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SMOOTHLY BOUNDED DOMAINS COVERING FINITE
VOLUME MANIFOLDS

Andrew Zimmer

Abstract

In this paper we prove: if a bounded domain with C2 boundary
covers a manifold which has finite volume with respect to either the
Bergman volume, the Kähler-Einstein volume, or the Kobayashi-
Eisenman volume, then the domain is biholomorphic to the unit
ball. This answers a question attributed to Yau. Further, when
the domain is convex we can assume that the boundary only has
C1,ε regularity.

1. Introduction

Given a domain Ω ⊂ C
d let Aut(Ω) denote the biholomorphism group

of Ω. When Ω is bounded, H. Cartan proved that Aut(Ω) is a Lie group
(with possibly infinitely many connected components) and acts properly
on Ω.

An old theorem of Wong and Rosay [28, 27] states that if Ω ⊂ C
d is

a bounded domain with C2 boundary and Aut(Ω) acts co-compactly on
Ω, then Ω is biholomorphic to the unit ball. The following conjecture
has been attributed to Yau (see [28, p. 257] or [21, Conjecture 1.15]).

Conjecture 1.1 (Yau). Let Ω ⊂ C
d (d ≥ 2) be a bounded pseu-

doconvex domain whose boundary is C2. Assume that Ω has a (open)
quotient of finite-volume (in the sense of Kähler-Einstein volume). Then
Ω is biholomorphic to the unit ball in C

d.

Considering bounded domains that cover finite volume non-compact
manifolds seems more natural than studying those that cover compact
manifolds. For instance, it is well known that T g, the Teichmüller space
of hyperbolic surfaces with genus g, is biholomorphic to a bounded
domain and has a finite volume quotient but not a compact quotient.
Further, Griffiths constructed the following examples.
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Theorem 1.2 ([12, Theorem I, Proposition 8.12]). Suppose V is an
irreducible, smooth, quasi-projective algebraic variety over the complex
numbers. For any x ∈ V there exists a Zariski neighborhood U of x such

that Ũ , the universal cover of U , is biholomorphic to a bounded pseudo-
convex domain in C

d. Moreover, the Kobayashi-Eisenman volume of U
is finite.

In this paper we answer Yau’s question:

Theorem 1.3. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain

with C2 boundary and Γ ≤ Aut(Ω) is a discrete group acting freely on
Ω. If Γ\Ω has finite volume with respect to either the Bergman volume,
the Kähler-Einstein volume, or the Kobayashi-Eisenman volume, then
Ω is biholomorphic to the unit ball.

Remark 1.4. Recently, Liu and Wu [21], see Theorem 1.12 below,
established the above theorem with the additional assumptions that

1) d = 2 and Ω is convex, or
2) d > 2, Ω is convex, and Γ is irreducible.

It is well known that Teichmüller spaces admit finite volume quotients
and so Theorem 1.3 provides a new proof of the following result.

Corollary 1.5 (Yau [29, p. 328]). Let T g denote the Teichmüller
space of hyperbolic surfaces with genus g. If g ≥ 2, then T g is not
biholomorphic to a bounded pseudoconvex domain with C2 boundary.

Remark 1.6.

1) A theorem of Bers [2] says that T g is biholomorphic to a bounded
domain.

2) Recently, Gupta and Seshadri [13, Theorem 1.2] provided a new
proof of Corollary 1.5 which relies on the ergodicity of the Te-
ichmüller geodesic flow.

If Ω ⊂ C
d is a bounded domain, Γ ≤ Aut(Ω) is a discrete group

acting freely on Ω, and Γ\Ω is a quasi-projective variety, then a re-
sult of Griffiths implies that Γ\Ω has finite volume with respect to the
Kobayashi-Eisenman volume (see Proposition 8.12 and the discussion
following Question 8.13 in [12]). So we have the following corollary of
Theorem 1.3.

Corollary 1.7. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain

with C2 boundary and Γ ≤ Aut(Ω) is a discrete group acting freely on
Ω. If Γ\Ω is a quasi-projective variety, then Ω is biholomorphic to the
unit ball.

The proof of Theorem 1.3 uses the Levi form of the boundary and
hence does not easily generalize to domains whose boundaries have less
than C2 regularity. However, by assuming our domain is convex we can
lower the required regularity to C1,ε for any ε > 0.
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Theorem 1.8. Suppose Ω ⊂ C
d is a bounded convex domain with

C1,ε boundary and Γ ≤ Aut(Ω) is a discrete group acting freely on Ω.
If Γ\Ω has finite volume with respect to either the Bergman volume, the
Kähler-Einstein volume, or the Kobayashi-Eisenman volume, then Ω is
biholomorphic to the unit ball.

Remark 1.9.

1) The proof will use a recent result of Liu and Wu [21], see Theo-
rem 1.12 below, and a result in [31], see Theorem 1.14 below.

2) It is conjectured that a bounded convex domain with a finite vol-
ume quotient (with no assumptions on the regularity of ∂Ω) must
be a bounded symmetric domain, see for instance [21, Conjecture
1.12].

3) Using Theorem 1.8, the hypothesis of Corollary 1.7 can be mod-
ified to assume that Ω is a bounded convex domain with C1,ε

boundary. Theorem 1.8 also can be used to show that T g (g ≥ 2)
is not biholomorphic to a convex domain with C1,ε boundary, how-
ever, a recent result of Markovic [22] implies that T g is not bi-
holomorphic any convex domain when g ≥ 2 (with no regularity
assumptions on the boundary of the convex domain).

1.1. Outline of the proofs. We will use a theorem of Wong and Rosay
to prove Theorem 1.3.

Theorem 1.10 (Wong-Rosay Ball Theorem [28, 27]). Suppose Ω ⊂
C
d is a bounded domain. Assume that ∂Ω is C2 and strongly pseudo-

convex in a neighborhood of ξ ∈ ∂Ω. If there exists some z0 ∈ Ω and a
sequence ϕn ∈ Aut(Ω) such that ϕn(z0) → ξ, then Ω is biholomorphic
to the unit ball.

