α|hi,j
∂uα

∣∣∣∣∣≤ C̃

for every multi-index α with |α| ≤ 2.

10.1. Proof of Theorem 10.2. For the rest of the section let (M,g) be a

complete Riemannian manifold with

sup
{
|∇qR| : x ∈M, q = 0,1,2

}
< ∞

where R is the curvature tensor of (M,g). Let C̃ > 0 be the constant from Theo-

rem 10.3 with r0 = 1.

LEMMA 10.4. There exist constants r1,A1 > 0 such that: if x ∈M , (U,ϕ) is a

normal chart centered at x of radius at most r1, and γ : [0,T ]→M is a unit speed

geodesic with image in U , then

1

A1

≤
∥∥(ϕ◦γ)′(t)

∥∥≤A1.

In particular, if p,q ∈ U ∩Bg(x; rg(x)) then

1

A1

‖ϕ(p)−ϕ(q)‖ ≤ dM (p,q)≤A1 ‖ϕ(p)−ϕ(q)‖ .

Proof. Let

r1 = min

{
1,

1

2dC̃

}
.

Then suppose that (U,ϕ) is a normal chart centered at x of radius at most r1. Let

γ̃ = ϕ◦γ and h= ϕ∗g. Then ‖γ̃′(t)‖h = 1.

Since h at u= 0 is the standard Euclidean inner product, we see that

∣∣∣‖v‖2
h−‖v‖2

∣∣∣≤ C̃r1

∑

i,j

|vivj| ≤
1

2
C̃r1

∑

i,j

|vi|2 + |vj |2 = C̃r1d‖v‖2 ≤ 1

2
‖v‖2 .

So

1

2
‖v‖ ≤ ‖v‖h ≤ 2‖v‖

and so

1

2
≤

∥∥γ̃′(t)
∥∥≤ 2.
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Next suppose that p,q ∈ U ∩Bg(x; rg(x)). Then let σ : [0,T ] → M be a unit

speed geodesic joining p to q. Then the image of σ is contained in U so

dM (p,q) =

∫ T

0

∥∥σ′(t)
∥∥
g
dt=

∫ T

0

∥∥(ϕ◦σ)′(t)
∥∥
h
dt

≥ 1

2

∫ T

0

∥∥(ϕ◦σ)′(t)
∥∥dt≥ 1

2
‖ϕ(p)−ϕ(q)‖ .

On the other hand, if f(t) = tϕ(p)+ (1− t)ϕ(q) , then

dM (p,q)≤
∫ 1

0

∥∥(ϕ−1 ◦f)′(t)
∥∥
g
dt=

∫ 1

0

∥∥f ′(t)
∥∥
h
dt

≤ 2

∫ 1

0

‖ϕ(p)−ϕ(q)‖dt= 2‖ϕ(p)−ϕ(q)‖ . �

LEMMA 10.5. There exists a constant C̃1 > 0 such that: if x ∈M , (U,ϕ) is a

normal chart centered at x of radius at most r1, h= ϕ∗g, and

Γk
ij =

1

2

∑

k

(
∂hjk
∂ui

+
∂hki
∂uj

− ∂hij
∂uk

)
hkm,

then

max

{∣∣∣Γk
ij

∣∣∣ ,
∣∣∣∣∣
∂Γk

ij

∂u1

∣∣∣∣∣ , . . . ,
∣∣∣∣∣
∂Γk

ij

∂ud

∣∣∣∣∣

}
≤ C̃1

on ϕ(U).

Proof. The proof of the last lemma provides a uniform bound on hkm. So the

Lemma follows from Theorem 10.3. �

LEMMA 10.6. There exists a constant A2 > 0 such that: if x ∈ M , (U,ϕ) is

a normal chart centered at x of radius at most r1, and γ,σ : [0,T ] →M are unit

speed geodesics with images in U , then

∥∥F ′′(t)
∥∥≤A2

(
‖F (t)‖+

∥∥F ′(t)
∥∥)

where F (t) = (ϕ◦γ)(t)− (ϕ◦σ)(t).

