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TWO BOUNDARY RIGIDITY RESULTS FOR HOLOMORPHIC MAPS

By ANDREW ZIMMER

Abstract. In this paper we establish two boundary versions of the Schwarz lemma. The first is for
general holomorphic self maps of bounded convex domains with C? boundary. This appears to be
the first boundary Schwarz lemma for general holomorphic self maps that requires no strong pseu-
doconvexity or finite type assumptions. The second is for biholomorphisms of domains who have an
invariant Kéhler metric with bounded sectional curvature. This second result applies to holomorphic
homogeneous regular domains and appears to be the first boundary Schwarz lemma that makes no
assumptions on the regularity of the boundary.

1. Introduction. In 1931 Cartan proved the following generalization of the
Schwarz lemma:

THEOREM 1.1. (Cartan’s Uniqueness Theorem) If Q C C¢ is a bounded do-
main, f:Q — Q is a holomorphic map, and there exists zy € §2 such that

f(z)=z+0(|lz—2l]),
then f =id.

It seems natural to ask if a similar result holds when zy € 02. In this case the
problem is much harder and already in the very special case of biholomorphisms
of the unit disk a higher order error term is necessary for rigidity.

In this paper we prove two new boundary versions of Theorem 1.1. Our first
main result, see Theorem 1.5 below, extends a well-known theorem of Burns and
Krantz [BK94] to any bounded convex domain with C? boundary (assuming a
slightly worse error term). This appears to be the first boundary Schwarz lemma
for general holomorphic self maps that requires no strong pseudoconvexity or fi-
nite type assumptions. Our second main result, see Theorem 1.13 below, estab-
lishes a boundary Schwarz lemma for biholomorphisms of domains which have an
invariant Kahler metric with certain bounded geometry properties. This applies to
holomorphic homogeneous regular domains and appears to be the first boundary
Schwarz lemma that makes no assumptions on the regularity of the boundary.

1.1. General holomorphic self maps. The first boundary Schwarz lemma
for general holomorphic self maps appears to be the following:
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120 A. ZIMMER

THEOREM 1.2. (Burns-Krantz [BK94]) Suppose €2 C C% is a bounded strongly
pseudoconvex domain with C® boundary. If f : Q — Q is a holomorphic map and
there exists & € OS2 such that

) =z+0(lz=l’).
then f =id.

As observed by Burns and Krantz, the error term in Theorem 1.2 is already
optimal when €2 is the unit disk (see Remark 1 in [BK94]).

A number of similar boundary Schwarz lemmas for holomorphic self maps
have been established, see for instance [Oss00, Che01, BZZ06, Bol08, LT16,
TLZ17] and the survey article [Krall]. However most of these results either
assume that d = 1 or that the domain is strongly pseudoconvex. For weakly
pseudoconvex domains, the following conjecture has been attributed to Burns and
Krantz (see [Hua93, p. 312]).

Conjecture 1.3. (Burns-Krantz) Let Q2 C C% be a pseudoconvex domain of
finite type and suppose that &y € 0€). Then there exists some m which depends on
the geometry of 0f2 at &, such that: if f: ) — € is a holomorphic map and

() =z+o(l==&I™).
then f =id.

Huang gave a positive answer to the above conjecture for convex domains of
finite type. In his result the error term depends on the line type, denoted by ¢(&),
of the boundary point &y € 0€2 (see Section 6 for the definition). More precisely:

THEOREM 1.4. (Huang [Hua95, Theorem 0.4]) Suppose that Q) C C%is a
bounded convex domain of finite type. If f : Q0 — Q is a holomorphic map and
there exists & € 0S) such that

fz)=z+0(l:=&l™)
for some m > 50(&), then f =id.

Despite the high order error term in Huang’s result, to the best of our knowl-
edge there is no example of a smoothly bounded pseudoconvex domain €2 C c
with a holomorphic map f : {2 — €2 and a boundary point &, € 02 such that f # id
and

f(2) = z+0 (llz—&l™ )

for some m > 3. So exactly how finite type relates to the existence of boundary
Schwarz lemmas and the optimal error term is completely mysterious.
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In the first main theorem of this paper, we establish a boundary Schwarz lemma
for convex domains which sheds some light on this mystery and in particular shows
that when the domain is convex, finite type conditions are not necessary.

THEOREM 1.5. (see Section 5) Suppose €2 C C% is a bounded convex domain
with C? boundary. If f : Q — Q is a holomorphic map and there exists &y € O
such that

) =2+0(l==%l*).
then f =id.

Remark 1.6.

(1) Theorem 1.5 is new even in the very special case when f is a biholomor-
phism, 0 is C*°, and d = 2.

(2) To the best of our knowledge, Theorem 1.5 is the only known boundary
Schwarz lemma for general holomorphic self maps that makes no strong pseudo-
convexity or finite type assumptions.

(3) It is unclear whether ||z — &||* can be improved to ||z — &||*.

In the case when OS2 is smooth and &) € 0f2 has finite line type we can give a
slight improvement to the error term.

THEOREM 1.7. (see Section 6) Suppose 2 C C% is a bounded convex domain
with C* boundary and f : Q) — Q is a holomorphic map. If there exists &y € OS2
such that £(&y) < 4o and

f(2) = z+0(Jlz =&l /19,
then f =id.
Motivated by Theorem 1.5 we make the following conjecture.

Conjecture 1.8. Suppose Q C C? is a bounded convex domain and &, € 9.
Then there exists m = m(&y) which only depends on the tangent cone of € at &
such that: if f :  — € is a holomorphic map and

) =2+0(ll==&lI™).
then f =id.

In the d = 1 case the conjecture follows from the Burns-Krantz theorem for the
unit disk, the Riemann mapping theorem, and estimates on the Kobayashi distance.
In Corollary 1.16 below, we show that the conjecture is true in the special case
when f is a biholomorphism.
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1.2. The special case of biholomorphisms. For a bounded domain 2 ¢ C¢
let Aut(£2) denote the automorphism group of €2, that is the group of biholomorphic
maps 2 — €.

In the special case when f : {2 — € is a biholomorphism, there are many ex-
tensions of the Burns-Krantz theorem, see for instance [BK94, BER0O, ELZ03,
LMO07a, LM0O7b, Juh09, BBC14]. Many of these results are in the setting of CR-
manifolds and so to apply them to bounded domains, one first needs to show that
the biholomorphism extends to a CR-automorphism of the boundary and then use
the CR-geometry of the boundary to obtain a rigidity result.

For instance, Bell and Ligocka [BL80] proved that if Q2 C C? is a bounded
pseudoconvex domain with real analytic boundary, then every ¢ € Aut(€2) extends
to a CR-automorphism 02 — 0€). Then, using the CR-geometry of the boundary,
Baouendi, Ebenfelt, and Rothschild proved the following.

THEOREM 1.9. (Baouendi-Ebenfelt-Rothschild [BEROO, Theorem 5]) Sup-
pose €} C C? is a bounded pseudoconvex domain with real analytic boundary and
&o € ON). Then there exists L = L(&y) > 0 such that: if ¢ € Aut(Q2) and

o(z) = z+0(|l==&ll").
then ¢ = id.

Remark 1.10. With the hypothesis of Theorem 1.9, Lamel and Mir [LMO07b,
Corollary 1.4] proved that L can be chosen to depend only on 0f2.

In the second main theorem of this paper, we establish an alternative approach
to these types of results which makes no assumptions about the CR-geometry of
the boundary and instead only makes assumptions about the intrinsic complex ge-
ometry of the domain. In particular, we will assume that there exists an invariant
Kahler metric with certain bounded geometry properties.

Given a domain Q ¢ C¢ and z € Q define

do(z) =inf{ lw—z|| : w € OQ}.

Definition 1.11. Suppose Q C C? is a bounded domain. A complete Kihler
metric g on €2 has property-(BG) if

(1) the sectional curvature of g is bounded in absolute value by some x > 0
and

(2) there exists A > 0 such that

) < A [[o]]

da(z)

forall z € Q and v € C%,
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We will also assume that the boundary satisfies a weak accessibility condition.
Given zp € C¢, v € C? with ||v]| = 1, 6 € (0,7/2], and r > 0 define the truncated
cone:

C(z0,v,0,7) ={z € Ch:0< ||z— 2 <, Z(z—z0,v) <6}

Definition 1.12. If Q ¢ C% is a domain and £ € 99, then we say 952 satisfies an
interior cone condition at § with parameters 6 € (0,7 /2] and r > 0 if there exists
v € C? with ||v|| = 1 such that C(&,v,0,7) C Q.

Our second main result is the following.

THEOREM 1.13. (see Theorem 11.1) Suppose Q C C% is a bounded domain,
© € Aut(Q2), 0N satisfies an interior cone condition at & € 02 with parameter
0, and there exists an p-invariant Kdhler metric g on ) with property-(BG) with
parameters K, A.

If
A
L>ados YA
sin(6)
and
L
o(z) = z+0 (== &ll").
then ¢ = id.
Remark 1.14.

(1) We will prove a slightly more general result in Theorem 11.1 below.

(2) Notice that the theorem does not assume that 02 has any regularity (beyond
the interior cone condition at £) and we do not assume that ¢ extends continuously
to the boundary.

(3) In the case when the injectivity radius of (€2, g) is positive we can choose

VEA
sin(f)

L>2+

Based on Theorem 1.13 it seems natural to ask:

Question. If Q C C% is a bounded pseudoconvex domain with finite type, does
there exists a Aut(€2)-invariant complete Kahler metric on §2 with property-(BG)?