When Ω is a bounded domain with C2 boundary, then there exists
some ξ ∈ ∂Ω which is strongly pseudoconvex (see Observation 4.1 be-
low). If Aut(Ω) acts co-compactly on Ω then it is easy to show that there
exists some z0 ∈ Ω and a sequence ϕn ∈ Aut(Ω) such that ϕn(z0) → ξ.
So one has the following Corollary to Theorem 1.10:

Corollary 1.11. Suppose Ω ⊂ C
d is a bounded domain with C2

boundary. If Aut(Ω) acts co-compactly on Ω, then Ω is biholomorphic
to the unit ball.

In the case when Ω only admits a finite volume quotient, finding z0 ∈
Ω and a sequence ϕn ∈ Aut(Ω) such that ϕn(z0) converges to a certain
boundary point ξ ∈ ∂Ω is much harder. We accomplish this task by
considering the behavior of the Bergman distance and in particular the
shape of horospheres near a strongly pseudoconvex point. The squeezing
function also plays an important role in understanding the complex
geometry of Ω.
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For convex domains, there are precise estimates for the Kobayashi
distance and so in the proof of Theorem 1.8 we consider horospheres with
respect to the Kobayashi distance (instead of the Bergman distance).
Since the hypothesis of Theorem 1.8 only assumes ∂Ω has C1,ε boundary
there is no hope of using the Wong-Rosay Ball Theorem. Instead we use
two recent results about the automorphism group of convex domains.
Before stating these results we need a few definitions:

1) Given a bounded domain Ω ⊂ C
d let Aut0(Ω) denote the con-

nected component of the identity in Aut(Ω).
2) When Ω ⊂ C

d is a bounded domain, the limit set of Ω, denoted
L(Ω), is the set of points x ∈ ∂Ω where there exists some z ∈ Ω
and a sequence ϕn ∈ Aut(Ω) such that ϕn(z) → x.

3) Given a convex domain Ω ⊂ C
d with C1 boundary and x ∈ ∂Ω,

let TC
x ∂Ω ⊂ C

d be the complex affine hyperplane tangent to ∂Ω at
x. Then the closed complex face of x in ∂Ω is the set TC

x ∂Ω∩ ∂Ω.

Liu and Wu recently proved the following rigidity result.

Theorem 1.12 (Liu-Wu [21]). Suppose Ω ⊂ C
d is a bounded convex

domain, Γ ≤ Aut(Ω) is a discrete group acting freely on Ω, and Γ\Ω
has finite volume with respect to either the Bergman volume, the Kähler-
Einstein volume, or the Kobayashi-Eisenman volume. If either:

1) Γ ≤ Aut0(Ω),
2) Aut0(Ω) 6= 1 and Γ is irreducible,
3) Ω has C1 boundary and Γ is irreducible,
4) d = 2 and Aut0(Ω) 6= 1, or
5) d = 2 and Ω has C1 boundary,

then Ω is biholomorphic to a bounded symmetric domain.

Remark 1.13. By Frankel’s rescaling method [8, 17], part (3) is a
consequence of part (2). The rescaling method also implies that part
(5) is a consequence of part (4).

We recently proved the following result.

Theorem 1.14 ([31]). Suppose Ω ⊂ C
d is a bounded convex do-

main with C1,ε boundary. If L(Ω) intersects at least two different closed
complex faces of ∂Ω, then

1) Aut(Ω) has finitely many components,
2) there exists a compact normal subgroup N ≤ Aut0(Ω) such that

Aut0(Ω)/N is a non-compact simple Lie group with real rank one.

Hence, to prove Theorem 1.8 it is enough to show that L(Ω) inter-
sects at least two different closed complex faces of ∂Ω. In that case,
Theorem 1.14 implies that Γ0 := Γ ∩ Aut0(Ω) has finite index in Γ
and hence Γ0\Ω has finite volume. Then Theorem 1.12 implies that Ω
is biholomorphic to a bounded symmetric domain. Finally, Mok and
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Tsai [23] proved that: if D is a bounded symmetric domain which is
convex and has C1 boundary, then D is biholomorphic to the unit ball.
So Ω is biholomorphic to the ball.

Acknowledgments. I would like to thank a referee for helpful correc-
tions and comments which improved this paper. This material is based
upon work supported by the National Science Foundation under grant
DMS-1760233.

2. Preliminaries

2.1. Notations. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain,

then:

1) Let kΩ : Ω×C
d → R≥0 denote the infinitesimal Kobayashi metric,

KΩ : Ω×Ω → R≥0 denote the Kobayashi distance on Ω, and VolK
denote the Kobayashi-Eisenman volume form.

2) Let gB denote the Bergman metric on Ω, BΩ denote the Bergman
distance on Ω, and VolB denote the Riemannian volume form as-
sociated to gB. We will also let bΩ : Ω×C

d → R denote the norm
associated to gB, that is

bΩ(x; v) =
√
gB(v, v),

when v ∈ TxΩ.
3) Let gKE denote the Kähler-Einstein metric on Ω with Ricci curva-

ture −1 constructed by Cheng-Yau [4] when Ω has C2 boundary
and Mok-Yau [24] in general. And let VolKE denote the Riemann-
ian volume form associated to gKE .

Throughout the paper ‖·‖ will denote the standard Euclidean norm
on C

d. Given z0 ∈ C
d and r > 0 define

Bd(z0; r) = {z ∈ C
d : ‖z − z0‖ < r}.

Finally, given a domain Ω ⊂ C
d and z ∈ Ω define

δΩ(z) = inf{‖w − z‖ : w ∈ ∂Ω}.

2.2. The squeezing function. Given a domain Ω ⊂ C
d let sΩ : Ω →

(0, 1] be the squeezing function on Ω, that is

sΩ(z) = sup{r : there exists an one-to-one holomorphic map

f : Ω → Bd(0; 1) with f(z) = 0 and Bd(0; r) ⊂ f(Ω)}.
In this section we recall a result of S.K. Yeung.