Proof. Let γ̃=ϕ◦γ, σ̃=ϕ◦σ, and h=ϕ∗g. By [dC92, p. 62], the components

of γ̃′′− σ̃′′ satisfy the differential equation

γ̃′′k(t)− σ̃′′
k(t) =

∑

i,j

σ̃′
i(t)σ̃

′
j(t)Γ

k
ij

(
σ̃(t)

)
−
∑

i,j

γ̃′i(t)γ̃
′
j(t)Γ

k
ij

(
γ̃(t)

)
.
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By Lemma 10.4

max
{∥∥γ̃′(t)

∥∥ ,
∥∥σ̃′(t)

∥∥}≤A1.

Then since the function

(u,X) ∈ U ×R
d −→

∑

i,j

XiXjΓ
k
ij(u)

has locally bounded first derivatives, there exists some Ã2 > 0 such that

∥∥γ̃′′k(t)− σ̃′′
k(t)

∥∥≤ Ã2

(
‖γ̃(t)− σ̃(t)‖+

∥∥γ̃′(t)− σ̃′(t)
∥∥). �

LEMMA 10.7. There exists a constant A3 > 0 such that: if x ∈M , (U,ϕ) is a

normal chart centered at x of radius at most r1, then

dT 1M

((
ϕ−1

(
u1

)
,d
(
ϕ−1

)
u1
X
)
,
(
ϕ−1

(
u2

)
,d
(
ϕ−1

)
u2
Y
))

≤A3 max
{

1,‖X‖ ,‖Y ‖
}(

‖u1 −u2‖+‖X−Y ‖
)

for all u1,u2 ∈ ϕ(U) and X,Y ∈ R
d.

Proof. In the local coordinates (u1, . . . ,ud,X1, . . . ,Xd) ∈ U ×R
d the Sasaki

metric is given by

hi,jdu
iduj +hi,jDXiDXj

where

DXi = dXi+Γi
jkXidu

k.

So the estimate follows form Theorem 10.3 and Lemma 10.5. �

We will also use the following simple observation:

LEMMA 10.8. If X,Y ∈R
d and ε ∈ (0,2), then

max
t∈[0,ε]

‖X+ tY ‖ ≥ ε

4

(
‖X‖+‖Y ‖

)
.

Proof. If ‖X‖ ≥ ε
2
‖Y ‖, then

‖X‖ ≥ 1

2
‖X‖+ ε

4
‖Y ‖ ≥ ε

4

(
‖X‖+‖Y ‖

)
.

If ‖X‖ ≤ ε
2
‖Y ‖, then

‖X+ εY ‖ ≥ ε‖Y ‖−‖X‖ ≥ ε

2
‖Y ‖ ≥ ε

4

(
‖X‖+‖Y ‖

)
. �
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We now prove Theorem 10.2 in a special case. Let

r2 = min

{
r1,

1

8
√
dA2

}
.

LEMMA 10.9. There exists A4 > 1 such that: if x ∈M ,

0 < ε < min
{

rg(x)/2,r2

}
,

and γ,σ : [0, ε]→M are unit speed geodesics with γ(0) = x, then

dT 1M

(
γ′(0),σ′(0)

)
≤ A4

ε
max
t∈[0,ε]

dM
(
γ(t),σ(t)

)
.

Proof. The proof is divided into two cases:

Case 1. Suppose that

ε≤ max
t∈[0,ε]

dM
(
γ(t),σ(t)

)
.

Then by Lemma A.3

dT 1M

(
γ′(0),σ′(0)

)
≤ π+dM

(
γ(0),σ(0)

)

≤ π+1

ε
max
t∈[0,ε]

dM
(
γ(t),σ(t)

)
.

Case 2. Suppose that

ε≥ max
t∈[0,ε]

dM
(
γ(t),σ(t)

)
.

Fix (U,ϕ) is a normal chart centered at x with radius min{rg(x),2r2}. Let γ̃ =

ϕ◦γ, σ̃ = ϕ◦γ, and F = γ̃− σ̃.

