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1. Introduction

Given a domain Ω ⊂ C
d, let Aut(Ω) denote the automorphism group of Ω, that is the 

group of biholomorphic maps Ω → Ω. The group Aut(Ω) is a topological group when 

endowed with the compact-open topology and when Ω is bounded H. Cartan proved 

that Aut(Ω) is a Lie group. We will let Aut0(Ω) denote the connected component of 

the identity in Aut(Ω). The limit set of Ω, denoted L(Ω), is the set of points x ∈ ∂Ω

where there exist z ∈ Ω and a sequence ϕn ∈ Aut(Ω) such that ϕn(z) → x. When Ω is 

bounded, Aut(Ω) acts properly on Ω. Hence for bounded domains, L(Ω) is non-empty if 

and only if Aut(Ω) is non-compact.

This is the first of a series of papers studying the group Aut(Ω) and the set L(Ω). A 

well understood family of examples are the so-called generalized ellipses:

Em1,...,md
=

{
(z1, . . . , zd) ∈ C

d : |z1|2m1 + · · · + |zd|2md < 1
}

where m1, . . . , md ∈ N. Webster [53] has given an explicit description of Aut(Em1,...,md
)

(also see [40,37]). First, by permuting coordinates, we may assume that

m1 = · · · = mk = 1 < mk+1 ≤ · · · ≤ md.

Then if Bk ⊂ C
k is the unit ball and φ ∈ Aut(Bk), define a rational function Sφ : C

k → C

by

Sφ(z) =
1 −

∣∣φ−1(0)
∣∣2

(1 − 〈z, φ−1(0)〉)2 .

Also given z = (z1, . . . , zd) ∈ C
d, let zk = (z1, . . . , zk) ∈ C

k. Then Webster [53] showed 

that Aut(Em1,...,md
) has finitely many components and ϕ ∈ Aut0(Em1,...,md

) if and only 

if

ϕ(z) =
(

φ
(
zk

)
, zk+1eiθk+1Sφ

(
zk

)1/2mk+1

, . . . , zdeiθdSφ

(
zk

)1/2md

)

for some φ ∈ Aut(Bk) and θk+1, . . . , θd ∈ R. So, if we let N ≤ Aut(Em1,...,md
) denote the 

subgroup of elements of the form

ϕ(z) =
(
z1, . . . , zk, zk+1eiθk+1 , . . . , zdeiθd

)
,

then N ≤ Aut0(Ω) is a normal compact subgroup and the quotient Aut0(Ω)/N is iso-

morphic to Aut(Bk).

Webster’s explicit description of the automorphism group also implies the following: 

if e1, . . . , ed is the standard basis of Cd, then

L (Em1,...,md
) = ∂ Em1,...,md

∩ SpanC{e1, . . . , ek}.
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So for generalized ellipses the limit set is always a smooth submanifold of the boundary 

which is diffeomorphic to an odd dimensional sphere.

The main result of this paper shows that all these properties of generalized ellipses ex-

tend to pseudoconvex domains with finite type (see Definition 2.1 below). Before stating 

the result we introduce a special class of algebraic domains.

We say a real polynomial p : C
d → R is a weighted homogeneous polynomial if there 

exist positive integers m1, . . . , md such that

p(t1/m1z1, . . . , t1/mdzd) = tp(z1, . . . , zd)

for all t > 0 and z1, . . . , zd ∈ C.

Definition 1.1. A domain P is called a weighted homogeneous polynomial domain if

P =
{

(w, z) ∈ C × C
d−1 : Im(w) > p(z)

}

where p : C
d → R is a weighted homogeneous polynomial.

Notice that a weighted homogeneous polynomial domain always has non-trivial auto-

morphisms, namely real translations in the first variable and a dilation coming from the 

fact that p is weighted homogeneous.

Also, given a group G and subgroups G1, . . . , Gn ≤ G we say that G is the almost 

direct product of G1, . . . , Gn if G = G1 · · · Gn and distinct pairs of G1, . . . , Gn commute 

and have finite intersection. With this terminology we will prove the following.

Theorem 1.2. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with C∞ boundary 

and finite type. Assume L(Ω) contains at least two distinct points. Then:

(1) Ω is biholomorphic to a weighted homogeneous polynomial domain.

(2) Aut(Ω) has finitely many connected components.

(3) Aut(Ω) is the almost direct product of closed subgroups G and N where

(a) N is compact,

(b) G is a connected Lie group with finite center and there exists an isomorphism 

ρ : G/Z(G) → Aut(Bk) for some k ≥ 1.