We should note that McNeal [McN89] showed that the Bergman metric has

bounded sectional curvature on any bounded pseudoconvex domain with finite type
L2
in C*.
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1.3. Examples. Every bounded pseudoconvex domain €2 C C% has a unique
complete Kahler-Einstein metric g, with Ricci curvature —1. This was constructed
by Cheng and Yau [CY80] when 2 has C? boundary and by Mok and Yau [MY83]
in general. In this subsection we describe two situations where this metric has
property-(BG).

1.3.1. HHR domains. Following Liu, Sun, and Yau [LSY04, LSYO05], a
domain €2 is said to be holomorphic homogeneous regular (HHR) if there exists
s > 0 with the following property: for every z € (2 there exists a holomorphic
embedding ¢ :  — C? such that ¢(z) = 0 and

sBy C QD(Q) C By

where B, C C? is the unit ball. In the literature, a HHR domain is sometimes called
a domain with the uniform squeezing property, see for instance [ Yeu09].

Examples of HHR domains include:

(1) T 4,n, the Teichmiiller space of hyperbolic surfaces with genus g and n
punctures (by the Bers embedding, see [Gar87]),

(2) bounded convex domains or more generally bounded C-convex domains
[Fra91, KZ16, NA17],

(3) bounded domains where Aut(£2) acts co-compactly on €2, and

(4) strongly pseudoconvex domains [DFW 14, DGZ16].

Every HHR domain is pseudoconvex [Yeu09, Theorem 1] but not every
pseudoconvex domain is an HHR domain. For instance, Fornass and Rong
have constructed smoothly bounded pseudoconvex domains in C* which are not
HHR [FR18].

Results of Yeung [YeuO9] imply that the Kahler-Einstein metric on a HHR do-
main has property-(BG), see Section 12 for details, and so we have the following
corollary of Theorem 11.1.

THEOREM 1.15. Suppose Q C C% is a bounded HHR domain and &, € 0N
satisfies an interior cone condition. Then there exists L > 0 such that: if ¢ € Aut(€2)
and

o(=) = 2+0 (ll==&l*).

then ¢ = id. Moreover, we can choose L to depend only on: the dimension d, the
s in the definition of a HHR domain, and the 0 in the definition of interior cone
condition.

Every bounded convex domain  C C? is a HHR domain and work of
Frankel [Fra91] (also see [KZ16, NA17]) implies that for every d € N there
exists sg > 0 such that: if Q ¢ C? is a bounded convex domain, then the HHR
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parameter of €2 is bounded below by s;. So we have the following partial answer
to Conjecture 1.8.

COROLLARY 1.16. For every d,0 > O there exists L = L(d,0) > 0 such that:
ifQ)C C% is a bounded convex domain, © € Aut(QQ), 09 satisfies an interior cone
condition at &y € OS2 with parameter 0, and

o(z) =2+ 0 ([l==&ll").
then ¢ = id.

1.3.2. Pinched negative curvature. Let (M,.J) be a complex manifold
with Kahler metric ¢ and let R denote the curvature tensor of (M, g). Then the
holomorphic sectional curvature of a non-zero X € T, M is given by

_ R(X,JX,X,JX)
H9) =X Xgx.x)

Using work of Wu and Yau [WY20], see Section 12, we will establish the
following variant of Theorem 11.1.

THEOREM 1.17. Suppose Q) C C? is a bounded domain and there exists a
complete Kdihler metric g on ) such that

—a<H(g)<-b

for some a,b > 0. Assume OS2 satisfies an interior cone condition at & € 0S2. Then
there exists L > 0 such that: if ¢ € Aut($2) and

o(z) =2+0(ll==&l").

then ¢ = id. Moreover, we can choose L to depend only on: d, a, b, and the 0 in the
definition of interior cone condition.

Remark 1.18. In it worth noting that the metric g in Theorem 1.17 is not as-
sumed to be Aut(£2)-invariant.

1.4. Sketch of the proofs. The proofs of Theorems 1.5 and 1.13 use very
different techniques: the former relies on Lempert’s theory of complex geodesics
while the latter uses tools from Riemannian geometry. However, similar ideas are
used in both. In this section, we sketch the proof of Theorem 1.13 and then describe
some of the ideas used to prove Theorem 1.5.

1.4.1. Sketch of the proof of Theorem 1.13. The central idea in the proof
is that curvature controls how fast geodesics can spread apart. For simplicity we
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will only describe the argument in the special case where g is a Kahler metric with
positive injectivity radius and

(D sup{|VqR|:m€Q,q:O,1,2}<oo

where R is the curvature tensor of g.

Let dg denote the distance induced by g. In this case, we prove that there exist
C1,7 > 0 such that: if y;,7; : [0,00) — € are unit speed geodesics and 0 < € < T,
then

Cq k+1
@ daln@20) < Lo (1) max don(0,72(0)
€ 2 t€[0,¢]
for ¢t > 0 (see Proposition 7.2 and Theorem 10.2 below).
Using the interior cone condition and the upper bound on g, we find a sequence
of points p,, converging to &, such that

1
n

— &l

We then fix a point zy € €2 and consider unit speed geodesics v, : [0,7,] — € with
Yn(0) = p,, and 7, (T},) = 29. Using the interior cone condition, the upper bound
on g, and the fact that

A
sin(6)

o(z) =2+0 (== &l"),
we show that there exist €,,C> > 0 such that

tg[})a?]dg (Y (), (1) (1)) < Ca [P — Eol*

and €, > ||p, — &ol|| /C>. Then from Equation (2) we have

dafeap(0)) = do 0 (3. (930) (T2)) < Cexp ("3 ) a6l

However,

A
T, < dq(po,20) + — lo
a(po:20) + gy e o]

and [|p, — &l| — 0. So if

(k+1)A

L>2+-——+—
Zer 2sin(6) ’

then dq (20, (20)) = 0. Hence ¢(zy) = 2o. Since zg € 2 was arbitrary, this implies
that ¢ = id.
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This argument actually shows that any

JRA

L>2
- +sin(9)

suffices. One simply replaces g with xg. Then repeating the above argument shows
that if

(3+1)VRA _, VR

L>?2
Zet 2sin(0) sin(6)

then ¢ = id.
When the injectivity radius of (2, g) is not assumed to be positive, some of the
estimates are worse which forces us to assume that

JRA

L>4d+2 .
- +sin(@)

When g does not satisfy Equation (1), we use classical results about the Ricci flow
to deform ¢ to obtain a metric that does, see Section 9 for details.

The most difficult part of the argument is establishing the estimate in Equa-
tion (2). This requires a number of results about Riemannian manifolds which are
discussed in Sections 7, 8, 9, and 10.

1.4.2. Ideas in the proof of Theorem 1.5. Like Burns and Krantz’s proof
of Theorem 1.2, we study complex geodesics and their images under f. For
strongly convex domains, complex geodesics are very well understood thanks to
Lempert’s deep work [LemS81, Lem82, Lem84]. However, for convex domains
with C? boundary and no finite type assumptions, complex geodesics are less
understood and can have unpleasant behavior. For example, it is possible for a
complex geodesic to not extend continuously to the boundary (see [Bhal6, Exam-
ple 1.2]). A key part of the proof of Theorem 1.5 is establishing some new results
about complex geodesics which gives us some control over their behavior. The
results are somewhat technical and we delay further discussion until Section 3.

A second key part in the proof is a recent estimate of Christodoulou and Short.
To state their result we need some notation: let K be the Kobayashi distance on
D and let Bp(z;7) be the open metric ball centered at z € D of radius » > 0 in
(DvKD)'

THEOREM 1.19. (Christodoulou-Short [CS19]) There exists C' > 0 such that:
if f: D — D is holomorphic, zy €D, and 0 < € < 1, then

KD(f(z),z)S%exp@KD(zo,z)) sup  Kp(f(w),w)

weBrp(z0:€)

forall z € D.
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Remark 1.20. Christodoulou and Short actually proved a stronger estimate, see
Theorem 2.5 for the precise statement.

As we explain in Section 4, this estimate can be used to give a new proof of
the Burns-Krantz theorem for the unit disk. We will use Theorem 1.19 to prove
Theorem 1.5 in a similar way to how Equation (2) is used to prove Theorem 1.13.

1.5. Notations. (1) For z € C%let ||z|| be the standard Euclidean norm and
dguc(21,22) = ||z1 — 22|| be the standard Euclidean distance.
(2) For 2y € C% and r > 0 let

By (20;7) = {z € C¥: ||z — 20]| <7}

Then let B; = B;(0;1) and D = B;.
(3) Given an open set 2 C C% and p € Q let

6o (p) = inf {dguc(p,x) : & € 00 }.

Part 1. The proof of Theorem 1.5

2. Preliminaries for the proof of Theorem 1.5.

2.1. The Kobayashi metric. In this expository section we recall the def-
inition of the Kobayashi metric. More background can be found in [Kob05] or
[Aba89].

Given a domain Q C C¢ the (infinitesimal) Kobayashi metric is the pseudo-
Finsler metric

ka(wiv) =inf { [¢] : f € Hol(D,Q), f(0) ==, d(f)o(€) =v}.

By a result of Royden [Roy71, Proposition 3] the Kobayashi metric is an upper
semicontinuous function on Q x C%. In particular, if o : [a,b] — €2 is an absolutely
continuous curve (as a map [a,b] — C?), then the function

t € la,b] — ko(o(t);0'(t))

is integrable and we can define the length of o to be

b
lo(o) = / ko (o (t):0' (1)) dt.
One can then define the Kobayashi pseudo-distance to be
Ko(z,y) =inf{lq(c):0: [a,b] — Qis abs. cont., o(a) =z, and o(b) =y }.

This definition is equivalent to the standard definition using analytic chains by a
result of Venturini [Ven89, Theorem 3.1].
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When €2 is a bounded domain, K, is a non-degenerate (possibly incomplete)
distance. For general domains there is no known characterization of when the
Kobayashi distance is complete, but for convex domains we have the following
result of Barth.