Theorem 2.1 ([30, Theorem 2]). Suppose s > 0 and d > 0. Then
there exists C > 1 and ι0, ε, κ > 0 such that: if Ω ⊂ C

d is a pseudoconvex



166 A. ZIMMER

domian, z0 ∈ Ω, sΩ(z0) > s, and

Bε := {z ∈ Ω : BΩ(z0, z) ≤ ε},
then

1) Bε is a compact subset of Ω,
2) gB, gKE, and kΩ are all C-bi-Lipschitz on Bε,
3) the sectional curvature of gB is bounded in absolute value by κ on

Bε,
4) the injectivity radius of gB is bounded below by ι0 on Bε, and
5) if Vol denotes either the Bergman volume, the Kähler-Einstein

volume, or the Kobayashi-Eisenman volume, then

1

C
r2d ≤ Vol

(
{z ∈ Ω : BΩ(z, z0) ≤ r}

)
≤ Cr2d

for all r ∈ [0, ε].

Parts (1)–(4) follow from [30, Theorem 2]. In [30, Theorem 2] it is
assumed that sΩ(z) > s for all z ∈ Ω, however, all the arguments are
local in nature and can be easily modified to prove parts (1)–(4) in the
above Theorem. Part (2) also follows from the proof of [20, Theorem
7.2].

Part (5) is a consequence of the definition and part (2): since sΩ(z0) >
s we can assume that z0 = 0 and

Bd(0; s) ⊂ Ω ⊂ Bd(0; 1).

Then

kBd(0;1) ≤ kΩ ≤ kBd(0;s)

on Bd(0; s). Then, from the well known explicit description of the
Kobayashi metric on the ball and part (2), we see that there exists
C1 > 0 such that gB, gKE , and kΩ are all C1-bi-Lipschitz to the Eu-
clidean metric on Bd(0; s/2). So we can find C, ε > 0 such that: if Vol
denotes either the Bergman volume or the Kähler-Einstein volume, then

1

C
r2d ≤ Vol

(
{z ∈ Ω : BΩ(z, z0) ≤ r}

)
≤ Cr2d

for all r ∈ [0, ε]. Next let VolK denote the Kobayashi-Eisenman volume
on Ω and for τ > 0 let VolBd(0;τ) denote the Kobayashi-Eisenman volume
on Bd(0; τ). Then by definition

VolBd(0;1)(A) ≤ VolK(A) ≤ VolBd(0;s)(A)

for all subsets A ⊂ Bd(0; s). So from the well known explicit description
of the Kobayashi-Eisenman volume for the ball, part (2), and by possibly
modifying C, ε we can also assume that

1

C
r2d ≤ VolK

(
{z ∈ Ω : BΩ(z, z0) ≤ r}

)
≤ Cr2d

for all r ∈ [0, ε].
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2.3. Invariant metrics near a strongly pseudoconvex point. We
will use the following well known facts about invariant metrics near a
strongly pseudoconvex point.

Theorem 2.2. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain.

Assume that ∂Ω is C2 and strongly pseudoconvex in a neighborhood of
ξ ∈ ∂Ω. Then there exists an neighborhood U of ξ in Ω and C > 1 such
that:

1) kΩ and gB are C-bi-Lipshitz to each other on U ∩ Ω,

2) kΩ(x; v) ≥ C−1 ‖v‖ δΩ(x)−1/2 for all x ∈ U ∩ Ω and v ∈ C
d, and

3) gB has negative sectional curvature on U ∩ Ω.

Proof. Fix open neighborhoods V2 b V1 of ξ such that there exist a
holomorphic embedding ϕ : V1 → C

d with ϕ(V2 ∩ Ω) a convex domain
which is strongly convex near ϕ(ξ).

By [7, Theorem 2.1] there exists a neighborhood V3 of ξ such that
V3 b V2 and

kΩ(x; v) ≤ kV2∩Ω(x; v) ≤ 2kΩ(x; v)

for all x ∈ V3 and v ∈ C
d (notice that the first inequality is by definition).

Further, by [5, Theorem 1] there exists C0 > 1 such that

1

C0
bΩ∩V2

(x; v) ≤ bΩ(x; v) ≤ C0bΩ∩V2
(x; v)

for all x ∈ V3 and v ∈ C
d.

Now since V2 ∩ Ω is biholomorphic to a convex domain, a result of
Frankel [9] implies that bΩ∩V2

and kΩ∩V2
are C1-bi-Lipschitz to each

other for some C1 > 1. So we see that kΩ and gB are C-bi-Lipshitz to
each other on V3 ∩ Ω for some C > 1.

Given a domain O ⊂ C
d, x ∈ O, and nonzero v ∈ C

d define

δO(x; v) = inf{‖y − x‖ : y ∈ ∂Ω ∩ (x+ C v)}.

Since C = ϕ(V2 ∩ Ω) is convex, a result of Graham [10, 11] says that

‖v‖
2δC(x; v)

≤ kC(x; v) ≤
‖v‖

δC(x; v)

for all x ∈ C and v ∈ C
d. Then, since C is strongly convex at ϕ(ξ), there

exists a neighborhood W of ϕ(ξ) and some C2 > 0 such that

C2
‖v‖

δC(x)1/2
≤ kC(x; v)

for all x ∈ W and v ∈ C
d. Since V2 b V1, the map ϕ : V1 → C

d is
bi-Lipschitz on V2, so by possibly shrinking V3 and increasing C we can
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assume that

1

C

‖v‖
δΩ(x)1/2

≤ kΩ(x; v)

for all x ∈ V3 and v ∈ C
d.

Finally, part (3) follows from [18, Theorem 1]. q.e.d.

2.4. Completeness of the Bergman metric. We will use the fol-
lowing fact about the Bergman metric:

Theorem 2.3 (Ohsawa [26]). If Ω ⊂ C
d is a bounded pseudocon-

vex domain with C1 boundary, then the Bergman metric is a complete
Riemannian metric on Ω.

Remark 2.4. It is also known that the Bergman metric is complete
on the more general class of hyperconvex domains, see [15] and [3].

2.5. A local version of E. Cartan’s fixed point theorem. E. Car-
tan proved that a compact group G acting by isometries on (X, g) a
complete simply connected Riemannian manifold with non-positive sec-
tional curvature always has a fixed point. One proof, see for instance [6,
p. 21], uses the following lemma: if K ⊂ X is compact, then the func-
tion

f(x) = sup{d(x, k) : k ∈ K}
has a unique minimum in X. In this section we observe a local version of
this lemma which will allow us to show that a certain compact subgroup
has a fixed point in the proof of Theorem 1.3.

