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Abstract

We study the homeomorphic extension of biholomorphisms between convex domains
in Cd without boundary regularity and boundedness assumptions. Our approach relies
on methods from coarse geometry, namely the correspondence between the Gromov
boundary and the topological boundaries of the domains and the dynamical properties
of commuting 1-Lipschitz maps in Gromov hyperbolic spaces. This approach not
only allows us to prove extensions for biholomorphisms, but for more general quasi-
isometries between the domains endowed with their Kobayashi distances.

1 Introduction and results

The aim of the paper is to investigate boundary extension of biholomorphisms, and
more generally of quasi-isometries, between domains in the complex Euclidean space

Communicated by Ngaiming Mok.

F. Bracci: Partially supported by the MIUR Excellence Department Project awarded to the Department of
Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.
H. Gaussier: Partially supported by ERC ALKAGE.
A. Zimmer: Partially supported by the National Science Foundation under grants DMS-1760233 and
DMS-1904099.

B Hervé Gaussier
herve.gaussier@univ-grenoble-alpes.fr

Filippo Bracci
fbracci@mat.uniroma2.it

Andrew Zimmer
amzimmer@lsu.edu

1 Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1,
00133 Rome, Italy

2 Univ. Grenoble Alpes, CNRS, IF, 38000 Grenoble, France

3 Department of Mathematics, Louisiana State University, Baton Rouge, LA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-020-01954-1&domain=pdf


692 F. Bracci et al.

Cd , d ≥ 1, under some (geo)metric assumptions on the domains, regardless of bound-
ary regularity or boundedness of the domains.

The Fefferman extension theorem [25] states that every biholomorphism between
bounded strongly pseudoconvex domains with C∞ boundaries extends as a C∞ diffeo-
morphism to the closures of the domains. This seminal result reduces the equivalence
problem between such domains to the comparison of CR invariants of the bound-
aries of the domains. In the case where the domains are assumed neither smooth nor
bounded, the question of homeomorphic extension of biholomorphisms seems quite
difficult to attack with methods from Complex Analysis and Geometry.

Motivated by a result of Balogh and Bonk [8], we consider this problem from a
coarse geometry point of view. Balogh and Bonk proved that the Kobayashi distance
on a bounded strongly pseudoconvex domain is Gromov hyperbolic and the Gro-
mov boundary coincides with the Euclidean boundary. For Gromov hyperbolic metric
spaces, it is a well known fact that homeomorphic quasi-isometries extend as home-
omorphisms between the Gromov compactifications of the metric spaces, see [29].
Since every biholomorphism between two domains is an isometry when the domains
are endowed with their Kobayashi distances, this provides a new proof that every
biholomorphism between strongly pseudoconvex domains extends to a homeomor-
phism of the Euclidean closures. Although this conclusion is weaker than Fefferman’s
result, it holds for a much larger class of maps—those that are quasi-isometries relative
to the Kobayashi distances.

The Gromov boundary of a Gromov hyperbolic metric space has a quasi-conformal
structure which is preserved by isometries (see for instance [32, Section 3]). Recently
Capogna and Le Donne [20] used this quasi-conformal structure and results about
the regularity of conformal maps between sub-Riemannian manifolds to provide a
new proof of Fefferman’s smooth extension theorem. Thus for bounded strongly
pseudoconvex domains the extension theory of biholomorphisms can be completely
understood using the theory of Gromov hyperbolic metric spaces.

These results motivate the following question:

Question 1.1 For which domains D ⊂ Cd is the Kobayashi distance K D a complete

Gromov hyperbolic distance?

To apply the theory of Gromov hyperbolicity to the problem of extensions of biholo-
morphisms, one also needs to identify the Gromov boundary with the Euclidean
boundary. For unbounded domains in Cd there are several natural choices of an
Euclidean compactification, but it seems like the right one is the end compactification
of the closure (see Sect. 5).

Definition 1.2 Given a domain D ⊂ Cd the Euclidean end compactification of D,
denoted by D

�
, is defined to be the end compactification of D.

Remark 1.3 (1) When D ⊂ Cd is an unbounded convex domain, the end compacti-
fication of D has either one or two points “at infinity” (see Sect. 5).

(2) It is important that we are taking the end compactification of D instead of D; if
D ⊂ Cd is a convex domain, then the end compactification of D is just the one
point compactification of D.
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One can then ask:

Question 1.4 For which classes of domains D ⊂ Cd is the following true: if the

Kobayashi distance K D on D is Cauchy complete and Gromov hyperbolic, then the

identity map id : D → D extends to a homeomorphism id : D
�

→ D
G

where D
G

is

the Gromov compactification of the metric space (D, K D)?

In dimension one, for a simply connected domain D ⊂ C different from C, the
Riemann mapping theorem implies that (D, K D) is isometric to the real hyperbolic
two-space and hence is Gromov hyperbolic. Further, the Gromov compactification
is equivalent to Carathéodory’s prime ends topology and thus a complete answer to
Question 1.3 is given by the Carathéodory extension theorem: if D � C is a simply
connected domain, the identity map id : D → D extends to a homeomorphism

id : D
�

→ D
G

if and only if D is a Jordan domain.
Since every convex domain in C (different from C) is a Jordan domain, the previ-

ous question has positive answer for one-dimensional convex domains different from
C. Note also that every convex domain in C which is different from C is Gromov
hyperbolic with respect to its (complete) Kobayashi distance.

One aim of this paper is to extend such a result about convex domains to higher
dimension, assuming the natural hypotheses suggested by the one dimensional case.

A convex domain is called C-proper if it does not contain any complex affine lines.
For such domains we prove the following.

Theorem 1.5 Let D be a C-proper convex domain in Cd . If (D, K D) is Gromov hyper-

bolic, then the identity map id : D → D extends to a homeomorphism id : D
�

→ D
G

.

Remark 1.6 (1) Theorem 1.5 does not assume that D is bounded or has smooth
boundary. By a result of Barth [9], when D is convex the Kobayashi distance is
Cauchy complete if and only if D is (Kobayashi) hyperbolic if and only if D is
C-proper (also see [17]).

(2) There are many examples of convex domains where the Kobayashi distance is
Gromov hyperbolic, see [42,43].

(3) For convex domains any of the classical invariant distances, such as the Bergman
distance, the Carathéodory distance or the Kähler-Einstein distance, are bi-
Lipschitz equivalent [26]. Since Gromov hyperbolicity is a quasi-isometric
invariant, this implies that the above theorem is also true for any of the other
classical invariant distances.

As a consequence of Theorem 1.5 we obtain an extension result for quasi-isometries
between some domains in Cd , see Sect. 3 for precise definitions.

Corollary 1.7 Let D and � be domains in Cd . We assume:

(1) D is either a bounded, C2-smooth strongly pseudoconvex domain, or a convex

C-proper domain, such that (D, K D) is Gromov hyperbolic,

(2) � is convex.

Then every quasi-isometric homeomorphism F : (D, K D) → (�, K�) extends as

a homeomorphism F : D
�

→ �
�
. In particular, every biholomorphism F : D → �

extends as a homeomorphism F : D
�

→ �
�
.
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In case D is the unit ball (or more generally a strongly convex domain with smooth
boundary), the previous extension result for biholomorphisms has been proved in
[15] in case � is bounded, as an application of a Carathéodory prime ends type
theory in higher dimension called “horosphere topology”, and in [16] for the case �

is unbounded by using a direct argument relying on the dynamics of semigroups of
holomorphic self-maps.

In Sect. 8 we will provide examples showing that the hypotheses in Corollary 1.7
are optimal.

1.1 Iterating holomorphic maps

The proof of Theorem 1.5 is, quite surprisingly, based on dynamical properties of com-
muting semigroups of holomorphic self-maps, and it also provides new information
about the dynamics of iterates of holomorphic maps.