THEOREM 2.1. [Bar80] Suppose §2 is a convex domain. Then the following are
equivalent:

(1) Q does not contain any complex affine lines,

(2) Kq is a non-degenerate distance on ),

(3) (2, Kq) is a Cauchy complete metric space,

4) (2, Kq) is a proper geodesic metric space.

One of the most important properties of the Kobayashi metric is the following
distance decreasing property (which is immediate from the definition).

PROPOSITION 2.2. Suppose Q0 C C¥ and Q, € C® are domains. If f : Q) —
Q, is a holomorphic map, then

ke, (f(2);d(f)=(v)) < ke, (2;0)
forall z € Q and v € C% In particular,

Ko, (f(2), f(w)) < Kq,(2,w)
for all z,w € Q.

We will also frequently use the following elementary estimate (which follows
from considering holomorphic maps of the form B; < ().

Observation 2.3. If Q c C%is a domain, then

[[v]]

ko(z;v) < 50 l2)

for all z € Q and v € C%.
Finally, we make the following definition.

Definition 2.4. For a domain €2 C C% 20 € Q,and R > 0 let Bq(z0; R) be the
open metric ball of radius R centered at zy with respect to the Kobayashi metric,
that is

BQ(Z();R) = {z €0 KQ(Z,Z()) < R}.

2.2. A quantitative estimate for maps of the disk. If f :ID — D is holo-
morphic and fixes two distinct points in D, then the Schwarz lemma implies that
f =id. Recently, Christodoulou and Short established the following quantitative
version of this uniqueness result.
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THEOREM 2.5. (Christodoulou-Short [CS19]) Suppose f : 1D — D is a holo-
morphic map and a,b,z € D with a # b. Then

Kp(f(2),2) < Cap(2)(Kn(f(a),a) + Kp(f(b),b))

where

Cap(2) exp (2Kp(z,a) +2Kp(z,b) +2Kp(a,b)).

1
- 2Kp(a,b)
As a corollary we have the following.

PROPOSITION 2.6. Suppose that f,, : D — D are holomorphic maps, z, € D,
and 0 <rp, <1.If

A (2n,0)
lim ——  sup  Kp(fa(w),w) =0,
n—reo Tn wEBp(2n;Ty)

then f,, converges locally uniformly to the identity map.

Proof. Pick a,,b, € D such that
1
KD(an,zn) = KD(bn,zn) = EKD(an,bn) =r,.
Then

Ko (fu(2),2) < Cul(2) (Ep (fa(an) an) + K (fn(bn),bn))

1
= m exp (2KD (z,an) +2Kp (z,bn) +2Kp (ambn)),

By construction

Kp (f(an),an) + Kp (f(bn),bn) <2 sup Kp (fn(w),w)

wEBR(2n;Tn)

and
1 ed

Cn(z) < H exp (4KID> (Zazn) + 87’n) < H€4KD(Z’O)€4KD(O’Z”)~

Hence
8 4Kp(2n,0)
e e
Kp(fn(2),2) < 5€2KD(Z’0)7 sup  Kp(fn(w),w)
T'n wEBD(2n3rn)

and f,, converges locally uniformly to the identity map. O
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2.3. Complex geodesics in convex domains. A holomorphic map ¢ : D —
Q is called a complex geodesic if

Ka(p(2),p(w)) = Kp(z,w)

for all z,w € . A left inverse of a complex geodesic ¢ is a holomorphic map
7 : 2 — D such that 7o ¢ = id. In this section we recall a result of Lempert.

THEOREM 2.7. (Lempert [Lem81, Lem82, Lem84]) Suppose that § is a
strongly convex domain with C* boundary. If z,w € Q are distinct, then there
exists a unique complex geodesic ¢ : D — Q with z,w € p(D). Further, ¢ has a
left inverse m and for every ¢ € D

N ) =QnH,
for some complex affine hyperplane H: C ce,
The fact that
m'(¢) =QnH,.

for some complex affine hyperplane H follows from the description of 7 given in
the proof of the Lemma in [Lem82]. In particular, if ¢ : D — Q is the dual map of
¢, then 7(z) € D is the unique solution to the equation

[2=¢(0),2(¢)] =0
where [a,b] = Zle a;b;. Thus
T (O =2n{zeC’: [2—¢(0).4(¢)] =0}.

If ©2 is a bounded convex domain, then {2 can be written as an increasing union
of smoothly bounded strongly convex domain. Thus Montel’s theorem implies the
following corollary of Lempert’s theorem.

COROLLARY 2.8. Suppose that ) is a bounded convex domain. If z,w € Q are
distinct, then there exists a complex geodesic p : 1D — Q with z,w € (D). Further,
© has a left inverse  such that for every ( € D

) =N H;,
for some complex affine hyperplane H..

Remark 2.9. For a general convex domain (2, it is possible for two points z,w €
Q2 to be contained in many different complex geodesics.

The left inverses with this hyperplane preimage property play a fundamental
role in the proof of Theorem 1.5 and so we make the following definition.



132 A. ZIMMER

Definition 2.10. Suppose that €2 is a bounded convex domain and ¢ : D — 2
is a complex geodesic. Then we say 7 : Q0 — D is a good left inverse of ¢ if 7 is a
left inverse of ¢ and for every ( € D

() =QnH;,
for some complex affine hyperplane H..

3. The Gromov product and complex geodesics. In a metric space (X, d),
the Gromov product of z,y € X at z € X is defined to be

(aly)- = 5 (dl@,2) + d(z,p) — d(a,0).

When (X, d) is a proper geodesic Gromov hyperbolic metric space, there is a com-
pactification X U X (o) of X, called the ideal boundary, with the following prop-
erty.

PROPOSITION 3.1. Suppose (X,d) is a proper geodesic Gromov hyperbolic
metric space. Suppose X,y are sequences in X such that x,, — § € X (o) and
Yn — N € X (o0). Then & = n if and only if

forany z € X.

For the Kobayashi metric on convex domains the Gromov product behaves
almost as nicely near the topological boundary. Given a domain Q C C? we define
the Gromov product of points z,w,o0 € ) to be

(zw)2 = %(Kg(z,o) 4 Ko(o,w) - Koz, w)).

We also need the following definition.

Definition 3.2. Given a convex domain ¢ C? with C'' boundary and x € 99
let H,0S2 denote the unique complex affine hyperplane tangent to 0f2 at z.

Remark 3.3. Since € is convex, if x € 91, then 92N H,0S2 is a closed convex
set which is sometimes called the closed complex face of 0S) containing x.

We then have the following.

THEOREM 3.4. [Zim17, Theorem 4.1] Suppose €2 C C% is a bounded convex
domain with CY® boundary and p,,,q, € Q are sequences such that p,, — x € 9
and G, — y € 0N

(1) If =y, then hmn,mﬁw(pan)? =09,

(2) Iflimsup,, . ,o.(Pn|qm)$t = oo, then H,0Q = H,09.
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In [Zim17], the behavior of the Gromov product was used to understand holo-
morphic self maps of 2 and real geodesics in (€2, Kq). In this section, we adapt
those arguments to study the behavior of complex geodesics.

Our first application establishes a boundary extension property of complex
geodesics. For a smooth strongly convex domain ) C C?, Lempert [Lem81]
showed that every complex geodesic ¢ : D — €2 extends to a smooth map D — €.
However, this fails when ) is not strongly convex: there exist examples of
smoothly bounded convex domains Q C C¢ and complex geodesics ¢ : D — €
which do not even extend to a continuous map D — €, see for instance [Bhal6,
Example 1.2].

For a convex domain 2 with C'! boundary define

H(09Q) = {H,00 : x € 90}.

Then H(0f2) is a closed subset of the Grassmanian of complex affine hyperplanes
in C%.

PROPOSITION 3.5. Suppose Q C C% is a bounded convex domain with C"*

boundary. If ¢ : 1D — § is a complex geodesic, then there exists a continuous map
@ :0D — H(0Q) such that

lim dpuc (¢(2), 00N 3(C)) =0

for every ¢ € OD.

Proof. Suppose ¢ € 9D, then

im (ip(2)]p(w)) g = lim (2jw)f = oo

zZ,w—(C zZ,w—(C

by applying Theorem 3.4 to D. So by Theorem 3.4 applied to €2, there exists some
?(¢) € H(09Q) such that

tim due (p(2), 02N P(0)) = 0.

It remains to show that the map @ : 0D — H (02) is continuous. Suppose that
(n € 0D converges to ¢ € 9. We claim that

&(¢n) — 8(0)-

Since OS2 is compact, H(0f2) is also compact. So it is enough to show that every
convergent subsequence of $((,,) converges to (¢). So without loss of generality
we can assume that ¢((,,) converges to some hyperplane H € H (012).

For each n pick a sequence 2y, ,,, € D such that

lim z =(p.
Moo n,m Cn
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Then we can pick m,, such that |2, ,,, —(,| < 1/n and

dpyc (So(zn,mn) ,00N &(Cn)) < l/n
Then z, ,,, — ¢ and so
711330 diuc (¢ (2n,m,, ), 02N B(C)) =0.
But by our construction of z, ,,, we also have
lim deue ((2n,m, ), 02N H) = 0.

So we must have ¢(¢) = H. O

Definition 3.6. Suppose 2 C C% is a bounded convex domain with C'"»® bound-
ary and ¢ : D — Q is a complex geodesic. We call the map @ : 0D — H(Q) in
Proposition 3.5 the hyperplane boundary extension of .

The next result shows that @ depends continuously on .

PROPOSITION 3.7. Suppose Q C C% is a bounded convex domain with C'©
boundary and @, : D — € is a sequence of complex geodesics converging locally
uniformly to a complex geodesic ¢ : 1D — (.