Given a complete Riemannian manifold (X, g), x0 ∈ X, and R > 0
let B(X,g)(x0, R) denote the open metric ball of radius R centered at x0.

Proposition 2.5. Suppose (X, g) is a complete Riemannian mani-
fold, x0 ∈ X, R > 0, the metric g has non-positive sectional curvature
on B(X,g)(x0, 8R), and g has injectivity radius at least 16R at each point
in B(X,g)(x0, 8R). If K ⊂ B(X,g)(x0, R) is compact, then the function

f(x) = sup{d(x, k) : k ∈ K}
has a unique minimum in X.

The following proof is nearly identical to the proof of the Lemma on
p. 21 in [6], but we provide the details for the reader’s convenience.

Proof. When α ∈ [0, 4], every two points in B(X,g)(x0, αR) are joined
by a unique geodesic and this geodesic is contained in B(X,g)(x0, 2αR).

Since g is non-positively curved on B(X,g)(x0, 8R) and has injectivity
radius at least 16R at each point inB(X,g)(x0, 8R) the Rauch comparison
theorem implies (see [14, p. 73]): if T is a geodesic triangle contained
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in B(X,g)(x0, 4R) with side lengths a, b, c then

a2 + b2 − 2ab cos θ ≤ c2,(1)

where θ is the angle at the vertex opposite to the side of length c.
Since f is a proper continuous function there exists at least one min-

imum. Since f(x) > R when x ∈ X \B(X,g)(x0, 2R) and f(x0) ≤ R any
minimum of f is in B(X,g)(x0, 2R).

Suppose for a contradiction that there exists two distinct minimum
points x, y of f . Let σ : [0, T ] → X denote the unique geodesic with
σ(0) = x and σ(T ) = y. Let m = σ(T/2). Then consider some k ∈ K
and let γ : [0, S] → X denote the unique geodesic in X with γ(0) = m
and γ(S) = k. Since

∠m(−σ′(T/2), γ′(0)) + ∠m(σ′(T/2), γ′(0)) = π,

by relabelling x, y we can assume that θ := ∠m(σ′(T/2), γ′(0)) ≥ π/2.
Then Equation (1) implies that

d(y, k)2 ≥ d(y,m)2 + d(m, k)2 − 2d(y,m)d(m, k) cos θ > d(m, k)2.

So d(m, k) < d(y, k) ≤ f(y). Since k ∈ K was arbitrary and K is
compact, we then have f(m) < f(y) which is a contradiction. q.e.d.

3. An estimate for the Bergman distance

Theorem 3.1. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain.

Assume that ∂Ω is C2 and strongly pseudoconvex in a neighborhood of
ξ ∈ ∂Ω. If z0 ∈ Ω and ε0 > 0, then there exists ε ∈ (0, ε0) and R > 0
such that

BΩ(z, w) ≥ BΩ(z, z0) +BΩ(z0, w)−R

for all z, w ∈ Ω with ‖z − ξ‖ < ε and ‖w − ξ‖ > 2ε.

Remark 3.2. This says that if z is near ξ and w is far away from
ξ, then z and w can be joined by a path that passes through z0 and is
length minimizing up to an error of R.

The following argument is based on the proof of [16, Lemma 36]
which establishes a similar estimate for the Kobayashi distance.

Proof. By Theorem 2.2 there exists an neighborhood U of ξ and some
C > 1 such that

1

C
kΩ(x; v) ≤ bΩ(x; v) ≤ CkΩ(x; v)

and

1

C

‖v‖
δΩ(x)1/2

≤ bΩ(x; v)(2)

for all x ∈ Ω ∩ U and v ∈ C
d.
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By definition

kΩ(x; v) ≤
‖v‖
δΩ(x)

and so

bΩ(x; v) ≤ C
‖v‖
δΩ(x)

for x ∈ U ∩Ω and v ∈ C
d. Then since ∂Ω is C2 near ξ one can consider

parametrizations of inward pointing normal lines to show that there
exists α, β > 0 and a neighborhood V ⊂ U of ξ such that

BΩ(z0, z) ≤ α+ β log
1

δΩ(z)
(3)

for all z ∈ V ∩ Ω.
Now fix ε ∈ (0, ε0) such that

Bd(ξ; 2ε) ⊂ V.

Consider points z, w ∈ Ω with ‖z − ξ‖ < ε and ‖w − ξ‖ > 2ε. Let
σ : [0, T ] → Ω be a geodesic (with respect to the Bergman distance)
joining z and w. Define

T0 = max
{
t ∈ [0, T ] : σ([0, t]) ⊂ Bd(z; ε)

}
.

Since ‖w − z‖ > ‖w − ξ‖ − ‖z − ξ‖ > ε, we must have

‖z − σ(T0)‖ = ε.(4)

Further,

σ([0, T0]) ⊂ Bd(z; ε) ⊂ Bd(ξ; 2ε) ⊂ V.

Then let τ ∈ [0, T0] be such that

δΩ(σ(τ)) = max{δΩ(σ(t)) : t ∈ [0, T0]}.(5)

Now for t ∈ [0, T0] we have

|t− τ | = BΩ(σ(t), σ(τ)) ≤ BΩ(σ(t), z0) +BΩ(z0, σ(τ))

≤ 2α+ β log
1

δΩ(σ(t))δΩ(σ(τ))
.

So

δΩ(σ(t)) ≤
√

δΩ(σ(t))δΩ(σ(τ)) ≤ exp

(− |t− τ |+ 2α

2β

)
.

Now fix M > 0 such that
∫ ∞

M
exp

(−r + 2α

4β

)
dr < ε/(4C).(6)
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Since σ is a geodesic bΩ(σ(t);σ
′(t)) ≡ 1. Then by Equations (4)

and (2)

ε = ‖z − σ(T0)‖ = ‖σ(0)− σ(T0)‖ ≤
∫ T0

0

∥∥σ′(t)
∥∥ dt

≤ C

∫ T0

0
bΩ(σ(t);σ

′(t))δΩ(σ(t))
1/2dt = C

∫ T0

0
δΩ(σ(t))

1/2dt.