(4) L(Ω) is a smooth submanifold of ∂Ω and there exists an ρ-equivariant diffeomorphism 

F : L(Ω) → ∂ Bk. In particular, L(Ω) is an odd dimensional sphere and so either

(a) dim L(Ω) ≤ dim ∂Ω − 2 or

(b) L(Ω) = ∂Ω and Ω is biholomorphic to the unit ball.

Remark 1.3.

(1) The definition of finite type is given in Section 2.1 below.
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(2) We will use work of S.Y. Kim [30] to show that Ω is biholomorphic to a weighted 

homogeneous polynomial domain.

(3) The proof of Theorem 1.2 uses Catlin’s deep work on finite type domains [11]. In 

the less general case of pseudoconvex domains with real analytic boundary, Catlin’s 

results are not needed and instead one could use results of Kohn [34] and Diederich 

and Fornæss [16].

(4) A theorem of Griffiths [21] implies that there exist examples of domains Ω ⊂ C
2

where Aut(Ω) is infinite, discrete, and the quotient Aut(Ω)\Ω is compact (see [19]

for details). The last condition implies that L(Ω) = ∂Ω. These examples never have 

C2 boundary by a theorem of Rosay [43].

Theorem 1.2 provides a precise description of the algebraic structure of Aut(Ω) and 

its action on ∂Ω. Using this description we will prove two corollaries.

The first result involves determining an automorphism from its k-jet. In particular, 

given a diffeomorphism f : M → M of a manifold M , let jk(M, f, x) denote the k-jet of 

f at x ∈ M . Then let Jetk(M, x) denote the set of all k-jets at x. A well-known problem 

in CR-geometry is to prove that a CR-automorphism (under certain non-degeneracy 

conditions) is determined by its k-jet for some k > 0, see for instance [9,2,17,36,35,26,6].

By theorems of Bell and Ligocka [5] and Catlin [11] every biholomorphism of a 

bounded pseudoconvex domain with finite type extends to a CR-automorphism of its 

boundary (see Theorem 2.7 below). In particular, if Ω ⊂ C
d is a bounded pseudoconvex 

domain with finite type, ϕ ∈ Aut(Ω), and x ∈ ∂Ω, then

jk(∂Ω, ϕ, x) ∈ Jetk(∂Ω, x)

is well defined for any k ≥ 0. For these extensions we prove the following finite jet 

determination theorem.

Corollary 1.4. (See Section 6.) Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with 

C∞ boundary and finite type. Assume L(Ω) contains at least two distinct points. Then:

(1) For any x ∈ L(Ω) the map

g ∈ Aut(Ω) → j2(∂Ω, g, x) ∈ Jet2(∂Ω, x)

is injective.

(2) For any x ∈ ∂Ω\ L(Ω) the map

g ∈ Aut(Ω) → j1(∂Ω, g, x) ∈ Jet1(∂Ω, x)

is injective.
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(3) If N is the subgroup from Theorem 1.2, then for any x ∈ ∂Ω the map

g ∈ N → j1(∂Ω, g, x) ∈ Jet1(∂Ω, x)

is injective.

Remark 1.5.

(1) CR-automorphisms of ∂ Bd are determined by their 2-jets, but not their 1-jets. So 

Corollary 1.4 seems optimal.

(2) It was previously known that if Ω ⊂ C
d is a bounded pseudoconvex domain with 

real analytic boundary, then there exists some k > 0 such that any biholomorphism 

is determined by its k-jet at a boundary point, see [2, Theorem 5]. In the special case 

that d = 2 and ∂Ω is real analytic, it was previously known that k = 2 is sufficient, 

see [17].

(3) The proof of Corollary 1.4 part (3) is based on an argument of Huang [23].

A theorem of Tits states that a subgroup of GLN (R) either contains a free group or 

has a finite index solvable subgroup. Using Theorem 1.2 we will prove the following.

Corollary 1.6. (See Section 7.) Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with 

real analytic boundary. If H ≤ Aut(Ω) is a subgroup, then either H contains a free group 

or has a finite index solvable subgroup.

Remark 1.7.

(1) A result of Diederich and Fornæss [16] implies that every bounded pseudoconvex 

domain with real analytic boundary has finite type, see the discussion in [14, Section 

4.1.4].

(2) In the proof of Corollary 1.6 we consider three cases: when Aut(Ω) is compact, when 

L(Ω) is a single point, and when L(Ω) contains at least two distinct points. The 

assumption that ∂Ω is real analytic instead of just having finite type is only used in 

the case when L(Ω) is a single point.