Define

D = max
t∈[0,ε]

‖F (t)‖+
∥∥F ′(t)

∥∥

and pick some t0 ∈ [0, ε] realizing this maximum.

Claim. If t ∈ [0, ε], then

∥∥F (t0)+F ′(t0)(t− t0)
∥∥≤ ‖F (t)‖+ ε

16
D.

Let F = (F1, . . . ,Fd). Then by Taylor’s theorem

Fk(t) = Fk

(
t0

)
+F ′

k

(
t0

)(
t− t0

)
+

1

2
F ′′
k

(
ζk
)(
t− t0

)2
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for some ζk between t and t0. Further

∣∣F ′′
k (ζk)

∣∣≤A2

(
‖F (ζk)‖+

∥∥F ′(ζk)
∥∥)≤A2D

by Lemma 10.6. So

∥∥F (t0)+F ′(t0)(t− t0)
∥∥≤ ‖F (t)‖+

√
d

2
A2D

(
t− t0

)2
.

Then

∥∥F (t0)+F ′(t0)(t− t0)
∥∥≤ ‖F (t)‖+ ε

16
D

since ε < (8
√
dA2)

−1. This proves the claim.

By Lemma 10.8

D ≤ 8

ε
max
t∈[0,ε]

∥∥F
(
t0

)
+F ′(t0

)(
t− t0

)∥∥ .

Then by the claim

D ≤ 8

ε
max
t∈[0,ε]

(
‖F (t)‖+ ε

16
D

)

and so

D ≤ 16

ε
max
t∈[0,ε]

‖F (t)‖ .(7)

Finally, by Lemmas 10.4 and 10.7

dT 1M

(
γ′(0),σ′(0)

)
≤A1A3

(
‖F (0)‖+

∥∥F ′(0)
∥∥)≤A1A3D

and by Lemma 10.4

dM
(
γ(t),σ(t)

)
≥ 1

A1

‖F (t)‖ .

So by Equation (7)

dT 1M

(
γ′(0),σ′(0)

)
≤ 16A2

1A3

ε
max
t∈[0,ε]

dM
(
γ(t),σ(t)

)
.

Thus A4 = max{16A2
1A3,π+1} satisfies the statement of the lemma. �

Proof of Theorem 10.2. Suppose x ∈M ,

0 < ε < min
{

rg(x)/2,1
}
,
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and γ,σ : [0, ε]→M are geodesics with γ(0) = x. If ε < r2, then by Lemma 10.9

dT 1M

(
γ′(0),σ′(0)

)
≤ A4

ε
max
t∈[0,ε]

dM
(
γ(t),σ(t)

)
.

If ε > r2, then by Lemma 10.9

dT 1M

(
γ′(0),σ′(0)

)
≤ A4

r2

max
t∈[0,r2]

dM
(
γ(t),σ(t)

)
≤ A4r

−1
2

ε
max
t∈[0,ε]

dM
(
γ(t),σ(t)

)
.

So A=A4r
−1
2 satisfies the statement of the theorem. �

11. Proof of Theorem 1.13. In this section we prove the following

strengthening of Theorem 1.13.

THEOREM 11.1. Suppose Ω⊂ C
d is a bounded domain, ϕ ∈ Aut(Ω), and ∂Ω

satisfies an interior cone condition at ξ0 ∈ ∂Ω with parameters r,θ. Assume there

exists an ϕ-invariant complete Riemannian metric g on Ω such that

(1) the sectional curvature of g is bounded in absolute value by κ > 0 and

(2) there exist a,A > 0 such that

a‖v‖ ≤
√
gz(v,v)≤A

‖v‖
δΩ(v)

for all z ∈ Ω and v ∈ C
d.

If

L > 4d+2+

√
κA

sin(θ)

and

ϕ(z) = z+O
(
‖z− ξ0‖L

)
,

then ϕ= id.

Remark 11.2. Notice that Theorem 11.1 and Proposition 8.1 imply Theo-

rem 1.13.

For the rest of the section suppose that Ω, ϕ, g, ξ0, r, θ, κ, a, and A satisfy the

hypothesis of Theorem 11.1. Then there exists some v ∈ C
d such that ‖v‖= 1 and

C
(
ξ0,v,θ,r

)
⊂Ω.

