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1. Introduction

Given a domain Q C C%, let Aut(Q2) denote the automorphism group of €, that is the
group of biholomorphic maps Q — Q. The group Aut(?) is a topological group when
endowed with the compact-open topology and when 2 is bounded H. Cartan proved
that Aut(Q) is a Lie group. We will let Autg(2) denote the connected component of
the identity in Aut(f). The limit set of Q, denoted L£(f2), is the set of points = € 9N
where there exist z € Q and a sequence ¢, € Aut(Q?) such that ¢,(z) — . When Q is
bounded, Aut(2) acts properly on Q. Hence for bounded domains, £({2) is non-empty if
and only if Aut({2) is non-compact.

This is the first of a series of papers studying the group Aut(£2) and the set £(Q2). A
well understood family of examples are the so-called generalized ellipses:

Emyoiimy = {(21,...,zd) cC?. |zl|2m1 4+ |zd|2md < 1}

where mq,...,mq € N. Webster [53] has given an explicit description of Aut(€pm,, . m,)
(also see [40,37]). First, by permuting coordinates, we may assume that

ml:...:mk:1<mk+1§"'§md'

Then if B;, € C* is the unit ball and ¢ € Aut(B},), define a rational function Sy : C* — C
by

Lo O
(1~ (=071 (0)°

Also given z = (21,...,24) € C?% let 2F = (21,...,2,) € C*. Then Webster [53] showed

Se(2) =

..........

o(z) = (¢ (2%), 21184 (zk)l/?mk+1 o, 2qe™ S, (Zk)l/de)

for some ¢ € Aut(B) and Og11,...,04 € R. So, if we let N < Aut(&,,,
subgroup of elements of the form

m,) denote the

.....

o(z) = (zl, s 2k Zhp1€0FFL zdewd) ,

then N < Auto(Q2) is a normal compact subgroup and the quotient Autg(Q2)/N is iso-
morphic to Aut(By).

Webster’s explicit description of the automorphism group also implies the following;:
if e1,...,eq is the standard basis of (Cd, then

L(Emy,...my) =0Em,,...my NSpanc{er, ... ex}.
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So for generalized ellipses the limit set is always a smooth submanifold of the boundary
which is diffeomorphic to an odd dimensional sphere.

The main result of this paper shows that all these properties of generalized ellipses ex-
tend to pseudoconvex domains with finite type (see Definition 2.1 below). Before stating
the result we introduce a special class of algebraic domains.

We say a real polynomial p : C? 5 Risa weighted homogeneous polynomial if there
exist positive integers my, ..., mg such that

p(tl/mlzl, . ,tl/mdzd) =tp(z1,-.-,24)
forallt >0 and z1,...,24 € C.
Definition 1.1. A domain P is called a weighted homogeneous polynomial domain if
P = {(w,z) eCxC: Im(w) > p(z)}
where p: C 1 5 Risa weighted homogeneous polynomial.

Notice that a weighted homogeneous polynomial domain always has non-trivial auto-
morphisms, namely real translations in the first variable and a dilation coming from the
fact that p is weighted homogeneous.

Also, given a group G and subgroups Gi,...,G, < G we say that G is the almost
direct product of G1,...,G, if G =G - -G, and distinct pairs of Gy, ..., G, commute
and have finite intersection. With this terminology we will prove the following.

Theorem 1.2. Suppose ) C C? is a bounded pseudoconvex domain with C*> boundary
and finite type. Assume L(2) contains at least two distinct points. Then:

(1) Q is biholomorphic to a weighted homogeneous polynomial domain.
(2) Aut(Q) has finitely many connected components.
(3) Aut(Q) is the almost direct product of closed subgroups G and N where
(a) N is compact,
(b) G is a connected Lie group with finite center and there exists an isomorphism
p:G/Z(G) — Aut(By) for some k > 1.
(4) L(Q) is a smooth submanifold of I and there exists an p-equivariant diffeomorphism
F: L(Q) = OBg. In particular, L(Q) is an odd dimensional sphere and so either
(a) dim £(Q2) < dimdQ —2 or
(b) L(2) = 09 and Q is biholomorphic to the unit ball.

Remark 1.3.

(1) The definition of finite type is given in Section 2.1 below.



4 A. Zimmer / Advances in Mathematics 366 (2020) 107085

(2) We will use work of S.Y. Kim [30] to show that € is biholomorphic to a weighted
homogeneous polynomial domain.

(3) The proof of Theorem 1.2 uses Catlin’s deep work on finite type domains [11]. In
the less general case of pseudoconvex domains with real analytic boundary, Catlin’s
results are not needed and instead one could use results of Kohn [34] and Diederich
and Fornaess [16].

(4) A theorem of Griffiths [21] implies that there exist examples of domains Q C C?
where Aut(f2) is infinite, discrete, and the quotient Aut(£2)\(2 is compact (see [19]
for details). The last condition implies that £(€2) = 9. These examples never have
C? boundary by a theorem of Rosay [43].

Theorem 1.2 provides a precise description of the algebraic structure of Aut(f2) and
its action on 9. Using this description we will prove two corollaries.

The first result involves determining an automorphism from its k-jet. In particular,
given a diffeomorphism f: M — M of a manifold M, let ji(M, f, x) denote the k-jet of
fat x € M. Then let Jety (M, z) denote the set of all k-jets at x. A well-known problem
in CR-geometry is to prove that a CR-automorphism (under certain non-degeneracy
conditions) is determined by its k-jet for some k > 0, see for instance [9,2,17,36,35,26,6].

By theorems of Bell and Ligocka [5] and Catlin [11] every biholomorphism of a
bounded pseudoconvex domain with finite type extends to a CR-automorphism of its
boundary (see Theorem 2.7 below). In particular, if Q C C? is a bounded pseudoconvex
domain with finite type, ¢ € Aut(2), and x € 91, then

Jk(0Q, 0, x) € Jety (09, x)

is well defined for any & > 0. For these extensions we prove the following finite jet
determination theorem.

Corollary 1.4. (See Section 6.) Suppose 2 C C? is a bounded pseudoconvex domain with
C*™ boundary and finite type. Assume L() contains at least two distinct points. Then:

(1) For any x € L(Q) the map
g € Aut(Q) — §2(99Q, g, z) € Jet2(00Q, x)

1s injective.
(2) For any x € 0Q\ L(Q) the map

g € Aut(Q) — §1(99Q, g, ) € Jet1 (00, x)

18 injective.



A. Zimmer / Advances in Mathematics 366 (2020) 107085 5
(3) If N is the subgroup from Theorem 1.2, then for any x € O the map
g€ N — j1(09,g,z) € Jet1(09Q, x)
15 injective.
Remark 1.5.

(1) CR~automorphisms of 0B, are determined by their 2-jets, but not their 1-jets. So
Corollary 1.4 seems optimal.

(2) Tt was previously known that if  C C 4 is a bounded pseudoconvex domain with
real analytic boundary, then there exists some k > 0 such that any biholomorphism
is determined by its k-jet at a boundary point, see [2, Theorem 5]. In the special case
that d = 2 and 0fQ is real analytic, it was previously known that k& = 2 is sufficient,
see [17].

(3) The proof of Corollary 1.4 part (3) is based on an argument of Huang [23].

A theorem of Tits states that a subgroup of GLy(R) either contains a free group or
has a finite index solvable subgroup. Using Theorem 1.2 we will prove the following.

Corollary 1.6. (See Section 7.) Suppose 2 C C? is a bounded pseudoconvex domain with
real analytic boundary. If H < Aut(Q) is a subgroup, then either H contains a free group
or has a finite index solvable subgroup.

Remark 1.7.

(1) A result of Diederich and Fornaess [16] implies that every bounded pseudoconvex
domain with real analytic boundary has finite type, see the discussion in [14, Section
4.1.4].

(2) In the proof of Corollary 1.6 we consider three cases: when Aut(€2) is compact, when
L(€) is a single point, and when L£()) contains at least two distinct points. The
assumption that 0f is real analytic instead of just having finite type is only used in
the case when £(€2) is a single point.

1.1. Prior work and motivation

Our main motivation for Theorem 1.2 comes from the old problem of characterizing, up
to biholomorphism, the domains which have large automorphism groups and reasonable
boundaries. This can be seen as an analogue of the Riemann Mapping Theorem for
higher dimensions.

The first major result along these lines is the Wong-Rosay Ball Theorem.
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Theorem 1.8 (Wong and Rosay Ball Theorem [}3,5/]). Suppose Q@ € C% is a bounded
strongly pseudoconvex domain. Then Aut(QY) is non-compact if and only if ) is biholo-
morphic to the unit ball.

Since Wong and Rosay’s work, there have been a number of characterizations of
domains with non-compact automorphism group among special classes of domains, see
for instance [20,28,3,55,50] and the survey paper [24]. In this paper we focus on the
following related problem: characterize the possible automorphism groups of domains
with reasonable boundaries.

Theorem 1.2 is also motivated by a result of Zaitsev who proved for algebraic domains
that Aut(Q) has finitely many components.

Theorem 1.9. /56, Theorem 1.2, Corollary 1.1] Suppose D C C? is a bounded algebraic
domain. Then Aut(D) has finitely many components.

Remark 1.10. A domain Q C C? is called a bounded algebraic domain if there exists a
real valued polynomial p : C? — R such that Q is a bounded connected component of
{z € C%:p(z) <0} and Vp(2) # 0 for all z € Q.

