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SMOOTHLY BOUNDED DOMAINS COVERING FINITE
VOLUME MANIFOLDS

ANDREW ZIMMER

Abstract

In this paper we prove: if a bounded domain with C? boundary
covers a manifold which has finite volume with respect to either the
Bergman volume, the Kahler-Einstein volume, or the Kobayashi-
Eisenman volume, then the domain is biholomorphic to the unit
ball. This answers a question attributed to Yau. Further, when
the domain is convex we can assume that the boundary only has
C1€ regularity.

1. Introduction

Given a domain Q C C? let Aut(Q) denote the biholomorphism group
of Q. When 2 is bounded, H. Cartan proved that Aut(2) is a Lie group
(with possibly infinitely many connected components) and acts properly
on 2.

An old theorem of Wong and Rosay [28, 27] states that if Q € C is
a bounded domain with C? boundary and Aut(2) acts co-compactly on
Q, then 2 is biholomorphic to the unit ball. The following conjecture
has been attributed to Yau (see [28, p. 257] or [21, Conjecture 1.15]).

CONJECTURE 1.1 (Yau). Let © € C? (d > 2) be a bounded pseu-
doconvex domain whose boundary is C2. Assume that € has a (open)
quotient of finite-volume (in the sense of Kéhler-Einstein volume). Then
Q) is biholomorphic to the unit ball in C¢.

Considering bounded domains that cover finite volume non-compact
manifolds seems more natural than studying those that cover compact
manifolds. For instance, it is well known that 7T, the Teichmiiller space
of hyperbolic surfaces with genus ¢, is biholomorphic to a bounded
domain and has a finite volume quotient but not a compact quotient.
Further, Griffiths constructed the following examples.
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Theorem 1.2 ([12, Theorem I, Proposition 8.12]). Suppose V is an
wrreducible, smooth, quasi-projective algebraic variety over the complex
numbers. For any x € V there exists a Zariski neighborhood U of x such
that U, the universal cover of U, is biholomorphic to a bounded pseudo-
convex domain in C. Moreover, the Kobayashi-Eisenman volume of U
is finite.

In this paper we answer Yau’s question:

Theorem 1.3. Suppose Q C C? is a bounded pseudoconver domain
with C? boundary and T' < Aut(Q) is a discrete group acting freely on
Q. IfT\Q has finite volume with respect to either the Bergman volume,
the Kahler-Finstein volume, or the Kobayashi-Eisenman volume, then
Q is biholomorphic to the unit ball.

REMARK 1.4. Recently, Liu and Wu [21], see Theorem 1.12 below,
established the above theorem with the additional assumptions that

1) d =2 and Q2 is convex, or

2) d > 2, Q is convex, and I is irreducible.

It is well known that Teichmiiller spaces admit finite volume quotients
and so Theorem 1.3 provides a new proof of the following result.

Corollary 1.5 (Yau [29, p. 328]). Let T, denote the Teichmiiller
space of hyperbolic surfaces with genus g. If g > 2, then T, is not
biholomorphic to a bounded pseudoconver domain with C? boundary.

REMARK 1.6.

1) A theorem of Bers [2] says that 7, is biholomorphic to a bounded
domain.

2) Recently, Gupta and Seshadri [13, Theorem 1.2] provided a new
proof of Corollary 1.5 which relies on the ergodicity of the Te-
ichmiiller geodesic flow.

If Q ¢ C%is a bounded domain, I' < Aut(Q) is a discrete group
acting freely on €, and I'\Q is a quasi-projective variety, then a re-
sult of Griffiths implies that I'\{2 has finite volume with respect to the
Kobayashi-Eisenman volume (see Proposition 8.12 and the discussion
following Question 8.13 in [12]). So we have the following corollary of
Theorem 1.3.

Corollary 1.7. Suppose Q C C? is a bounded pseudoconvez domain
with C? boundary and T' < Aut(Q) is a discrete group acting freely on
Q. If \Q is a quasi-projective variety, then Q is biholomorphic to the
unit ball.

The proof of Theorem 1.3 uses the Levi form of the boundary and
hence does not easily generalize to domains whose boundaries have less
than C? regularity. However, by assuming our domain is convex we can
lower the required regularity to C'¢ for any e > 0.
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Theorem 1.8. Suppose Q@ C C% is a bounded convex domain with
CY¢ boundary and T' < Aut(Q) is a discrete group acting freely on .
If T\ has finite volume with respect to either the Bergman volume, the
Kahler-Finstein volume, or the Kobayashi-Eisenman volume, then € is
biholomorphic to the unit ball.

REMARK 1.9.

1) The proof will use a recent result of Liu and Wu [21], see Theo-
rem 1.12 below, and a result in [31], see Theorem 1.14 below.

2) It is conjectured that a bounded convex domain with a finite vol-
ume quotient (with no assumptions on the regularity of 92) must
be a bounded symmetric domain, see for instance [21, Conjecture
1.12].

3) Using Theorem 1.8, the hypothesis of Corollary 1.7 can be mod-
ified to assume that Q is a bounded convex domain with C1¢
boundary. Theorem 1.8 also can be used to show that 7, (g > 2)
is not biholomorphic to a convex domain with C'¢ boundary, how-
ever, a recent result of Markovic [22] implies that 74 is not bi-
holomorphic any convex domain when g > 2 (with no regularity
assumptions on the boundary of the convex domain).