If z, € D converges to ¢ € 0D and ¢, (zy,) — © € 0N, then

P(¢) = H,00.
Further, if ¢, € 0D converges to ¢ € 0D, then

@(C) = lim @n (Cn)

n—roo

Proof. Suppose z, € D converges to ¢ € D and ¢,,(z,) — = € 9. Fix 0 <
r < 1. Since ¢,, and ¢ are complex geodesics

Ka(¢n(2n),2n(0) = Ka(en(zn),0n(r2n)) + Kaen(rzn), n(0))

and

Ka(p(zn),9(0) = Ka(o(2n).0(rzn)) + Kalo(rzn),(0).

Thus, by the triangle inequality,

(en(zn)le(z0) %) 2 (onlran)o(rzn)) %) — 3 Ko (on(0).£(0)).

Further,

lim (pn (rzn)9(rzn)) ) = Ka(9(rQ),9(0)) = Kn(r¢,0).

n
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So

liminf (gpn (zn)|gp(zn)) > Kp(r,0).

Q
n—oo 2

(0)
Since 0 < r < 1 was arbitrary we see that

. Q
Tim (i (2n) 19 (20)) 40y = -

Then since ¢, (2,,) — = and
AgﬂodEuc (QO(Zn) , 000N @(C)) =0,

Theorem 3.4 implies that H,0Q = $(().
Now we prove the “further” part of the Proposition. Suppose that (,, € 0D
converges to ¢ € 0ID. We claim that

3(0) = Tim 30 (Ga).

Since 05 is compact, H (0f2) is also compact. So it is enough to show that every
convergent subsequence of $((,,) converges to ((). So without loss of generality
we can assume that ¢((,,) converges to some hyperplane H € H (012).

Now fix a sequence 7, 1 such that

dEuc (Son (Tngn)yagm{an(gn)) < 1/”'

By passing to a subsequence we can suppose that ¢, (r,(,) — = € 9. Then
H,0Q = H. So by the first assertion in the Proposition H,0Q = $((). O

Consider the one-parameter subgroup {a; : t € R} < Aut(D) given by

_cosh(t)z +sinh(?)
~ sinh(¢)z +cosh(t)’

a(2)

Then t — a.(0) is a geodesic in (D, Kp) and so if ¢ : D — € is a complex geodesic,
then t — p(a¢(0)) is a geodesic in (2, Kq).

The next result shows that geodesic segments whose endpoints are near bound-
ary points x,y € 9Q with H,08) # H,0f) “bend” into 2.

PROPOSITION 3.8. Suppose Q C C% is a bounded convex domain with C'*
boundary and py,, q, € Q) are sequences such that p, — x € OS2 and q, — y € OS2
with H,0Q # H,00.

If pn : D — Q is a complex geodesic with ¢, (0) = q,, and @, (t,,) = p, where
0 <t, <1, then there exists ny, — o and si, € [0,t,, | so that the complex geodesics
©n,, ©as, converge locally uniformly to a complex geodesic ¢ : 1D — Q). Moreover,

lim dgyce (gp(z),@QﬁHxaQ) =0
z——1
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and
lirr} dEuc (go(z), oan HyaQ) =0.
2z

Proof. Since H,0€) # H,0f) there exists open neighborhoods U, of 92N
H,0% and U,, of 92N H,0N such that U, N U, = 0.

For n large, ¢, (0) € U, and ¢,,(T},) € Uy. So there exists some s,, € (0,7},)
such that

©On (sn) eQ\ (Ux U Uy).
By passing to a subsequence we can suppose that ¢, (s,) — z € Q.

Claim: z € §. Suppose not. Then z € ). Since z ¢ U, UU,, we see that
H 0 does not equal H,0S) or H,0f). Fix some 2, € ). Let

Ry = sup{(cpn(sn)|<pn(0))?0 n=12,...}

and

Ry = sup{(¢n(sn) |S0n(tn))ii n=12,...}.
By Theorem 3.4, both R and R; are finite. Then

> Ka(en(0),20) +2Ka(20,¢n(sn))
+ Kq(20,n(tn)) —2R1 —2Rs.

By the triangle inequality

Kq (Son(o)790n (tn)) < Kgq (Son(o)720) + Ko (207S0n (tn))

and so we see that
Ka(20,¢n(sn)) < Ri+ Ry.

But this is impossible since ¢, (s,,) — z € 9 and K, is a proper distance. So we
must have z € ).

Now since z € ), after possibly passing to a subsequence we can suppose
that ¢,, = ¢y, 0 as, converges to a complex geodesic ¢ : D — (2. Now since p,, =
¢n(a_s,(0)) = x and ¢, = ¢pn(a_s, (tn)) — y, the previous Proposition implies
that

lim dpue (¢(2), 00N H,00) =0

z——
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and
lim dgye (¢(2), 00N H,0Q) = 0. O
z—1

PROPOSITION 3.9. Suppose Q C C% is a bounded convex domain with C'*
boundary, p : 1D — Q is a complex geodesic, and 7 : Q) — D is a good left inverse
of . For each z € D, let H, denote the complex affine hyperplane such that

™ 2) =QNH..
Then

2(¢) = lim H,

z—(
for every ¢ € OD.

Proof. Fix some ¢ € D and suppose for a contradiction that
lim H. # ©(C).
z—C
Then by compactness, we can find a sequence z,, € D converging to ¢ such that

lim H, =H

n—yoo
and H # ¢(¢). By passing to another subsequence we can suppose that ¢(z,) —
x € 9. Then = € ¢(¢) and so H,0Q = $(¢). Now each H_ is a complex hyper-
plane containing ¢(z,,). So H is a complex hyperplane containing x. We next claim
that H N = 0. If not, then after passing to a subsequence there exists w € H N
and wy,, € H, N such that w, — w. Then

(= Y}lgl’zn = gg}oﬂ(wn) =7m(w)

which is impossible because 7(€2) = D. So H N = 0. But then, since €2 is convex
and x € H, we have

H=H,00 =)
which is a contradiction. O

4. The one dimensional case. In this section we use Proposition 2.6 to
provide a new proof of the Burns-Krantz theorem for the disc. The one dimensional
result is not needed in the proof of Theorem 1.5, but this simple case motivates the
argument.
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THEOREM 4.1. (Burn-Krantz [BK94]) Suppose f : 1D — D is holomorphic and
there exists some &y € O such that

f(z) = z+o(lz—&l*).

then f =id.

For the rest of the section suppose f : D — DD is holomorphic and there exists
some &y € 0D such that

f(z)=z+0(lz=&l).

Without loss of generality we can assume that £y = 1. Then there exists a non-
decreasing function E : [0,e0) — [0, ) such that

f(2) =2 < E(|2—1])

and

tim £

=0.
r—0 7“3

Fix a sequence 0 < r,, < 1 with r,, — 0. Then consider the points p,, = 1 —r,.
Then

for all z € D and v € C. Using this estimate the next two lemmas are simple exer-
cises.
Given z€ Candr >0let D(z;r) ={w e C: |z —w| <r}.

LEMMA 4.2. There exists C > 0 such that: If w € D(py,;ry, /4), then

Kp(w, f(w)) < gE(57~n/4).

Tn

For each n define
€n = sup{e : BD(pn;e) cDh (pn;rn/4) }

LEMMA 4.3. There exists some a > 0 such that €, > a for all n.
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Then
4K]D)(Zn70) 40 1
lim———  sup  Kp(f(w),w) < — lim —FE(5r,/4) =0.
n—eo €n wEBp(zn;i€n) a n—e Ty

So if we apply Proposition 2.6 to the constant sequence f, then we see that f = id.

5. Proof of Theorem 1.5. For the rest of the section suppose that C¢
is a bounded convex domain with C? boundary, f : Q — € is holomorphic map,
and there exists £y € € such that

f(z)=z+o0(llz—ll*).
Then there exists a non-decreasing function E : [0,e0) — [0, o) such that

1f(2) =zl < E([lz— &l )

and

E
tim 27 _
r—=0 T
The key step in the proof is the following proposition.

PROPOSITION 5.1. For any q € S there exists a complex geodesic ¢ : D — )
and a good left inverse m : Q0 — D such that ¢(0) = ¢, mo fop =1id, and

llinl dEuc (QO(Z), oanN H&)aQ) =0.

The proof of the proposition will require some lemmas. Let ng(&p) denote the
inward pointing unit normal vector at £y. Then consider a sequence

pn =& +rang (&) €0

which converges to &y. Next fix a point zg € ). Then by [Aba89, Theorem 2.3.51]
there exists some C( > 0 such that

1 1
3) Ko (20,pn) Sco-i-ilogr—-

As before, given z € C? and r > 0 let By(z;7) = {w € C?: ||z —w]|| < r}.

LEMMA 5.2. There exists C| > 0 such that: If w € By(pn;7r,/4), then

Ko, f(w)) < S B(Sra/4).

n



140 A. ZIMMER
Proof. Pick N > 0 such that
E(5rn/4) <ry/4

forall n > N.
If n > N and w € By(py,;7,/4), then

1f(w) —w| < B(lw—&ll) < E(5rn/4) <10 /4.
Let o : [0,1] — Q be the curve o(t) = (1 —t)w+tf(w). Then
00 (a(t)) > 0 (pn) —Nlo(t) —pnl| = 1rn—rn/2=1ry/2

forall ¢ € [0,1]. So
1
Ko (w, f(w)) < lo(o) = /0 ko (o(t):0' (1)) dt <

< /1 201w =z wll y < 2 sy 1a).
0 T

Tn n

So there exists C'} > 0 such that: If w € B;(py,; 7., /4), then

Ko(w, f(w)) < %E(Srn/4). O

n

For each n define
en =sup {e: Bo(pni€) CBa(pnirn/4)}.