Given a bounded domain D ⊂ Cd and a holomorphic self map f : D → D,
Montel’s theorem implies that the sequence of iterates of f , denoted by { f n}, forms a
relatively compact set in the space of holomorphic maps D → D. In particular, given
a sequence n j → ∞ one can always find a subsequence n jk → ∞ such that f n jk

converges locally uniformly to a holomorphic map g : D → D. Surprisingly, there
are some cases where the behavior of the limits are independent of the subsequence
chosen. This is demonstrated by the classical Denjoy–Wolff theorem:

Theorem (Denjoy–Wolff [23,41]) Let f : D → D be a holomorphic map. Then

either:

(1) f has a fixed point in D; or

(2) there exists a point ξ ∈ ∂D so that

lim
n→∞

f n(x) = ξ

for any x ∈ D, this convergence being uniform on compact subsets of D.

The Denjoy–Wolff theorem has been extended in the past by many authors in
different situations (see, e.g., [3,6,33] and references therein for a detailed account).

The Kobayashi distance on D coincides, up to a constant, with the standard Poincaré
distance and the metric space (D, KD) is Gromov hyperbolic. Further, any holomorphic
map f : D → D is 1-Lipschitz relative to the Kobayashi distance.

Karlsson proved the following abstract version of the Wolff–Denjoy theorem for
general Gromov hyperbolic metric spaces (see Sect. 3 for details and definitions related
to the Gromov boundary):

Theorem (Karlsson, Prop. 5.1 in [33]) Suppose (X , d) is a proper geodesic Gromov

hyperbolic metric space and denote by ∂G X its Gromov boundary. If f : X → X is

1-Lipschitz, then either:
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(1) for every p ∈ X, the orbit { f n(x) : n ∈ N} is bounded in (X , d), or

(2) there exists a unique ξ ∈ ∂G X so that for all x ∈ X,

lim
n→∞

f n(x) = ξ,

in the Gromov compactification.

Karlsson’s Theorem together with Balogh and Bonk’s result [8] proves in particular
a Denjoy–Wolff theorem for bounded C2-smooth strongly pseudoconvex domains in
Cd . Such a result was proved directly by Abate in [4]: if D is a C2-smooth strongly
pseudoconvex domain and f : D → D is holomorphic, then either { f n(z)} is rela-
tively compact in D for every z ∈ D, or there exists a unique point in ∂ D such that
every orbit of f converges to such a point. Huang in [31], under the assumption of
C3 boundary smoothness, proved later that if D is a topological contractible bounded
strongly pseudoconvex domain, then f has a fixed point in D if and only if there is
a point z ∈ D such that the orbit { f n(z)} is relatively compact in D. The C2-smooth
boundary case still remains open, and it is shown in [5] that Huang’s result does not
hold in general as soon as strict pseudoconvexity fails at just one boundary point.

On the other hand, if D ⊂ Cd is a hyperbolic convex domain and f : D → D

is holomorphic, then f has no fixed points in D if and only if every orbit of { f n} is
compactly divergent (see [1,2,17,34]). Therefore, as a direct corollary to Karlsson’s
result and Theorem 1.5 we have the following:

Corollary 1.8 Let D ⊂ Cd be a C-proper convex domain such that (D, K D) is Gromov

hyperbolic. If f : D → D is holomorphic, then either:

(1) f has a fixed point in D; or

(2) there exists a point ξ ∈ D
�
\ D, called the Denjoy–Wolff point of f , so that

lim
n→∞

f n(x) = ξ

for any x ∈ D, this convergence being uniform on compact subsets of D. In

particular, either ξ ∈ ∂ D and limn→∞ f n(x) = ξ or limn→+∞ ‖ f n(x)‖ = ∞

for all x ∈ D.

In case D is a bounded strictly convex domain, a Denjoy–Wolff theorem of the
previous type has been proved by Budzyńska [19], while, for bounded C2-smooth
strictly C-linearly convex domains, the result is due to Abate and Raissy [6].

To the best our knowledge there are no prior results of Denjoy–Wolff type which
hold for general classes of unbounded domains.

1.2 Commuting holomorphic maps

As mentioned above, the proof of Theorem 1.5 relies in an essential way on the study
of commuting holomorphic maps in domains in Cd .

In 1973, Behan [11] proved that two commuting holomorphic self-maps of the
unit disc D with no fixed points in D either have to share the same Denjoy–Wolff
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point on ∂D or are hyperbolic automorphisms of D. In [12,13] the first named author
generalized Behan’s result to the unit ball and to smooth bounded strongly convex
domains, proving that if two commuting holomorphic maps have distinct Denjoy–
Wolff points, then the restrictions of the maps to the unique complex geodesic joining
the two points are automorphisms of such a complex geodesic. The aim of the following
theorem is to generalize Behan’s result to commuting 1-Lipschitz maps in Gromov
hyperbolic spaces:

Theorem 1.9 Let (X , d) be a proper geodesic Gromov hyperbolic metric space. Let

f , g : X → X be commuting 1-Lipschitz maps. Suppose there exist ξ f �= ξg ∈ ∂G X

and x0 ∈ X such that

lim
n→∞

f n(x0) = ξ f and lim
n→∞

gn(x0) = ξg, (1.1)

in the Gromov compactification. Then there exist a totally geodesic closed subset

M ⊂ X and a 1-Lipschitz map ρ : X → M such that:

(1) ρ ◦ ρ = ρ,

(2) f (M) = g(M) = M and f |M and g|M are isometries of (M, d|M ).

Remark 1.10 Since (X , d) is a proper geodesic Gromov hyperbolic metric space, in
view of Karlsson’s Theorem, the existence of a point x0 ∈ X such that f n(x0) con-
verges to ξ f is equivalent to the convergence of f n(x) to ξ f , for all x ∈ X .

As an application of Theorem 1.9 and Balogh and Bonk’s theorem, we have the
following generalization of Behan’s result:

Corollary 1.11 Let D be a bounded, C2-smooth strongly pseudoconvex domain in Cd ,

and let f , g be commuting holomorphic maps from D to D. Suppose that there exist

p f �= pg ∈ ∂ D and a point z0 ∈ D such that

lim
n→∞

f n(z0) = p f and lim
n→∞

gn(z0) = pg.

Then there exists a complex geodesic � for D, which is a holomorphic retract of

D such that p f , pg ∈ ∂�, f (�) = �, g(�) = � and f |�, g|� are (hyperbolic)

automorphisms of �. In particular, p f (resp. pg) is a boundary fixed point in the sense

of admissible limits in D for g (resp. for f ).

By [31, Theorem 1], if D is a bounded C3-smooth strongly pseudoconvex domain
in Cd , which is topologically contractible, and f is a holomorphic self-map of D, then
there exists a unique point p f ∈ ∂ D such that { f n} converges uniformly on compacta
of D to the constant map ζ 
→ p f if and only if f has no fixed points in D. Therefore,
the previous corollary, in case ∂ D is C3-smooth and D is topologically contractible,
says that if f , g are commuting holomorphic self-maps of D with no fixed points in
D, then either f , g have the same Denjoy–Wolff point or f , g are automorphisms of
a complex geodesic for D joining the Denjoy–Wolff points of f and g.

On the other hand, as a direct consequence of Corollary 1.8 and Theorem 1.9, we
have
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Corollary 1.12 Let D be a C-proper convex domain in Cd such that (D, K D) is Gromov

hyperbolic and let f , g be commuting holomorphic maps from D to D. Suppose that f

and g have no fixed points in D and let p f ∈ D
�
\D (resp. pg ∈ D

�
\D) be the Denjoy–

Wolff point of f (resp. of g). Then, either p f = pg or there exists a holomorphic

retract M of D, of complex dimension 1 ≤ k ≤ d, such that p f , pg ∈ M
�

\ M,

f (M) = g(M) = M and f|M , g|M ∈ Aut(M).