1.1. Prior work and motivation

Our main motivation for Theorem 1.2 comes from the old problem of characterizing, up 

to biholomorphism, the domains which have large automorphism groups and reasonable 

boundaries. This can be seen as an analogue of the Riemann Mapping Theorem for 

higher dimensions.

The first major result along these lines is the Wong-Rosay Ball Theorem.
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Theorem 1.8 (Wong and Rosay Ball Theorem [43,54]). Suppose Ω ⊂ C
d is a bounded 

strongly pseudoconvex domain. Then Aut(Ω) is non-compact if and only if Ω is biholo-

morphic to the unit ball.

Since Wong and Rosay’s work, there have been a number of characterizations of 

domains with non-compact automorphism group among special classes of domains, see 

for instance [20,28,3,55,50] and the survey paper [24]. In this paper we focus on the 

following related problem: characterize the possible automorphism groups of domains 

with reasonable boundaries.

Theorem 1.2 is also motivated by a result of Zaitsev who proved for algebraic domains 

that Aut(Ω) has finitely many components.

Theorem 1.9. [56, Theorem 1.2, Corollary 1.1] Suppose D ⊂ C
d is a bounded algebraic 

domain. Then Aut(D) has finitely many components.

Remark 1.10. A domain Ω ⊂ C
d is called a bounded algebraic domain if there exists a 

real valued polynomial p : C
d → R such that Ω is a bounded connected component of 

{z ∈ C
d : p(z) < 0} and ∇p(z) �= 0 for all z ∈ ∂Ω.

Zaitsev actually shows that Aut(D) has the structure of an affine Nash group such 

that the map Aut(D) × D → D is Nash. It then follows from basic properties of such 

groups that Aut(D) has finitely many components. Our approach to showing the biholo-

morphism group has finitely many components is different and is based on the classical 

fact that the outer automorphism group of a semisimple Lie group is finite.

Another motivation for Theorem 1.2 comes from work of Isaev and Krantz. Suppose M

is a Kobayashi hyperbolic complex manifold, then a biholomorphism of M is determined 

by its 1-jet of any point. So when M has complex dimension d, the automorphism group 

Aut(M) has real dimension at most

dimR M + dimR U(d) = 2d + d2.

Further, if dimR Aut(M) = 2d + d2 it is easy to see that M must be biholomorphic to 

the unit ball in Cd. In fact, there is a gap in the dimension of Aut(M).

Theorem 1.11 (Isaev and Krantz [25]). Suppose M is a Kobayashi hyperbolic complex 

manifold. If M has complex dimension d and is not biholomorphic to the unit ball in Cd, 

then

dimR Aut(M) ≤ 2 + d2.

This gap in the dimension of Aut(M) motivated our investigation into the possible 

dimensions of L(Ω).
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To the best of our knowledge, Theorem 1.2 is the first result which establishes for large

classes of bounded domains that the automorphism group must be, up to a compact 

factor and finite index subgroup, a specific Lie group.

1.2. Structure of the paper

Section 2 contains some preliminary remarks. Sections 3 through 5 are devoted to the 

proof of Theorem 1.2. The proofs of Corollaries 1.4 and 1.6 appear in Sections 6 and 7

respectively. At the end of the paper, there is a brief appendix describing some basic 

properties of semisimple Lie groups and the symmetric spaces they act on.

1.3. Outline of the Proof of Theorem 1.2

The starting point of our proof is the following result of S.Y. Kim [30].

Theorem 1.12 (S.Y. Kim). Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with 

C∞ boundary and finite type. If there exists an automorphism ϕ ∈ Aut(Ω) such that 

ϕn(z) → x+ and ϕ−n(z) → x− for some z ∈ Ω and distinct x+, x− ∈ ∂Ω, then Ω is 

biholomorphic to a weighted homogeneous polynomial domain.

Remark 1.13. Given Ω and ϕ ∈ Aut(Ω) as in the statement of Theorem 1.12, work of 

Bell and Ligocka [5] and Catlin [11] implies that ϕ extends to a diffeomorphism of ∂Ω. 

Then it is easy to see that ϕ(x±) = x±. Kim’s strategy is to show that d(ϕ)x+ is a 

hyperbolic matrix and then construct a linearization of the action of ϕ on ∂Ω near x+. 

See [31,29,46,45] for similar results.

In Section 3, we show that when Ω is a bounded pseudoconvex domain with finite 

type and L(Ω) contains two points, then there exists some ϕ ∈ Aut(Ω) such that the 

forward orbit and backward orbit of ϕ accumulate on two different points of ∂Ω. Hence 

by S.Y. Kim’s result, Ω is biholomorphic to a weighted homogeneous polynomial domain 

and in particular Aut0(Ω) is non-trivial.