LEMMA 5.3. There exists some a > 0 such that €, > ar, for all n.

Proof. Since {2 is a bounded domain, there exists some R > 0 such that ) C
B4(0; R). Then

1
ka(210) 2 k(o) (210) 2 Z 1]
for all z € Q and v € C%. Then
Ko(zw) > 12—l
z,w) > —= ||z —
Q =<, “R
forall z,w € Q. Soifa=1/(4R) and w € Bq(py;ar,) then
[pn — w|| < REKq (pn,w) <71y /4.

Hence ¢,, > ar,, for all n. ]
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Proof of Proposition 5.1. By Theorem 2.7, for each n there exists a complex
geodesic ¢, : D —  with a good left inverse m, : {2 — D such that ¢,,(0) = ¢
and ¢, (t,) = py, for some t,, € (0,1). By Montel’s theorem and possibly passing
to a subsequence we can assume that ¢, and 7, converge locally uniformly to
holomorphic maps ¢ and 7. Then ¢ is a complex geodesic, 7 is a good left inverse
of , p(0) = ¢, and by Proposition 3.7

lim dgyc (go(z), oan HgOE?Q) =0.
z—1

Define F), : D — D by F,,(2) = m, 0 f opy,. Then F,, converges to wo f o .
Suppose that w € Byy(ty,; €, ). Then ¢, (w) € Bo(pn;€r) since ¢y, is a complex
geodesic. Then

Kp (Fo(w),w) = Kp(my 0 f o pn(w),m, 0 pn(w))
< Ko/ (pa(w)).90(0) < B (5r0/4).
Further
Kp(tn,0) = Ko (pn,q) < Ko (pn,20) + Ko (20,9)
so by Equation (3)
ot 0) < Ar?

where A = exp(4Kq(z0,q)+4Co). Thus

4Kp(tn,0) AC 1

lim & su KD(Fn(w),w) < “im —E(Srn/4) =0.
p 7
n—ree €n wEBp(tnien) a noery

So Proposition 2.6 implies that F}, converges locally uniformly to id. Thus 7o f o
p=id. U

PROPOSITION 5.4. Ifn € 9L is a strongly convex point of OS2 and q,, € Q is a
sequence with q, — 1, then f(q,) — n.

Proof. The proposition is obvious if n = &j. So suppose that 7 # &.

Suppose for a contradiction that f (g, ) does not converge to ). Then, by passing
to a subsequence, we can suppose that f(g,) — 1’ € Q where i # 7.

By the previous proposition, for each g, there exists a complex geodesic ¢, :
D — ©Q and a good left inverse 7, : 2 — D such that ¢,,(0) = gy, m, 0 f o, =1d,
and

lim dgyc (gon(z), oan HgoﬁQ) =0.
z—1
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Then

KQ(fOSpn(Z)afOSDn(w)) < Kp(z,w)

and

KQ(fogpn(z),fogpn(w)) > KD(ﬂnofogpn(z),ﬂnofogon(w)) = Kp(z,w).

So f o, is also a complex geodesic.
Since 7 is a strongly convex point,

QN H,00 = {n}

and so H, 0§} # H¢ 0S). Then by Proposition 3.8 and after possibly passing to a
subsequence, there exists s,, € R such that ¢, o a,, converges locally uniformly to
a complex geodesic ¢ : D — (). Further

llinl dEuc (QD(Z), 0N H&)@Q) =0
and

lim ¢(z) =1

z——1

since 02N H,0Q = {n}.
The complex geodesics f o, oas, converge locally uniformly to f o¢ and

(fownoas,)(as,(0) = f(gn) — 1,
so Proposition 3.7 implies that

lim d QN H,y00Q) =0.
zinfll Euc (f((P(Z)),a N n 0 )

By Montel’s theorem and possibly passing to another subsequence we can as-
sume that a_,, o, converges locally uniformly to some 7 : 2 — ID. Then 7 is a
good left inverse of ¢ and 7o f o =id. For each z € D let H, be the complex
hyperplane such that

7 (z) = H.NQ.
Then since
lim o(2) =7,
z——1

Proposition 3.9 implies that

lim H, = H,00.

25—
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If z €D, then 7(f(¢(z))) =z and so f(p(z)) € H,. Thus
Zlir{ll dEuc (f (cp(z)) ,00N HnaQ) =0.
But 77 € 02 is a strongly convex point and so {1} = 0Q N H,,052, thus
lim f(p(2) =n
which contradicts the fact that H, 0 # H, 02 and

Zgnjl diuc (f(gp(z)),@QﬁHn@Q) =0. O

LEMMA 5.5. There exists a strongly convex point 19 € 0S.

Proof. Fix a point zy € . Pick g € 052 such that

10 — z0]| = max { ||n — zo|| : n € 0N}

and let R = ||no — zo||. Then 2 C By(20; R) and np € 902N IB4(z0; R). So o is a
strongly convex point of 0. U

We now claim that f is the identity map. Since 2 has C'?> boundary, there exists
a neighborhood U of 1y where 0€2 is strongly convex at every n € U N 0f).

Fix a point wy € (). Consider the complex affine line L containing wq and 7.
Then L.N$ is a convex and hence simply connected, so by the Riemann mapping
theorem there exists a biholomorphism ) : D — LN ). Since LN is convex,
J(LN ) is a Jordan curve. So by Carathéodory’s extension theorem, 1) extends to
a continuous map D) — L N Q. Next consider the holomorphic map

F=(foyp—1):D—C%.

Since F' is bounded, Fatou’s Theorem implies that there exists a measurable map
F..: S' — C? such that

F. (ew) = limF(reie)

r, 1
for almost every e’ € S'. However, Proposition 5.4 implies that

0= lim F(re”)
r, 1
when e € V := ¢~ (U N ON). Since 1y € 1(D), V is non-empty and since 1 is
continuous, V is open in S'. So F., = 0 on a set of positive measure in S'. So by
the Luzin-Privalov Theorem (see [CL66, Chapter 2]), F' = 0. Thus f(z) = z for

all z € LNQ. In particular, f(wg) = wy. Since wy € {2 was arbitrary, we see that
f=id.
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6. Proof of Theorem 1.7. In this section we describe how to modify the
proof of Theorem 1.5 to obtain Theorem 1.7, but first we recall the definition of the
line type of a boundary point.

Given a function f : C — R with f(0) = 0 let v(f) denote the order of vanish-
ing of f at 0. Suppose that 2 C C% is a domain and

Q:{zECd:r(z)<O}

where 7 is a C* function with Vr # 0 near 0). The line type of a boundary point
& € 09, is defined to be

(&) =sup{v(roy) |y :C— C? is a non-constant complex affine map
with 1(0) = ¢}

Notice that v(r o) > 2 if and only if ¢(C) is tangent to ©2. McNeal [McN92]
proved that if €2 is convex then £ € 02 has finite line type if and only if it has finite
type in the sense of D’ Angelo (also see [BS92]).

For the rest of the section suppose that 2 C C? is a bounded convex domain
with C* boundary, f: Q2 — € is holomorphic map, and there exists £y € 0¢2 such
that £(&p) < 4o and

f(2) = z+0 (Il =&l /1)),
Then there exists a non-decreasing function E : [0,c0) — [0, o) such that

I1f(2) =zl < E(||z— &l )

and "
. E(r
I A i(E)
The rest of the proof is identical to the proof of Theorem 1.5 except that
Lemma 5.3 is replaced with the following stronger result.

=0.

LEMMA 6.1. There exists some a > 0 such that €,, > amlfl/ 4(%) for all n.

Proof. By [AT02, Corollary 1.7] there exists a neighborhood U of &y and some
g > 0 such that

forall ze UNQ and v € C%.
Since p, — & and r, — 0, there exists N > 0 such that By(p,;r,/4) C U
when n > N. So for z € By(pp;7,/4) and n > N we have

«
Ko (z,pn) > W ||Z_pn||
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_ 1/6(&) : _ Lo 1=1/E(&)
where o = (4/5) ap. Soif ag = 1/(4«) and z € Bq ( pn;aorn then

1/€(%o)

n

HZ—an < KQ(Zapn) Srn/4

So there exists a > 0 such that ¢,, > arylfl/ #(%) for all n. O

Part 2. Proof of Theorem 1.13

7. The geometry of the tangent bundle. In this section we recall the defi-
nition of the Sasaki metric and give some basic estimates.

Let (M,g) be a complete Riemannian manifold and let 7w : TM — M be the
tangent bundle. Define the vertical subbundle of T'T'M — T M by

V(X) =kerd(m)x.

Next let V be the Levi-Civita connection on M. Given X € T M, define the con-
nection map Kx : TxTM — T (x)M as follows: given some § € TxTM let
o : (—€,e) = T M be a curve with ¢/(0) = £. Then define

K(€) = (Va(0)0)(0)

where o = moo and we view o as a vector field along «. This is a well-defined
linear map (see for instance [Pat99, Lemma 1.13]). Then define the horizontal sub-
bundle of TT' M — T'M by

H(X)=kerKx.
Then for every X € T'M we have
TxTM=V(X)® H(X)
and the map
EeTxTM — (d(m)x&, Kx(§)) € TrxyM & Tr(x) M

is a vector space isomorphism (see for instance [Pat99, Lemma 1.15]).
Using the maps defined above we can define a Riemannian metric h on T'M.
Given X € T'M and & € T'x'T'M define

hx (€,€) = gr(x) (d(m) x & d(m) x€) + gr(x) (Kx (€), Kx ().

Then h is a complete Riemannian metric on 7'M called the Sasaki metric.
Next let d7ps denote the distance on T'M induced by h, let

T'M={XeTM:|X|,=1}
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denote the unit tangent bundle of M, and let d1,,; denote the distance on 7' M
induced by restricting h to T M.