1.1. Outline of the proofs. We will use a theorem of Wong and Rosay
to prove Theorem 1.3.

Theorem 1.10 (Wong-Rosay Ball Theorem [28, 27]). Suppose Q C
C? is a bounded domain. Assume that OQ is C% and strongly pseudo-
convezx in a neighborhood of &€ € 02. If there exists some zg € Q and a
sequence pn € Aut(Q) such that ¢n(z0) — &, then Q is biholomorphic
to the unit ball.

When € is a bounded domain with C? boundary, then there exists
some & € 99 which is strongly pseudoconvex (see Observation 4.1 be-
low). If Aut(Q) acts co-compactly on 2 then it is easy to show that there
exists some zp € Q and a sequence ¢, € Aut(f2) such that ¢ (z0) — &.
So one has the following Corollary to Theorem 1.10:

Corollary 1.11. Suppose Q@ C C% is a bounded domain with C?
boundary. If Aut(Q) acts co-compactly on Q, then Q is biholomorphic
to the unit ball.

In the case when () only admits a finite volume quotient, finding 2o €
Q and a sequence ¢, € Aut(Q2) such that ¢, (z9) converges to a certain
boundary point £ € 9€) is much harder. We accomplish this task by
considering the behavior of the Bergman distance and in particular the
shape of horospheres near a strongly pseudoconvex point. The squeezing
function also plays an important role in understanding the complex
geometry of €.
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For convex domains, there are precise estimates for the Kobayashi
distance and so in the proof of Theorem 1.8 we consider horospheres with
respect to the Kobayashi distance (instead of the Bergman distance).
Since the hypothesis of Theorem 1.8 only assumes 92 has C1¢ boundary
there is no hope of using the Wong-Rosay Ball Theorem. Instead we use
two recent results about the automorphism group of convex domains.
Before stating these results we need a few definitions:

1) Given a bounded domain © c C? let Auto(Q) denote the con-
nected component of the identity in Aut(§2).

2) When Q € C¢ is a bounded domain, the limit set of Q, denoted
L(£2), is the set of points x € 9 where there exists some z € Q
and a sequence ¢, € Aut(Q2) such that ¢, (z) — =.

3) Given a convex domain  C C? with C! boundary and z € 99,
let Tf@ﬂ C C? be the complex affine hyperplane tangent to 9 at
x. Then the closed complex face of x in 09 is the set TCOQ N ON.

Liu and Wu recently proved the following rigidity result.

Theorem 1.12 (Liu-Wu [21]). Suppose Q C C? is a bounded convex
domain, T' < Aut(QQ) is a discrete group acting freely on 2, and T'\Q
has finite volume with respect to either the Bergman volume, the Kdhler-
Einstein volume, or the Kobayashi-FEisenman volume. If either:

1) r< AUtO(Q)f

2) Autg(2) #1 and T is irreducible,

3) Q has C* boundary and T is irreducible,

4) d =2 and Auty(Q) # 1, or

5) d =2 and Q has C' boundary,
then Q is biholomorphic to a bounded symmetric domain.

REMARK 1.13. By Frankel’s rescaling method [8, 17], part (3) is a
consequence of part (2). The rescaling method also implies that part
(5) is a consequence of part (4).

We recently proved the following result.

Theorem 1.14 ([31]). Suppose @ C C? is a bounded convex do-
main with CY¢ boundary. If L(Q) intersects at least two different closed
complex faces of OS2, then

1) Aut(Q) has finitely many components,

2) there exists a compact normal subgroup N < Autg(f) such that

Autg(Q2)/N is a non-compact simple Lie group with real rank one.

Hence, to prove Theorem 1.8 it is enough to show that £(2) inter-
sects at least two different closed complex faces of 9€). In that case,
Theorem 1.14 implies that T’y := T' N Auto(Q2) has finite index in T’
and hence '\ has finite volume. Then Theorem 1.12 implies that 2
is biholomorphic to a bounded symmetric domain. Finally, Mok and
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Tsai [23] proved that: if D is a bounded symmetric domain which is
convex and has C' boundary, then D is biholomorphic to the unit ball.
So € is biholomorphic to the ball.

Acknowledgments. I would like to thank a referee for helpful correc-
tions and comments which improved this paper. This material is based

upon work supported by the National Science Foundation under grant
DMS-1760233.

2. Preliminaries

2.1. Notations. Suppose  C C? is a bounded pseudoconvex domain,
then:

1) Let kg : Qx Ccd — R>( denote the infinitesimal Kobayashi metric,
Kq : 2 xQ — R>( denote the Kobayashi distance on €2, and Volg
denote the Kobayashi-Eisenman volume form.

2) Let gp denote the Bergman metric on 2, B denote the Bergman
distance on 2, and Volp denote the Riemannian volume form as-
sociated to gg. We will also let bg : Q2 x C? — R denote the norm
associated to gp, that is

ba(x;v) = /gB(v,v),

when v € T,.