The next step in the proof is to use a result from [7] which shows that the Kobayashi 

metric on a finite type domain behaves, in some sense, like a negatively curved Rie-

mannian manifold, see Theorem 2.4 below. In Section 4, we use this result to restrict 

the possible solvable subgroups of Aut(Ω). This allows us to deduce, in Section 5, that 

Aut(Ω) has finitely many components and is the almost direct product of a compact 

subgroup N and a simple Lie group G with real rank one and finite center.

Since G has real rank one, G acts by isometries on a negatively curved Riemannian 

symmetric space X. By the classification of such spaces X is either a real hyperbolic 

space, a complex hyperbolic space, a quaternionic hyperbolic space, or the Cayley-

hyperbolic plane. We will construct a G-equivariant diffeomorphism from the geodesic 

boundary of X to L(Ω). Then by using the complex geometry of L(Ω) and facts about 
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negatively curved symmetric spaces, we will deduce that X must be a complex hyper-

bolic space and hence G is locally isomorphic to SU(1, k) for some k. This implies that 

G/Z(G) is isomorphic to Aut(Bk).
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2. Preliminaries

2.1. Finite type domains

In this subsection we recall the definition of finite type (in the sense of D’Angelo).

Let M be a C∞-smooth real hypersurface in Cd and let r be a local defining function 

for M . For p ∈ C
d, let G(0, p) denote the set of germs of non constant holomorphic maps 

f from C to Cd, such that f(0) = p. If g is a smooth function defined in a neighborhood 

of 0 ∈ C, we denote by ν(g) the order of vanishing of the function g − g(0) at the origin. 

Following [13], the type τ(M, p) of M at p ∈ M is defined by

τ(M, p) := sup
f∈G(0,p)

ν(r ◦ f)

ν(f)
.

Then the hypersurface M is of finite type (in the sense of D’Angelo) if τ(M, p) < ∞ for 

every p ∈ M .

Through out the paper we will use the following terminology.

Definition 2.1. A bounded pseudoconvex domain Ω ⊂ C
d has finite type if ∂Ω is C∞ and 

has finite type (in the sense of D’Angelo).

2.2. The Kobayashi metric

In this expository subsection we recall the definition of the Kobayashi metric and 

state some of its basic properties. For a more thorough introduction see [1] or [33].

Given a domain Ω ⊂ C
d the (infinitesimal) Kobayashi metric is the pseudo-Finsler 

metric

kΩ(x; v) = inf {|ξ| : f ∈ Hol(D, Ω), f(0) = x, d(f)0(ξ) = v} .

By a result of Royden [44, Proposition 3] the Kobayashi metric is an upper semicontinu-

ous function on Ω × C
d. In particular, if σ : [a, b] → Ω is an absolutely continuous curve 

(as a map [a, b] → C
d), then the function
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t ∈ [a, b] → kΩ(σ(t); σ′(t))

is integrable and we can define the length of σ to be

�Ω(σ) =

b∫

a

kΩ(σ(t); σ′(t))dt.

One can then define the Kobayashi pseudo-distance to be

KΩ(x, y) = inf {�Ω(σ) : σ : [a, b] → Ω is abs. cont., σ(a) = x, and σ(b) = y} .

This definition is equivalent to the standard definition using analytic chains by a result 

of Venturini [49, Theorem 3.1].

When Ω is a bounded domain, KΩ is actually a metric. Further, directly from the 

definition, Aut(Ω) acts by isometries on (Ω, KΩ).

2.3. Almost-geodesics

A geodesic in a metric space (X, d) is a curve σ : I → X such that

d(σ(s), σ(t)) = |t − s|

for all s, t ∈ I. When the Kobayashi metric is Cauchy complete, every two points are 

joined by a geodesic. However, it is often more convenient to work with larger classes of 

curves.

Definition 2.2. Suppose Ω ⊂ C
d is a bounded domain and I ⊂ R is an interval. For λ ≥ 1

and κ ≥ 0 a curve σ : I → Ω is called an (λ, κ)-almost-geodesic if

(1) for all s, t ∈ I

1

λ
|t − s| − κ ≤ KΩ(σ(s), σ(t)) ≤ λ |t − s| + κ;

(2) σ is absolutely continuous (hence σ′(t) exists for almost every t ∈ I), and for almost 

every t ∈ I

kΩ(σ(t); σ′(t)) ≤ λeκ.