1.3 Outline of the paper

The paper is organized as follows. In Sect. 3 we recall important properties about the
Gromov hyperbolic metric spaces, in our context. In Sect. 4, we study dynamical prop-
erties of commuting 1-Lipschitz maps in Gromov hyperbolic spaces. In Sects. 5 and 6,
we study, for an unbounded, convex, Gromov hyperbolic domain, the correspondence
between its Gromov compactification and the end compactification of its Euclidean
closure. We prove Theorem 1.5 in Sect. 6. In Sect. 7 we prove Corollary 1.7, Theo-
rem 1.9 and Corollary 1.11. Finally, in Sect. 8 we provide some examples showing
that our hypotheses are optimal.

2 The Kobayashi metric

In this expository section we recall the definition of the Kobayashi metric. Given a
domain � ⊂ Cd the (infinitesimal) Kobayashi metric is the pseudo-Finsler metric

k�(x; v) = inf {|ξ | : f ∈ Hol(D,�), f (0) = x, d( f )0(ξ) = v} .

By a result of Royden [38, Proposition 3] the Kobayashi metric is an upper semicontin-
uous function on � × Cd . In particular, if σ : [a, b] → � is an absolutely continuous
curve (as a map [a, b] → Cd ), then the function

t ∈ [a, b] → k�(σ (t); σ ′(t))

is integrable and we can define the length of σ to be


�(σ ) =

∫ b

a

k�(σ (t); σ ′(t))dt .

One can then define the Kobayashi pseudo-distance to be

K�(x, y) = inf {
�(σ ) : σ : [a, b] → � is abs. cont., σ(a) = x, and σ(b) = y} .

This definition is equivalent to the standard definition using analytic chains by a result
of Venturini [40, Theorem 3.1].

When� is a bounded domain, K� is a non-degenerate distance. For general domains
there is no known characterization of when the Kobayashi distance is proper, but for
convex domains we have the following result of Barth.
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Theorem 2.1 [9] Suppose � is a convex domain. Then the following are equivalent:

(1) � is C-proper,

(2) K� is a non-degenerate distance on �,

(3) (�, K�) is a proper metric space,

(4) (�, K�) is a proper geodesic metric space.

3 The Gromov compactification of a Gromov hyperbolic space

Let (X , d) be a metric space and let I ⊂ R be an interval, endowed with the Euclidean
metric. An isometry γ : I → X is called a geodesic. If I = [a, b], we call γ a
geodesic segment, if I = R≥0, we call γ a geodesic ray and if I = R, we call γ a
geodesic line.

We recall that (X , d) is:

(1) proper if every closed ball is compact in X ,
(2) geodesic if every two points x1, x2 ∈ X can be joined by a geodesic segment.

If (X , d) is a geodesic metric space, a geodesic triangle is the union of geodesic
segments γi : [ai , bi ] → X , i = 1, 2, 3, such that ai < bi for every i = 1, 2, 3 and
γ1(b1) = γ2(a2), γ2(b2) = γ3(a3), γ3(b3) = γ1(a1). The geodesic segments γ1, γ2

and γ3 are called the sides of the triangle.

Definition 3.1 A proper geodesic metric space (X , d) is Gromov hyperbolic if there
exists δ ≥ 0 such that every geodesic triangle is δ-thin, namely if each side of the
triangle is contained in a δ-neighborhood of the union of the two other sides.

We assume for the rest of this subsection that (X , d) is a proper geodesic Gromov
hyperbolic metric space. Let x0 ∈ X . Then let Gx0 denote the space of geodesic rays
γ : [0,+∞) → X such that γ (0) = x0, endowed with the topology of uniform
convergence on compact subsets of [0,+∞). We consider on Gx0 the equivalence
relation ∼ defined by

γ∼λ ⇔ sup
t≥0

d(γ (t), λ(t)) < +∞.

Definition 3.2 (i) The Gromov boundary ∂G X of X is defined as the quotient space
Gx0/ ∼ endowed with the quotient topology.

(ii) The Gromov closure of X is X
G

:= X ∪ ∂G X .

The choice of the base point x0 is irrelevant. Indeed, given x0, x1 ∈ X , there
is a natural map J : Gx0/ ∼→ Gx1/ ∼ defined as follows. Let [γ ] ∈ Gx0/ ∼,
where γ : [0,+∞) → X is a geodesic ray such that γ (0) = x0. For n ∈ N, let
ηn : [0, Rn] → X be a geodesic segment such that ηn(0) = x1 and ηn(Rn) = γ (n).
Up to extracting subsequences, using Arzelá-Ascoli’s theorem, we can assume that
{ηn} converges locally uniformly to a geodesic ray η : [0,+∞) → X such that
η(0) = x1. We let J ([γ ]) = [η]. Since (X , d) is Gromov hyperbolic, one can easily
see that η is contained in a finite neighborhood of γ , hence the map J is well defined and
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bijective (the inverse being the map Gx1/ ∼→ Gx0/ ∼ defined in a similar manner).
By the same token, one can see that J is a homeomorphism.

The set X
G

has a natural topology making it a compactification of X (see for instance

[18, Chapter III.H.3]) and with this topology, X
G

is first countable and Hausdorff.
To understand this topology we introduce some additional notation: given a geodesic

ray σ ∈ Gx0 define End(σ ) to be the equivalence class of σ and given a geodesic
segment σ : [0, R] → X such that σ(0) = x0, define End(σ ) = σ(R). Then ξn → ξ

in X
G

if and only if for every choice of geodesicsσn withσn(0) = x0 and End(σn) = ξn

every subsequence of {σn}n∈N has a subsequence which converges locally uniformly
to a geodesic σ with End(σ ) = ξ .

3.1 Geodesics

In this section we recall some basic properties of geodesics in a Gromov hyperbolic
metric space.

By our description of the topology of X
G

one has the following observation.

Remark 3.3 Suppose that (X , d) is a proper geodesic Gromov hyperbolic metric space.
If σ : R → X is a geodesic, then the limits

lim
t→−∞

σ(t) and lim
t→+∞

σ(t)

both exist in X
G

and are distinct.

One more important property of Gromov hyperbolic metric spaces is that geodesics
joining two points in the boundary “bend” into the space. More precisely:

Theorem 3.4 Let (X , d) be a proper geodesic Gromov hyperbolic metric space and

let x0 ∈ X. If ξ, η ∈ ∂G X and Vξ , Vη are neighborhoods of ξ, η in X
G

so that

Vξ ∩ Vη = ∅, then there exists a compact set K ⊂ X with the following property: if

σ : [a, b] → X is a geodesic with σ(a) ∈ Vξ and σ(b) ∈ Vη, then σ ∩ K �= ∅.

For a proof see for instance [7, p. 54] or [18, p. 294]. This result has the following
corollary.

Corollary 3.5 Let (X , d) be a proper geodesic Gromov hyperbolic metric space and

let x0 ∈ X. If ξ, η ∈ ∂G X and Vξ , Vη are neighborhoods of ξ, η in X
G

so that

Vξ ∩ Vη = ∅, then there exists some A ≥ 0 such that

d(x, y) ≥ d(x, x0) + d(x0, y) − A

for all x ∈ Vξ and y ∈ Vη.

Proof Let K be the compact set from Theorem 3.4. Then let
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A = 2 max{d(k, x0) : k ∈ K }.

Now suppose that x ∈ Vξ and y ∈ Vη. Let σ : [a, b] → X be a geodesic with
σ(a) = x and σ(b) = y. Then there exists some t ∈ [a, b] such that σ(t) ∈ K . Then

d(x, y) = d(x, σ (t)) + d(σ (t), y) ≥ d(x, x0) + d(x0, y) − A.
��

3.2 Quasi-geodesics, quasi-isometries, and the shadowing lemma

Definition 3.6 Let (X , dX ) and (Y , dY ) be metric spaces and let A ≥ 1, B ≥ 0.