Zaitsev actually shows that Aut(D) has the structure of an affine Nash group such
that the map Aut(D) x D — D is Nash. It then follows from basic properties of such
groups that Aut(D) has finitely many components. Our approach to showing the biholo-
morphism group has finitely many components is different and is based on the classical
fact that the outer automorphism group of a semisimple Lie group is finite.

Another motivation for Theorem 1.2 comes from work of Isaev and Krantz. Suppose M
is a Kobayashi hyperbolic complex manifold, then a biholomorphism of M is determined
by its 1-jet of any point. So when M has complex dimension d, the automorphism group
Aut(M) has real dimension at most

dimg M + dimg U(d) = 2d + d*.

Further, if dimg Aut(M) = 2d + d? it is easy to see that M must be biholomorphic to
the unit ball in C?. In fact, there is a gap in the dimension of Aut(M).

Theorem 1.11 (Isaev and Krantz [25]). Suppose M is a Kobayashi hyperbolic complex
manifold. If M has complex dimension d and is not biholomorphic to the unit ball in (Cd,
then

dimg Aut(M) < 2+ d>.

This gap in the dimension of Aut(M) motivated our investigation into the possible
dimensions of £().
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To the best of our knowledge, Theorem 1.2 is the first result which establishes for large
classes of bounded domains that the automorphism group must be, up to a compact
factor and finite index subgroup, a specific Lie group.

1.2. Structure of the paper

Section 2 contains some preliminary remarks. Sections 3 through 5 are devoted to the
proof of Theorem 1.2. The proofs of Corollaries 1.4 and 1.6 appear in Sections 6 and 7
respectively. At the end of the paper, there is a brief appendix describing some basic
properties of semisimple Lie groups and the symmetric spaces they act on.

1.8. Outline of the Proof of Theorem 1.2

The starting point of our proof is the following result of S.Y. Kim [30].

Theorem 1.12 (S.Y. Kim). Suppose Q C C? is a bounded pseudoconvez domain with
C® boundary and finite type. If there exists an automorphism ¢ € Aut(Q) such that
©"(2) = at and ¢ "(2) — x~ for some z € Q and distinct xT,x~ € 99, then Q is
biholomorphic to a weighted homogeneous polynomial domain.

Remark 1.13. Given Q and ¢ € Aut(Q2) as in the statement of Theorem 1.12, work of
Bell and Ligocka [5] and Catlin [11] implies that ¢ extends to a diffeomorphism of 9.
Then it is easy to see that p(z¥) = zF. Kim’s strategy is to show that d(y),+ is a
hyperbolic matrix and then construct a linearization of the action of ¢ on 9Q near z .
See [31,29,46,45] for similar results.

In Section 3, we show that when ) is a bounded pseudoconvex domain with finite
type and L£() contains two points, then there exists some ¢ € Aut(2) such that the
forward orbit and backward orbit of ¢ accumulate on two different points of 02. Hence
by S.Y. Kim’s result, §2 is biholomorphic to a weighted homogeneous polynomial domain
and in particular Auto(2) is non-trivial.

The next step in the proof is to use a result from [7] which shows that the Kobayashi
metric on a finite type domain behaves, in some sense, like a negatively curved Rie-
mannian manifold, see Theorem 2.4 below. In Section 4, we use this result to restrict
the possible solvable subgroups of Aut(£2). This allows us to deduce, in Section 5, that
Aut(2) has finitely many components and is the almost direct product of a compact
subgroup N and a simple Lie group G with real rank one and finite center.

Since G has real rank one, G acts by isometries on a negatively curved Riemannian
symmetric space X. By the classification of such spaces X is either a real hyperbolic
space, a complex hyperbolic space, a quaternionic hyperbolic space, or the Cayley-
hyperbolic plane. We will construct a G-equivariant diffeomorphism from the geodesic
boundary of X to £(€2). Then by using the complex geometry of £(€2) and facts about
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negatively curved symmetric spaces, we will deduce that X must be a complex hyper-
bolic space and hence G is locally isomorphic to SU(L, k) for some k. This implies that
G/Z(G) is isomorphic to Aut(By).
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2. Preliminaries
2.1. Finite type domains

In this subsection we recall the definition of finite type (in the sense of D’Angelo).

Let M be a C*-smooth real hypersurface in C? and let r be a local defining function
for M. For p € C%, let G (0, p) denote the set of germs of non constant holomorphic maps
f from C to C%, such that f(0) = p. If g is a smooth function defined in a neighborhood
of 0 € C, we denote by v(g) the order of vanishing of the function g — g(0) at the origin.
Following [13], the type 7(M,p) of M at p € M is defined by

Vo f)
M = .
TMp) = e D

Then the hypersurface M is of finite type (in the sense of D’Angelo) if 7(M, p) < oo for
every p € M.
Through out the paper we will use the following terminology.

Definition 2.1. A bounded pseudoconvex domain © C C? has finite type if 9Q is C> and
has finite type (in the sense of D’Angelo).

2.2. The Kobayashi metric

In this expository subsection we recall the definition of the Kobayashi metric and
state some of its basic properties. For a more thorough introduction see [1] or [33].

Civen a domain Q C C the (infinitesimal) Kobayashi metric is the pseudo-Finsler
metric

ko(xz;v) = inf {|¢| : f € Hol(D, ), f(0) ==, d(f)o(§) =v}.

By a result of Royden [44, Proposition 3] the Kobayashi metric is an upper semicontinu-
ous function on Q x C%. In particular, if o : [a,b] —  is an absolutely continuous curve
(as a map [a,b] — C%), then the function
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t € [a,b] = ka(o(t); o’ (t))
is integrable and we can define the length of o to be

b

lo(o) = /kg(a(t);al(t))dt.

a

One can then define the Kobayashi pseudo-distance to be

Kq(z,y) = inf {{q(0) : 0: [a,b] — Q is abs. cont., o(a) =z, and o(b) = y}.

This definition is equivalent to the standard definition using analytic chains by a result
of Venturini [49, Theorem 3.1].

When  is a bounded domain, Kq is actually a metric. Further, directly from the
definition, Aut(Q) acts by isometries on (2, Kgq).

2.3. Almost-geodesics
A geodesic in a metric space (X, d) is a curve o : I — X such that
d(o(s),o(t)) = [t — 5|
for all s,z € I. When the Kobayashi metric is Cauchy complete, every two points are
joined by a geodesic. However, it is often more convenient to work with larger classes of

curves.

Definition 2.2. Suppose Q@ C C? is a bounded domain and I C R is an interval. For A > 1
and kK > 0 a curve 0 : I — Q is called an (A, k)-almost-geodesic if

(1) forall s,t eI

1
X [t —s| —k < Kq(o(s),o(t)) < At —s|+ k;

(2) o is absolutely continuous (hence o' (t) exists for almost every ¢ € I), and for almost
every t €

ka(o(t);o'(t)) < Xe™.

Remark 2.3. In [7, Proposition 4.6], we proved that every geodesic in the Kobayashi
metric is an (1, 0)-almost-geodesic.
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There are several reasons to study almost-geodesics instead of geodesics. First almost-
geodesics always exist: for domains 2 where the metric space (2, Kq) is not Cauchy
complete there may not be a geodesic joining every two points, but there is always an
(1, k)-almost-geodesic joining any two points in 2, see [7, Proposition 4.4]. Further, it
is sometimes possible to find explicit almost-geodesics, see for instance Proposition 3.10
below. Finally, almost-geodesics are close enough to geodesics that one can establish
properties about their behavior, see Theorem 2.4 below.

2.4. The geometry of the Kobayashi metric

In this subsection we recall some results about the geometry of the Kobayashi metric
on finite type domains. It is unknown if the Kobayashi metric is Cauchy complete on
every finite type domain, but we still have some negative curvature type behavior.

Theorem 2.4. [7, Theorem 1.4] Fiz A > 1 and k > 0. Suppose Q C C? is a bounded
pseudoconvexr domain with C* boundary and finite type. Assume that oy, : [an,bp] — Q
is a sequence of (A, k)-almost-geodesics. If on(a,) — © € 9Q, o,(b,) — y € 08, and
x # y, then there exist n, — oo and ty € [an,,bn,] such that the sequence oy, (ty)
converges in €.

Remark 2.5. Informally this theorem says that almost-geodesics bend into the domain
like geodesics in the Poincaré disc model of real hyperbolic 2-space.

As a corollary we have the following.

Corollary 2.6. Suppose 2 C C? is a bounded pseudoconvexr domain with C*° boundary
and finite type. If o : [0,00) — Q is an almost-geodesic, then

lim o(t)

t—o0

exists.

Proof. Suppose that o : [0,00) — Q is an almost-geodesic and there exists sequences
Sn,tn — 00 such that o(s,) = x, o(t,) — y, and x # y. By passing to subsequences we
can further assume that s, < t, for all n. Since x # y, Theorem 2.4 implies that

:16111\)I Kq (0(0), a([sn,tn])) < 0.