Remark 2.3. In [7, Proposition 4.6], we proved that every geodesic in the Kobayashi 

metric is an (1, 0)-almost-geodesic.
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There are several reasons to study almost-geodesics instead of geodesics. First almost-

geodesics always exist: for domains Ω where the metric space (Ω, KΩ) is not Cauchy 

complete there may not be a geodesic joining every two points, but there is always an 

(1, κ)-almost-geodesic joining any two points in Ω, see [7, Proposition 4.4]. Further, it 

is sometimes possible to find explicit almost-geodesics, see for instance Proposition 3.10

below. Finally, almost-geodesics are close enough to geodesics that one can establish 

properties about their behavior, see Theorem 2.4 below.

2.4. The geometry of the Kobayashi metric

In this subsection we recall some results about the geometry of the Kobayashi metric 

on finite type domains. It is unknown if the Kobayashi metric is Cauchy complete on 

every finite type domain, but we still have some negative curvature type behavior.

Theorem 2.4. [7, Theorem 1.4] Fix λ ≥ 1 and κ ≥ 0. Suppose Ω ⊂ C
d is a bounded 

pseudoconvex domain with C∞ boundary and finite type. Assume that σn : [an, bn] → Ω

is a sequence of (λ, κ)-almost-geodesics. If σn(an) → x ∈ ∂Ω, σn(bn) → y ∈ ∂Ω, and 

x �= y, then there exist nk → ∞ and tk ∈ [ank
, bnk

] such that the sequence σnk
(tk)

converges in Ω.

Remark 2.5. Informally this theorem says that almost-geodesics bend into the domain 

like geodesics in the Poincaré disc model of real hyperbolic 2-space.

As a corollary we have the following.

Corollary 2.6. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with C∞ boundary 

and finite type. If σ : [0, ∞) → Ω is an almost-geodesic, then

lim
t→∞

σ(t)

exists.

Proof. Suppose that σ : [0, ∞) → Ω is an almost-geodesic and there exists sequences 

sn, tn → ∞ such that σ(sn) → x, σ(tn) → y, and x �= y. By passing to subsequences we 

can further assume that sn ≤ tn for all n. Since x �= y, Theorem 2.4 implies that

sup
n∈N

KΩ

(
σ(0), σ([sn, tn])

)
< ∞.

But since σ is a almost-geodesic we have

KΩ

(
σ(0), σ([sn, tn])

)
≥

1

λ
sn − κ

for some λ ≥ 1 and κ ≥ 0. So we have a contradiction. �
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2.5. Smooth extensions to the boundary

By results of Catlin [11] and Bell and Ligocka [5], if Ω is a bounded pseudoconvex 

domain with C∞ boundary and finite type, then each ϕ ∈ Aut(Ω) extends to a diffeo-

morphism of Ω. Later Bell proved that the induced homomorphism Aut(Ω) → Diff(Ω)

is continuous in the Whitney topology, see [4]. This implies, by a classical result of 

Montgomery and Zippin, that the map

Aut(Ω) × Ω → Ω

(ϕ, z) → ϕ(z)

is smooth, see [38, Chapter 5]. So:

Theorem 2.7. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with C∞ boundary 

and finite type. The map

Aut(Ω) × Ω → Ω

(ϕ, z) → ϕ(z)

extends to a smooth map Aut(Ω) × Ω → Ω.

We will also use the following theorem of Bell.

Theorem 2.8 (Bell [4]). Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with C∞

boundary and finite type. If z0 ∈ Ω and ϕn ∈ Aut(Ω) is a sequence of automorphisms 

with ϕn(z0) → x ∈ ∂Ω and ϕ−1
n (z0) → y ∈ ∂Ω. Then ϕn(z) converges locally uniformly 

on Ω \ {y} to x and ϕ−1
n (z) converges locally uniformly on Ω \ {x} to y.

2.6. Limit sets of subgroups

Given a domain Ω ⊂ C
d and a subgroup H ≤ Aut(Ω) the limit set of H, denoted 

L(Ω; H), is the set of points x ∈ ∂Ω where there exists some z ∈ Ω and a sequence 

hn ∈ H such that hn(z) → x.

Proposition 2.9. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with C∞ boundary 

and finite type. If H ≤ Aut(Ω) is a subgroup, then L(Ω; H) is a closed subset of ∂Ω. If 

N ≤ Aut(Ω) normalizes H, then L(Ω; H) is N -invariant.

Proof. Suppose xm ∈ L(Ω; H) and xm → x ∈ ∂Ω. Then there exist zm ∈ Ω and 

sequences ϕ
(m)
n ∈ H such that limn→∞ ϕ

(m)
n (zm) = xm. Then by Theorem 2.8

lim
n→∞

ϕ(m)
n (z) = xm
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for any z ∈ Ω. So we can find nm → ∞ such that

lim
m→∞

ϕ(m)
nm

(z) = x.