By replacing Ω with 1
2rΩ and g with Φ∗g where Φ(z) = 1

2rz, we can assume that

r = 2. Notice that this does not change θ, κ, or A. Then

δΩ
(
ξ0 + tv

)
≥ sin(θ)t

for every t ∈ (0,1].
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If we replace g with λg where λ > 0, then A is replaced by
√
λA and κ is

replaced by κ/λ. Thus the quantity

4d+2+

√
κA

sin(θ)

is invariant under scaling g. So we may assume that κ= 1.

Suppose that

L > 4d+2+
A

sin(θ)

and

ϕ(z) = z+O
(
‖z− ξ‖L

)
.

Fix ε > 0 such that

L > 4d+2+(2+ ε)(1+ ε)
A

2sin(θ)
.

Then by Theorem 9.1 we can find a complete Riemannian metric g̃ on Ω such that:

(1) the Riemannian sectional curvature of g̃ is bounded in absolute value by

1+ ε,

(2) the metrics g̃ and g are (1+ ε)-bi-Lipschitz,

(3) if R̃ is the curvature tensor of g̃, then

sup
x∈M

∣∣∇̃qR̃
∣∣< ∞

where ∇̃q denotes the qth covariant derivative with respect to g̃, and

(4) ϕ ∈ Isom(M,g̃).

Let dΩ be the distance on Ω induced by g̃.

Next fix a sequence rn ∈ (0,1] with r0 = 1 and rn → 0. Let pn = ξ0+rnv ∈Ω.

LEMMA 11.3. With the notation above,

dΩ
(
pn,p0

)
≤ (1+ ε)A

sin(θ)
log

1

rn
.

for every n≥ 0.

Proof. Let σ : [0,1)→Ω be the curve σ(t) = ξ0+(1− t)v. Then using the fact

that

δΩ
(
ξ0 + tv

)
≥ sin(θ)t
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for every t ∈ (0,1], we have

dΩ
(
pn,p0

)
≤

∫ 1−rn

0

√
g̃σ(t)(σ′(t),σ′(t))dt≤

∫ 1−rn

0

(1+ ε)A‖σ′(t)‖
δΩ(σ(t))

dt

≤ (1+ ε)A

sin(θ)

∫ 1−rn

0

dt

1− t
=

(1+ ε)A

sin(θ)
log

1

rn
. �

Next fix some z0 ∈ Ω and let γn : [0,Tn] → Ω be a unit speed geodesic in

(Ω,dΩ) with γn(0) = pn and γn(Tn) = z0. Then

Tn = dΩ
(
z0,pn

)
≤ dΩ

(
z0,p0

)
+

(1+ ε)A

sin(θ)
log

1

rn
.(8)

Next let

τn = max

{
τ ∈

[
0,Tn

]
: ‖γn(t)−pn‖ ≤

sin(θ)rn
4

for all t ∈ [0, τ ]

}
.

LEMMA 11.4. With the notation above, there exists δ > 0 such that

τn ≥ δrn

for all n sufficiently large.

Proof. Since

√
g̃z(v,v) ≥

a

1+ ε
‖v‖

for all z ∈ Ω and v ∈ C
d, we have

dΩ(z,w) ≥
a

1+ ε
‖z−w‖

for all z,w ∈Ω. Now if ‖pn− z0‖> sin(θ)rn/4 then

τn = dΩ
(
γn(0),γn

(
τn
))

≥ a

1+ ε
‖pn−γn(τn)‖=

sin(θ)a

4(1+ ε)
rn. �

Now pick α > 0 such that

‖ϕ(z)− z‖ ≤ α‖z− ξ0‖L

for all z ∈ Ω.

LEMMA 11.5. There exists C1 > 0 and N > 0 such that

dΩ
(
γn(t),ϕ

(
γn(t)

))
≤ C1r

L−1
n

for all n≥N and t ∈ [0, τn].
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Proof. If t ∈ [0, τn], then

‖γn(t)− ξ0‖ ≤ ‖γn(t)−pn‖+‖pn− ξ0‖ ≤
sin(θ)+4

4
rn.