But since o is a almost-geodesic we have

Ko (0(0),0([sn,ta])) > %sn ok

for some A > 1 and k > 0. So we have a contradiction. O
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2.5. Smooth extensions to the boundary

By results of Catlin [11] and Bell and Ligocka [5], if € is a bounded pseudoconvex
domain with C*° boundary and finite type, then each ¢ € Aut(f2) extends to a diffeo-
morphism of Q. Later Bell proved that the induced homomorphism Aut(£2) — Diff(Q2)
is continuous in the Whitney topology, see [4]. This implies, by a classical result of
Montgomery and Zippin, that the map

is smooth, see [38, Chapter 5]. So:

Theorem 2.7. Suppose Q C C?% is a bounded pseudoconver domain with C*° boundary
and finite type. The map

Aut(Q) x Q2 — Q
(#,2) = ¢(2)
extends to a smooth map Aut(2) x Q — Q.

We will also use the following theorem of Bell.

Theorem 2.8 (Bell [}]). Suppose Q C C% is a bounded pseudoconvex domain with C™
boundary and finite type. If zo € Q and @, € Aut(Q) is a sequence of automorphisms
with ©,(20) — = € 90 and v, (20) = y € 0. Then p,(2) converges locally uniformly
on Q\ {y} to z and ©;*(2) converges locally uniformly on Q\ {z} toy.

2.6. Limit sets of subgroups

Given a domain Q c C¢ and a subgroup H < Aut(Q) the limit set of H, denoted
L(; H), is the set of points x € 9Q where there exists some z € ) and a sequence
hy € H such that h,(z) — z.

Proposition 2.9. Suppose ) C C? is a bounded pseudoconvex domain with C*° boundary
and finite type. If H < Aut(QQ) is a subgroup, then L(Q; H) is a closed subset of OQ. If
N < Aut(Q2) normalizes H, then L(Q; H) is N-invariant.

Proof. Suppose z,,, € L(Q; H) and z,, — x € 9Q. Then there exist z, € Q and
sequences w%m) € H such that lim,, gp%m)(zm) = Zp,. Then by Theorem 2.8

lim oM(z) = 2
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for any z € Q. So we can find n,, — oo such that

lim (™ (z) = 2.

m—oo | 'm

Thus = € L(Q; H) and hence L£(€; H) is a closed subset of 02

Now suppose that N < Aut(2) normalizes H. If z € L(Q2; H), then there exists some
z € Q and a sequence ¢,, € H such that lim,, . ¢m(z) = z. Now if n € N, then
Theorems 2.7 and 2.8 imply that

Tim g (2) = 1 ( lim g (n(2)) = n(e).

So nx € L(Q; H) and hence £(2; H) is N-invariant. O
3. Elements of the automorphism group

For bounded domains with finite type boundary we have the following analogue of
the Wolff-Denjoy theorem.

Theorem 3.1. [7, Corollary 2.11] Suppose @ C C? is a bounded pseudoconver domain
with C'°° boundary and finite type. If f: Q — Q is a holomorphic map, then either

(1) for every z € Q) the orbit {f"(z) : n € N} is relatively compact in §2,
(2) there exists a point £ € OS2 such that

lim f*(z) =4

n—oo

for all z € Q.

Remark 3.2. Karlsson [27] proved Theorem 3.1 with the additional assumption that the
metric space (2, Kq) is Cauchy complete.

Using Theorem 3.1 we can characterize the automorphisms of 2 by the behavior of
their iterates. Suppose Q € C? is a bounded pseudoconvex domain with C* boundary
and finite type. If ¢ € Aut(f2), then by Theorem 3.1 either ¢ has relatively compact
orbits 2 or there exists some point Z; € 092 such that

lim ¢"(2) = £

n—oo ¥

for all z € Q. In this latter case, we call @j the attracting fixed point of .

Definition 3.3. Suppose Q2 € C? is a bounded pseudoconvex domain with C°° boundary
and finite type. If ¢ € Aut(Q2), then:
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(1) ¢ is elliptic if every orbit of ¢ in Q is relatively compact in €,

(2) ¢ is parabolic if ¢ is not elliptic and £} = (;,1,

(3) ¢ is hyperbolic if ¢ is not elliptic and f;j #* f;f,l. In this case we call £ := K;,l the
repelling fized point of .

Remark 3.4. Theorem 3.1 implies that every automorphism of 2 is either elliptic, hyper-
bolic, or parabolic.

3.1. The dynamics

We have the following immediate consequences of Theorem 2.8 and the definitions.

Corollary 3.5. Suppose Q@ C C% is a bounded pseudoconvez domain with C> boundary
and finite type. Assume h € Aut(Q)) is hyperbolic. If U is a neighborhood of EZ in Q and
V is a neighborhood of £, in Q, then there exists some N > 0 such that

R*(Q\V)CU and h™" (Q\U) CV
for alln > N.

Corollary 3.6. Suppose Q) C C? is a bounded pseudoconvex domain with C'°° boundary
and finite type. Assume u € Aut(Q) is parabolic. If U is a neighborhood of £} in Q, then
there exists some N > 0 such that

u" (Q\U) CU andu™™ (Q\U) CU
for alln > N.
3.2. Constructing hyperbolic elements

Lemma 3.7. Suppose 2 C C? is a bounded pseudoconvexr domain with C* boundary and
finite type. Assume ¢, € Aut(Q) is a sequence of automorphisms with ¢,(2) — ™ and

¢, (2) = 2= for some z € Q and xT, 2~ € 0. If xT # 27, then ¢, is hyperbolic for n
large. Further, Ef;n — at.

Proof. Fix disjoint neighborhoods U+, U~ of 7,2~ in Q. By Theorem 2.8 there exists
some N > 0 such that

¢ (Q\UT) CUT and ¢,,' (Q\UT) Cc U~
for all n > N. So

or (Q\U") CcUT and ¢, (Q\UT) C U~
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for all n > N and m € N. So from Corollary 3.6, we see that ¢, is not parabolic for
n > N. Further, if ¢,, is elliptic for some n € N, then {¢" : m € Z} is relatively compact
in Aut(€?). So there exists some my — oo such that

lim @)% (2) = 2
k—o0
for all z € Q which is impossible when n > N. So we see that ¢, is not elliptic when
n > N. So ¢, must be hyperbolic for n > N.
We next show that E;‘n — 2. Since

o (Q\U7) cU*

for all n > N and m € N, Corollary 3.5 implies that E;fn € Ut when n > N. Since Ut
was an arbitrary neighborhood of ¥ we then see that K(‘;ﬂ — ot
To show that K;n — x~ one simply repeats the argument above. 0O

Proposition 3.8. Suppose ) C C? is a bounded pseudoconvexr domain with C*° boundary
and finite type. If H < Aut(Q) is a subgroup and L(Q; H) contains at least two points,
then H contains a hyperbolic element.

Proof. Suppose that £(€; H) contains two distinct points x, y. Then there exist ¢, @, €
H and z1, 29 € Q such that ¢,,(21) = = and ¢,(22) — y. By passing to a subsequence
we can suppose that ¢.-1(z1) — 2~ and ¢! (22) — y~. Now if x # 2, then Lemma 3.7
implies that ¢,, is hyperbolic for large m and there is nothing to prove. Likewise, if
y # y~, then ¢, is hyperbolic for large n. So we may assume that x =z~ and y = y~.

Then by Theorem 2.8, we see that ¢,,(z) converges locally uniformly to z on Q\ {x}
and ;! (z) converges locally uniformly to y on Q\ {y}. Since = # y, if h, = ¢nip, then
hn(2) — z and h,1(z) — y for all z € Q. So Lemma 3.7 implies that h,, is hyperbolic
for large n. O

3.3. Ping-pong

The next proposition is not used in the proof of Theorem 1.2, but naturally fits into
the current discussion.

Proposition 3.9. Suppose Q C C? is a bounded pseudoconvex domain with C*° boundary
and finite type. If hy, ha € Aut(Q2) are hyperbolic elements and

+ o= ot
€h17€h17€h27£h2

are all distinct, then there exist n,m > 0 such that the elements h1*, hy generate a free
group.
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Proof. This follows from Corollary 3.5 and the well known “ping-pong lemma,” see for
instance [15, Section IL.B]. O

3.4. Hyperbolic elements translate an almost geodesic

In a CAT(0) metric space a hyperbolic isometry always translates a geodesic (see for
instance [8, Chapter I1.6 Theorem 6.8]). We now show that a similar phenomena holds
for hyperbolic automorphisms.

Proposition 3.10. Suppose Q) is a bounded pseudoconver domain with C°° boundary and
finite type. If h € Aut(Q) is hyperbolic, then there exist A\ > 1, k > 0, T > 0, and an
(A, K)-almost-geodesic v : R — Q such that

h(t) = y(t +nT)
forallt eR andn € Z.
We start the proof of the proposition with a lemma.

Lemma 3.11. Suppose 2 is a bounded pseudoconvex domain with C°° boundary and finite
type. If h € Aut(Q) is a hyperbolic element, then there exists some L > 0 such that

im Ko )2

n—00 n

for all z € Q.