Thus x ∈ L(Ω; H) and hence L(Ω; H) is a closed subset of ∂Ω

Now suppose that N ≤ Aut(Ω) normalizes H. If x ∈ L(Ω; H), then there exists some 

z ∈ Ω and a sequence ϕm ∈ H such that limm→∞ ϕm(z) = x. Now if n ∈ N , then 

Theorems 2.7 and 2.8 imply that

lim
m→∞

nϕmn−1(z) = n
(

lim
m→∞

ϕm(n−1(z))
)

= n(x).

So nx ∈ L(Ω; H) and hence L(Ω; H) is N -invariant. �

3. Elements of the automorphism group

For bounded domains with finite type boundary we have the following analogue of 

the Wolff-Denjoy theorem.

Theorem 3.1. [7, Corollary 2.11] Suppose Ω ⊂ C
d is a bounded pseudoconvex domain 

with C∞ boundary and finite type. If f : Ω → Ω is a holomorphic map, then either

(1) for every z ∈ Ω the orbit {fn(z) : n ∈ N} is relatively compact in Ω,

(2) there exists a point � ∈ ∂Ω such that

lim
n→∞

fn(z) = �

for all z ∈ Ω.

Remark 3.2. Karlsson [27] proved Theorem 3.1 with the additional assumption that the 

metric space (Ω, KΩ) is Cauchy complete.

Using Theorem 3.1 we can characterize the automorphisms of Ω by the behavior of 

their iterates. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with C∞ boundary 

and finite type. If ϕ ∈ Aut(Ω), then by Theorem 3.1 either ϕ has relatively compact 

orbits Ω or there exists some point �+
ϕ ∈ ∂Ω such that

lim
n→∞

ϕn(z) = �+
ϕ

for all z ∈ Ω. In this latter case, we call �+
ϕ the attracting fixed point of ϕ.

Definition 3.3. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with C∞ boundary 

and finite type. If ϕ ∈ Aut(Ω), then:
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(1) ϕ is elliptic if every orbit of ϕ in Ω is relatively compact in Ω,

(2) ϕ is parabolic if ϕ is not elliptic and �+
ϕ = �+

ϕ−1 ,

(3) ϕ is hyperbolic if ϕ is not elliptic and �+
ϕ �= �+

ϕ−1 . In this case we call �−
ϕ := �+

ϕ−1 the 

repelling fixed point of ϕ.

Remark 3.4. Theorem 3.1 implies that every automorphism of Ω is either elliptic, hyper-

bolic, or parabolic.

3.1. The dynamics

We have the following immediate consequences of Theorem 2.8 and the definitions.

Corollary 3.5. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with C∞ boundary 

and finite type. Assume h ∈ Aut(Ω) is hyperbolic. If U is a neighborhood of �+
h in Ω and 

V is a neighborhood of �−
h in Ω, then there exists some N > 0 such that

hn
(
Ω \ V

)
⊂ U and h−n

(
Ω \ U

)
⊂ V

for all n ≥ N .

Corollary 3.6. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with C∞ boundary 

and finite type. Assume u ∈ Aut(Ω) is parabolic. If U is a neighborhood of �+
u in Ω, then 

there exists some N > 0 such that

un
(
Ω \ U

)
⊂ U and u−n

(
Ω \ U

)
⊂ U

for all n ≥ N .

3.2. Constructing hyperbolic elements

Lemma 3.7. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with C∞ boundary and 

finite type. Assume φn ∈ Aut(Ω) is a sequence of automorphisms with φn(z) → x+ and 

φ−1
n (z) → x− for some z ∈ Ω and x+, x− ∈ ∂Ω. If x+ �= x−, then φn is hyperbolic for n

large. Further, �±
φn

→ x±.

Proof. Fix disjoint neighborhoods U+, U− of x+, x− in Ω. By Theorem 2.8 there exists 

some N ≥ 0 such that

φn

(
Ω \ U−

)
⊂ U+ and φ−1

n

(
Ω \ U+

)
⊂ U−

for all n ≥ N . So

φm
n

(
Ω \ U−

)
⊂ U+ and φ−m

n

(
Ω \ U+

)
⊂ U−
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for all n ≥ N and m ∈ N. So from Corollary 3.6, we see that φn is not parabolic for 

n ≥ N . Further, if φn is elliptic for some n ∈ N, then {φm
n : m ∈ Z} is relatively compact 

in Aut(Ω). So there exists some mk → ∞ such that

lim
k→∞

φmk
n (z) = z

for all z ∈ Ω which is impossible when n ≥ N . So we see that φn is not elliptic when 

n ≥ N . So φn must be hyperbolic for n ≥ N .