Then by Equations (5) and (6)

ε ≤ C

∫

[0,T0]∩(τ−M,τ+M)
δΩ(σ(t))

1/2dt+C

∫

[0,T0]∩(τ−M,τ+M)c
δΩ(σ(t))

1/2dt

≤ C

∫

[0,T0]∩(τ−M,τ+M)
δΩ(σ(τ))

1/2dt+ 2C

∫ ∞

M
exp

(−r + 2α

4β

)
dr

≤ 2CMδΩ(σ(τ))
1/2 + ε/2.

So

δΩ(σ(τ))
1/2 ≥ ε/(4CM).

Then by Equation (3)

BΩ(z, w) = BΩ(z, σ(τ)) +BΩ(σ(τ), w)

≥ BΩ(z, z0) +BΩ(z0, w)− 2BΩ(z0, σ(τ))

≥ BΩ(z, z0) +BΩ(z0, w)−R,

where

R = 2α+ 4β log
4CM

ε
.

Notice that R does not depend on z or w, so the proof is complete.
q.e.d.

4. Proof of Theorem 1.3

For the rest of the section suppose that Ω ⊂ C
d is a bounded pseu-

doconvex domain with C2 boundary and Γ ≤ Aut(Ω) is a discrete
group acting freely on Ω. Further, assume that Vol(Γ\Ω) < +∞ where
Vol is either the Bergman volume, the Kähler-Einstein volume, or the
Kobayashi-Eisenman volume.

Given a Lebesgue measurable set A ⊂ Ω, we will also let Ṽol(A)
denote the volume relative to the associated measure on Ω. Notice,
that if π : Ω → Γ\Ω is the natural covering map and π|A is injective,
then

Ṽol(A) = Vol(π(A)).(7)

By translating and scaling Ω, we may assume that 0 ∈ Ω, Ω ⊂
Bd(0; 1), and ∂Ω ∩ ∂ Bd(0; 1) 6= ∅. Then by rotating Ω we may as-
sume that (1, 0, . . . , 0) ∈ ∂Ω. Then, since ∂Ω is C2, there exists some
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r ∈ (0, 1) such that

Bd((r, 0, . . . , 0); 1− r) ⊂ Ω ⊂ Bd(0; 1).

Observation 4.1. ξ = (1, 0, . . . , 0) is a strongly pseudoconvex point
of ∂Ω.

Proof. This is a consequence of the fact that (1, 0, . . . , 0) ∈ ∂Ω and
Ω ⊂ Bd(0; 1), see for instance [13, Lemma 4.1]. q.e.d.

Observation 4.2. Let wt = (t, 0, . . . , 0) ∈ C
d. Then there exists

some s0 > 0 such that sΩ(wt) ≥ s0 for t ∈ [r, 1).

Proof. For t ∈ [r, 1) consider the transformation

ϕ(z1, . . . , zd) =

(
z1 − t

tz1 − 1
,
(1− t2)1/2

tz1 − 1
z2, . . . ,

(1− t2)1/2

tz1 − 1
zd

)
.

Then ϕ ∈ Aut(Bd(0; 1)) and ϕ(0) = wt. We claim that

ϕ(Bd(0; s0)) ⊂ Ω,

where

s0 =
1− r

12
√
d
.

Suppose z ∈ Bd(0; s0). Then ‖z‖ < 1/2 and so

|tz1 − 1| > 1/2.

Then
∣∣∣∣
z1 − t

tz1 − 1
− r

∣∣∣∣
2

=

∣∣∣∣(t− r) +
(1− t2)z1
tz1 − 1

∣∣∣∣
2

≤ (t− r)2 +
2(t− r)(1− t2)

|tz1 − 1| |z1|+
(1− t2)2

|tz1 − 1|2
|z1|2

≤ (t− r)2 + 8(1− t) |z1|+ 8(1− t) |z1|2

≤ (t− r)2 + 8(1− t) |z1|+ 4(1− t) |z1|
≤ (t− r)2 + 12(1− t) |z1| .

We also have

(t− r)2 − (1− r)2 = (2r − 1− t)(1− t) ≤ (r − 1)(1− t)

and so ∣∣∣∣
z1 − t

tz1 − 1
− r

∣∣∣∣
2

≤ (1− r)2 + (r − 1)(1− t) + 12(1− t) |z1| .

Further,
∣∣∣∣∣
(1− t2)1/2

tz1 − 1
zi

∣∣∣∣∣

2

≤ 8(1− t) |zi|2 ≤ 4(1− t) |zi| .
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So

‖ϕ(z)− wr‖2 ≤ (1− r)2 + (r − 1)(1− t) + 12(1− t)(|z1|+ · · ·+ |zd|)
≤ (1− r)2 + (r − 1)(1− t) + 12

√
d(1− t) ‖z‖

< (1− r)2

by our choice of s0. So ϕ(z) ∈ Bd(wr; 1 − r) ⊂ Ω. Since z ∈ Bd(0; s0)
was arbitrary, we then have

ϕ(Bd(0; s0)) ⊂ Ω.

Then ϕ−1(wt) = 0 and

Bd(0; s0) ⊂ ϕ−1(Ω) ⊂ Bd(0; 1),

so sΩ(wt) ≥ s0. q.e.d.

Fix a sequence rn ↗ 1 and consider the points yn = (rn, 0, . . . , 0) ∈ Ω.
Then by Observation 4.2 and Theorem 2.1, there exists some C0, ε0 > 0
such that

Ṽol ({z ∈ Ω : BΩ(z, yn) < ε}) ≥ C0ε
2d(8)

for any n ≥ 0 and ε ∈ (0, ε0].
For each n ≥ 0, define

δn = min
γ∈Γ\{1}

BΩ(yn, γyn).

Then the quotient map π : Ω → Γ\Ω restricts to an embedding on

Bn = {z ∈ Ω : BΩ(z, yn) < δn/2}.
So by Equations (7) and (8)

Vol(π(Bn)) = Ṽol(Bn) ≥ C0min
{
ε2d0 , (δn/2)

2d
}
.

After passing to a subsequence we can assume that

lim
n→∞

δn = δ ∈ R≥0 ∪{∞}.