Proof. If we fix z € Q and let b, = Kqo(h™(z), 2), then b1y < by, +by,. So by a standard
lemma (see for instance [51, Theorem 4.9]) the limit

n
L = lim Ka(h"(2),2)
n—o0 n

exists. Further the limit

L= tm Zol"2).2)

n—oo n

clearly does not depend on the choice of z. So we only need to show that the limit is
positive.
For 0 < €1 < €5 sufficiently small define

Co={2€Q:¢ < ||z—€ZH < e}

By picking €1, €2 small enough we can assume that '\ Cy has two connected components
Ay, B with é; € Ap and ¢, € By. Now by [7, Proposition 3.5] there exists some ¢y > 0
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such that kqg(z;v) > &g ||v|| for all z € Q and v € C? Define § := dy(ez — €;1). Then, if
z1 € AgNQ and z3 € By N we have Kq(z1,22) > 4.
Now fix some zy € By N ). By Theorem 2.8 there exists some ng > 0 such that

h™ (AgUChU{z0}) C Ap.
Then for j € N define
Aj = h™I(Ag), B; = h™I(By), and Cj = h™I(Cy).
Then, by construction, if z; € A; NQ and 2z, € B; N Q we have Kq(z1,22) > 4.
Now suppose that o : [0, 7] — Q is an absolutely continuous curve from zy to A" (z).

Then by construction there exist 0 =ty < t; <ty < --- <ty = T such that

o(tj)e Aj_1NBjfor1<j<N-1.

So
T N-1 bt
lo(o) = [ ka(o(t);o’(t))dt = ka(o(t); o' (t))dt
Q 0/ Q jX::O tJ/ Q
N—-1
= ) Ka(o(tj),o(tj+1)) = N.
=0

Since o was an arbitrary absolutely continuous curve from zg to A" (z), we have
KQ(hnON(ZQ), Zo) > NO.
SoL>d/ng. O

Proof of Proposition 3.10. Fix some zg € Q and k¢ > 1. Then let g : [0,7] — € be an
(1, kg )-almost-geodesic joining zq to hzg (such curves exist by [7, Proposition 4.4]). Then
define a curve v : R — Q by letting

v(t) = k" yo(t — T'm)

when ¢ € [mT, (m+1)T] and m € Z. Clearly h"v(t) = v(t+nT) forallt € R and n € Z.
Further because 7g is a (1, kp)-almost-geodesic we see that v is absolutely continuous
and

ka(y(t);+/(t) < e

almost everywhere. Then
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Kal(y(s).7(t)) < / Fa(y(r): 7/ (r)dr| < e |t — 5|

S

for all s,t € R. By the previous lemma there exist a;, 8 > 0 such that
Ko(y(mT),y(nT)) = Ka(h"™ (20), h"(20)) = Ka(h™"(20), 20) = a|m —n| =

for all m,n € Z. Now if s,t € R there exist m,n € Z such that |s — mT| < T/2 and
|t —nT| <T/2. So

Ka((s),7(t)) = Ka(y(mT),v(nT)) — Ka(y(mT), s) — Ka(t, y(nT))

>alm—n|—8—e"T

«
> S|t —s|—aT — B —eT.
2 T |t —s| —« B—e
So 7y is an (A, k)-almost-geodesic for some A > 1 and k > 0. O
3.5. More on weighted homogeneous polynomial domains
In this section we describe some consequences of S.Y. Kim’s rigidity result in [30].

Theorem 3.12. Suppose €2 is a bounded pseudoconvexr domain with C*° boundary and
finite type. If Aut(Q) contains a hyperbolic element, then:

(1) Q is biholomorphic to a weighted homogeneous polynomial domain.
(2) If h € Aut(Q) is a hyperbolic element, then there exists a one-parameter group
us € Aut(Q) such that

d C
E o ut(£;) ¢ TzzaQ

and u,(0,) = £, .

(3) There exists a hyperbolic element in Auty(f2).
(4) If x1,...,xNn € 0N, then there exists a hyperbolic element ¢ € Auto(Q) such that

Z;g,g; ¢ {ml, ce 7(1)]\7}.

(5) Auto(QY) acts without fized points on OS), that is if z € O, then there exists g €
Auto () with g(2) # 2

Proof. Part (1) is just Corollary 1 in [30].
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Part (2) and Part (3) follow from the proof of Theorem 2 in [30, Section 6]. In par-
ticular, if h € Aut(Q) is hyperbolic the discussion on page 432 in [30] implies that there
exists an weighted homogeneous polynomial domain

P={(w,z) € CxC¥" :Im(z) > p(2)}
and a biholomorphism ¥ : Q@ — P with the following properties:

(1) if h =T ohoWL, then

R(w,2) = (uw, D)

for some 0 < p < 1 and D a diagonal complex matrix,

(2) there exists a neighborhood U of ¢ in 0Q where ¥ extends to a smooth map
U:U— 9P and ¥(4) = 0.

(3) W is an infinitesimal CR-automorphism (see page 431 in [30]).

Now let @; : P — P be the one-parameter group of automorphisms @ (w, z) = (w+t, z)
and let u; = ¥~ o, o W. Using the fact that ¥ is an infinitesimal CR-automorphism

we see that
4 ue(6)) ¢ Tis 09
dt|,_, n
Further,
Ruh ™" (w, 2) = (w + pt, z) = Uyny
SO

lim A"u:h™" =1id

n—oo

in Aut(Q). Next fix some zg € Q. Then

n—oo

ur(€),) = uy <nh_>rrgo h_”zo) = lim A™" (h"uth_”zo) ={,.

This establishes Part (2).
We now prove Part (3). Since p is a weighted homogeneous polynomial, there exists
a one-parameter group of the form

ar(w, z) = (e'w, Asz)

1

where A; is a matrix. Then let a; = ¥~+ oa; o W. Since
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QAn log(p) (\Ij_l(wﬂ 0)) = hn(\lj_l (’LU, 0)),

we see that Efi = ﬁf when t > 0. So a; is hyperbolic when t # 0. This establishes Part

(3).
We now prove Part (4). By Part (3), there exists an hyperbolic element g € Auty(€2).
Then by Part (2), there exist two one-parameter subgroups u; ,u; such that

u?‘(ég_) =, and u; (£5) = (7.

Further, the maps

t—uf (0F) and t — u; (£,)

are non-constant. By Theorem 2.7 the curves

t—uf (0F) and t — u; (£,))

are continuous, so we can pick t1,ts such that

ug, (6y),up, (6g) & {1, 2w}

and

u (05, ug, (€5), 65

are all distinct.
Now let

= utout o
g1 = ug,gu”, and gy = ug,gu_,,

then €] = uf (0F), €, = uf (07) = €5, £, = ug, (¢]), and {5, = u;, (¢5) = L. So

L N

91?791’ g2’ g2

are all distinct. Then let ¢, = g'g;". By applying Corollary 3.5 to g; and g2 we see
that

: — pt+
38, On* = Lo

and

lim ¢ 'tz =0+
n—00 ¢)” 92
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+

for all z € Q. Then Lemma 3.7 implies that ¢,, is hyperbolic for large n with €¢ — Z;‘l

n

and E;ﬂ — K;;. So for n large enough

f?gn,g(;n ¢ {1‘1,...,$N}.

Further, ¢, € Auty(Q2) since g € Auto(Q2).
Finally, Part (5) follows from Part (4) and Theorem 2.8. O

4. Solvable subgroups

In this section we establish an analogue of a result of Byers [10]: if X is a complete
simply connected Riemannian manifold with sectional curvature bounded above by a
negative number and S is a solvable subgroup of the isometry group of X, then either
S has a fixed point in X, a fixed point in the geodesic boundary of X, or leaves some
geodesic in X invariant.

For finite type domains we prove the following analogue of Byer’s theorem.

Theorem 4.1. Suppose €2 is a bounded pseudoconvex domain with C*° boundary and finite
type. If S < Aut(Q?) is a closed non-compact solvable subgroup, then either

(1) there exists a term Sy,4+1 of the derived series of S such that every element of Sy,+1
is elliptic, Sya1 is non-compact, and L(€; Syma1) s a single point;

(2) S contains a hyperbolic element h such that S preserves the set {{;,¢;} and the
quotient S/{h™ :n € Z} is compact; or

(3) S contains a parabolic element u and S fizes £} .

Further, if N is a connected subgroup of Aut(Q) which normalizes S, then N has a fized
point in ON).

Remark 4.2. It seems possible that case (1) never actually occurs. In particular, every
non-compact solvable subgroup .S of Aut(B,) contains a hyperbolic or parabolic element,
so for By case (1) never occurs. More generally, when ) is a bounded pseudoconvex
domain with finite type and £(2) contains at least two points, then Theorem 1.2 implies
that case (1) never occurs.

Proof. Let S = Sy > 51 > S2 > --- > Sy =1 be the derived series of S. Then each 5}
is a closed subgroup of Aut(f2).

Let m be the largest number such that S,,, contains a non-elliptic element. In the case
in which every element of S is elliptic, let m = —1.

Case A: S,, 11 is non-compact. Since S,,+1 is closed and Aut(Q2) acts properly on €, the
limit set £(€2; Spn41) is non-empty. By assumption, every element of Sy, is elliptic, so
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Lemma 3.7 implies that # £(Q; Sp41) < 2. So L(§2; Sp+1) = {x0} for some point. Thus
we are in case (1) of the theorem.

Case B: S,,,+1 is compact and 5, contains a hyperbolic element h. We first claim that
Sm+1 fixes E; and ¢, . Fix some 2 € €. Then, since S,41 is compact, the set

{820 :8€ Spmi1}
is compact in 2. Then for s € S,,11 we have

s(ti) = lim sh"zo = lim h"(h™"sh")z0 =

by Theorem 2.8 since h™"sh™ is in Sp,41.
Next we claim that {s¢},s¢; } = {£}, ¢, } for every s € S. Suppose s € S; for some
i < m then shs~'h=! € S, so by induction

shs™ W HOT 0} = {65 6, )
But then
shs_l{ﬁg,é}:} = {EI,E;}.