3) Let gk g denote the Kéhler-Einstein metric on €2 with Ricci curva-
ture —1 constructed by Cheng-Yau [4] when Q has C? boundary
and Mok-Yau [24] in general. And let Volg g denote the Riemann-
ian volume form associated to gxg.

Throughout the paper ||-|| will denote the standard Euclidean norm
on C%. Given zp € C? and r > 0 define

Ba(z0;7) = {z € C4: ||z — 2 < r}.
Finally, given a domain Q C C? and z € Q define
0o (z) = inf{||w — z|| : w € 0Q}.
2.2. The squeezing function. Given a domain ) C C? let s : Q) —
(0,1] be the squeezing function on 2, that is

sq(z) = sup{r : there exists an one-to-one holomorphic map
f:Q—By(0;1) with f(z) =0 and B4(0;r) C f()}.
In this section we recall a result of S.K. Yeung.

Theorem 2.1 ([30, Theorem 2]). Suppose s > 0 and d > 0. Then
there exists C > 1 and 1o, €, k > 0 such that: if Q@ C C? is a pseudoconves
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domian, zo € Q, sq(z0) > s, and
B :={z € Q: Bqo(20,2) < €},
then
1) Bc is a compact subset of €,
2) 9B, 9xE, and kq are all C-bi-Lipschitz on Be,
3) the sectional curvature of gp is bounded in absolute value by Kk on
Be,
4) the injectivity radius of gp is bounded below by 1y on Be, and

5) if Vol denotes either the Bergman volume, the Kdhler-FEinstein
volume, or the Kobayashi-Eisenman volume, then

1
6T2d < Vol <{z € Q: Bq(z,20) < r}) < Cr¥
for allr € [0, €.

Parts (1)—(4) follow from [30, Theorem 2]. In [30, Theorem 2] it is
assumed that sq(z) > s for all z € Q, however, all the arguments are
local in nature and can be easily modified to prove parts (1)—(4) in the
above Theorem. Part (2) also follows from the proof of [20, Theorem
7.2].

Part (5) is a consequence of the definition and part (2): since sq(20) >
s we can assume that zg = 0 and

IB%d(O; 8) cQcC IB%d(O; 1).
Then

kipa(0;1) < b < kpy(0;s)
on By(0;s). Then, from the well known explicit description of the
Kobayashi metric on the ball and part (2), we see that there exists
C1 > 0 such that gp, gxg, and kq are all Ci-bi-Lipschitz to the Eu-
clidean metric on B4(0;s/2). So we can find C,e > 0 such that: if Vol
denotes either the Bergman volume or the Kahler-Einstein volume, then

%er < Vol <{z € Q: Bq(z,20) < r}) < Cr?d

for all r € [0, €]. Next let Volg denote the Kobayashi-Eisenman volume
on {2 and for 7 > 0 let Volg,(g,;) denote the Kobayashi-Eisenman volume
on B4(0;7). Then by definition

Volg,(0,1)(4) < Volg(A) < Volg,(;s)(A)

for all subsets A C B4(0;s). So from the well known explicit description
of the Kobayashi-Eisenman volume for the ball, part (2), and by possibly
modifying C, € we can also assume that

1
57"261 < Volg ({z € Q: Bq(z,20) < r}) < Cr

for all r € [0, €].
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2.3. Invariant metrics near a strongly pseudoconvex point. We
will use the following well known facts about invariant metrics near a
strongly pseudoconvex point.

Theorem 2.2. Suppose Q C C¢ is a bounded pseudoconvex domain.
Assume that 0 is C? and strongly pseudoconvex in_a neighborhood of
& € 09). Then there exists an neighborhood U of £ in Q and C' > 1 such
that:

1) kq and gp are C-bi-Lipshitz to each other on U N,
2) kq(z;v) > C~1|v|| da(z)~Y? for allz € UNQ and v € C, and

3) gp has negative sectional curvature on U N §).

Proof. Fix open neighborhoods Vo @ V; of € such that there exist a
holomorphic embedding ¢ : V; — C? with (V3 N Q) a convex domain
which is strongly convex near ¢(§).

By [7, Theorem 2.1] there exists a neighborhood V3 of £ such that
V3 € V5 and

kq(x;v) < kyyna(z;v) < 2kq(z;v)

forall z € V3 and v € C¢ (notice that the first inequality is by definition).
Further, by [5, Theorem 1] there exists Cp > 1 such that

Clobmvg (w5v) < bo(x;v) < Cobonv, (T;v)
for all # € V3 and v € C%.

Now since V2 N €2 is biholomorphic to a convex domain, a result of
Frankel [9] implies that bony, and kqny, are Ci-bi-Lipschitz to each
other for some C7 > 1. So we see that kg and gp are C-bi-Lipshitz to
each other on V3 N Q for some C' > 1.

Given a domain O C C%, z € O, and nonzero v € C¢ define

do(z;v) =inf{||ly —z| :y € 002N (z + Co)}.
Since C = (V2 N Q) is convex, a result of Graham [10, 11] says that

o]
20 (z;0) = Y= e (w0)

for all z € C and v € C%. Then, since C is strongly convex at (& ), there
exists a neighborhood W of ¢(&) and some Cy > 0 such that

for all z € W and v € C% Since V» & V1, the map ¢ : Vi — C? is
bi-Lipschitz on Vs, so by possibly shrinking V3 and increasing C' we can



168 A. ZIMMER

assume that

Ll
C69($)1/2 = (1177’0)
for all z € V4 and v € CY.
Finally, part (3) follows from [18, Theorem 1]. q.e.d.