We will consider two cases depending on whether δ is zero or not.
Informally, δ > 0 means that the sequence π(yn) is trapped in the “thick
part” of the quotient space Γ\Ω while δ = 0 means that π(yn) escapes
to infinity along a cusp in Γ\Ω. The second case is the more difficult
one and is itself divided into two cases. Very informally: In Case 2
(a), one obtains a sequence of “parabolic automorphisms” whose fixed
points at infinity converge to ξ while in Case 2 (b) one finds a “parabolic
automorphism” whose fixed point is exactly ξ.

Case 1: δ 6= 0. Let r = min{ε0, δ/4} and define

B′
n := {z ∈ Ω : BΩ(z, yn) < r}.
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Then there exists N ≥ 0 such that B′
n ⊂ Bn for all n ≥ N . Further, by

Equations (7) and (8)

Vol(π(B′
n)) = Ṽol(B′

n) ≥ C0r
2d,

when n ≥ N .
Let M := Γ\Ω and let d be the distance on M making the covering

map (Ω, BΩ) → (M,d) a local isometry. We claim that the set {π(yn) :
n ∈ N} is relatively compact in M . Suppose not. Then we construct an
increasing sequence

n1 < n2 < n3 < . . .

such that

min
1≤k<j

d
(
π(ynk

), π(ynj
)
)
> 2r

for every j ≥ 2. Since (Ω, BΩ) → (M,d) is 1-Lipschitz, we have

π(B′
nj
) ⊂ {z ∈ M : d(z, π(ynj

)) < r}.
Thus the sets

π(B′
n1
), π(B′

n2
), π(B′

n3
), . . .

are pairwise disjoint. So

Vol(Γ\Ω) ≥
∞∑

j=1

Vol(π(B′
n)) ≥

∞∑

j=1

Cr2d = ∞,

which is a contradiction. Hence, the set {π(yn) : n ∈ N} must be
relatively compact in Γ\Ω.

Then for each n, there exist some γn ∈ Γ such that the set {γnyn :
n ∈ N} is relatively compact in Ω. Then we can pass to a subsequence
such that γnyn → y ∈ Ω. Using Montel’s theorem and passing to a
subsequence we can assume that γ−1

n converges locally uniformly to a
holomorphic map f : Ω → Ω. Then

ξ = lim
n→∞

yn = lim
n→∞

γ−1
n (γnyn) = f(y) = lim

n→∞
γ−1
n y.

So Ω is biholomorphic to the ball by Theorem 1.10.

Case 2: δ = 0. For each n select γn ∈ Γ such that

BΩ(γnyn, yn) = δn.

Case 2(a): The set {γ1, γ2, . . . } is infinite. Since Γ is discrete, by
passing to a subsequence we can suppose that γn → ∞ in Aut(Ω).
Fix some z0 ∈ Ω. Using the fact that Aut(Ω) acts properly on Ω and
passing to another subsequence we can assume that γ−1

n z0 → η ∈ ∂Ω.
Since (Ω, BΩ) is a proper metric space we must have

lim
n→∞

BΩ(γ
−1
n z0, z0) = ∞.
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We claim that η = ξ. Suppose not, then by Theorem 3.1 there exists
R > 0 such that

BΩ(γ
−1
n z0, z0) +BΩ(z0, yn)−BΩ(γ

−1
n z0, yn) ≤ R

for every n ≥ 0. However,

BΩ(γ
−1
n z0, z0) +BΩ(z0, yn)−BΩ(γ

−1
n z0, yn)

= BΩ(γ
−1
n z0, z0) +BΩ(z0, yn)−BΩ(z0, γnyn)

≥ BΩ(γ
−1
n z0, z0)−BΩ(γnyn, yn)

= BΩ(γ
−1
n z0, z0)− δn.

So

R ≥ lim sup
n→∞

BΩ(γ
−1
n z0, z0) +BΩ(z0, yn)−BΩ(γ

−1
n z0, yn)

= lim sup
n→∞

BΩ(γ
−1
n z0, z0) = ∞.

So we have a contradiction and hence ξ = η. So Ω is biholomorphic to
the unit ball by Theorem 1.10.

Case 2(b): The set {γ1, γ2, . . . } is finite. By passing to a subsequence
we can suppose that γn = γ in for all n ∈ N. Fix some z0 ∈ Ω and
consider the functions

bn(z) = BΩ(z, yn)−BΩ(yn, z0).

Since bn(z0) = 0 and each bn is 1-Lipschitz (with respect to the Bergman
distance) we can pass to a subsequence such that bn → b locally uni-
formly. Then

b(γ−1z) = lim
n→∞

[
BΩ(γ

−1z, yn)−BΩ(yn, z0)
]

= lim
n→∞

[BΩ(z, γyn)−BΩ(yn, z0)] = b(z)

since

lim sup
n→∞

|BΩ(z, γyn)−BΩ(z, yn)| ≤ lim sup
n→∞

BΩ(yn, γyn) = lim
n→∞

δn = 0.

So

b(γ−nz0) = b(z0) = 0

for all n ∈ N.

Observation 4.3. For any t0 ∈ R

b−1
(
(−∞, t0]

)Euc
∩ ∂Ω = {ξ}.

Proof. We first observe that

b−1
(
(−∞, t0]

)Euc
∩ ∂Ω 6= ∅.
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Let σn : [0, Tn] → Ω be a unit speed geodesic (with respect to the
Bergman distance) such that σn(0) = z0 and σn(Tn) = yn. Since yn →
ξ ∈ ∂Ω and BΩ is a proper distance on Ω, we have Tn → ∞. Since
σn(0) = z0, by the Arzelà-Ascoli theorem there exists nj → ∞ such that
σnj

converges to a geodesic σ : [0,∞) → Ω. We claim that b(σ(t)) = −t.
Notice that if t ≤ Tn, then

bn(σn(t)) = BΩ(σn(t), yn)−BΩ(yn, z0)

= BΩ(σn(t), σn(Tn))−BΩ(σn(Tn), σn(0))

= (Tn − t)− (Tn − 0) = −t.