We end this section with two estimates. Both are applications of basic methods
in Riemannian geometry, but we provide proofs in Appendix A.

PROPOSITION 7.1. If (M, g) is a complete Riemannian manifold and X,Y €
T'M, then

dTlM(X,Y) < (7T-|— l)dTM(X,Y).

PROPOSITION 7.2. If (M,g) is a complete Riemannian manifold with sec-
tional curvature bounded in absolute value by k > 0 and 7,7, : [0,00) — M are
geodesics, then

a (n(0,72(0) < ex0 (52 )i (4101, 7400)
fort > 0.

8. Two lower bounds. In this section we establish two lower bounds for
metrics with property-(BG).

PROPOSITION 8.1. Suppose that €2 C C? is a bounded domain and g is a
complete Kiihler metric on ) whose sectional curvature is bounded in absolute
value by k > 0. Then there exists some a > 0 such that

allvll < v/g:(v,v)
forall z € Q) and v € C4.

Proof. By scaling €2 we may assume that {2 C B; where B, is the unit ball
in C?. Let h be the Bergman metric on By. Then A has holomorphic bisectional
curvature bounded from above by a negative number. Further there exists some
0 > 0 such that

S vl < V/hz(v,0)

for all z € By and v € C%. Then applying the Yau Schwarz Lemma [Yau78] to the
inclusion map 2 — B, shows that there exists some C' > 0 such that

C\/hz (U>U) < \/gz (U>U)

forall z € Q and v € C%, ]

Next we use a result of Cheeger, Gromov, and Taylor to provide a lower bound
on the injectivity radius. Suppose (M, g) is a Riemannian manifold. Given x € M
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we define the injectivity radius at x to be
inj,(7) = max {R>0:exp,|p, (s is injective for all 0 < s < R}

where B, (s) C T, M is the open ball of radius r centered at 0 in the inner product
space (T, M, g,).

PROPOSITION 8.2. Suppose that Q@ C C% is a bounded domain and g is a
complete Riemannian metric on ) such that:

(1) sectional curvature of g is bounded in absolute value by k > 0 and

(2) there exists a, A > 0 such that

ol < Vga(o0) < A
a(v)

forall z € Qandv e C?
Then there exists some Iy > 0 such that

inj,(2) > Tobo(z)*H!
forall z € Q).

Proof. For z € Q2and r > 0let By(z,r) the open ball of radius  centered at z in
(€2,9). Then let Vi (z,7) denote the volume of B,(z,r) in (£2,9). Forn e N, A € R,
and r > 0 let V’(r) denote the volume of the ball of radius 7 in the n-dimensional
model space M with constant curvature A. With this notation, Theorem 4.7 in
[CGTS82] implies that

r Vy(z,7)
2Vy(z,r)+ V2 (2r)

@) inj,(2) >

for all r < w/(4+/k). Finally, fix V5 > 0 such that

V2 (2r) <V,

when r < 2.
Fix z € Q) sufficiently close to 0f2 and let
da(z)
r=—

Then by the estimates on g,
€0z —wl < 50} € Byler) € Lwe Q1 [l — ]| < Loa(2)
w 2z w_4aAQz g(z,7 w 2z w_2QZ .

We can assume that < min{1,1/(4y/k)}. Then

(5) V2 (2r) < V.
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Next we estimate V;(z,7). Let Vol, denote the Riemannian volume associated to
g. By the estimates on g, if

1
EcC {wEQ: |z —wl| < 559(2)},

then

.y 92d p2d
where A\(E) is the Lebesgue measure of E. So there exists a constant Ag > 1 such
that

(6) —da(2)¥ <V, (2,7) < Ap.

Thus by Equations (4), (5), and (6) there exists a constant I > 0 such that

inj,(2) > Tobo(z)* 1, O

9. Deforming metrics. In this section we recall a result that allows us to
deform a Riemannian metric with bounded sectional curvature to obtain a new
metric with better properties.

THEOREM 9.1. [Shi89, CZ06] Suppose (M, g) is a complete Riemannian man-
ifold whose sectional curvature is bounded in absolute value by x > 0. Then for
every € > 0 there exists a complete Riemannian metric g on M such that:

(1) the sectional curvature of q is bounded in absolute value by k + e,

(2) the metrics g and g are (1 + €)-bi-Lipschitz,

3) if R is the curvature tensor of g, then

sup Wqﬁ‘ < oo
zeM

where V1 denotes the ¢ covariant derivative with respect to §, and
(4) Isom(M,g) <Isom(M,g).

The metric g is obtained by considering the Ricci flow starting at g:

%g = —Ric(g).

Shi [Shi89] proved that there exists some 7" > 0 such that the Ricci flow starting at
¢ has a solution g; for ¢ € [0,7'] and for any ¢ € (0,7 the metric g, satisfies parts
(2) and (3). Chen and Zhu [CZ06] proved that this solution is unique and hence that
Isom(M, g) <Isom(M,g;). For precise control over the sectional curvature see for
instance [KapO5].
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10. A distance estimate. The main result in this section says that given a
complete Riemannian manifold (M, g) and two geodesics 7,0 : I — M the dis-
tance between 7/(0) and ¢’ (0) can be estimated from the distance between ()
and o (t) over a short time interval. Before stating the theorem we need some more
notation.

A subset X in a Riemannian manifold (M, g) is said to be strongly convex if
any two points in X are joined by a unique minimal geodesic and this geodesic is
contained in X . Given x € M we define the convexity radius at x to be

rg(x) =max { R > 0: By(z;s) is strongly convex for all 0 < s < R}

where B, (z;s) C M is the open ball of radius s centered at .
The injectivity radius and convexity radius are related by the following result.

THEOREM 10.1. [Ber03, Proposition 20] Suppose (M, g) is a complete Rie-
mannian manifold with sectional curvature bounded in absolute value by x > 0. If
x € M, then

) A 1. .
mln{m, Elnjg(az)} <rg(x) < Elnjg(az).
We are now ready to state the main result of this section.
THEOREM 10.2. Suppose (M, g) is a complete Riemannian manifold and
sup{WqR\ txeM, q:O,1,2} < oo

where R is the curvature tensor of (M,g). Then there exists A > 1 such that: if
e M,

0 < e <min{ry(z)/2,1},

and 7,0 : [0,€] — M are unit speed geodesics with v(0) = x, then

g (+/0),0'(0)) < 2 max oy (4(1), (1),
€ te0,¢]

To prove the theorem we will use a result of Eichhorn. Recall, that a chart
(U,p) of a Riemamnian manifold (M,g) is a normal chart centered at x with
radius v if U = By(x;r) and ¢~ ! = exp, ol for some linear isometry I : R —
(TyM,gy).

THEOREM 10.3. [Eic91, Corollary 2.6] Suppose (M,q) is a complete Rie-
mannian manifold and

sup{|VqR| cx e M, q:0,1,2} < oo
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where R is the curvature tensor of (M,g). For any ro > 0 there exists C > 0 such
that: if x € M, (U, ) is a normal chart centered at x of radius at most ro, and
h = p.g, then

Ohig |

sup D0

e(U)

for every multi-index o with |a| < 2.

10.1. Proof of Theorem 10.2. For the rest of the section let (M,g) be a
complete Riemannian manifold with

sup{|VqR| cx e M, q:0,1,2} < oo

where R is the curvature tensor of (M, g). Let C > 0 be the constant from Theo-
rem 10.3 with ro = 1.

LEMMA 10.4. There exist constants ry, Ay > 0 such that: if x € M, (U, ) is a
normal chart centered at x of radius at most vy, and ~y : [0, T] — M is a unit speed
geodesic with image in U, then

1

T <lleon @l < 4

In particular, if p,q € UN By(x;14(x)) then

160 = P(@)] < dus(p.0) < At o) ~ 0(a)]

T :min{l,;}.
2dC

Then suppose that (U, ) is a normal chart centered at = of radius at most 7. Let
¥ =povyand h =g Then [[7'(t)[|, = L.
Since h at u = 0 is the standard Euclidean inner product, we see that

Proof. Let

_ 1~ - 1
2 2 2 2 2 2
[0l = 0l < Er > oyl < 58m > P+l = Crid ol < 5 o]
.7 .3
So
1
Sl < floll, < 2110l
and so
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Next suppose that p,q € U N By(x;14(x)). Then let o : [0,7] — M be a unit
speed geodesic joining p to ¢g. Then the image of ¢ is contained in U so

T T
dM(paQ):/o Hff’(t)HgdtZ/O [(poa) ()|, dt

1

T
>3 | ooyl de= 3 let) - ool

On the other hand, if f(t) = te(p) + (1 —t)p(q) , then

1 1
dutp) < [l oyl = [ 7)), a

<2 / le(w) - (@)l dt = 2]l (p) - ¢(q)]] O

LEMMA 10.5. There exists a constant Cy > 0 such that: if x € M, (U, ) is a
normal chart centered at x of radius at most 1, h = @.g, and

Ohji  Ohy;  Ohyj
Tk = j i ONij\ pkem
Z < Ou; - du; 8uk> ’

then
oy, oy, -
max 8u1 ’ ouy =1
on p(U).

Proof. The proof of the last lemma provides a uniform bound on A*™. So the
Lemma follows from Theorem 10.3. U

LEMMA 10.6. There exists a constant Ay > 0 such that: if v € M, (U,) is
a normal chart centered at x of radius at most r1, and ~y,0 : [0,T] — M are unit
speed geodesics with images in U, then

1" O] < 4(1FO1 -+ [[F'()]])

where F(t) = (p07)(t) = (poa)(?).