1

However, shs™" is hyperbolic with fixed points sé%. So by Corollary 3.5 we must have

that

{stf, sty ={65,¢,}.

We now argue that the quotient S/{h™ : n € Z} is compact. So suppose that s, € S
is a sequence. We claim that there exist np — oo and a sequence my € 7Z such that
Sn,, h™ converges. By Proposition 3.10 there exist A > 1, K > 0, T > 0, and an (A, k)-
almost-geodesic v : R — € such that

B™(t) = A(t +mT)

for all t € R and m € N. Since the set v([0,7]) C Q is compact, Theorem 2.8 implies
that

lim ~(t) = 6%.

t—too

Next consider the almost-geodesics v, = s,7. Since S{¢;}, ¢, } = {{;, ¢, } we see that

i 2a(0) =, ( im_2(0) € 667}

t—+oo
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Then Theorem 2.4 implies that there exist ny — oo, T € R, and zy € Q such that
Ve (Tk) = 20 € Q. Then there exist ¢, € [0,7] and my, € Z such that

S D" (k) = Yoy (Th)-

Then
lim s, ™y (tr) = 2o.
k—o0

Since Aut(Q)) acts properly on 2, we can pass to another subsequence such that s, h™*
converges in Aut({2). Since s, € S was an arbitrary sequence, we then see that the
quotient S/{h™ :n € Z} is compact. Thus we are in case (2) of the theorem.

Case C: S,, 11 is compact and S,, contains a parabolic element u € S,,. Arguing as in
Case B, one can show that S¢;] = ¢. Thus we are in case (3) of the theorem.

We now prove the “further” part of the proof. Let N be a connected subgroup that
normalizes S.

First suppose that there exists a term S,,;11 of the derived series of S such that
every element of S, is elliptic, Sy, 41 is non-compact, and L£(Q; Sy11) = {20} If N
normalizes S, then N also normalizes S,,+1. Thus Nxzg = xg by Proposition 2.9.

Next suppose that S contains a hyperbolic element A such that S preserves the set
{656, }. It n € N, then nhn~" is hyperbolic with attracting/repelling fixed points né;.
Since nhn~! € S, we also have that

nhn” e 6 = {0, 6}
So by Corollary 3.5, we must have {n¢;",n¢; } = {¢;, ¢, }. Since N is connected, we then
have néf = Ef for all n € N.

Finally, suppose that S contains a parabolic element u and S fixes £;. Then arguing
as in the previous case shows that nf} = ¢} foralln € N. O

5. Proof of Theorem 1.2

For the rest of this section, suppose that €2 is a bounded pseudoconvex domain with
C* boundary and finite type. Further assume that £() contains at least two points.

5.1. Constructing the group G
Lemma 5.1. With the notation above, 1 is biholomorphic to a weighted homogeneous

polynomial domain. In particular, Auto(Q) is non-compact and Aute(Q) acts without
fized points on ON).
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Proof. By Proposition 3.8, Aut(2) contains a hyperbolic element. Then by S.Y. Kim’s
rigidity result, see Theorem 1.12, €2 is biholomorphic to a weighted homogeneous polyno-
mial domain. Then Theorem 3.12 implies that Autg(€2) is non-compact and acts without
fixed points on 9Q2. O

Let G*°! < Auto(Q) be the solvable radical of Auty(Q2), that is let G*°! be the maximal
connected, closed, normal, solvable subgroup of Auty(f2). Notice that G*° is also a
normal subgroup of Aut(2). Next let G < Auto(€2) be a semisimple subgroup such
that Auto(Q) = G**G*°! is a Levi-Malcev decomposition of Autg(€2).

Lemma 5.2. With the notation above, G*° is compact. In particular, G*° is non-compact.

Proof. If G*°' were non-compact, then the “further” part of Theorem 4.1 would imply
that Auto () fixes a point in 9Q which is impossible by the last lemma. O

Lemma 5.3. With the notation above, G*°' is a torus and G*°' is in the center of Auty(Q).

Proof. First, note that G*°! is a torus (every compact, connected, solvable Lie group is
isomorphic to a torus). Then since G*°! is normal in Aut(Q2), every g € Aut(f2) induces
an automorphism 7 : Aut(Q) — Aut(G*°') defined by 7(g)(h) = ghg~!. Since G*°' is a
torus, Aut(G*°!) is isomorphic to GL,(Z) for some n. Since Auty(Q) is connected, we
then see that Autg(f2) < ker 7 and hence G*° is in the center of Auty(Q2). O

Remark 5.4. Lemma 5.3 implies that Auto(Q?) is a reductive group, which immediately
implies the next two lemmas. But to minimize the amount of Lie theory required we give
direct proofs.

Lemma 5.5. With the notation above, G*° is a normal subgroup in Aut(€).
Proof. If g € Aut(Q?), then
gGssgfleol _ gGssgflgGsolgfl _ gGSSG801971 _ gAuto(Q)gfl — Auto(Q)

since G*°! and Auto(Q2) are normal subgroups of Aut(Q). So gG**¢g~! is a Levi factor of
Auto(€2). Since every two Levi factors are conjugate (see [41, Chapter 6, Theorem 3]),
there exists h € Autg(2) such that hG**h~! = gG*g~1. But then h = hys for hy € G**
and s € G*°'. Then since G*°! is in the center of Auty(f2), we see that

gGssgfl _ thshfl — hleshl—l =G, 0O

As in Section A we can write G*° as an almost direct product Gy, ..., G, where each
G, is a closed simple Lie subgroup of G*°. Then define

G := H{Gi : G; is non-compact}.
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Lemma 5.6. With the notation above, G is a normal subgroup of Aut(f2).

Proof. Since G** is a normal subgroup of Aut(f2), any ¢g € Aut(€2) induces an automor-
phism C, : G* — G** defined by Cy(h) = ghg™'. Next let g be the Lie algebra of G.
Then

9=01D Doy

where g, is the Lie subalgebra of G; (see the discussion in Section A). Let m; : g — g;
denote the natural projection. Now fix some G; and some g € Aut(£2). Consider the

induced map m; o d(Cy)lq, : 9; — g;- Since g; is a simple Lie algebra, m; o d(Cy)|g, is

J
either injective or the zero map. For the same reason, m; o d(Cy')|q, is either injective
or the zero map. Thus m; 0 d(Cy)|g, is either an isomorphism or the zero map. So

d(Cy)(g;) C ©{g; : g; is isomorphic to g,}.

However, G; is compact if and only if the Killing form of g, is a negative definite
bilinear form [32, Chapter IV, Proposition 4.27]. This implies that when G; is non-
compact we have Cy(G;) < G. So G is a normal subgroup of Aut(§2). O

Lemma 5.7. With the notation above, G contains a hyperbolic element and L();G) =
L(9).

Proof. Since G** is non-compact, G is also non-compact and so £(£2; G) is non-empty.
By Proposition 2.9, £(£2; G) is closed and Aut(Q)-invariant. By Lemma 5.1, Aut(f2) has
no fixed points in 92, so L(§2; G) contains at least two points. So G contains a hyperbolic
element by Proposition 3.8.

Now fix some = € £(£2). Then there exist zp €  and ¢,, € Aut(Q) such that ¢, (z0) —
x. By passing to a subsequence we can suppose that ¢, 1(z9) — y € 9. Then by
Theorem 2.8, ¢, (z) — x for all 2 € Q\ {y}. Since £(Q;G) is not a single point, there
exists some z € L(£; G) such that z # y. Then ¢,(z) — z. By Lemma 2.9, £(9; G) is
closed and Aut(§2)-invariant, so we see that x € L(Q; G). Since x € L(2) was arbitrary,
we see that L(Q;G) = L(Q). O

Lemma 5.8. With the notation above, G acts without fixed points on OS2.
Proof. Let
Ny := H{Gl : G; is compact}.

Then define Ny := NyG*°!. Then, by construction, Autg(€2) is the almost direct product
of G and NV;.
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Now suppose that xg € 9. We claim that there exists g € G such that gxg # x¢. By
Theorem 3.12 Part (3) there exists a hyperbolic element h € Auto(2) such that

+ —
£h>£h7$0

are pairwise distinct. Now h = gk for some g € G and k € N;. Fix some 2y € 2. Since N
is compact the set {k"(zo) : n € Z} is relatively compact in 2. So Theorem 2.8 implies
that

. n BT n(p—mn _p*
DR (o) = Hp W) =6

So g is hyperbolic and E;‘ = Ef. Since xg # £, , Theorem 2.8 implies that g"xzg — K:. So
grg # xg. 0O

5.2. Real rank one and finite center

In this subsection we will show that G is a simple Lie group with real rank one and
finite center.
Given g € G, let C(g) denote the centralizer of g in G.

Lemma 5.9. With the notation above, if h € G is hyperbolic, then the quotient C'(h)/{h" :
n € Z} is compact.

Proof. Fix a sequence g, € C(h). We claim that there exist ny — oo and a sequence
my, € Z such that g,, h™* converges.