We next show that �+
φn

→ x+. Since

φm
n

(
Ω \ U−

)
⊂ U+

for all n ≥ N and m ∈ N, Corollary 3.5 implies that �+
φn

∈ U+ when n ≥ N . Since U+

was an arbitrary neighborhood of x+ we then see that �+
φn

→ x+.

To show that �−
φn

→ x− one simply repeats the argument above. �

Proposition 3.8. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with C∞ boundary 

and finite type. If H ≤ Aut(Ω) is a subgroup and L(Ω; H) contains at least two points, 

then H contains a hyperbolic element.

Proof. Suppose that L(Ω; H) contains two distinct points x, y. Then there exist φm, ϕn ∈

H and z1, z2 ∈ Ω such that φm(z1) → x and ϕn(z2) → y. By passing to a subsequence 

we can suppose that φ−1
m (z1) → x− and ϕ−1

m (z2) → y−. Now if x �= x−, then Lemma 3.7

implies that φm is hyperbolic for large m and there is nothing to prove. Likewise, if 

y �= y−, then ϕn is hyperbolic for large n. So we may assume that x = x− and y = y−.

Then by Theorem 2.8, we see that φn(z) converges locally uniformly to x on Ω \ {x}

and ϕ−1
m (z) converges locally uniformly to y on Ω \ {y}. Since x �= y, if hn = φnϕn then 

hn(z) → x and h−1
n (z) → y for all z ∈ Ω. So Lemma 3.7 implies that hn is hyperbolic 

for large n. �

3.3. Ping-pong

The next proposition is not used in the proof of Theorem 1.2, but naturally fits into 

the current discussion.

Proposition 3.9. Suppose Ω ⊂ C
d is a bounded pseudoconvex domain with C∞ boundary 

and finite type. If h1, h2 ∈ Aut(Ω) are hyperbolic elements and

�+
h1

, �−
h1

, �+
h2

, �−
h2

are all distinct, then there exist n, m > 0 such that the elements hm
1 , hn

2 generate a free 

group.
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Proof. This follows from Corollary 3.5 and the well known “ping-pong lemma,” see for 

instance [15, Section II.B]. �

3.4. Hyperbolic elements translate an almost geodesic

In a CAT(0) metric space a hyperbolic isometry always translates a geodesic (see for 

instance [8, Chapter II.6 Theorem 6.8]). We now show that a similar phenomena holds 

for hyperbolic automorphisms.

Proposition 3.10. Suppose Ω is a bounded pseudoconvex domain with C∞ boundary and 

finite type. If h ∈ Aut(Ω) is hyperbolic, then there exist λ ≥ 1, κ ≥ 0, T > 0, and an 

(λ, κ)-almost-geodesic γ : R → Ω such that

hnγ(t) = γ(t + nT )

for all t ∈ R and n ∈ Z.

We start the proof of the proposition with a lemma.

Lemma 3.11. Suppose Ω is a bounded pseudoconvex domain with C∞ boundary and finite 

type. If h ∈ Aut(Ω) is a hyperbolic element, then there exists some L > 0 such that

lim
n→∞

KΩ(hn(z), z)

n
= L

for all z ∈ Ω.

Proof. If we fix z ∈ Ω and let bn = KΩ(hn(z), z), then bm+n ≤ bm +bn. So by a standard 

lemma (see for instance [51, Theorem 4.9]) the limit

L = lim
n→∞

KΩ(hn(z), z)

n

exists. Further the limit

L = lim
n→∞

KΩ(hn(z), z)

n

clearly does not depend on the choice of z. So we only need to show that the limit is 

positive.

For 0 < ε1 < ε2 sufficiently small define

C0 = {z ∈ Ω : ε1 ≤
∥∥z − �+

h

∥∥ ≤ ε2}.

By picking ε1, ε2 small enough we can assume that Ω\C0 has two connected components 

A0, B0 with �+
h ∈ A0 and �−

h ∈ B0. Now by [7, Proposition 3.5] there exists some δ0 > 0
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such that kΩ(z; v) ≥ δ0 ‖v‖ for all x ∈ Ω and v ∈ C
d. Define δ := δ0(ε2 − ε1). Then, if 

z1 ∈ A0 ∩ Ω and z2 ∈ B0 ∩ Ω we have KΩ(z1, z2) ≥ δ.