Proof. Lety=po~,0=poo,and h=p,g. By [dC92, p. 62], the components

of ¥ — & satisfy the differential equation

() = ak(t) =Y _Fit)T; (0T (5(8) — Y FOF; L5 (F().
irj

Z‘?j
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By Lemma 10.4

max { [[7'()][ . [[5"@)[| } < Ar-

Then since the function

(0, X) e U xR — Y " X; X;T%(u)

1,J
has locally bounded first derivatives, there exists some /Tz > 0 such that
135 = ak @) < A7) @)l +[[7' ) =" @)]])- 0

LEMMA 10.7. There exists a constant A3 > 0 such that: if v € M, (U,¢) is a
normal chart centered at x of radius at most ry, then

dT'M<<9071(ul)vd(soil)ulX)) (QDil(Uz),d(QOil)qu))
< Aymax {1, X 1Y)} (s = + X = V)
for all uy,uy € (U) and X,Y € R

Proof. In the local coordinates (uy,...,uq, Xi,...,Xq) € U X R the Sasaki
metric is given by

hi jdu'du’ + h; ;DX DX?
where
DX'=dX"+T% X;du",
So the estimate follows form Theorem 10.3 and Lemma 10.5. O

We will also use the following simple observation:

LEMMA 10.8. If X,Y € R% and € € (0,2), then

max [|X+Y] 2 (1] + 1Y),
Proof. If [| X || > 5 ||V, then
1XI > 21X+ Sy = SOx )+ v ).
2 4 4
IF[1X] < $ Y]], then

€ €
IX+eV ]| > el Y[ = I1XI = S 1Y1T = 7 (X[ + Y]] O
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We now prove Theorem 10.2 in a special case. Let

. 1
rp=min< ry,—— .
? { ! 8\/3142}
LEMMA 10.9. There exists A4 > 1 such that: if x € M,
0 < e <min{ry(z)/2,r>},

and 7,0 : [0,e] — M are unit speed geodesics with v(0) = x, then

s (70,0 (0) < 7 max das (2 0). ().

Proof. The proof is divided into two cases:

Case 1. Suppose that

< dy (v (), (1)).
€ < max m(Y(t),0(t))

Then by Lemma A.3
drips (7(0),6'(0)) < 7+ dar(7(0),0(0))

m+1
< ds (v(1). (1)
<~ max m(v(t),0())

Case 2. Suppose that

> dur (). (D).
€ max m(y(t),0(t))

Fix (U,¢) is a normal chart centered at x with radius min{ry(x),2r}. Let ¥ =
poy,0=poy,and F'=75—0.
Define

D:g%wwwﬂwww

and pick some t( € [0, €] realizing this maximum.

Claim. If t € [0, €|, then
€
17 (to) + F' (o) (t = to) || < [ F ()| + £ D-

Let F' = (F},...,Fy;). Then by Taylor’s theorem

Fit) = Fi(to) + B (t0) (t— t0) & 3 11/ (G) (¢ —10)’
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for some (;. between t and t(. Further

| F (C)| < A2 (IF (Gl + || F'(Ce)]|) < A2D
by Lemma 10.6. So

[P0+ Pt —t0)]| < 1PO] + 22 42D (¢~ 1)

Then
|1 F(to) + F(to)(t —t0) | < | F@)]| +1¢ D

since € < (8v/dA,)~!. This proves the claim.
By Lemma 10.8

8
D < - max [[F(to) + F"(to) (£~ to)

Then by the claim

8
D < 2 max <||F(t)|| +1—€6D>

€ te€(0,€]

and so

16
(7 D < — max |[F(#)]].

€ te0,€]

Finally, by Lemmas 10.4 and 10.7
drip (7/(0),0°(0)) < A A3 ([|[F(0)|| + ||F'(0)]|) < A1AsD

and by Lemma 10.4

So by Equation (7)

16A3 A;
das (1), 0 (1)),
o mnax m(7(t),0(t))

drip (7'(0),07(0)) <
Thus A4 = max{16A7 A3, + 1} satisfies the statement of the lemma.
Proof of Theorem 10.2. Suppose x € M,

0 < e <min{ry(z)/2,1},



BOUNDARY RIGIDITY RESULTS 155

and v,0 : [0,¢] — M are geodesics with (0) = z. If € < 1, then by Lemma 10.9

p1as (70,0 (0) < 72 max s (2 0). ().

If € > rp, then by Lemma 10.9

Ay 1447“7l
d '(0),0'(0)) < = dy (Y(t),0(t)) < —2 dyr (Y(t),0(t)).
i (7(0),0°(0)) < . wm(v(1),0(t)) < — max m(Y(t),0(t))
So A= Ayry I satisfies the statement of the theorem. O

11. Proof of Theorem 1.13. In this section we prove the following
strengthening of Theorem 1.13.

THEOREM 11.1. Suppose Q C C% is a bounded domain, ¢ € Aut(Q2), and 9
satisfies an interior cone condition at & € OS2 with parameters r,6. Assume there
exists an -invariant complete Riemannian metric g on §2 such that

(1) the sectional curvature of g is bounded in absolute value by x > 0 and

(2) there exist a, A > 0 such that

alel < Vasto0) < AL
a(v)

forall z € Qandv e CY

If
L>4d+2+ \./EA
sin(6)
and
o(z) =2+ 0 (== &ll").
then ¢ = id.

Remark 11.2. Notice that Theorem 11.1 and Proposition 8.1 imply Theo-
rem 1.13.

For the rest of the section suppose that €2, ¢, g, &, 7, 6, K, a, and A satisfy the
hypothesis of Theorem 11.1. Then there exists some v € C? such that ||v|| = 1 and

C (Eo,v,e,r) c Q.

By replacing 2 with %Q and g with ®,g where ®(z) = %z, we can assume that
r = 2. Notice that this does not change 6, x, or A. Then

o (& +tv) > sin(9)t

for every ¢ € (0,1].
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If we replace ¢ with A\g where A > 0, then A is replaced by VXA and & is
replaced by /. Thus the quantity

VEA
4d+2+ ———
T S
is invariant under scaling g. So we may assume that xk = 1.
Suppose that
A
L>4d+2+ ——
R )
and

p(z)=z2+0(|lz—¢|").

Fix € > 0 such that

L>4d+2+(24€¢)(1 +6)2sin(9)’
Then by Theorem 9.1 we can find a complete Riemannian metric g on €2 such that:

(1) the Riemannian sectional curvature of g is bounded in absolute value by
1+e,

(2) the metrics g and g are (1 + €)-bi-Lipschitz,

3) if R is the curvature tensor of g, then

sup ijﬂ < oo
zeM

where V7 denotes the q'" covariant derivative with respect to g, and
4) ¢ elIsom(M,q).
Let dg, be the distance on €2 induced by g.
Next fix a sequence r,, € (0, 1] with ro = 1 and r,, — 0. Let p,, = &+ r,v € Q.

LEMMA 11.3. With the notation above,

(I+e)A 1
sin(6) log Tn

dQ (pTHpO) <
for every n > 0.

Proof. Leto :[0,1) — Q be the curve o (t) = &n+ (1 —¢)v. Then using the fact
that

da (& +1tv) > sin(9)t
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for every ¢ € (0, 1], we have

olowm) < [ w0 [ TG
(144 [ dt (14+9A 1
= sin(6) /o I—t  sin(6) loga. :

Next fix some zp € €2 and let ~, : [0,7;,] — € be a unit speed geodesic in
(Q,dq) with v,,(0) = py, and 7,,(T},) = z0. Then

(I+eA 1
sin(0) log Tn

3) Ty, = do/(20,pn) < do(20,p0) +

Next let

sin(0)ry,
4

T = max{r € [0,T,] : [[vn(t) — pall < forall t € [0,’7’]}.

LEMMA 11.4. With the notation above, there exists 5 > 0 such that

Tn > 0Ty
for all n sufficiently large.
Proof. Since
T00,0) 2 —— o]
for all z € Q and v € C%, we have
do(z,w) > —— ||z —w||
R

for all z,w € Q. Now if ||p,, — 20| > sin(0)ry, /4 then

sin(6)a
4(1+e€)

Tn = dg (’Yn(o)77n (Tn)) ”pn ’Yn(Tn)H = Tn- U

- 1+
Now pick o > 0 such that
lp(2) — 2]l < el|z— &l ¥
for all z € ).
LEMMA 11.5. There exists C; > 0 and N > 0 such that
do (Y (), (m(t))) < Crrf !

forallm> N and t € [0,7,].



158 A. ZIMMER

Proof. If t € [0,7,], then

sin(f) +4
F6) = oll < 30 6) =l + 19 — o < S0 T2,

So

. L
Irnlt) = el <o ()

Since r,, — 0 and L > 1 we can pick N > 0 such that

sm( )

70 () = (v ()] <

foralln > N.
Next define o, : [0,1] — C% by
on(s) = (1= )y (t) + 5@ (n(t)).
Then for n > N we have

59(0'71 ) >5Q(pn) P — on(s)]]

> 80 (pn) = P2 =1 @) = 7 (t) = ()]
s1n(49
2

\_/

So

1
do (1 (1), 9 (3 (1)) < /0 Vot (0'(3), () ds

LEMMA 11.6. There exists C> > 0 such that
drig (7,(0), (9om) (0) < Corf 42
foralln > N.
Proof. Let
€, = Mmin {rg(pn) /2,Tn, 1}.
By Proposition 8.2, Theorem 10.1, and Lemma 11.4 there exists Ey > 0 such that

€n > Eo?“idJrl .
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By Theorem 10.2 there exists some [ > 0 such that

dria(15(0). (2071) (©)) < 2 max do(va(t). o (3a(8))).