By Proposition 3.10 there exist A > 1, k > 0, T > 0, and an (), k)-almost-geodesic
o0 : R — Q such that

h"o(t) = o(t + mT)

for all t € R and m € Z. Since the set o(][0,7]) C 2 is compact, Theorem 2.8 implies
that

: _ gt
tlglzl?oo U(t) o gh ’

Consider the almost-geodesics o, = gno. Since

gl =

=0
gn hgn ! h

we then have that

: _ ypE
t—lgtnoo In (t) - gh
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for all n.
Then Theorem 2.4 implies that there exist ny — oo, T € R, and zy € Q such that
On,, (Tk) = 2o € Q. Then we can find my, € Z and ¢, € [0,7T] such that

Ony (Tk) = Gn;, hmka(fk).
Then
lim g,, h™* o (tg) = 2o.
k—o0
Since Aut(€2) acts properly on €2, we can pass to another subsequence such that g, h™*
converges in Aut(Q). Since g, was an arbitrary sequence in C(h) we then see that
C(h)/{h™:n € Z} is compact. O

Lemma 5.10. With the notation above, G has finite center.

Proof. Since G is semisimple, the center of GG is discrete. So this follows immediately
from Lemma 5.9. 0O

Fix a norm on g, the Lie algebra of G, and let ||-|| be the associated operator norm
on SL(g).

Lemma 5.11. With the notation above, if zg € ), then there exist some a > 1 and 5 > 0
such that

Ka(g(20),20) < alog||Ad(g)| + B
forallg e G.
Proof. By Theorem A.5, there exist a compact subgroup K < G and a connected abelian
subgroup A < G such that G = KAK and Ad(A) is diagonalizable in SL(g). Let a be
the Lie algebra of A. Since A is abelian and connected the map X € a — exp(X) € A is

an Lie group isomorphism. Next let ||-||, be a norm on a. Since Ad(A) is diagonalizable
in SL(g) there exists ap > 1 such that

1
L1, < log [ Ad(e)] < o X1,
Since the action on Aut(f2) on €2 is smooth, there exists an C' > 0 such that

Ka(eXz9,20) < C |1 X]|,

for all X € a with || X||, < 1. Then if X € alet Xo = X/ || X||, and n = [[|X]|,]. Then
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Kao(eX20,20) < Ka(eX 20,0 20) + Kq(e"X02, e DXo20) ... 4 K (X020, z0)
S OIX = nXolly + C [ Xolly +-- -+ C [ Xoll, = CIX, -
Further, since K is compact, there exists some R > 0 such that
Kqo(k(20),20) <R
for all k£ € K. By increasing R if necessary, we can further assume that
log |Ad(K)[| < R

for all k € K.
Now suppose that g € G. Then g = kieX ky for some X € a and ky, ks € K. Then

Ko(g(20), 20) < 2R+ Ko(e™ 20, 20) < 2R+ C'[|X ||, < 2R + ayC log HAd(eX)H .
Further
log [[Ad(e™) || < log [[Ad(ky )| [Ad(g)] [Ad(k3 )| < 2R +log [ Ad(g)]] -
So
Ka(g(20), 20) < 2R(1+ aoC) + aoClog [|[Ad(g)[|. O
Definition 5.12. An element g € G is L-hyperbolic (respectively L-elliptic, L-unipotent)
if ¢ is hyperbolic (respectively elliptic, unipotent) in G in the Lie group sense (see

Section A).

Lemma 5.13. With the notation above, there exists an element g € G which is both
hyperbolic and L-hyperbolic.

Proof. By Lemma 5.7 there exists some g € G which is hyperbolic. Then by Lemma 3.11

KQ(Q"(,Z), Z)

lim >0
n—oo n
for all z € Q. So by Lemma 5.11
log ||Ad(g)™
lim inf 12 1Ad@" (1)
n—o00 n

Using the Jordan decomposition, see Theorem A.3, we can write ¢ = khu where k is
L-elliptic, h is L-hyperbolic, u is L-unipotent, and k, h, v commute. Then since Ad(k) is
elliptic and Ad(u) is unipotent we have
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oy logllAd(ka)"]| . log [Ad(K)"™| + log [|Ad(u)"|

i <l =0
n— oo n n— o0 n
SO
g 8 IADB) ] dog | Ad(g)" | — log [ Ad(kw)]
n— o0 n n—o0 n

Thus Ad(h) # 1.
We claim that ku is elliptic (as in Definition 3.3). Since

n
L log |Ad(kw)"] _

n—00 n

Lemmas 3.11 and 5.11 imply that ku is not hyperbolic. Now fix some zy € 2. Since ku
commutes with g we see that

ku(ﬁgi) = ku (nglz}:loo g”zo) = nggloo g kuzg = E;t.

So ku cannot be parabolic by Corollary 3.6. So ku must be elliptic.
Now since ku is elliptic, the set {(ku)"zp : n € Z} is relatively compact in 2. So by
Corollary 3.5

. n T
ngrilooh (20) o nll)j:oo

m g"((ku) "zp) = Egi.

So h is hyperbolic. O

Lemma 5.14. With the notation above, G is a simple Lie group of non-compact type and
has real rank one.

Proof. Pick an element h € GG which is hyperbolic and £L-hyperbolic. By Proposition A .4,
there exists a maximal Cartan subgroup A < G such that h € Z(G)A. Then Z(G)A <
C(h) and so by Lemma 5.9 the quotient Z(G)A/{h™ : n € Z} is compact. Since A is
isomorphic to R" where r = rankg (G), this implies that r = 1. O

5.3. The automorphism group has finitely many components

In this section we show that Auto(£2) has finite index in Aut(€2).
Since G is a normal subgroup in Aut(f2), associated to every g € Aut(f2) is an element
7(g) € Aut(G) defined by

7(g9)(h) = ghg™".

Next let Inn(G) denote the inner automorphisms of G, that is the automorphisms of
the form g — hgh~! where h € G. Then let Out(G) = Aut(G)/Inn(G). Finally define
[7] : Aut(2) — Out(G) by letting [7](g) denote the equivalence class of 7(g).
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Since G is semisimple, Out(G) is finite (see for instance [22, Chapter X]). So to prove
that Autg(£2) has finite index in Aut(f2), it is enough to prove the following.

Lemma 5.15. With the notation above, Autog(§Y) has finite index in ker[r]. In particular,
Auto () has finite index in Aut(9).

Proof. It is enough to show that the quotient ker[r]/G is compact. So suppose that
gn € ker[r] is a sequence. We claim that there exist ny — oo and hy € G such that
gny, P converges in Aut(Q). Now for each n € N there exists some g, € G such that
7(9n) = 7(7,,)- Then by replacing each g,, with g,g, ' we can assume that

9099, =g

for every g € G and n € N. Now fix a hyperbolic element h € G. Then g,, € C(h) and so
by Lemma 5.9 there exist ny, — oo and my € Z such that g,, A" converges in Aut(Q).
Since g, was an arbitrary sequence in ker[r] we see that ker[r]/G is compact. Hence
Aut () has finite index in ker[r]. O

5.4. The limit set is a sphere

In this subsection we show that £(£2) is homeomorphic to a sphere.

We now consider the symmetric space associated to G, see Section A for more details.
Let K < G be a maximal compact subgroup and let X = G/K be the associated
symmetric space. Since G has real rank one, X is negatively curved. Let X (oco) be the
geodesic boundary of X. Fix a point £ € X (c0) and let P be the stabilizer of &, in G.
Since G acts transitively on X (00), see Section A.1, we can identify X (oco) with G/P.

Lemma 5.16. With the notation above, there exists a point xo € L(Q) such that
P ={g€G:g(zy) = zo}

Further, G - xg = L() and L(Q) is a smooth submanifold of O diffeomorphic to a
sphere of dim X — 1.

Proof. Since G acts transitively on X (00), there exists an L-hyperbolic element h such
that w,‘f = &p. Then by Theorem A.10 the limit

lim A7 "ph" € G

n—oo

exists for every p € P.
Let zg = E;. Then if p € P and z € ) we have

pro =p (nim h”z) = lim A" (h™"ph™) z =z

— 00 n—oo
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by Theorem 2.8. So P fixes xzg.
Let

H={g€G:g(xo) =0}

Then H is closed and P < H. So by Theorem A.9 either H = P or H = (. However
Lemma 5.8 implies that G - ¢ # {20}, so we must have that

P={g€G:g(xo) =10}

Then the map g € G/P — g-z( induces a continuous, injective map G/P — G-xzq. By
the discussion in Section A.1, G/P is diffeomorphic to a sphere of dimension dim X — 1.
Then, since G/P is compact, the map

gEG/P—g-x20€ G- 19

is actually a homeomorphism. In particular, G - xg is a compact subset of 9. Since G
acts smoothly on 92 and the orbit G - xq is closed, it follows that G - x( is a smooth
submanifold of 9§ which is diffeomorphic to G/ P, see for instance [48, Theorem 15.3.7].
We next show that G - o = L£(€2). Suppose that z € £(Q2). By Lemma 5.7, £(Q) =
L(; G). So there exist zg € Q and a sequence g, € G such that g,(z9) — z. By passing
to a subsequence we can suppose that g, !(29) — y. Then by Theorem 2.8, g,,(2) — z
for all z € Q\ {y}. Since G - zq is not a single point, there exists some gy € G such that
goZo # y. Then g, (goxo) — x. Since G - o is compact we then see that x € G- x9. O

5.5. The group G is locally isomorphic to SU(1, k)

In this subsection we prove that G is locally isomorphic to SU(1, k) for some k > 1.
If dimg X (00) = 1, then by the classification of negatively curved symmetric spaces X

must be isometric to real hyperbolic 2-space. Then G is locally isomorphic to SU(1, 1).
Next assume that dimg X (co) > 2. Then

dimg T, £(€) + dimg TS0 > 2+ (2d — 2) = 2d
SO
T. L(Q) N TCa0 # (0)
for every z € L(2).