So

‖γn(t)−ϕ(γn(t))‖ ≤ α

(
sin(θ)+4

4
rn

)L

.

Since rn → 0 and L > 1 we can pick N ≥ 0 such that

‖γn(t)−ϕ(γn(t))‖ ≤
sin(θ)

4
rn

for all n≥N .

Next define σn : [0,1]→ C
d by

σn(s) = (1− s)γn(t)+ sϕ
(
γn(t)

)
.

Then for n≥N we have

δΩ
(
σn(s)

)
≥ δΩ

(
pn

)
−‖pn−σn(s)‖

≥ δΩ
(
pn

)
−‖pn−γn(t)‖−‖γn(t)−ϕ(γn(t))‖

=
sin(θ)

2
rn.

So

dΩ
(
γn(t),ϕ

(
γn(t)

))
≤

∫ 1

0

√
g̃σ(s)(σ′(s),σ′(s))ds

≤ (1+ ε)A

∫ 1

0

‖σ′
n(s)‖

δΩ(σn(s))
ds

≤ (1+ ε)Aα

(
sin(θ)+4

4

)L
2

sin(θ)
rL−1
n . �

LEMMA 11.6. There exists C2 > 0 such that

dT 1Ω

(
γ′n(0),

(
ϕ◦γn

)′
(0)

)
≤ C2r

L−4d−2
n

for all n≥N .

Proof. Let

εn = min
{

rg̃
(
pn

)
/2, τn,1

}
.

By Proposition 8.2, Theorem 10.1, and Lemma 11.4 there exists E0 > 0 such that

εn ≥ E0r
4d+1
n .
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By Theorem 10.2 there exists some β > 0 such that

dT 1Ω

(
γ′n(0),

(
ϕ◦γn

)′
(0)

)
≤ β

εn
max

t∈[0,εn]
dΩ

(
γn(t),ϕ

(
γn(t)

))
.

So by Lemma 11.5

dT 1Ω

(
γ′n(0),

(
ϕ◦γn

)′
(0)

)
≤ βC1

E0

rL−4d−2
n . �

Then by Proposition 7.2 and Equation (8)

dΩ
(
z0,ϕ

(
z0

))
≤ exp

(
1+ ε+1

2
Tn

)
dT 1Ω

(
γ′n(0),

(
ϕ◦γn

)′
(0)

)

≤ C2 exp

(
2+ ε

2
dΩ

(
p0,z0

))
r
L−4d−2−(2+ε)(1+ε) A

2sin(θ)
n .

Since rn → 0 and

L > 4d+2+(2+ ε)(1+ ε)
A

2sin(θ)

we see that dΩ(z0,ϕ(z0)) = 0. Hence ϕ(z0) = z0. Since z0 was arbitrary we then

see that ϕ= id.

Remark 11.7. In the special case when

inf
z∈Ω

injg(z)> 0

it suffices to assume that

L > 2+

√
κA

sin(θ)
.

In this case one first shows that

inf
z∈Ω

injg̃(z)> 0.

Then Theorem 10.1 implies that

inf
z∈Ω

rg̃(z)> 0.

So in the proof of Lemma 11.6 we can assume εn ≥ E0rn which implies that

dT 1Ω

(
γ′n(0),

(
ϕ◦γn

)′
(0)

)
≤C2r

L−2
n .

The rest of the argument is identical.
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12. Examples. Given a domain Ω let kΩ denote the infinitesimal Kobayashi

metric on Ω. By the definition of the Kobayashi metric

kΩ(z;v)≤ ‖v‖
δΩ(z)

for all z ∈ Ω and v ∈ C
d.

12.1. HHR domains. Given a bounded domain Ω⊂C
d let sΩ : Ω→ (0,1]

be the squeezing function on Ω, that is

sΩ(z) = sup
{
r : there exists an one-to-one holomorphic map

f : Ω−→ Bd with f(z) = 0 and rBd ⊂ f(Ω)
}
.