(1) If I ⊂ R is an interval, then a map γ : I → X is an (A, B)-quasi-geodesic if
for all s, t ∈ I :

1

A
|t − s| − B ≤ dX (γ (s), γ (t)) ≤ A|t − s| + B. (3.1)

If I = [a, b] (resp. I = R≥0 or I = R) we call γ a quasi-geodesic segment
(resp. quasi-geodesic ray or quasi-geodesic line).

(2) A map f : X → Y is an (A, B)-quasi-isometry if for all x1, x2 ∈ X :

1

A
dX (x1, x2) − B ≤ dY ( f (x1), f (x2)) ≤ AdX (x1, x2) + B.

Remark 3.7 (1) Notice that an (A, B)-quasi-geodesic in (X , d) is an (A, B)-quasi-
isometry from (I , | · |), where I is an interval of R, to (X , d).

(2) When f is a bijective quasi-isometry from (X , dX ) to (Y , dY ), then f −1 is also
a quasi-isometry.

(3) If f : (X , dX ) → (Y , dY ) is a quasi-isometry and a bijection between proper
geodesic metric spaces, then (X , dX ) is Gromov hyperbolic if and only if (Y , dY )

is Gromov hyperbolic, see [29].

Throughout the paper, we will say that a curve C in a metric space (X , d) is an
(A, B)- quasi-geodesic if there is some parametrisation γ : I → X of C, where
I ⊂ R is an interval, such that γ satisfies Condition (3.1).

We will use the following fact repeatedly.

Theorem 3.8 (Shadowing Lemma) Suppose that (X , d) is a proper geodesic Gromov

hyperbolic metric space. For any A ≥ 1 and B ≥ 0 there exists R > 0 such that: if

γ1 : [a1, b1] → X and γ2 : [a2, b2] → X are two (A, B)-quasi-geodesic segments

with γ1(a1) = γ2(a2) and γ1(b1) = γ2(b2), then

max

{
max

t∈[a1,b1]
d(γ1(t), γ2([a2, b2])), max

t∈[a2,b2]
d(γ2(t), γ1([a1, b1]))

}
≤ R.

For a proof see for instance [21] Théorème 1.3 p. 25, or [29] Théorème 11 p. 87.
Using Theorem 3.8 and Remark 3.3 we have the following.
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Remark 3.9 Suppose that (X , d) is a proper geodesic Gromov hyperbolic metric space.
If σ : R → X is a quasi-geodesic, then the limits

lim
t→−∞

σ(t) and lim
t→+∞

σ(t)

both exist in X
G

and are distinct.

4 Commuting 1-Lipschitz self maps of a Gromov hyperbolic metric
space

In this section we study commuting 1-Lipschitz maps of a proper geodesic Gromov
hyperbolic metric space.

Suppose that (X , d) is a proper geodesic Gromov hyperbolic metric space. Further,
suppose that f , g : X → X are commuting 1-Lipschitz maps and that there exist
ξ f , ξg ∈ ∂G X so that for all x ∈ X , it holds

f n(x) → ξ f and gn(x) → ξg. (4.1)

Proposition 4.1 With the notation above, suppose that ξg �= ξ f . Then there exists a

compact set K ⊂ X such that: for every m ≥ 0 there exists n = n(m) ≥ 0 with

K ∩ f m gn(K ) �= ∅.

Proof Fix some x0 ∈ X . Since ξ f �= ξg , Theorem 3.4 implies that there exists some
r > 0 such that: if m, n ≥ 0 and γ : [a, b] → X is a geodesic segment with
γ (a) = f m(x0) and γ (b) = gn(x0), then there exists some t ∈ [a, b] such that

d(γ (t), x0) ≤ r .

Then by the proof of Corollary 3.5: If m, n ≥ 0, then

d( f m(x0), gn(x0)) ≥ d( f m(x0), x0) + d(x0, gn(x0)) − 2r . (4.2)

By Theorem 3.8 there exists R ≥ 0 so that: if γ1 : [a1, b1] → X and γ2 : [a2, b2] →

X are (1, 2r)-quasi-geodesic segments with γ1(a1) = γ2(a2) and γ1(b1) = γ2(b2),
then

max

{
max

t∈[a1,b1]
d(γ1(t), γ2([a2, b2])), max

t∈[a2,b2]
d(γ2(t), γ1([a1, b1]))

}
≤ R.

Finally, let C = d(x0, g(x0)).
Now fix m ≥ 0. We claim that there exists n = n(m) > 0 so that

d( f m gn(x0), x0) ≤ 4r + 2R + C/2.
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Since
∣∣∣d(gn(x0), x0) − d(gn+1(x0), x0)

∣∣∣ ≤ d(gn(x0), gn+1(x0)) ≤ d(x0, g(x0)) = C

for every n > 0 and

lim
n→∞

d(gn(x0), x0) = ∞,

there exists some n ≥ 0 so that

∣∣d( f m(x0), x0) − d(gn(x0), x0)
∣∣ ≤ C/2.

Let γ1 : [0, T1] → X be a geodesic segment with γ1(0) = f m gn(x0) and γ1(T1) =

f m(x0). Also let γ2 : [0, T2] → X be a geodesic segment with γ2(0) = f m gn(x0)

and γ2(T2) = gn(x0). Finally define the curve γ : [−T1, T2] → X by

γ (t) =

{
γ1(−t) if t ≤ 0
γ2(t) if t ≥ 0.

Claim 1. For all s, t ∈ [−T1, T2] we have

|t − s| − 2r ≤ d(γ (s), γ (t)) ≤ |t − s| .

In particular, γ is a (1, 2r)-quasi-geodesic.

Proof of Claim 1. Since γ1 and γ2 are both geodesics, we clearly have

d(γ (s), γ (t)) ≤ |s − t |

for all s, t ∈ [−T1, T2]. Further, if s and t have the same sign, then

|t − s| = d(γ (s), γ (t)).

Thus it is enough to show that

(t − s) − 2r ≤ d(γ (s), γ (t)).

for all −T1 ≤ s ≤ 0 ≤ t ≤ T2. In this case we have

d(γ (s), γ (t)) = d(γ1(−s), γ2(t))

≥ d(γ1(T1), γ2(T2)) − d(γ1(−s), γ1(T1)) − d(γ2(T2), γ2(t))

= d(γ1(T1), γ2(T2)) − (T1 + s) − (T2 − t)

= (t − s) + d( f m(x0), gn(x0)) − d( f m(x0), f m gn(x0))

− d(gn(x0), f m gn(x0))

≥ (t − s) + d( f m(x0), gn(x0)) − d(x0, gn(x0)) − d(x0, f m(x0)).
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So by Equation (4.2) we have

d(γ (s), γ (t)) ≥ (t − s) − 2r .

Hence γ is a (1, 2r)-quasi-geodesic. ��

Claim 2. T2 ≤ d(x0, f m(x0)) ≤ T2 + 2r and T1 ≤ d(x0, gn(x0)) ≤ T1 + 2r .

Proof of Claim 2. Since f and g are 1-Lipschitz we have

T1 = d( f m(x0), f m gn(x0)) ≤ d(x0, gn(x0))

and

T2 = d(gn(x0), f m gn(x0)) ≤ d(x0, f m(x0)).

Now

T1 + T2 = d( f m(x0), f m gn(x0)) + d( f m gn(x0), gn(x0))

≥ d( f m(x0), gn(x0)) ≥ d( f m(x0), x0) + d(x0, gn(x0)) − 2r

where we used Equation (4.2) in the last step. Then since T1 ≤ d(x0, gn(x0)) we then
have

T2 + 2r ≥ d( f m(x0), x0).