Lemma 5.17. With the notation above, T, L(Q) is not contained in TCOQ for every z €
L(Q). In particular,
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dmm(ﬂﬁwbﬂﬂ%9>:mmEM)—l
for all z € L(Q).

Proof. By Theorem 3.12 part (2), there exists a point zg € L£L(€) such that T, L(Q) is
not contained in TC 9. Then since G acts transitively on £(2) we see that T, £(€) is
not contained in TCAQ for every z € £L(). O

Then for z € L(Q) let
V. =T, L(Q)NTEIN.

Then z — V, is a codimension one smooth distribution on £(£2). Further, since G acts
on 2 by biholomorphisms we see that d(g).V. =V, for all g € G. So V., is a G-invariant
distribution. So G/P has a G-invariant codimension one smooth distribution. But this
is only possible if G is locally isomorphic to SU(1, k), see Theorem A.11.

5.6. Constructing an equivariant map

Recall that PU(1, k) is the image of SU(1,%) in PGLy41(C) and PU(1, k) acts by
fractional linear transformations on the unit ball B, c C*:

a bt _c—l—Dz
c D a+biz

In fact, this action gives an isomorphism
po : PU(1, k) — Aut(By)

Since G is locally isomorphic to SU(1, k), there exists an isomorphism 7 : G/Z(G) —
PU(1, k). So we have an isomorphism p : G/Z(G) — Aut(By) defined by p = pg o .

Now let P be the group from Section 5.4. Then p(P) is the stabilizer of a point in
wg € OBy. This follows from the fact that p(P) is a parabolic subgroup of Aut(Bj) or
by simply repeating the proof of Lemma 5.16 (since By, is itself a bounded pseudoconvex
domain with finite type).

Lemma 5.18. With the notation above, if p € Aut(Q) commutes with G, then p(x) = x
for all z € L().

Proof. By Lemma 5.7, £L(2) = L(Q; G). So if z € L£(2) then there exist zp € 2 and a
sequence g, € G such that g,(zp) — z. Then

@(@) = ((1m_ga(20)) = m pga(z0) = lim gu(ip20) =



32 A. Zimmer / Advances in Mathematics 366 (2020) 107085

by Theorem 2.8. O

The above Lemma implies that Z(G) acts trivially on £(£2) and so the action of G on
L(92) induces an action of G/Z(G) on L(£2). So we have a p-equivariant diffeomorphism
F: L(2) — 0By, defined by

F(gzo) = p(g)wo.
5.7. The automorphism group is an almost direct product

In this section we prove that Aut(2) is the almost direct product of G and a compact
subgroup, but first a lemma.

Lemma 5.19. With the notation above, let C' denote the centralizer of G in Aut(2). Then
C is compact.

Proof. By Lemma 5.18 each ¢ € C acts trivially on £(€). Since # £(Q2) > 2, Theorem 2.8
implies that C' is compact. 0O

As in Section 5.3, let 7 : Aut(©2) — Aut(G) denote the homomorphism given by
7(g)(h) = ghg~*. Notice that 7(¢)(Z(G)) = Z(G) and so T descends to an automorphism
of G/Z(G). Then 7 induces a homomorphism ® : Aut(2) — Aut(PU(1, k)) defined by

®(g) =por(g)op .
Let 6 : PU(1, k) — PU(L, k) denote the automorphism

0(9) =79

and let Inn(PU(1, %)) denote the automorphisms of the form g — hgh™! where h €
PU(1, k). Then it is well known that

Aut(PU(1,k)) = Inn(PU(1, k)) UInn(PU(1,k)) o 6.
Finally define the subgroup
N =o' ({id,0}) < Aut(Q).
Proposition 5.20. With the notation above,

(1) N is a compact normal subgroup of Aut(2),
(2) Aut() is the almost direct product of G and N.
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Proof. By definition N is a normal closed subgroup of Aut(Q2). Further, since 7 :
G/Z(G) — PU(1,k) is an isomorphism, we see that G N N = Z(G). In particular,
G N N is finite.

We next claim that GN = Aut(Q2). Consider some g € Aut(f2). Then, since 7 :
G/Z(G) — PU(1,k) is an isomorphism, there exists some h € G such that ®(hg) €
{id,#}. So g € GN. So GN = Aut(Q).

Next, we claim that G and N commute. Since G and N are normal subgroups we see
that

[G,N]<GNN =Z(G).
But for n € N fixed, the set
{ngn~'g7':ge G} <[G,N] < Z(G)

L'= 1 for all g € G. Since n € N was

arbitrary, we then see that ng = gn for alln € N and g € G.

is connected and finite, so we see that ngn~=tg™

Finally since N is closed and commutes with G, Lemma 5.19 implies that N is com-
pact. 0O

6. Finite jet determination

In this section we prove Corollary 1.4 from the introduction. We will use the following
two facts from Riemannian geometry.

Lemma 6.1. Suppose K is a compact Lie group acting smoothly on a compact manifold
M. Then there exists a K-invariant Riemannian metric on M.

Proof Sketch. Fix any Riemannian metric g on M and let pu be the Haar measure on K.
Then define a new Riemannian metric g by

9 (v, w) = / G (k) g0, d(k) g) dpa(k).

Then g is an K-invariant Riemannian metric on M. O

Lemma 6.2. Suppose (M, g) is a Riemannian manifold. If F1, F5 : M — M are isometries
and

(M, Fy,x) = j1(M, Fp, x)

for some x € M, then there exists a neighborhood U of x such that Fi|ly = Faly.
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Remark 6.3. When (M, g) is a complete Riemannian manifold, the conclusion of the
lemma can be upgraded to say that F; = F5.

Proof Sketch. For details see for instance [22, Chapter 1, Lemma 11.2]. The idea is to

find a neighborhood V' of 0 in T, M where the exponential map exp, : V — M is well
defined. Then prove that

F(exp, (v)) = expp(y) (dFe(v))
when F' : M — M is an isometry and v € V. Then let U = exp, (V). O
We will also need the following basic fact about holomorphic maps.
Lemma 6.4. Suppose Q@ C C? is a bounded domain with C* boundary and f : Q — C is
a holomorphic map that extends continuously to F : 9Q — C. If F~1(0) has non-empty

interior in OS), then f is identically zero.

Proof. This is a simple consequence of the Luzin-Privalov theorem, see [12, Theorem
2.5, O

Now for the rest of the section, suppose that Q C C? is a bounded pseudoconvex
domain with C'* boundary and finite type. Further assume that £(2) contains at least
two distinct points. Let G and N be the groups in Theorem 1.2.

Lemma 6.5. With the notation above, for any x € 92 the map
g€ N — j1(09,9,2) € Jet1(Q, x)
1S injective.

Proof. Since N is a compact Lie group acting smoothly on 912, this follows from Lem-
mas 6.1, 6.2, and 6.4. O

Lemma 6.6. With the notation above, for any x € L()) the map
g € Aut(Q) — §2(09Q, g, z) € Jet2 (00, x)

s injective.

Proof. It is enough to show that: if ¢ € Aut(2) and

j2<aQ7 2 .’17) = J2(697 lda ZL'),
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then ¢ = id. Now ¢ = gk for some g € G and k € N. By Lemma 5.19, k(x) = z for all
x € L(2) and so

JQ(L(Q)v g, 'T) = ]2(£(9)7 ') 'T) = ]Q(E(Q)v id, LE)

Now there exists an isomorphism p : G/Z(G) — Aut(Bj) and a p-equivariant diffeomor-
phism F : £(Q2) — 0By. So

J2(0By, p(9), F(x)) = j2(9 By, id, F(z)).

Which implies that p(g) = id and hence g € Z(G). Since Z(G) < N (by the construction
of N), we then have that ¢ € N. So by Lemma 6.5 we see that ¢ =id. O

Lemma 6.7. With the notation above, for any x € 00\ L(Q) the map
g € Aut(Q) — j1(09Q, g, ) € Jet1(Q, x)
1S injective.

Proof. Let M := 9Q\ L(2). We first observe that Aut(2) acts properly on M. To see this
assume for a contradiction that ¢, — oo in Aut(£2), but there exists a compact subset
K C OM such that K N p,(K) # 0. Now fix some zg € €. By passing to a subsequence
we can assume that ¢,(z0) — = € 9Q and ¢,(20) — y. But then by Theorem 2.8,
©n(2) converges locally uniformly to 2 on Q\ {y}. Since z,y € £(Q) we then see that
KN, (K) =0 for n large. So we have a contradiction.

Then by a result of Palais [42, Theorem 4.3.1], there exists a Aut({2)-invariant metric
g on M. Then the result follows from Lemmas 6.2 and 6.4. O

7. Tits alternative

In this section we prove Corollary 1.6 from the introduction. We will reduce to the
following variant of the Tits’ alternative.

Theorem 7.1 (Tits [}7]). Suppose G is a Lie group with finitely many components and
H < G is a subgroup. Then either H contains a free group or has a finite index solvable
subgroup.