2.4. Completeness of the Bergman metric. We will use the fol-
lowing fact about the Bergman metric:

Theorem 2.3 (Ohsawa [26]). If Q@ C C¢ is a bounded pseudocon-
vex domain with C' boundary, then the Bergman metric is a complete
Riemannian metric on €.

REMARK 2.4. It is also known that the Bergman metric is complete
on the more general class of hyperconvex domains, see [15] and [3].

2.5. A local version of E. Cartan’s fixed point theorem. E. Car-
tan proved that a compact group G acting by isometries on (X,g) a
complete simply connected Riemannian manifold with non-positive sec-
tional curvature always has a fixed point. One proof, see for instance [6,
p. 21], uses the following lemma: if K C X is compact, then the func-
tion

f(x) = sup{d(z,k) : k € K}

has a unique minimum in X . In this section we observe a local version of
this lemma which will allow us to show that a certain compact subgroup
has a fixed point in the proof of Theorem 1.3.

Given a complete Riemannian manifold (X, g), 2o € X, and R > 0
let B(x g)(20, R) denote the open metric ball of radius R centered at xo.

Proposition 2.5. Suppose (X, g) is a complete Riemannian mani-
fold, xqg € X, R > 0, the metric g has non-positive sectional curvature
on Bx ¢)(70,8R), and g has injectivity radius at least 16R at each point
in B(x,g)(0,8R). If K C B(x,g)(%0, R) is compact, then the function

f(z) =sup{d(x,k) : k € K}
has a unique minimum in X .

The following proof is nearly identical to the proof of the Lemma on
p. 21 in [6], but we provide the details for the reader’s convenience.

Proof. When « € [0,4], every two points in B(x g)(zo, aR) are joined
by a unique geodesic and this geodesic is contained in B(x g)(zo,2aR).
Since g is non-positively curved on B(x 4) (%o, 8R) and has injectivity
radius at least 16 R at each point in By g (zo, 8 R) the Rauch comparison
theorem implies (see [14, p. 73]): if T is a geodesic triangle contained
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in B(x 4)(70,4R) with side lengths a,b, ¢ then
(1) a® +b% — 2abcosf < ¢,

where 6 is the angle at the vertex opposite to the side of length c.

Since f is a proper continuous function there exists at least one min-
imum. Since f(z) > R when z € X \ B(x 4)(z0,2R) and f(z9) < R any
minimum of f is in B(x 4 (w0, 2R).

Suppose for a contradiction that there exists two distinct minimum
points z,y of f. Let o : [0,7] — X denote the unique geodesic with
0(0) = x and o(T) = y. Let m = o(T/2). Then consider some k € K
and let v : [0,5] — X denote the unique geodesic in X with v(0) = m
and v(S) = k. Since

Lm(=0'(T/2),7(0)) + Zm(0'(T/2),7'(0)) =,
by relabelling z,y we can assume that 6 := Z,,,(¢'(T/2),~'(0)) > 7/2.
Then Equation (1) implies that
d(y, k)? > d(y,m)* + d(m, k)* — 2d(y, m)d(m, k) cos 6 > d(m, k).

So d(m,k) < d(y,k) < f(y). Since k € K was arbitrary and K is
compact, we then have f(m) < f(y) which is a contradiction.  q.e.d.

3. An estimate for the Bergman distance

Theorem 3.1. Suppose Q C C¢ is a bounded pseudoconvex domain.
Assume that 02 is C? and strongly pseudoconver in a neighborhood of
€00 If zg € Q and €9 > 0, then there exists € € (0,€9) and R > 0
such that

Bq(z,w) > Bq(z,20) + Ba(z0,w) — R
for all z,w € Q with ||z — £|| < € and ||w — &[] > 2e.

REMARK 3.2. This says that if z is near £ and w is far away from
&, then z and w can be joined by a path that passes through zy and is
length minimizing up to an error of R.

The following argument is based on the proof of [16, Lemma 36]
which establishes a similar estimate for the Kobayashi distance.

Proof. By Theorem 2.2 there exists an neighborhood U of ¢ and some
C > 1 such that

ékg(x;v) < bg(z;v) < Cka(z;v)
and
Ll
2 —————— < bg(x;

forallz € QN U and v € C%.
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By definition

and so

for z € UNQ and v € C%. Then since 9 is C2 near £ one can consider
parametrizations of inward pointing normal lines to show that there
exists a, 6 > 0 and a neighborhood V' C U of £ such that

1
B < log ———
(3) a(z0,2) < a+ Blog 50(2)
for all z € VN Q.
Now fix € € (0, €p) such that

Bg(&;2¢) C V.

Consider points z,w € Q with ||z —¢|| < € and |lw —&|| > 2e. Let
o:[0,T] — Q be a geodesic (with respect to the Bergman distance)
joining z and w. Define

Ty = max {t € (0,77 : o([0,1]) € By(z; e)} .