Further,

b(σ(t)) = lim
n→∞

bn(σ(t)) = lim
j→∞

bnj
(σnj

(t)) = −t

since bn converges locally uniformly to b. Then, since Ω is compact,
there exists tj → ∞ such that σ(tj) converges to some η1 ∈ Ω. Since
BΩ(σ(tj), z0) = tj , we must have η1 ∈ ∂Ω. Then

η1 ∈ b−1
(
(−∞, t0]

)Euc
∩ ∂Ω.

Next we show that

b−1
(
(−∞, t0]

)Euc
∩ ∂Ω = {ξ}.

Suppose wm ∈ b−1
(
(−∞, t0]

)
and wm → η2 ∈ ∂Ω. If η2 6= ξ, then

Theorem 3.1 implies that there exists R > 0 such that

BΩ(wm, z0) +BΩ(z0, yn)−BΩ(wm, yn) ≤ R

for every n ≥ 0. Then

t0 ≥ b(wm) = lim
n→∞

[BΩ(wm, yn)−BΩ(z0, yn)] ≥ BΩ(wm, z0)−R.

However, BΩ(wm, z0) → ∞ since BΩ is a proper distance on Ω. So we
have a contradiction. Hence, η2 = ξ and

b−1
(
(−∞, t0]

)Euc
∩ ∂Ω = {ξ}.

q.e.d.

Using the previous observation, if γ−nz0 is unbounded in Ω, then
there exists nk → ∞ such that γ−nkz0 → ξ. Hence, in this case, Ω is
biholomorphic to the unit ball by Theorem 1.10.

It remains to consider the case where the sequence γ−nz0 is bounded
in Ω. Since Γ is discrete and acts properly on Ω, in this case

M := order(γ) < ∞.
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We claim that γ has a fixed point in Ω. First, notice that

BΩ(γ
myn, yn) ≤ (M − 1)δn

for all m ∈ Z. By Theorem 2.1, there exists some τ > 0 such that the
injectivity radius of gΩ is bounded below by τ on each Un = {z ∈ Ω :
BΩ(z0, yn) ≤ τ}. By Theorem 2.2, gB is negatively curved on Un when
n is large. Then since δn → 0, Proposition 2.5 implies that when n is
large the function

fn(x) = sup{BΩ(γ
myn, x) : m = 0, 1, . . . ,M − 1}

has a unique minimum cn in Ω. Since

γ
{
yn, γyn, γ

2yn, . . . , γ
M−1yn

}
=
{
yn, γyn, γ

2yn, . . . , γ
M−1yn

}
,

we then have γcn = cn. So γ has a fixed point in Ω. Since Γ acts freely
on Ω, we have a contradiction.

5. The convex case

Before starting the proof of Theorem 1.8 we will recall some results
about convex domains.

As in Section 2.2, let sΩ : Ω → (0, 1] denote the squeezing function
on a domain Ω ⊂ C

d. For convex domains, the squeezing function
is bounded from below by a positive constant which only depends on
dimension.

Theorem 5.1 ([9, 19, 25]). For any d > 0 there exists some s =
s(d) > 0 such that: if Ω ⊂ C

d is a bounded convex domain, then sΩ(z) ≥
s for all z ∈ Ω.

We will also use the following fixed point theorem.

Theorem 5.2 ([8, Theorem 12.2]). Suppose that Ω ⊂ C
d is a bounded

convex domain and K ≤ Aut(Ω) is a compact group. Then there exists
a point z ∈ Ω such that k(z) = z for all k ∈ K.

Finally, we need the following facts about the Kobayashi distance.

Proposition 5.3. Suppose Ω ⊂ C
d is a bounded convex domain.

Then the metric space (Ω,KΩ) is proper and Cauchy complete.

For a proof of Proposition 5.3 see for instance [1, Proposition 2.3.45].

Theorem 5.4 ([32, Theorem 4.1]). Suppose Ω ⊂ C
d is a bounded

convex domain with C1,ε boundary. If ξ, η ∈ ∂Ω and TC

ξ ∂Ω 6= TC
η ∂Ω,

then

lim sup
x→ξ,y→η

(KΩ(x, z0) +KΩ(z0, y)−KΩ(x, y)) < ∞

for some (hence, any) z0 ∈ Ω.
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Remark 5.5. This says that a point x near ξ and point y near η can
be joined by a path that passes through z0 and is length minimizing up
to a bounded error.

5.1. Proof of Theorem 1.8. For the rest of the section suppose that
Ω ⊂ C

d is a bounded convex domain with C1,ε boundary and Γ ≤
Aut(Ω) is a discrete group acting freely on Ω. Further, assume that
Vol(Γ\Ω) < +∞ where Vol is either the Bergman volume, the Kähler-
Einstein volume, or the Kobayashi-Eisenman volume.

Using Theorem 1.12 and Theorem 1.14 it is enough to show that
L(Ω) intersects at least two different closed complex faces of ∂Ω. We
will prove the stronger result that the limit set intersects every closed
complex face of ∂Ω.

Lemma 5.6. If ξ ∈ ∂Ω, then L(Ω) ∩ TC

ξ ∂Ω 6= ∅.
The proof of the Lemma is nearly identical to the proof of Theo-

rem 1.3, but we provide a detailed argument for the reader’s conve-
nience.

Proof. By replacing Ω with an affine translate, we may assume that
ξ = (1, 0, . . . , 0) and 0 ∈ Ω. Then fix a sequence rn ↗ 1 and consider
the points yn = (rn, 0, . . . , 0) ∈ Ω. For each n ∈ N define

δn = min
γ∈Γ\{1}

KΩ(yn, γyn).

Now for each n ∈ N the quotient map π : Ω → Γ\Ω restricts to an
embedding on

Bn = {z ∈ Ω : KΩ(z, yn) < δn/2}.
Further, by Theorem 5.1 and Theorem 2.1 there exists some C, ε0 > 0
such that

Vol(π(Bn)) ≥ Cmin{ε2d0 , δ2dn }.
After passing to a subsequence we can assume that

lim
n→∞

δn = δ ∈ R≥0 ∪{∞}.

Case 1: δ 6= 0. Repeating the argument in Case 1 of the proof of
Theorem 1.3 shows that the set {π(yn) : n ∈ N} is relatively compact
in Γ\Ω. So for each n, there exist some γn ∈ Γ such that the set
{γnyn : n ∈ N} is relatively compact in Ω. Then we can pass to a
subsequence such that γnyn → y ∈ Ω. Then γ−1

n y → ξ. So ξ ∈ L(Ω).
Case 2: δ = 0. Then select γn ∈ Γ such that

KΩ(γnyn, yn) = δn.