A similar argument shows that

T1 + 2r ≥ d(x0, gn(x0)). ��

Now the previous claim implies that

|T1 − T2| ≤ 2r +
∣∣d(x0, f m(x0)) − d(x0, gn(x0))

∣∣ ≤ 2r + C/2.

Next let σ : [0, T ] → X be a geodesic segment with σ(0) = f m(x0) and σ(T ) =

gn(x0). Then by our choice of R, we have

d(σ (t), γ ) ≤ R

for all t ∈ [0, T ]. So, by the definition of r , there exists some t0 ∈ [−T1, T2] so that

d(γ (t0), x0) ≤ r + R.

Finally, we show that

d(x0, f m gn(x0)) ≤ 4r + 2R + C/2.
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First, note that

t0 + T1 ≥ d(γ (t0), γ (−T1)) ≥ d(x0, γ (−T1)) − d(x0, γ (t0))

≥ d(x0, f m(x0)) − r − R ≥ T2 − r − R.

So

t0 ≥ T2 − T1 − r − R.

Arguing in a similar way, we also have

T2 − t0 ≥ d(γ (t0), γ (T2)) ≥ T1 − r − R

and

t0 ≤ T2 − T1 + r + R.

So

|t0| ≤ |T1 − T2| + r + R ≤ 3r + R + C/2.

Thus

d(x0, f ngm(x0)) ≤ d(x0, γ (t0)) + d(γ (t0), f ngm(x0))

= d(x0, γ (t0)) + d(γ (t0), γ (0))

≤ r + R + |t0|

≤ 4r + 2R + C/2.
��

5 The ends of an unbounded convex domain

5.1 The end compactification

In this section we define the end compactification. The end compactification of a
topological space was introduced by H. Freudenthal [27], see also [37] for a compre-
hensive survey on the subject. For simplicity we will only consider the case when X

is a manifold. Then there exists an increasing sequence K0 ⊂ K1 ⊂ K2 ⊂ · · · of
compact subsets with X = ∪n≥0 Kn . By compactness, each X \ Kn has finitely many
components. An end of X is a decreasing sequence U0 ⊃ U1 ⊃ U2 ⊃ · · · of open sets
where each Un is a connected component of X \ Kn . Let E[X ] denote the set of ends.
The set X ∪ E[X ] has a natural topology making it a compactification of X where
each end (U j ) j≥0 ∈ E[X ] has a neighborhood basis

Uk ∪ {(V j ) j≥0 ∈ E[X ] : V j = U j for j ≤ k}, k ≥ 0.
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Then the space X ∪ E[X ] is compact and Hausdorff. Further, the subset E[X ] is closed
and totally disconnected. Finally, this compactification does not depend on the choice
of compact sets K0 ⊂ K1 ⊂ K2 ⊂ · · · .

5.2 Unbounded convex domains

We now make some observations about the structure of unbounded convex domains.
For x ∈ Rl and R > 0 we let

B(x, R) := {w ∈ Rl : ‖w − z‖ < R}

be the Euclidean ball of center x and radius R.

Definition 5.1 Let D ⊂ Rl be an unbounded convex domain. A vector v ∈ Rl ,
‖v‖ = 1, is called a direction at ∞ for D if there exists x ∈ D such that x + tv ∈ D

for all t ≥ 0. Then let S∞(D) ⊂ Rl be the set of directions at infinity for D.

By convexity of D, if v is a direction at ∞ for D, then for every z ∈ D and all
t ≥ 0 it holds z + tv ∈ D.

Lemma 5.2 Let D ⊂ Rl be an unbounded convex domain. Then there exists at least

one direction v at ∞ for D. Moreover

(1) either D \ B(0, R) has only one unbounded connected component for all R > 0
or

(2) there exists R0 > 0 such that D \ B(0, R) has two unbounded connected com-

ponents for all R ≥ R0. This is the case if and only if the only directions at ∞

for D are v and −v.

Proof This follows immediately from convexity, see Lemma 2.2 in [16] for details (in
[16] the result was stated for unbounded convex domains in Cd , but the proof is valid
without any modification when replacing Cd with Rl ). ��

Lemma 5.3 Let D ⊂ Rl be an unbounded convex domain and S∞(D) = {v,−v} for

some v ∈ Rl . Let H be the real orthogonal complement of Rv in Rl . Then there exists

a bounded convex domain � ⊂ H such that D = � + Rv.

Proof Let � := D∩H . The set � is an open convex set in H , and, since every direction
at ∞ for � is also a direction at ∞ for H , the set � must be bounded. Take p ∈ D.
Since p + tv ∈ D for all t ∈ R, then there exists t0 ∈ R such that p′ := p − t0v ∈ H .
Hence, p = p′ + t0v. Since p ∈ D was arbitrary, D = � + Rv. ��

From the last two lemmas we have the following Corollary.

Corollary 5.4 Let D ⊂ Rl be an unbounded convex domain. Then D has either one or

two ends. Moreover,

(1) D has one end if and only if for every R > 0 the open set D \ B(0, R) has only

one unbounded connected component,

(2) D has two ends if and only if S∞(D) = {v,−v} for some v ∈ Rl .
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5.3 The Gromov boundary and ends

Assume now that D ⊂ Cd is an unbounded C-proper convex domain such that
(D, K D) is Gromov hyperbolic. Throughout the section we will let D ⊂ Cd denote
the closure of D in Cd and ∂ D = D\D.

To distinguish between the Gromov compactification and the End compactification,

we will write ξn
Gromov
−→ ξ when ξn ∈ D

G
is a sequence converging to ξ ∈ D

G
.

The main result of this section is the following.

Proposition 5.5 Suppose x is an end of D. Then there exists ζx ∈ ∂G D such that: if

zn ∈ D converges to x in D
�
, then

zn
Gromov
−→ ζx .

Moreover, if D has two ends x, y, then ζx �= ζy .

The proof of Proposition 5.5 will require several lemmas.

Lemma 5.6 For any v ∈ S∞(D), there exists a point ζv ∈ ∂G D such that if pn ∈ D is

a sequence with ‖pn‖ → ∞ and pn/ ‖pn‖ → v, then pn
Gromov
−→ ζv .

Proof First consider the map

z ∈ D 
→ z + v ∈ D.

Then by Karlsson’s Theorem 1.1 there exists some ζv ∈ ∂G D such that:

z + nv
Gromov
−→ ζv

for all z ∈ D.
Now fix a sequence pn ∈ D with ‖pn‖ → ∞ and pn/ ‖pn‖ → v. Assume for a

contradiction that pn does not converge to ζv in D
G

. Then by passing to a subsequence

we can suppose that pn
Gromov
−→ ξ ∈ ∂G D, with ξ �= ζv .

Consider, for n ≥ 0, the function bn : D → R defined by

bn(z) = K D(z, pn) − K D(pn, z0).

Since each bn is 1-Lipschitz with respect to the Kobayashi metric and bn(z0) = 0, by
passing to a subsequence we can suppose that bn converges uniformly on compacta
to some function b.

Claim. For each n, the set b−1
n ((−∞, 0]) is convex.

Proof of Claim By Proposition 3.2 in [17] for every z ∈ D and every r > 0, the closed
metric ball
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BK
D (z, r) := {w ∈ D : K D(z, w) ≤ r},

with center z and radius r is a closed convex subset of D. In particular, the set

b−1
n ((−∞, 0]) = BK

D (pn, K D(pn, z0)) is convex for every n ≥ 0. ��

Consequently, for every n ≥ 0, the set b−1
n ((−∞, 0]) contains the line segment

[z0, pn] = {t z0 + (1 − t)pn : 0 ≤ t ≤ 1}.