Then define

s(Ω) = inf
z∈Ω

sΩ(z).

Notice that Ω is a HHR domain if and only if s(Ω) > 0. Then Yeung proved the

following.

THEOREM 12.1. [Yeu09, Theorem 2] For every s ∈ (0,1] and d ∈ N, there

exist α= α(s,d) > 1 and κ= κ(s,d)> 0 such that: if Ω⊂ C
d is a bounded HHR

domain with s(Ω)≥ s, then

(1) kΩ and gΩ are α-bi-Lipschitz, and

(2) the sectional curvature of gΩ is bounded in absolute value by κ.

As a corollary we have the following.

COROLLARY 12.2. If Ω ⊂ C
d is a bounded HHR domain, then the Kähler-

Einstein metric has property-(BG). Moreover, we can choose the κ and A in the

definition of property-(BG) to depend only on s(Ω) and d.

Proof. Let α and κ be the numbers from Theorem 12.1. By definition the

Kobayashi metric satisfies

kΩ(z;v)≤ ‖v‖
δΩ(z)

and so √
gΩ,z(v,v) ≤ αkΩ(z;v) ≤ α‖v‖

δΩ(z)
. �

12.2. Pinched negative curvature. Wu and Yau proved the following.

THEOREM 12.3. [WY20, Theorems 2 and 3] For every a,b > 0 and d ∈ N,

there exist α = α(a,b,d) > 1 and κ = κ(a,b,d) > 0 such that: if Ω ⊂ C
d is a
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bounded domain and there exists a complete Kähler metric g on Ω such that

−a≤H(g) ≤−b,

then

(1) Ω has a unique Kähler-Einstein metric gΩ with Ricci curvature −1,

(2) kΩ and gΩ are α-bi-Lipschitz, and

(3) the sectional curvature of gΩ is bounded in absolute value by κ.

Then arguing as in Corollary 12.2 we have the following.

COROLLARY 12.4. If Ω⊂C
d is a bounded domain and there exists a complete

Kähler metric g on Ω such that

−a≤H(g)≤−b

for some a> b> 0, then the Kähler-Einstein metric has property-(BG). Moreover,

we can choose the κ and A in the definition of property-(BG) to depend only on a,

b, and d.

Appendix A. Some proofs. In this section we prove prove Propositions 7.1

and 7.2. In this section, if (M,g) is a complete Riemannian manifold and σ :

[a,b]→M is a smooth curve let �g(σ) denote the length of σ in (M,g).

A.1. Proof of Proposition 7.1. For the rest of the subsection suppose that

(M,g) is a complete Riemannian manifold. Before proving the proposition we

need three lemmas.

LEMMA A.1. If X,Y ∈ TM , then

∣∣∣‖X‖g−‖Y ‖g
∣∣∣≤ dTM (X,Y ).

Proof. If ‖X‖g = ‖Y ‖g = 0 then the inequality is trivial. So by relabelling

we can assume that ‖X‖g ≥ ‖Y ‖g and ‖X‖g �= 0. Next let σ : [0,1] → TM be a

geodesic in TM with σ(0) =X and σ(1) = Y .

First consider the case when ‖σ(t)‖g �= 0 for all t ∈ (0,1). Then by [dC92,

Chapter 2, Corollary 3.3]

d

dt
‖σ(t)‖g =

d

dt

√
g(σ(t),σ(t)) =

1

‖σ(t)‖g
g
(
σ(t),∇α′(t)σ(t)

)

where α= π ◦σ. So by Cauchy-Schwarz

∣∣∣∣
d

dt
‖σ(t)‖g

∣∣∣∣≤
∥∥∇α′(t)σ(t)

∥∥
g
.
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Then

dTM (X,Y ) =

∫ 1

0

√
h(σ′(t),σ′(t))dt=

∫ 1

0

√
‖α′(t)‖2

g+
∥∥∇α′(t)σ(t)

∥∥2

g
dt

≥
∫ 1

0

∥∥∇α′(t)σ(t)
∥∥
g
dt≥

∫ 1

0

∣∣∣∣
d

dt
‖σ(t)‖g

∣∣∣∣dt

≥
∣∣∣‖X‖g−‖Y ‖g

∣∣∣ .