Case 2(a): The set {γ1, γ2, . . . } is infinite. Since Γ is discrete, by
passing to a subsequence we can suppose that γn → ∞ in Aut(Ω). Fix
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some z0 ∈ Ω. By passing to another subsequence we can assume that
γ−1
n z0 → η ∈ ∂Ω. Since (Ω,KΩ) is a complete proper metric space we

must have

lim
n→∞

KΩ(z0, γ
−1
n z0) = ∞.

We claim that η ∈ TC

ξ ∂Ω. Suppose not, then by Theorem 5.4 there
exists R > 0 such that

KΩ(γ
−1
n z0, z0) +KΩ(z0, yn)−KΩ(γ

−1
n z0, yn) ≤ R

for all n ≥ 0. However,

KΩ(γ
−1
n z0, z0) +KΩ(z0, yn)−KΩ(γ

−1
n z0, yn)

= KΩ(γ
−1
n z0, z0) +KΩ(z0, yn)−KΩ(z0, γnyn)

≥ KΩ(γ
−1
n z0, z0)−KΩ(γnyn, yn)

= KΩ(γ
−1
n z0, z0)− δn.

And so

R ≥ lim sup
n→∞

KΩ(γ
−1
n z0, z0) +KΩ(z0, yn)−KΩ(γ

−1
n z0, yn)

≥ lim
n→∞

KΩ(γ
−1
n z0, z0)− δn = ∞.

Thus we have a contradiction and hence η ∈ TC

ξ ∂Ω.

Case 2(b): The set {γ1, γ2, . . . } is finite. By passing to a subsequence
we can suppose that γn = γ in for all n ∈ N.

Fix some z0 ∈ Ω. If the set {γn(z0) : n ∈ N} is relatively compact in
Ω, then γ has a fixed point in Ω by Theorem 5.2. But Γ acts freely on
Ω, so the set {γn(z0) : n ∈ N} must be unbounded in Ω.

Next consider the functions

bn(z) = KΩ(z, yn)−KΩ(yn, z0).

Since bn(z0) = 0 and each bn is 1-Lipschitz (with respect to the Ko-
bayashi distance) we can pass to a subsequence such that bn → b locally
uniformly. Then

b(γ−1z) = lim
n→∞

[
KΩ(γ

−1z, yn)−KΩ(yn, z0)
]

= lim
n→∞

[KΩ(z, γyn)−KΩ(yn, z0)] = b(z)

since

lim sup
n→∞

|KΩ(z, γyn)−KΩ(z, yn)| ≤ lim sup
n→∞

KΩ(yn, γyn)

= lim sup
n→∞

δn = 0.

So

b(γ−nz0) = b(z0) = 0
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for all n ∈ N.

Observation 5.7. For any t0 ∈ R

b−1
(
(−∞, t0]

)Euc
∩ ∂Ω ⊂ TC

ξ ∂Ω.

Proof. Suppose wm ∈ b−1
(
(−∞, t0]

)
and wm → η ∈ ∂Ω. If η /∈

TC

ξ ∂Ω, then Theorem 5.4 implies that there exists R > 0 such that

KΩ(wm, z0) +KΩ(z0, yn)−KΩ(wm, yn) ≤ R.

Then

b(wm) = lim
n→∞

[KΩ(wm, yn)−KΩ(z0, yn)] ≥ KΩ(wm, z0)−R.

However, KΩ(wm, z0) → ∞ since KΩ is a proper distance on Ω. So we
have a contradiction. q.e.d.

Using the previous observation, there exists nk → ∞ such that

lim
k→∞

dEuc

(
γ−nkz0, T

C

ξ ∂Ω
)
= 0.

So L(Ω) ∩ TC

ξ ∂Ω 6= ∅.
q.e.d.

Lemma 5.8. Ω is biholomorphic to the unit ball.

Proof. Since Ω is bounded, there exists x, y ∈ ∂Ω such that TC
x ∂Ω 6=

TC
y ∂Ω. By Lemma 5.6, the limit set L(Ω) intersects both TC

x ∂Ω and

TC
y ∂Ω. So by Theorem 1.14, the group Aut(Ω) has finitely many com-

ponents. So Γ0 := Γ ∩ Aut0(Ω) has finite index in Γ and hence the
quotient Γ0\Ω also has finite volume. So by Theorem 1.12 part (1), Ω is
a bounded symmetric domain. Since Ω is convex and has C1 boundary
a result of Mok and Tsai [23] implies that Ω is biholomorphic to the
unit ball. q.e.d.

References

[1] M. Abate, Iteration theory of holomorphic maps on taut manifolds, Research and
Lecture Notes in Mathematics, Mediterranean Press, Rende, 1989, MR1098711,
Zbl 0747.32002.

[2] L. Bers, Spaces of Riemann surfaces as bounded domains, Bull. Amer. Math.
Soc. 66 (1960) 98–103, MR0111835, Zbl 0106.28501.

[3] Z. B locki & P. Pflug, Hyperconvexity and Bergman completeness, Nagoya Math.
J. 151 (1998) 221–225, MR1650305, Zbl 0916.32016.

[4] S. Y. Cheng & S.-T. Yau, On the existence of a complete Kähler metric on non-

compact complex manifolds and the regularity of Fefferman’s equation, Comm.
Pure Appl. Math. 33 (1980) 507–544, MR575736, Zbl 0506.53031.



BOUNDED DOMAINS COVERING FINITE VOLUME MANIFOLDS 181

[5] K. Diederich, J. E. Fornæss, & G. Herbort, Boundary behavior of the Bergman

metric, Complex analysis of several variables (Madison, Wis., 1982), Proc. Sym-
pos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 59–67,
MR740872, Zbl 0533.32012.

[6] P. B. Eberlein, Geometry of nonpositively curved manifolds, Chicago Lectures in
Mathematics, University of Chicago Press, Chicago, IL, 1996, MR1441541, Zbl
0883.53003.
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