T €p te[0,e,]

So by Lemma 11.5

drig (74(0), (poa) (0)) < @rﬁfétd—z. -

Then by Proposition 7.2 and Equation (8)

do(20,¢(20)) < exp <$Tn> drig (7,(0), (907a) (0))

L—4d—2—(2+¢)(1+e) g

2+€ sin
< Crexp <Tdﬂ (po,Zo)> T e

Since r,, — 0 and

L>4d+2+(2+€¢)(1+¢)

2sin(6)

we see that dq(z0,p(20)) = 0. Hence p(29) = 2¢. Since z was arbitrary we then
see that ¢ = id.

Remark 11.77. In the special case when

inf inj () >0

z€)
it suffices to assume that
VEA
L>2+-—"1—.
0

In this case one first shows that

Then Theorem 10.1 implies that

inf r 0.
infr2) >

So in the proof of Lemma 11.6 we can assume ¢€,, > Eyr,, which implies that

drig (74(0), (o) (0)) < Cork 2.

The rest of the argument is identical.
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12. Examples. Givenadomain {2 let kq denote the infinitesimal Kobayashi
metric on §2. By the definition of the Kobayashi metric

ka(z;v) <

forall z € Q and v € C%.

12.1. HHR domains. Given a bounded domain © C C? let sq : 2 — (0, 1]
be the squeezing function on €, that is

sq(z) = sup {T : there exists an one-to-one holomorphic map
f:Q— By with f(z) =0and rBy C f()}.

Then define
s(2) = inf sq(2).

z€)
Notice that €2 is a HHR domain if and only if s(£2) > 0. Then Yeung proved the
following.

THEOREM 12.1. [Yeu09, Theorem 2] For every s € (0,1] and d € N, there
exist « = a(s,d) > 1 and k = k(s,d) > 0 such that: if @ C C? is a bounded HHR
domain with s(§2) > s, then

(1) kq and gq are a-bi-Lipschitz, and

(2) the sectional curvature of gq is bounded in absolute value by k.

As a corollary we have the following.

COROLLARY 12.2. If Q C C% is a bounded HHR domain, then the Kdhler-
Einstein metric has property-(BG). Moreover, we can choose the k and A in the
definition of property-(BG) to depend only on s()) and d.

Proof. Let a and k be the numbers from Theorem 12.1. By definition the
Kobayashi metric satisfies

[[v]]
0a(2)

mﬁakg(z;v)g aHUH' 0
a(2)

12.2. Pinched negative curvature. Wu and Yau proved the following.

ka(zv) <

and so

(o9

THEOREM 12.3. [WY20, Theorems 2 and 3] For every a,b >0 and d € N,
there exist o = a(a,b,d) > 1 and k = k(a,b,d) > 0 such that: if @ C C% is a
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bounded domain and there exists a complete Kdihler metric g on ) such that

then
(1) Q has a unique Kdhler-Einstein metric go with Ricci curvature —1,
(2) kq and gq are a-bi-Lipschitz, and
(3) the sectional curvature of gq is bounded in absolute value by k.

Then arguing as in Corollary 12.2 we have the following.

COROLLARY 12.4. If Q) C C% is a bounded domain and there exists a complete
Kiihler metric g on ) such that

—a<H(g) <—b

for some a > b > 0, then the Kdihler-Einstein metric has property-(BG). Moreover,
we can choose the k and A in the definition of property-(BG) to depend only on a,
b, and d.

Appendix A. Some proofs. In this section we prove prove Propositions 7.1
and 7.2. In this section, if (M,g) is a complete Riemannian manifold and o :
[a,b] — M is a smooth curve let £,(c) denote the length of o in (M, g).

A.l. Proof of Proposition 7.1. For the rest of the subsection suppose that
(M,g) is a complete Riemannian manifold. Before proving the proposition we
need three lemmas.

LEMMA A.l. If X,Y € T M, then
XMy = 1Y1ly| < drm(X,Y).

Proof. If || X||, = IY]|, = O then the inequality is trivial. So by relabelling
we can assume that || X||, > [|Y]|, and || X[, # 0. Next let o : [0,1] — T'M be a
geodesic in TM with 0(0) = X and o(1) =Y.

First consider the case when |[lo(t)||, # 0 for all ¢ € (0,1). Then by [dC92,
Chapter 2, Corollary 3.3]

100, = Vo) = (@) Varoo®)

where oo = 7w oo. So by Cauchy-Schwarz

< [IVayo @],

d
ol g
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Then

1
r () = [ VR0 \/ua 2+ Voo o)

/ [Vao®]| dt =

> I1X1], - ||Y||g1.

HU( Mg

Now consider the case when [|o(t)||,, = 0 for some ¢ € (0, 1). Define
T =min{t € [0,1]: [lo(t)]|, = 0}.

Then [ (t)]|, # 0 for ¢ € (0,T") so by the previous argument and using the fact that
HX”g > HYHg we have

drar(X,Y) 2 drag(X,0(T)) = |1 X 1|, = lo(T)1],| = X1,
> (11, - 11| =
LEMMA A.2. Suppose 0 < e <2, ~:[0,1] = TM is a smooth path, and
e< Il
forallt. If o :[0,1] — SM is the curve defined by

y(t)
0= ho

then

Proof. Let « = woo. By [dC92, Chapter 2, Proposition 2.2]

1 Fl@ll,
Vo/(t)a(t)—”,y(t)”gvaf(t)’Y(t)Jr ||7()|| v(t)

and by [dC92, Chapter 2, Corollary 3.3]

d d 9V r(0),7(1))
2Ol =7 vV9(r(1).7 () = hol,

So by Cauchy-Schwarz

'% ||'7(t)||g < |’Va'(t)7(t)Hg
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and so

2
IVarwo®lly < 2 Ve,

Then

1 1
6(0) = [ ool @0 e = [0 +[Tarnot)

2 ! 2 2 2
<= /(¢ V@) 2dt = Z6,(7). O
<2 [ 1@+ Ve =200
LEMMA A3. If X,Y € T'M, then
dpy(X,Y) <dp (7(X),n(Y)) +7 < drm(X,Y) + .

Proof. Let v : [0,T] — M be a unit speed geodesic joining 7(X) to 7(Y).
Then let P(t) be the parallel transport of X along . Then, by the definition of the
Sasaki metric,

dyr (m(X),7(Y)) = €y(7) = Cu(P).
Further, | P(T)]||, =||X||, =1 and so
dpiy (P(T),Y) <.
Thus
dpipg(X,Y) < dp (7(X),7(Y)) + .

Next let o : [0, S] — T'M be a geodesic joining X to Y. Then, by the definition
of the Sasaki metric,

dra (X,Y) = () > by(moa) > dy (n(X),7(Y)). O
Proof of Proposition 7.1. By Lemma A.3
dpip(X,Y) < dp (7(X),7(Y)) +7 < dpa(X,Y) + 7.
Soif dpp(X,Y) > 1, then
dpiy(X,Y) <dy (n(X),n(Y)) +7 < (1+m)drp(X,Y).

Suppose that dpas(X,Y) < 1. Let v : [0,7] — T'M be a unit speed geodesic
with 7(0) = X and (T') = Y. By Lemma A.1, we must have ||y(¢)[|, > 1/2 for
allt. Let o(t) =~(t)/ [|v(t) ,- Then by Lemma A.2 we have

dTlM(X,Y) gfh(a)§4£h(7):4dTM(X,Y). O
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A.2. Proof of Proposition 7.2. To prove the proposition we estimate the
growth rate of Jacobi fields. For the rest of the subsection, suppose that (M, g) is a
complete Riemannian manfiold with sectional curvature bounded in absolute value
by x > 0.

Let v: R — M be a geodesic. Let R denote the curvature tensor of M. Then
fort € R, let R : Ty M — T, ;) M denote the map

RyY = R(Y(£),Y)Y (t).

Then R,y is linear and symmetric relative to g. ().
A vector field J along 7 is called a Jacobi field when

V,\//(t)vﬂ//(t)e](t) + R’y(t)J(t) = O

for all £.
We will bound the growth rate of a Jacobi field:

PROPOSITION A.4. If J is a Jacobi field along a geodesic y, then

\/”J(t)uj+ IV @, < \/HJ(O)Hj+ V07O ex (ﬁ; 1’5>

forallt > 0.

Proof. We begin by bounding the operator norm of R, ). Let X € T, ;) M.
Then we can write

X =ay/(t)+bY
where a,b € R, Y is a unit vector, and ~/(¢),Y are orthogonal. Then
(R X.X) = PR Y. = Psee (Vir (1)
since Ry is symmetric and Ry (t) = 0. Thus
1By Xl < < 1X1],

forall X € T ;M.
Next define f: R — R by

50 =IO + [0 7O,
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Then

#1705+ & [V O,
2f(t)
(T Vo T (@) + (Vo T (@) Vo Vo I (1))

fi(t) =

1Tl [V (1)
f<t>

g

Then by Gromwall’s inequality

£(t) < F(0)exp <’“; 1t>
for all ¢t > 0. U

Proof of Proposition 7.2. Let o : [0,T] — T" M be a unit speed geodesic with
o(0) =+1(0) and o(T") = ~5(0). Then consider the map

F:[0,T] % [0,00) — T' M
given by F(s,t) = g¢(o(s)).

With the decomposition of T’xT'M into horizontal and vertical subspaces we
then have

d
%F(&t) = (Js(t)>vfy;(t)‘]8(t))
where t — J4(t) is a Jacobi field along the geodesic vs(t) = g+(o(s)), see for in-

stance [Pat99, Lemma 1.40].
Then

T a
dar (o (1) (1)) < dTlM(fwmg(t)) < [ 5r
S S_6K+1‘t| g S
Er0)| ds=e [ o]0

_ ldTlM(momz(o». -

s,t)H dt
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