Since ||[w — z|| > [|w —&|| — [|z — &[] > €, we must have
(4) Iz = o(To)|| =
Further,

o([0,Tp]) C Ba(z;€) C By(&;2¢) C V.
Then let 7 € [0,Tp] be such that
(5) Sa(o(r)) = max{a(o(t)) : ¢ € (0,7}
Now for ¢ € [0, Tp] we have
1t = 7] = Ba(o(t),o(r)) < Ba(o(t), 20) + Ba(z0,0(r))

1
< 20 Blos g o )salo ()

So

Sa(o(t)) < Voal(o(t)da(o(r)) < exp (W) ‘

Now fix M > 0 such that

(6) /MOo exp <_7"422“> dr < ¢/(4C),
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Since o is a geodesic bo(o(t);0'(t)) = 1. Then by Equations (4)
and (2)

To
e =z = a(To)|l = llo(0) = o(To)|| < /0 o' (2] at

= C/TO ba(o(t); o' (t))da(o(t)/2dt = C/TO Ja(o(t)V/2dt.
’ 0
Then by Equations (5) and (6)

e<C So(o () dt+C So(o(t)"/?dt
[O,To]ﬂ(’T—M,TJrM) [O,TO]O(T—M,T-FM)C

<C So(o(r))2dt + 2C /OO exp <—7“—|—204> dr
[0,To]N(T—M,7+M) M 43
< 20M6bg(o(7))V? + €/2.
So
Sa(a(m)Y?2 > ¢/(4CM).
Then by Equation (3)
Bq(z,w) = Bq(z,0(7)) + Ba(o(1),w)
> Baql(z, 2z0) + Ba(zo0,w) — 2Bq(20,0(7))
> Baq(z, 20) + Ba(zo0,w) — R,

where
4CM
—
Notice that R does not depend on z or w, so the proof is complete.
q.e.d.

R =2a+ 48 log

4. Proof of Theorem 1.3

For the rest of the section suppose that Q C C¢ is a bounded pseu-
doconvex domain with C? boundary and I' < Aut(Q) is a discrete
group acting freely on 2. Further, assume that Vol(I'\2) < 400 where
Vol is either the Bergman volume, the Kéhler-Einstein volume, or the
Kobayashi-Eisenman volume. -

Given a Lebesgue measurable set A C Q, we will also let Vol(A)
denote the volume relative to the associated measure on 2. Notice,
that if 7 : Q@ — I'\Q is the natural covering map and 7|4 is injective,
then

(7) Vol(A4) = Vol(wr(A)).

By translating and scaling 2, we may assume that 0 € Q, Q C
By(0;1), and 92 N 9B4(0;1) # (. Then by rotating Q we may as-
sume that (1,0,...,0) € 9Q. Then, since 99 is C?, there exists some
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r € (0,1) such that
Bd((r707 s 70)7 - 7’) cQc Bd(o, 1)

Observation 4.1. £ = (1,0,...,0) is a strongly pseudoconvex point
of 9N.

Proof. This is a consequence of the fact that (1,0,...,0) € 99 and
2 C B;4(0;1), see for instance [13, Lemma 4.1]. q.e.d.

Observation 4.2. Let wy = (t,0,...,0) € C% Then there exists
some sg > 0 such that sq(wy) > sg for t € [r,1).

Proof. For t € [r,1) consider the transformation
N —t (1—t2)1/2 (1 —t2)1/2
@(zl)"'vzd)_<tzl_17 tz — 1 2y v tr — 1 Zd | -
Then ¢ € Aut(B4(0;1)) and ¢(0) = wy. We claim that
p(Ba(0;50)) C Q,

where
1—7r
S0 = ——.
°T 12vd
Suppose z € B4(0; sp). Then ||z|| < 1/2 and so
|tZ1 — 1| > 1/2.
Then
2 2 2
z1 —t (1—t )21
— — t_ -~ 7 -
tZl—l " ‘( 7“)+ tZl—l
2(t —r)(1 —t?) (1-1)?%
< (t—r)+ 2|+ — |z
( ) |tzr — 1] 21 |t21—1|2| 1

<(t—1)24+8(1—1t)]z1| +8(1 —t)|z1|?
<(t—r)2+8(1—1t)|z|+4(1—1t)|z]
(t —7)% +12(1 —t) |21] .

IN

We also have
(t—r)2—Q=r)P=2r—-1-t)1—t) < (r—1)(1—1)

and so
z1 _t 2 2
—rl <A-=-r)*+@r-1)1—-t)+12(1 —1)|z]-
tZl -1
Further,
1— $2)1/2
(7)21' < 8(1 — t) |Zz’2 < 4(1 — t) |Zz| .

tzl—l
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So
lo(z) —wel? < (L =72+ (r = 1)1 =) + 12(1 — ) (J21| + - + |zal)
<1 =r2+(r—1D1—t)+12Vd(1—1t) |2
<(1 —7“)2

by our choice of sg. So ¢(z) € Bg(w,;1 — 1) C Q. Since z € By(0; so)
was arbitrary, we then have

¢(Ba(0; 50)) C Q.
Then ¢~ (w;) = 0 and
Ba(0;50) C ¢ () € Ba(0;1),
so sq(wy) > so. q.e.d.