Now consider the case when ‖σ(t)‖g = 0 for some t ∈ (0,1). Define

T = min
{
t ∈ [0,1] : ‖σ(t)‖g = 0

}
.

Then ‖σ(t)‖g �= 0 for t ∈ (0,T ) so by the previous argument and using the fact that

‖X‖g ≥ ‖Y ‖g we have

dTM (X,Y )≥ dTM

(
X,σ(T )

)
≥

∣∣∣‖X‖g−‖σ(T )‖g
∣∣∣= ‖X‖g

≥
∣∣∣‖X‖g−‖Y ‖g

∣∣∣ . �

LEMMA A.2. Suppose 0 < ε < 2, γ : [0,1]→ TM is a smooth path, and

ε≤ ‖γ(t)‖g

for all t. If σ : [0,1]→ SM is the curve defined by

σ(t) =
γ(t)

‖γ(t)‖g
,

then

�h(σ)≤
2

ε
�h(γ).

Proof. Let α= π ◦σ. By [dC92, Chapter 2, Proposition 2.2]

∇α′(t)σ(t) =
1

‖γ(t)‖g
∇α′(t)γ(t)+

d
dt ‖γ(t)‖g
‖γ(t)‖2

g

γ(t)

and by [dC92, Chapter 2, Corollary 3.3]

d

dt
‖γ(t)‖g =

d

dt

√
g(γ(t),γ(t)) =

g(∇α′(t)γ(t),γ(t))

‖γ(t)‖g
.

So by Cauchy-Schwarz

∣∣∣∣
d

dt
‖γ(t)‖g

∣∣∣∣≤
∥∥∇α′(t)γ(t)

∥∥
g
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and so

∥∥∇α′(t)σ(t)
∥∥
g
≤ 2

ε

∥∥∇α′(t)γ(t)
∥∥
g
.

Then

�h(σ) =

∫ 1

0

√
hσ(t)(σ′(t),σ′(t))dt=

∫ 1

0

√
‖α′(t)‖2

g+
∥∥∇α′(t)σ(t)

∥∥2

g
dt

≤ 2

ε

∫ 1

0

√
‖α′(t)‖2

g+
∥∥∇α′(t)γ(t)

∥∥2

g
dt=

2

ε
�h(γ). �

LEMMA A.3. If X,Y ∈ T 1M , then

dT 1M (X,Y )≤ dM
(
π(X),π(Y )

)
+π ≤ dTM (X,Y )+π.

Proof. Let γ : [0,T ] → M be a unit speed geodesic joining π(X) to π(Y ).

Then let P (t) be the parallel transport of X along γ. Then, by the definition of the

Sasaki metric,

dM
(
π(X),π(Y )

)
= �g(γ) = �h(P ).

Further, ‖P (T )‖g = ‖X‖g = 1 and so

dT 1M

(
P (T ),Y

)
≤ π.

Thus

dT 1M (X,Y )≤ dM
(
π(X),π(Y )

)
+π.

Next let α : [0,S]→ TM be a geodesic joining X to Y . Then, by the definition

of the Sasaki metric,

dTM (X,Y ) = �h(α)≥ �g(π ◦α)≥ dM
(
π(X),π(Y )

)
. �

Proof of Proposition 7.1. By Lemma A.3

dT 1M (X,Y )≤ dM
(
π(X),π(Y )

)
+π ≤ dTM (X,Y )+π.

So if dTM (X,Y )≥ 1, then

dT 1M (X,Y )≤ dM
(
π(X),π(Y )

)
+π ≤ (1+π)dTM (X,Y ).