Since limn→∞(pn/ ‖pn‖) = v, then the set b−1((−∞, 0]) contains the real line

z0 + R≥0 · v.

Let, for every m ≥ 0, zm := z0 + mv. Since ξ �= ζv , by Corollary 3.5 there exists
some M > 0 such that (after extracting subsequences if necessary):

K�(zm, pn) ≥ K�(zm, z0) + K�(z0, pn) − M

for every n ≥ 0 and m ≥ 0. Then we have, for every m ≥ 0:

0 ≥ b(zm) = lim
n→∞

K�(zm, pn) − K�(pn, z0) ≥ K�(zm, z0) − M .

Since K�(zm, z0) → ∞, we obtain a contradiction. ��

Lemma 5.7 Suppose that D has one end. Then ζv = ζw for all v,w ∈ S∞(D).

Proof We first consider the case where v,w ∈ S∞(D) are linearly independent over
R. Suppose for a contradiction that ζv �= ζw. Consider the maps f , g : D → D

defined by

f (z) = z + v and g(z) = z + w.

Then f m(z)
Gromov
−→ ζv and gn(z)

Gromov
−→ ζw for all z ∈ D by Lemma 5.6. So by

Proposition 4.1 there exist mk, nk → ∞ such that

lim
k→∞

f mk gnk (z1) = z2

for some z1, z2 ∈ D. But

f mk gnk (z1) = z1 + mkv + nkw

and v,w are linearly independent. Therefore, this is impossible and ζv = ζw.
Now if v,w ∈ S∞(D) are linearly dependent over R and distinct, then w =

−v. Since D has one end, there exists some u ∈ S∞(D) such that u, v are linearly
independent over R. Then ζv = ζu = ζw. ��
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Lemma 5.8 Suppose that D has two ends, that is S∞(D) = {v,−v} for some v ∈ Cd .

Then ζv �= ζ−v .

Proof We start by establishing the following claim:

Claim. Let z0 ∈ D. Then there exist A > 1 such that the curve σ : R → D given by
σ(t) = z0 + tv is an (A, 0)-quasi-geodesic.

Proof of the claim. For z ∈ D and w ∈ Cd , let

δD(z;w) := inf{‖z − u‖ : u ∈ ∂ D ∩ (z + C · w)}.

The usual estimates on the Kobayashi metric of convex domains (see, e.g., [10]) give

‖w‖

2δD(z;w)
≤ kD(z;w) ≤

‖w‖

δD(z;w)

for all z ∈ D and w ∈ Cd .
Since D + tv = D for all t ∈ R, we see that

δD(z;w) = δD(z + tv;w)

for all z ∈ D, w ∈ Cd and t ∈ R. This implies that

δD(σ (t); σ ′(t)) = δD(z0 + tv; v) = δD(z0; v)

for all t ∈ R. Further, by Lemma 5.3 there exists α > 0 such that

δD(z;w) ≤ α

for all z ∈ D and w ∈ Cd .
Now fix a ≤ b. Then,

K D(σ (a), σ (b)) ≤

∫ b

a

kD(σ (t); σ ′(t))dt ≤

∫ b

a

∥∥σ ′(t)
∥∥

δD(σ (t); σ ′(t))
dt =

1

δD(z0; v)
(b − a).

Now take any C1-curve γ : [0, 1] → D such that γ (0) = σ(a) = z0 + av and
γ (1) = σ(b) = z0 + bv. Then


D(γ ) ≥

∫ 1

0

∥∥γ ′(t)
∥∥

2δD(γ (t); γ ′(t))
dt ≥

1

2α

∫ 1

0

∥∥γ ′(t)
∥∥ dt ≥

1

2α
‖γ (1) − γ (0)‖ =

1

2α
(b − a).

Since γ was an arbitrary C1 curve joining σ(a) to σ(b) we see that

K D(σ (a), σ (b)) ≥
1

2α
(b − a).

The previous estimates show that σ is a (A, 0)-quasi-geodesic for some A > 1. ��
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Then Remark 3.9 implies that the (Gromov) limits

lim
t→∞

σ(t) and lim
t→−∞

σ(t)

exist in ∂G D and are distinct. So ζv �= ζ−v . ��

Proof of Proposition 5.5 Follows immediately from Lemmas 5.6, 5.7, and 5.8. ��

6 Proof of Theorem 1.5

We begin the proof of Theorem 1.5 by establishing some basic properties of geodesics
in (D, K D) when D is convex and (D, K D) is Gromov hyperbolic.

Throughout the section we will let D ⊂ Cd denote the closure of D in Cd and
∂ D = D \ D. Also, for z, w ∈ Cd let

[z, w] = {t z + (1 − t)w : 0 ≤ t ≤ 1}

denote the Euclidean line segment joining them.

Lemma 6.1 Let D ⊂ Cd be an unbounded C-proper convex domain. If zn, wn ⊂

D are sequences with limn→∞ ‖zn‖ = ∞ and limn→∞ wn = ξ ∈ ∂ D, then

limn→∞ K D(zn, wn) = ∞.

Proof According to Theorem 7.6 in [26] there is a complex affine isomorphism A :

Cd → Cd such that A(D) ⊂ Hd , where H := {z ∈ C : Re (z) < 0}. Then:

K D(zn, wn) = K A(D)(Azn, Awn) ≥ KHd (Azn, Awn) → ∞

as n → ∞. ��

Lemma 6.2 Let D be a C-proper convex domain in Cd and suppose that (D, K D) is

Gromov hyperbolic. If zn, wn ∈ D are sequences with limn→∞ zn = ξ ∈ ∂ D and

sup K D(zn, wn) < +∞,

then wn → ξ .

Proof Since D
�

is compact we can assume that wn → η for some η ∈ D
�
. By

Lemma 6.1 we must have η ∈ ∂ D. Suppose for a contradiction that ξ �= η. Since
every convex domain is also C-convex and

sup K D(zn, wn) < +∞,

Proposition 3.5 in [43] implies that ∂ D contains a complex affine disk in its boundary.
However, since (D, K D) is Gromov hyperbolic, [42, Theorem 3.1] says that ∂ D does
not contain any non trivial analytic disc. This is a contradiction. ��
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Lemma 6.3 Let D be a C-proper convex domain in Cd and suppose that (D, K D) is

Gromov hyperbolic. If σ : [0,+∞) → D is a geodesic ray, then limt→∞ σ(t) exists

in D
�
.

Proof Let L ⊂ D
�

denote the set of points x ∈ D
�

where there exists tn → ∞ such
that σ(tn) → x . Suppose for a contradiction that L is not a single point.

Notice that L is connected and so L contains at least one point in ∂ D (since the
space D

�
is Hausdorff). Then, again by connectedness, L must contain at least two

points in ∂ D. So we can find an, bn → ∞ and distinct ξ, η ∈ ∂ D such that σ(an) → ξ

and σ(bn) → η. We may also assume that an ≤ bn for all n ∈ N.
Also by the definition of the Gromov boundary, if tn → ∞, then

σ(tn)
Gromov
−→ [σ ].

Now fix some z0 ∈ D. By [42, Lemma 3.2] there exists some A ≥ 1 such that
the line segments [z0, σ (bn)] are (A, 0)-quasi-geodesics. Then by Theorem 3.8, there
exists some R > 0 and zn ∈ [z0, σ (bn)] such that

K D(zn, σ (an)) ≤ R

for all n. Since σ(bn) → η, zn ∈ [z0, σ (bn)], and

lim
n→∞

K D(zn, z0) ≥ lim
n→∞

K D(σ (an), σ (0)) − K D(σ (0), z0) − R = ∞

we see that zn → η. Since η �= ξ , this contradicts Lemma 6.2. ��

Lemma 6.4 Let D be a C-proper convex domain in Cd and suppose that (D, K D) is

Gromov hyperbolic. If Tn ∈ (0,+∞], σn : [0, Tn) → D is a sequence of geodesics,

and σn converges locally uniformly to a geodesic σ : [0,+∞) → D, then

lim
t→∞

σ(t) = lim
n→∞

lim
t→Tn

σn(t).