Fix a sequence 1, /" 1 and consider the points y,, = (7,0, ...,0) € €.
Then by Observation 4.2 and Theorem 2.1, there exists some Cy, eg > 0
such that

(8) Vol ({z € Q : Ba(z,yn) < €}) > Cpe?
for any n > 0 and € € (0, €.
For each n > 0, define

O0n = min B (Yn, YYn).
[ ain Q(Yn> YYn)

Then the quotient map 7 :  — '\ restricts to an embedding on
B, ={z € Q: Bq(z,yn) < 0n/2}.
So by Equations (7) and (8)
Vol(r(By)) = Vol(B,) > Comin {egd, (6» /2)2d} :
After passing to a subsequence we can assume that
7}1_)11010 dp =06 € R>oU{oo}.

We will consider two cases depending on whether § is zero or not.
Informally, § > 0 means that the sequence 7(yy,) is trapped in the “thick
part” of the quotient space I'\Q2 while 6 = 0 means that m(y,,) escapes
to infinity along a cusp in I'\Q2. The second case is the more difficult
one and is itself divided into two cases. Very informally: In Case 2
(a), one obtains a sequence of “parabolic automorphisms” whose fixed
points at infinity converge to £ while in Case 2 (b) one finds a “parabolic
automorphism” whose fixed point is exactly €.

Case 1: § # 0. Let 7 = min{ep, 0/4} and define
Bl :={z€Q: Ba(z,yn) <71}
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Then there exists N > 0 such that B], C B, for all n > N. Further, by
Equations (7) and (8)

Vol(m(B.)) = Vol(B) > Cor?,

when n > N.

Let M :=T\Q and let d be the distance on M making the covering
map (2, Bq) — (M,d) a local isometry. We claim that the set {7 (yn) :
n € N} is relatively compact in M. Suppose not. Then we construct an
increasing sequence

ny<ng<mnsg<...
such that
1I§nki£ljd(ﬂ'(ynk),ﬂ'(ynj)) > 2r
for every j > 2. Since (2, Bq) — (M, d) is 1-Lipschitz, we have
W(B;j) C{ze M :d(zm(yn,)) <r}.
Thus the sets
(B, ), m(B,) m(Bpy), - -

are pairwise disjoint. So
o0

Vol(I'\Q) > Z m(B) >ZC’T2d
7j=1

which is a contradlctlon. Hence, the set {m(y,) : n € N} must be
relatively compact in I'\ 2.

Then for each n, there exist some v, € I' such that the set {v,y, :
n € N} is relatively compact in €. Then we can pass to a subsequence
such that v,y, — y € Q. Using Montel’s theorem and passing to a
subsequence we can assume that 7, ' converges locally uniformly to a
holomorphic map f : Q — Q. Then

¢ = lim y, = lim 7, (yyn) = f(y) = lim 7, y.
So € is biholomorphic to the ball by Theorem 1.10.
Case 2: § = 0. For each n select v, € I' such that
BQ(’Ynynv yn) = 571-

Case 2(a): The set {71,72,...} is infinite. Since I' is discrete, by
passing to a subsequence we can suppose that 7y, — oo in Aut(Q).
Fix some zg € Q. Using the fact that Aut(Q2) acts properly on Q and
passing to another subsequence we can assume that v, 1z — 7 € 9Q.
Since (2, Bq) is a proper metric space we must have

lim Bg(7;, t20, 20) = 0.
n—oo
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We claim that n = £. Suppose not, then by Theorem 3.1 there exists
R > 0 such that

Ba(v, 20, 20) + Ba(20, yn) — Ba(v, 20, 4n) < R
for every n > 0. However,
Ba(v, 20, 20) + Ba(20, yn) — Ba(v, 20, yn)
= Ba (7,20, 20) + Ba(20,yn) — Ba(20, nyn)
> Ba(, 20, 20) — Ba(n¥n, Yn)
= Ba(v;, ' 20, 20) — 6n.
So

R > limsup Bq(7,, ' 20, 20) + Ba (20, yn) — Ba(v,, 20, Yn)

n—oo

= lim sup BQ(’YEIZO,ZO) = 0.
n—oo

So we have a contradiction and hence £ = 7. So {2 is biholomorphic to
the unit ball by Theorem 1.10.

Case 2(b): The set {v1,72,...} is finite. By passing to a subsequence
we can suppose that v, = v in for all n € N. Fix some zg € 2 and
consider the functions

bn(2) = Ba(z,yn) — Ba(yn. 20)-
Since by, (z9) = 0 and each b,, is 1-Lipschitz (with respect to the Bergman
distance) we can pass to a subsequence such that b, — b locally uni-
formly. Then
b(f)/ilz) = lim [BQ("V?IZJJTL) - BQ(:%M ZO)]

n—oo

= lim [Ba(z,7Yyn) — Ba(yn, 20)] = b(2)

n—oo

since

lim sup | Ba(z, Yyn) — Ba(z, yn)| < limsup Bo(yn, Yyn) = hm on = 0.

n—oo n—oo
So
b(v"20) = b(20) =0
for all n € N.