Suppose that dTM (X,Y ) ≤ 1. Let γ : [0,T ] → TM be a unit speed geodesic

with γ(0) =X and γ(T ) = Y . By Lemma A.1, we must have ‖γ(t)‖g ≥ 1/2 for

all t. Let σ(t) = γ(t)/‖γ(t)‖g. Then by Lemma A.2 we have

dT 1M (X,Y )≤ �h(σ)≤ 4�h(γ) = 4dTM (X,Y ). �
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A.2. Proof of Proposition 7.2. To prove the proposition we estimate the

growth rate of Jacobi fields. For the rest of the subsection, suppose that (M,g) is a

complete Riemannian manfiold with sectional curvature bounded in absolute value

by κ > 0.

Let γ : R→M be a geodesic. Let R denote the curvature tensor of M . Then

for t ∈ R, let Rγ(t) : Tγ(t)M → Tγ(t)M denote the map

Rγ(t)Y =R
(
γ′(t),Y

)
γ′(t).

Then Rγ(t) is linear and symmetric relative to gγ(t).

A vector field J along γ is called a Jacobi field when

∇γ′(t)∇γ′(t)J(t)+Rγ(t)J(t) = 0

for all t.

We will bound the growth rate of a Jacobi field:

PROPOSITION A.4. If J is a Jacobi field along a geodesic γ, then

√
‖J(t)‖2

g+
∥∥∇γ′(t)J(t)

∥∥2

g
≤

√
‖J(0)‖2

g+
∥∥∇γ′(t)J(0)

∥∥2

g
exp

(
κ+1

2
t

)

for all t≥ 0.

Proof. We begin by bounding the operator norm of Rγ(t). Let X ∈ Tγ(t)M .

Then we can write

X = aγ′(t)+ bY

where a,b ∈ R, Y is a unit vector, and γ′(t),Y are orthogonal. Then

g
(
Rγ(t)X,X

)
= b2g

(
Rγ(t)Y,Y

)
= b2 sec

(
Y,γ′(t)

)

since Rγ(t) is symmetric and Rγ(t)γ
′(t) = 0. Thus

∥∥Rγ(t)X
∥∥
g
≤ κ‖X‖g

for all X ∈ Tγ(t)M .

Next define f : R→ R by

f(t) =

√
‖J(t)‖2

g+
∥∥∇γ′(t)J(t)

∥∥2

g
.
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Then

f ′(t) =
d
dt ‖J(t)‖

2
g+

d
dt

∥∥∇γ′(t)J(t)
∥∥2

g

2f(t)

=

〈
J(t),∇γ′(t)J(t)

〉
+
〈
∇γ′(t)J(t),∇γ′(t)∇γ′(t)J(t)

〉

f(t)

=

〈
J(t)−Rγ(t)J(t),∇γ′(t)J(t)

〉

f(t)
≤ (κ+1)

‖J(t)‖g
∥∥∇γ′(t)J(t)

∥∥
g

f(t)

≤ κ+1

2
f(t).

Then by Gromwall’s inequality

f(t)≤ f(0)exp

(
κ+1

2
t

)

for all t≥ 0. �

Proof of Proposition 7.2. Let σ : [0,T ]→ T 1M be a unit speed geodesic with

σ(0) = γ′1(0) and σ(T ) = γ′2(0). Then consider the map

F : [0,T ]× [0,∞)−→ T 1M

given by F (s,t) = gt(σ(s)).

With the decomposition of TXTM into horizontal and vertical subspaces we

then have

d

ds
F (s,t) =

(
Js(t),∇γ′

s(t)
Js(t)

)

where t→ Js(t) is a Jacobi field along the geodesic γs(t) = gt(σ(s)), see for in-

stance [Pat99, Lemma 1.40].

Then

dM
(
γ1(t),γ2(t)

)
≤ dT 1M

(
γ′1(t),γ

′
2(t)

)
≤

∫ T

0

∥∥∥∥
d

ds
F (s,t)

∥∥∥∥dt

≤ e
κ+1

2
|t|
∫ T

0

∥∥∥∥
d

ds
F (s,0)

∥∥∥∥
h

ds= e
κ+1

2
|t|
∫ T

0

∥∥σ′(s)
∥∥
h
ds

= e
κ+1

2
|t|dT 1M

(
γ′1(0),γ

′
2(0)

)
. �
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