Proof The proof is nearly identical to the proof of the previous Lemma. Since D
�

is
compact, it is enough to consider the case when

lim
n→∞

lim
t→Tn

σn(t)

exists in D
�
. Let ξ = limt→∞ σ(t) ∈ D

�
, ξn = limt→Tn σn(t) ∈ D

�
, and

ξ∞ = lim
n→∞

lim
t→Tn

σn(t) ∈ D
�
.

Suppose for a contradiction that ξ �= ξ∞.
Since limn→∞ σn(t) = σ(t) for every t , we can pick an → ∞ such that σn(an) →

ξ . We can also pick bn → ∞ such that σn(bn) → ξ∞.
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Claim. After possibly passing to a subsequence, there exists an ≤ cn ≤ bn such that
σn(cn) converges to η ∈ ∂ D and η �= ξ .

Proof of Claim. Define a distance d on D
�

as follows:

d(x, y) =

⎧
⎨
⎩

0 if x = y

‖x − y‖ if x, y ∈ Cd

∞ if x �= y and at least one of x, y is an end.

Since ξ �= ξ∞, we can pick an ≤ cn ≤ bn such that

lim inf
n→∞

d(σn(an), σn(cn)) > 0,

lim inf
n→∞

d(σn(bn), σn(cn)) > 0, and

lim sup
n→∞

‖cn‖ < ∞.

Such a sequence clearly exists when at least one of ξ , ξ∞ is not an end and Lemma 5.3
implies the existence of the sequence cn when both ξ , ξ∞ are ends.

Then we can pass to a subsequence such that σn(cn) converges to η ∈ ∂ D and
η �= ξ . ��

Now fix some z0 ∈ D. By [42, Lemma 3.2] there exists some A > 1 such that the
line segments [z0, σn(bn)] are (A, 0)-quasi-geodesics. Then by Theorem 3.8, there
exists some R > 0 and zn ∈ [z0, σn(bn)] such that

K D(zn, σn(an)) ≤ R

for all n. Since σn(bn) → η, zn ∈ [z0, σn(bn)], and

lim
n→∞

K D(zn, z0) ≥ lim
n→∞

K D(σn(an), σn(0)) − K D(σn(0), z0) − R = ∞

we see that zn → η. Since η �= ξ , this contradicts Lemma 6.2. ��

Lemma 6.5 Let D be a C-proper convex domain in Cd and suppose that (D, K D) is

Gromov hyperbolic. If σ1, σ2 : [0,+∞) → D are geodesics, then

lim
t→∞

σ1(t) = lim
t→∞

σ2(t)

in D
�

if and only if [σ1] = [σ2].

Proof First suppose that [σ1] = [σ2] and let ξ j = limt→∞ σ j (t) in D
�
. Since

sup
t≥0

K D(σ1(t), σ2(t)) < +∞,
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Lemma 6.1 implies that ξ1 ∈ Cd if and only if ξ2 ∈ Cd . If ξ1 /∈ Cd , then ξ1 = ξ2

by the “moreover” part of Proposition 5.5. If ξ1 ∈ Cd , then Lemma 6.2 implies that
ξ1 = ξ2. So in either case

lim
t→∞

σ1(t) = lim
t→∞

σ2(t).

Next suppose that

lim
t→∞

σ1(t) = lim
t→∞

σ2(t) = ξ ∈ D
�
.

If ξ /∈ Cd , then [σ1] = [σ2] by Proposition 5.5. So we may assume that ξ ∈ Cd .
Fix T > 0. We will bound K D(σ1(T ), σ2(T )) from above. Then fix some z0 ∈ D.

By [42, Lemma 3.2] there exists some A ≥ 1 such that the line segments [z0, σ j (t)]

are (A, 0)-quasi-geodesics. Then by Theorem 3.8, there exists some R > 0 such that:
for every t ≥ T , there exists zt ∈ [z0, σ1(t)] with

K D(zt , σ1(T )) ≤ R.

Since

lim
t→∞

σ1(t) = lim
t→∞

σ2(t)

and K D(zt , σ1(0)) ≤ T + R, there exists wt ∈ [z0, σ2(t)] such that

lim
t→∞

K D(wt , zt ) = 0.

Now fix t sufficiently large such that

K D(wt , zt ) ≤ 1.

By Theorem 3.8 there exists S ∈ [0, t] such that

K D(σ2(S), wt ) ≤ R.

Then

K D(σ1(T ), σ2(S)) ≤ 2R + 1.

Since

2R + 1 ≥ K D(σ1(T ), σ2(S)) ≥ |K D(σ1(T ), σ1(0)) − K D(σ2(S), σ2(0))| − K D(σ1(0), σ2(0))

= |T − S| − K D(σ1(0), σ2(0)),
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we see that

K D(σ1(T ), σ2(T )) ≤ K D(σ1(T ), σ2(S)) + |T − S| ≤ 4R + 2 + K D(σ1(0), σ2(0)).

Since T > 0 was arbitrary, we have

sup
t≥0

K D(σ1(t), σ2(t)) < +∞

and hence [σ1] = [σ2]. ��

6.1 Proof of Theorem 1.5

Define � : D
G

→ D
�

by �(z) = z when z ∈ D and

�([σ ]) = lim
t→∞

σ(t)

when [σ ] ∈ ∂G D. By Lemma 6.5, � is well defined and one-to-one. By Lemma 6.4,

� is continuous. Since �(D) = D, D
G

is compact, and D is dense in D
�
, it follows

that � is onto. The map � being continuous, one-to-one and onto, between compact
Hausdorff spaces, it is a homeomorphism.

7 Proof of Corollary 1.7, Theorem 1.9 and Corollary 1.11

Proof of Corollary 1.7 Since F is a homeomorphism, it must be a proper map. Thus,
since (D, K D) is a proper metric space, we see that (�, K�) is a proper metric space.
So � is C-proper by Theorem 2.1.

According to [8], if D is strongly pseudoconvex, then (D, K D) is Gromov hyper-
bolic and the identity map id D : D → D extends to a homeomorphism ĩ d D : D →

D
G

(and D = D
�
). On the other hand, if D is convex, then Theorem 1.5 implies that

the identity map id D : D → D extends to a homeomorphism ĩ d D : D
�

→ D
G

.
Since F : (D, K D) → (�, K�) is a quasi-isometry, (�, K�) is also Gromov

hyperbolic (see for instance [29], Theorem 12, p. 88). Then Theorem 1.5 implies that

the identity map id� : � → � extends to a homeomorphism ĩ d� : �
�

→ �
G

.
Finally, since F : (D, K D) → (�, K�) is a quasi-isometry and F is a homeo-

morphism, F extends to a homeomorphism F̃ : D
G

→ �
G

(see for instance [29],
Proposition 14, p. 128). Hence, F extends to the homeomorphism (ĩ d�)−1 ◦ F̃ ◦ ĩ d D :

D
�

→ �
�
. ��

Proof of Theorem 1.9 Let (X , d) be a proper geodesic Gromov hyperbolic metric space
and let f , g be 1-Lipschitz self-maps which commute under composition and satisfy
(1.1) (or equivalently (4.1)). Then the family { f m ◦ gn}m,n∈N is equicontinuous and
according to Proposition 4.1, for every m ≥ 0, there exists n(m) ≥ 0 such that for every
x ∈ X , the set { f m ◦ gn(m)(x)} is relatively compact in X . Then it follows from the
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Ascoli-Arzelà Theorem that there exist sequences {mk}, {nk} ⊂ N such that f mk ◦ gnk

converges uniformly on compacta to a 1-Lipschitz map h : X → X . Moreover, we
may assume

pk := mk+1 − mk → ∞, p′
k := nk+1 − nk → ∞,

and

qk := pk − mk → ∞, q ′
k := p′

k − nk → ∞.