For the rest of the section suppose that €2 is a bounded pseudoconvex domain with
real analytic boundary and H < Aut(2) is a subgroup. We claim that either H contains
a free group or a finite index solvable subgroup. Since every bounded pseudoconvex
domain with real-analytic boundary is of finite type (see Remark 1.7), we can apply
Theorem 1.2.
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Now Aut(9) is a Lie group. If Aut(?) is compact, then it has finitely many compo-
nents. So we can apply Theorem 7.1. If Aut(f2) is non-compact, then £(£2) is non-empty.
If £(9) contains at least two points, then Aut(Q) has finitely many components by
Theorem 1.2. So we can apply Theorem 7.1 again.

It remains to consider the case in which £(2) = {z¢}. Then Aut(f) fixes zo € 9.
Let J(09; zp) denote the group of k-jets of smooth maps f : 9Q — 9Q with f(zg) = xo.
Then by [2, Theorem 5], there exists some N such that the induced homomorphism
v Aut(Q) — Jn(0€; x0) is injective. Further, Jy(98;xo) is a Lie group with finitely
many components so we can apply Theorem 7.1 again.

Appendix A. Semisimple Lie groups and symmetric spaces

In the proof of Theorem 1.2, we use some basic properties about semisimple Lie groups
and the symmetric spaces they act on. In this section we recall these properties and give
references.

For the rest of the section we make the following assumption.

Assumption. G is a connected semisimple Lie group with finite center.

Let g be the Lie algebra of G. Then there is a Lie algebra decomposition

9=0:9 Dy,

into simple Lie subalgebras, see for instance [32, Chapter 1, Theorem 1.54]. Then let G;
be the connected subgroup of G generated by exp(g;).

Lemma A.1. Fach G; is a closed subgroup of G and G is the almost direct product of
Gi,...,Gp.

Proof. This is a well known fact, but here is a proof. By the Campbell-Baker-Hausdorff
formula (see [32, Appendix B, Section 4]) distinct pairs of Gi,...,G, commute. So
distinct pairs of Gy, ..., G, have intersection in Z(G) and hence have finite intersection.
The Campbell-Baker-Hausdorff formula also implies that the map

(X1,..., Xn) €91 ® - @ g, = exp(X1) exp(X2) ... exp(X,) € G

is a local diffeomorphism at 0. So the product G; ---G,, contains a open neighborhood
of id in GG. Since G; --- G, is a connected subgroup, this implies that G = G1 - - G,,.
Thus G is the almost direct product of Gy, ...,G,.

Next we show that each G; is closed. Suppose that ¢ € G1. Then g = g; ... g, for some
g; €G,. 80 g7 g € GiN(Gy---G,). Thus gy 'g € Z(G). Since g € G was arbitrary, we
see that G; C Z(G)G and in particular that G has finite index in G;. Since G and
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G, are both connected, this implies that G; = G;. Applying the same argument to the
other factors shows that each Gj; is closed. O

We now make an additional assumption:
Additional Assumption. Every G; is non-compact.

Next let Ad : G — SL(g) denote the adjoint representation. The kernel of Ad is the
center of G, denoted Z(G), so we have an isomorphism G/Z(G) = Ad(G).

Definition A.2. We then say an element g € G is:
semisimple if Ad(g) is diagonalizable in SL(g®),

unipotent if Ad(g) is unipotent in SL(g), and

)
2) hyperbolic if Ad(g) is diagonalizable in SL(g) with all positive eigenvalues,
)
) elliptic if Ad(g) is elliptic in SL(g).

Since G is semisimple, every element can be decomposed into a product of a elliptic,
hyperbolic, and unipotent element. More precisely:

Theorem A.3 (Jordan decomposition). If g € G, then there exist ge, gn, gu € G such that

(1) 9= gegngu,
(2) ge € G is elliptic, gn € G is hyperbolic, g, € G is unipotent, and
(3) Ge, gn, gu commute.
Moreover, the ge, gn, gu are unique up to factors in ker Ad = Z(G).
Proof. See for instance [18, Theorem 2.19.24]. O
A subgroup A < G is called a Cartan subgroup if A is closed, connected, abelian, and

every element in A is hyperbolic. The real rank of G, denoted by rankg (G), is defined
to be

rankg (G) = max{dim A4 : A is a Cartan subgroup of G}.
We will need the following fact about Cartan subgroups.

Proposition A4. If g € G is hyperbolic and A < G is a maximal Cartan subgroup, then
g 1s conjugate to an element of Z(G)A.

Proof. See for instance [22, Chapter IX, Theorem 7.2]. O
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Theorem A.5 (Iwasawa decomposition). If A < G is a mazimal Cartan subgroup, then
there exists a compact subgroup K < G such that G = KAK.

We now focus on the real rank one case.
Additional Assumption. rankg (G) = 1.

Since

n

rankg (G) = Z rankg (G;)

i=1

this implies that G is a simple Lie group. In addition, by the classification of simple Lie
groups, G is locally isomorphic to one of SO(k, 1), SU(k, 1), Sp(k, 1), or F; 2.

Now fix K < G a maximal compact subgroup. Then the quotient manifold X = G/K
is diffeomorphic to RY™X and has a unique (up to scaling) non-positively curved G-
invariant Riemannian metric g, see [18, Section 2.2] for details. Let dx denote the distance

induced by g.

Remark A.6. Clearly Z(G) < K and so Z(G) acts trivially on X. For this reason, in
many of the references cited in this section the group G is assumed to have trivial center.

In the rank one case, the associated symmetric space (X,dx) is either a real hy-
perbolic space, a complex hyperbolic space, a quaternionic hyperbolic space, or the
Cayley-hyperbolic plane. In all these cases, (X, dyx) is a negatively curved Riemannian
manifold. For details see [39, Chapter 19].

Since X is a non-positively curved simply connected Riemannian manifold, there exists
a compactification called the geodesic compactification which can be defined as follows.
Let G denote the set of unit speed geodesic rays o : [0,00) — X. Then we say two
geodesics 01,09 € G are equivalent if

tlingo dx(o1(t),02(t)) < 0.
Finally let X (c0) = G/ ~. This gives a compactification X = X U X (00) of X as follows.
First fix a point zg € X. Since X is non-positively curved, for any z € X there exists
a unique geodesic segment o, joining x¢ to x. We then say that a sequence z, € X
converges to a point o € X (00) if the geodesic segments o, converge locally uniformly
to o. This construction does not depend on the initial choice of xy. See [18, Section 1.7]
for details.

Since G acts by isometries on X and the construction of X (cc) is independent of base
point, the action of G on X extends to an action on X U X (00). For a general non-
positively curved simply connected Riemannian manifold this action is only continuous,
but for negatively curved symmetric spaces we have the following.
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Theorem A.7. With the notation above, X has a smooth structure, with this structure
X (00) is diffeomorphic to a sphere of dimension dim X — 1, and the action of G on X
extends to a smooth action on X (00).

This theorem follows from considering the standard models of the negatively curved
symmetric spaces, see [39, Chapter 19].

Although this will not be needed in the paper, it is worth observing the following fact
about the action of hyperbolic elements.

Theorem A.8. Suppose h € G is a hyperbolic element with Ad(h) # id. Then there exist
distinct points w}f,w; € X(o0) such that h(wf) = wf. Further, if U is a neighborhood
of w,‘f in X and V is a neighborhood of w, in X, then there exists some N > 0 such that

A" (X\V)CUand h™" (X \U)CV
for alln > N.
A.1. Parabolic subgroups

A subgroup P < G is called a parabolic subgroup of G if P is the stabilizer of some
€ € X(o0). Since G has real rank one, G acts transitively on X (c0), see for instance [18,
Proposition 2.21.13], and so there is a natural identification of X (c0) and G/P. So G/P
is diffeomorphic to a sphere of dimension dim X — 1.

In the proof of Theorem 1.2, we use the following fact about parabolic subgroups.

Theorem A.9. With the notation above, if P < G is a parabolic subgroup, then P is a
mazximal subgroup of G, that is: if H is a closed subgroup of G and P < H, then either
H=PorH=G.

Proof. Suppose P is the stabilizer of some £ € X (00) and that H is a closed subgroup
with P S H < G. Then there exists h € H with h{ = n and n # £. Then hPh~™! < H
is the stabilizer of 1. Since G has real rank one, hPh~! and P are opposite parabolic
subgroups and so hPh~!P is dense in G, see [52, Proposition 1.2.4.10]. So H = G. 0O

Theorem A.10. With the notation above, suppose h € G is hyperbolic and P is the
stabilizer of w; € X(00), then for every p € P the limit

lim A= "ph"
n— o0

exists in G.

Proof. See for instance [18, Proposition 2.17.3]. O
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The action of G on G/P is very well understood and we have the following result
about the existence of invariant distributions.

Theorem A.11. With the notation above, if P < G is a parabolic subgroup and G/P has
a non-trivial G-invariant smooth distribution V', then either

(1) G is locally isomorphic to SU(1,k) and V is a codimension one distribution,
(2) G is locally isomorphic to Sp(1,k) and V is a codimension three distribution, or
(3) G is locally isomorphic to F;*° and V is a codimension seven distribution.

Proof. In each case there is an explicit model of the symmetric space X, see for in-
stance [39, Chapter 19], and this result follows immediately from the considering these
models. O
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