Observation 4.3. For any t; € R
Euc

b1 ((—oo, t0]> non = {¢}.
Proof. We first observe that

Euc

b1 <(—oo,t0]) noQ £ 0.
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Let o, : [0,T,] — € be a unit speed geodesic (with respect to the
Bergman distance) such that 0,(0) = zp and 0,,(7,,) = yn. Since y, —
& € 99 and Bq is a proper distance on 2, we have T,, — oo. Since
on(0) = 2o, by the Arzela-Ascoli theorem there exists nj — oo such that
oy, converges to a geodesic o : [0,00) — €. We claim that b(o(t)) = —t.
Notice that if ¢t < T,,, then

bn(O'n(t)) = BQ(Un(t)7 yn) - BQ(yna ZO)
= Ba(on(t),on(1)) — Ba(on(Th), 0n(0))
=(T,—t)— (T, — 0) = —t.
Further,
b(o(t)) = lm by(o(t)) = Hm by, (on,(t)) = —t

n—00 j—o0

since b, converges locally uniformly to b. Then, since Q is compact,
there exists t; — oo such that o(t;) converges to some 7; € Q. Since
Bq(o(tj),20) = tj, we must have n; € 0§2. Then

————FEuc
m € bl ((—oo,t0]> N oQ.

Next we show that
Euc

b1 ((—oo, t0]> non = {¢}.

Suppose w,, € b~! ((—oo,to]) and wy,, — m2 € 0. If ny # £, then
Theorem 3.1 implies that there exists R > 0 such that

Ba(wm, 20) + Ba(20, yn) — Ba(wWm,yn) < R
for every n > 0. Then

to > b(w) = 1 [Bo(wm,yn) — Ba(z0, 4n)] > Ba(wm, %) — R

However, Bq(wp,, z0) — oo since Bg is a proper distance on €. So we
have a contradiction. Hence, o = £ and

Euc

b1 ((—oo, t0]> naqQ = {¢}.
q.e.d.

Using the previous observation, if 7"z is unbounded in €2, then
there exists ng — oo such that vy~ 25 — £. Hence, in this case, € is
biholomorphic to the unit ball by Theorem 1.10.

It remains to consider the case where the sequence v~ "z is bounded
in . Since I' is discrete and acts properly on €, in this case

M := order(y) < oc.
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We claim that v has a fixed point in 2. First, notice that
BQ('menayn) < (M - 1)571

for all m € Z. By Theorem 2.1, there exists some 7 > 0 such that the
injectivity radius of gq is bounded below by 7 on each U, = {z € Q :
Bq(20,yn) < 7}. By Theorem 2.2, gp is negatively curved on U,, when
n is large. Then since d,, — 0, Proposition 2.5 implies that when n is
large the function

fn(z) =sup{Ba(v""yn,z) :m=0,1,...,M — 1}

has a unique minimum ¢, in . Since

YV W V2o oY 0} = {Yns W V2 -V )

we then have ye, = ¢,. So 7 has a fixed point in ). Since I" acts freely
on {2, we have a contradiction.

5. The convex case

Before starting the proof of Theorem 1.8 we will recall some results
about convex domains.

As in Section 2.2, let sq : © — (0, 1] denote the squeezing function
on a domain © C C? For convex domains, the squeezing function
is bounded from below by a positive constant which only depends on
dimension.

Theorem 5.1 ([9, 19, 25]). For any d > 0 there exists some s =
s(d) > 0 such that: if @ C C% is a bounded convex domain, then sq(z) >
s for all z € Q.

We will also use the following fixed point theorem.

Theorem 5.2 ([8, Theorem 12.2]). Suppose that Q@ C C¢ is a bounded
convex domain and K < Aut(Q2) is a compact group. Then there exists
a point z € Q such that k(z) = z for all k € K.

Finally, we need the following facts about the Kobayashi distance.

Proposition 5.3. Suppose @ C C?¢ is a bounded convexr domain.
Then the metric space (2, Kq) is proper and Cauchy complete.

For a proof of Proposition 5.3 see for instance [1, Proposition 2.3.45].

Theorem 5.4 ([32, Theorem 4.1]). Suppose Q@ C C? is a bounded
convex domain with CY¢ boundary. If £,m € 0Q and TgcaQ #* Tf@Q,
then

limsup (Kaq(z, 20) + Ko(z0,y) — Ka(z,y)) < 00

T—E,Y—n

for some (hence, any) zy € ).
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REMARK 5.5. This says that a point x near £ and point y near 7 can
be joined by a path that passes through zgy and is length minimizing up
to a bounded error.

5.1. Proof of Theorem 1.8. For the rest of the section suppose that
Q c C%is a bounded convex domain with C''¢ boundary and I' <
Aut(Q) is a discrete group acting freely on . Further, assume that
Vol(T'\©2) < 400 where Vol is either the Bergman volume, the Kéhler-
Einstein volume, or the Kobayashi-Eisenman volume.

Using Theorem 1.12 and Theorem 1.14 it is enough to show that
L(§2) intersects at least two different closed complex faces of 9. We
will prove the stronger result that the limit set intersects every closed
complex face of 0f).