Since

( f pk ◦ g p′
k )( f mk (gnk (z))) = ( f mk+1 ◦ gnk+1)(z) → h(z),

it follows that, up to subsequences, f pk ◦ g p′
k converges uniformly on compacta to a

1-Lipschitz self-map ρ : X → X , and, moreover

h ◦ ρ = ρ ◦ h = h.

Next,

( f qk ◦ gq ′
k )( f mk (gnk (z))) = ( f pk ◦ g p′

k )(z) → ρ(z),

hence, again passing to a subsequence if necessary, f qk ◦ gq ′
k converges uniformly on

compacta to a 1-Lipschitz map χ : X → X such that

χ ◦ h = h ◦ χ = ρ.

Therefore,

ρ ◦ ρ = χ ◦ h ◦ ρ = χ ◦ h = ρ.

The statement follows then from the identities f ◦ρ = ρ ◦ f and g ◦ρ = ρ ◦ g, which
imply in particular that f (M) ⊆ M , g(M) ⊆ M .

Now, since

( f pk−1 ◦ g p′
k−1) ◦ ( f ◦ g) → ρ,

passing to a subsequence if necessary, f pk−1◦g p′
k−1 converges uniformly on compacta

to a 1-Lipschitz map ψ : X → X . Moreover, ψ(M) ⊂ M . Hence, for z ∈ M ,

(ψ ◦ ( f ◦ g))(z) = z.

Therefore, f ◦ g is an automorphism of M . Since f ◦ g = g ◦ f , it follows that both
f and g are automorphisms of M . This proves Theorem 1.9. ��
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Proof of Corollary 1.11. Since holomorphic maps are 1-Lipschitz for the Kobayashi
distance and since the Euclidean boundary of a C2-smooth strongly pseudoconvex
domain can be identified with its Gromov boundary (see [8]), there exist M and ρ as
in Theorem 1.9. Moreover, ρ is holomorphic as a limit, on compacta, of holomorphic
maps, and M is a holomorphic retract of D.

We first show that M is biholomorphic to Bk , for some 1 ≤ k ≤ d. Let z0 ∈ M and
let i : M → D be the inclusion map. Then the sequence {zn := f n ◦ i(z0)} converges
to p f ∈ ∂ D. Since D is strongly pseudoconvex, there exist, for every n, 0 < rn < 1
with limn→∞ rn = 1 and a holomorphic injective map σn : D → Bn such that

{z ∈ Cd : ‖z‖ < rn} ⊂ σn(D)

and σn(zn) = 0 (see [22,24]).
We denote by ϕn := σn ◦ f n ◦ i and �n := σn(D). Then ϕn is a holomorphic

isometry from (M, KM ) into (�n, K�n ). Since �n converges, for the local Hausdorff
convergence, to Bn , we may extract from {ϕn} a subsequence, still denoted {ϕn},
that converges uniformly on compact subsets of M to some holomorphic isometry
ψ : M → Bd . It follows that ψ(M) is a complex totally geodesic submanifold of
Bn passing through the origin. Hence after post composing ψ with a rotation, we can
assume that ψ(M) = Bk × {0}, where k is the complex dimension of M .

Now view ψ as a biholomorphism from M to Bk . Then f̃ := ψ ◦ f ◦ ψ−1

and g̃ := ψ ◦ g ◦ ψ−1 are commuting automorphisms of Bk with no fixed points
in Bk . Let x

f̃
, xg̃ ∈ ∂Bk be the Denjoy–Wolff point of f̃ , g̃. If x

f̃
= xg̃ ,

then {g̃m ◦ f̃ n(z)}m,n∈N is compactly divergent for every z ∈ Bk , contradicting
Proposition 4.1. Hence, x

f̃
�= xg̃ . It follows (see [12]) that f̃ , g̃ are hyperbolic

automorphisms of Bk . Moreover, let �̃ ⊂ Bk be the unique complex geodesic

such that x
f̃
, xg̃ ∈ �̃ (�̃ ⊂ Bk is, in fact, the intersection of Bk with the affine

complex line joining x
f̃

with xg̃). Then (see [12]), f̃ (�̃) = �̃ and g̃(�̃) = �̃.

It follows that � := ψ−1(�̃) is a complex geodesic in M , hence in D, such
that f (�) = � and g(�) = �. Clearly, p f , pg ∈ ∂�. Moreover, since �̃

is a holomorphic retract of Bk , then � is a holomorphic retract of M . Hence,
since M is a holomorphic retract of D, it follows that � is a holomorphic retract
of D.

The last statement about the existence of admissible limits for f at pg and g at p f

follows at once from [14, Theorem 2.7]. ��

8 Examples

In this last section we provide some examples showing that the hypotheses in Corol-
lary 1.7 are optimal.

Example 8.1 Let D := D × C. Note that D is convex, unbounded but not C-proper.
Consider the automorphism of D given by F(z, w) = (z, w+g(z)), where g : D → C
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is a holomorphic map which is continuous at no points of ∂D. Hence F does not extend
continuously at any point of ∂ D.

Example 8.2 Let D = D × D. Note that D is convex, C-proper but (D, K D) is not
Gromov hyperbolic. Pick points zn, wn ∈ D with zn → (1, 0), wn → (1, 1/2). Note
that

R := sup
n≥0

K D(zn, wn) < ∞.

Then for each integer n, pick a small tubular neighborhood Un of a geodesic joining
zn to wn . By shrinking each Un and passing to a subsequence we can assume that
U 1, U 2, . . . are all disjoint and the K D-diameter of each Un is less than 2R. Now
for each n construct a homeomorphism fn : Un → Un with f |∂Un = id where
fn(zn) = wn and fn(wn) = zn if n is odd and fn(zn) = zn and fn(wn) = wn if n

is even. Let U = ∪n≥1Un and construct a map f : D → D where f |D\U = id and
f |Un = fn . Then f is a (1, 2R)-quasi-isometry but f does not extend continuously
to ∂ D.

The previous example is in sharp contrast with the holomorphic case. In fact, if D ⊂

Cd is a convex domain and F : Dd → D is a biholomorphism, a result of Suffridge
[39] implies that, up to composition with an affine transformation, F(z1, . . . , zd) =

( f1(z1), . . . , fd(zd)), where f j : D → C are convex maps. Therefore, F extends as

a homeomorphism from Dd to D
�
.

Example 8.3 According to Theorem 1.8 in [43] the convex domain

D = {(z0, z) ∈ C × Cd : Im(z0) > ‖z‖}

has Gromov hyperbolic Kobayashi metric. By Subsection 1.3 in [43] the map

f (z0, z1, . . . , zd) =

(
1

z0 + i
,

z1

z0 + i
, . . . ,

zd

z0 + i

)

induces a biholomorphism of D onto a bounded C-convex domain � (which is not
convex). Further, the set {0} × Bd is contained in ∂� and f −1 maps this set to {∞}

(in the end compactification of D). Hence, f does not extend continuously to D
�
.

The domain � in the previous example is a Jordan domain, namely its boundary
is homeomorphic to the Euclidean unit sphere in R2(d+1). Hence, Example 8.3 also
shows the failure of the Carathéodory extension theorem for (non quasiconformal)
univalent maps in complex dimension strictly greater than one.

We should note that a version of the Carathéodory extension theorem does hold for
quasiconformal maps in Rn (see, for instance, [28, Cor. 6.5.15]).
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original version.
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