Lemma 5.6. If £ € 092, then L(Q2) N Tg@Q £ ().

The proof of the Lemma is nearly identical to the proof of Theo-
rem 1.3, but we provide a detailed argument for the reader’s conve-
nience.

Proof. By replacing {2 with an affine translate, we may assume that
¢ =1(1,0,...,0) and 0 € Q. Then fix a sequence 7, /1 and consider
the points y, = (r,0,...,0) € Q. For each n € N define

O0n = min Ko(Yn, YYn).
Jnin Q(Yn>YYn)

Now for each n € N the quotient map 7 : Q — I'\Q restricts to an
embedding on

B, ={z€Q: Kq(z,yn) < 0n/2}.

Further, by Theorem 5.1 and Theorem 2.1 there exists some C, ¢y > 0
such that

Vol(m(By,)) > C min{e2?, 524},
After passing to a subsequence we can assume that

lim 6, =9 € R>g U{OO}
n—00 =

Case 1: § # 0. Repeating the argument in Case 1 of the proof of
Theorem 1.3 shows that the set {7(y,) : n € N} is relatively compact
in T'\Q. So for each n, there exist some v, € I' such that the set
{"yn : n € N} is relatively compact in . Then we can pass to a
subsequence such that v,y, — y € Q. Then v, 'y — €. So &€ € L(Q).

Case 2: § = 0. Then select 7, € I' such that
KQ(’Ynyna yn) = 0n.

Case 2(a): The set {71,72,...} is infinite. Since I' is discrete, by
passing to a subsequence we can suppose that 7, — oo in Aut(Q2). Fix
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some zg € ). By passing to another subsequence we can assume that
Y tzg — m € 0Q. Since (9, Kq) is a complete proper metric space we
must have

lim Kq(zo,7;, 120) = oo.
n—oo

We claim that n € TéCOQ. Suppose not, then by Theorem 5.4 there
exists R > 0 such that
Koy, 20, 20) + Ka (20, yn) — Ka(y, "20,yn) < R
for all n > 0. However,
Ko(v, 20, 20) + Ka (20, yn) — Ko (v, 20, yn)
= Ka(7, 20, 20) + Ka (20, yn) — Ka(20, Yyn)
> Ka(v,,"' 20, 20) = Ka(Yyn, yn)
= Ko(v, 20, 20) — 6n-
And so
R > limsup Ko (v;, ' 20, 20) + Ka (20, yn) — Ka (v, 20, yn)

n—oo

> lim Kq(v, ‘20, 20) — 6p = 0.

n—o0

Thus we have a contradiction and hence 7 € Tg@Q.

Case 2(b): The set {7y1,72,...} is finite. By passing to a subsequence
we can suppose that ~, = v in for all n € N.

Fix some zp € Q. If the set {7"(z0) : n € N} is relatively compact in
Q, then v has a fixed point in 2 by Theorem 5.2. But ' acts freely on
2, so the set {7"(20) : n € N} must be unbounded in €.

Next consider the functions

bn(2) = Ka(2,yn) — Ka(yn, 20)-

Since b, (z9) = 0 and each b, is 1-Lipschitz (with respect to the Ko-
bayashi distance) we can pass to a subsequence such that b, — b locally
uniformly. Then

b('y_lz) = lim [KQ(V_1Z7yn) - KQ(ym ZO)]

n—oo
= lim [Kq(z,7yn) — Ka(yn, 20)] = b(2)
n—oo
since
limsup [Kqo(z,vyn) — Ko (2, yn)| < limsup Ko (Yn, Yyn)
n—oo n—oo
= limsup d,, = 0.
n—oo
So

by "z0) = b(20) =0
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for all n € N.

Observation 5.7. For any tp € R

——— Euc
b1 <(—oo,tg]) noQ c T

Proof. Suppose w,, € b~! ((—oo,t0]> and wy, —» n € 0. Ifn ¢
Tg@Q, then Theorem 5.4 implies that there exists R > 0 such that

Ko (wm, 20) + Ka(20,Yn) — Ko(wWm,yn) < R.
Then

b(wm) = lim_ [Ko(wm, yn) = Ka(z0,4n)] 2 Ka(wm, 20) = R.

n—o0

However, Kq(wnm,z9) — oo since Kq is a proper distance on 2. So we
have a contradiction. q.e.d.

Using the previous observation, there exists ny — oo such that
lim digue (7’”kzo,T§(C(‘)Q) —o.
k—o0

So L(Q) N TSC(?Q # 0.
q.e.d.

Lemma 5.8. ) is biholomorphic to the unit ball.

Proof. Since 2 is bounded, there exists z,y € 0Q such that TCOQ #
T;Co”?Q. By Lemma 5.6, the limit set £(f2) intersects both T.c9Q and
T;CE)Q. So by Theorem 1.14, the group Aut(f2) has finitely many com-
ponents. So I'’ := I' N Autg(f2) has finite index in ' and hence the
quotient T'%\(2 also has finite volume. So by Theorem 1.12 part (1), 2 is
a bounded symmetric domain. Since €2 is convex and has C'! boundary
a result of Mok and Tsai [23] implies that € is biholomorphic to the
unit ball. q.e.d.
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