Now fix some z0 ∈ B0 ∩ Ω. By Theorem 2.8 there exists some n0 > 0 such that

hn0 (A0 ∪ C0 ∪ {z0}) ⊂ A0.

Then for j ∈ N define

Aj = hn0j(A0), Bj = hn0j(B0), and Cj = hn0j(C0).

Then, by construction, if z1 ∈ Aj ∩ Ω and z2 ∈ Bj ∩ Ω we have KΩ(z1, z2) ≥ δ.

Now suppose that σ : [0, T ] → Ω is an absolutely continuous curve from z0 to hn0N (z0). 

Then by construction there exist 0 = t0 < t1 < t2 < · · · < tN = T such that

σ(tj) ∈ Aj−1 ∩ Bj for 1 ≤ j ≤ N − 1.

So

�Ω(σ) =

T∫

0

kΩ(σ(t); σ′(t))dt =
N−1∑

j=0

tj+1∫

tj

kΩ(σ(t); σ′(t))dt

≥
N−1∑

j=0

KΩ(σ(tj), σ(tj+1)) ≥ Nδ.

Since σ was an arbitrary absolutely continuous curve from z0 to hn0N (z0), we have

KΩ(hn0N (z0), z0) ≥ Nδ.

So L > δ/n0. �

Proof of Proposition 3.10. Fix some z0 ∈ Ω and κ0 > 1. Then let γ0 : [0, T ] → Ω be an 

(1, κ0)-almost-geodesic joining z0 to hz0 (such curves exist by [7, Proposition 4.4]). Then 

define a curve γ : R → Ω by letting

γ(t) = hmγ0(t − Tm)

when t ∈ [mT, (m +1)T ] and m ∈ Z. Clearly hnγ(t) = γ(t +nT ) for all t ∈ R and n ∈ Z. 

Further because γ0 is a (1, κ0)-almost-geodesic we see that γ is absolutely continuous 

and

kΩ(γ(t); γ′(t)) ≤ eκ0

almost everywhere. Then
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KΩ(γ(s), γ(t)) ≤

∣∣∣∣∣∣

t∫

s

kΩ(γ(r); γ′(r))dr

∣∣∣∣∣∣
≤ eκ0 |t − s|

for all s, t ∈ R. By the previous lemma there exist α, β > 0 such that

KΩ(γ(mT ), γ(nT )) = KΩ(hm(z0), hn(z0)) = KΩ(h|m−n|(z0), z0) ≥ α |m − n| − β

for all m, n ∈ Z. Now if s, t ∈ R there exist m, n ∈ Z such that |s − mT | ≤ T/2 and 

|t − nT | ≤ T/2. So

KΩ(γ(s), γ(t)) ≥ KΩ(γ(mT ), γ(nT )) − KΩ(γ(mT ), s) − KΩ(t, γ(nT ))

≥ α |m − n| − β − eκ0T

≥
α

T
|t − s| − αT − β − eκ0T.

So γ is an (λ, κ)-almost-geodesic for some λ > 1 and κ > 0. �

3.5. More on weighted homogeneous polynomial domains

In this section we describe some consequences of S.Y. Kim’s rigidity result in [30].

Theorem 3.12. Suppose Ω is a bounded pseudoconvex domain with C∞ boundary and 

finite type. If Aut(Ω) contains a hyperbolic element, then:

(1) Ω is biholomorphic to a weighted homogeneous polynomial domain.

(2) If h ∈ Aut(Ω) is a hyperbolic element, then there exists a one-parameter group 

ut ∈ Aut(Ω) such that

d

dt

∣∣∣∣
t=0

ut(�
+
h ) /∈ T C

�+

h

∂Ω

and ut(�
−
h ) = �−

h .

(3) There exists a hyperbolic element in Aut0(Ω).

(4) If x1, . . . , xN ∈ ∂Ω, then there exists a hyperbolic element φ ∈ Aut0(Ω) such that

�+
φ , �−

φ /∈ {x1, . . . , xN }.

(5) Aut0(Ω) acts without fixed points on ∂Ω, that is if z ∈ ∂Ω, then there exists g ∈

Aut0(Ω) with g(z) �= z

Proof. Part (1) is just Corollary 1 in [30].
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Part (2) and Part (3) follow from the proof of Theorem 2 in [30, Section 6]. In par-

ticular, if h ∈ Aut(Ω) is hyperbolic the discussion on page 432 in [30] implies that there 

exists an weighted homogeneous polynomial domain

P = {(w, z) ∈ C × C
d−1 : Im(z) > p(z)}

and a biholomorphism Ψ : Ω → P with the following properties:

(1) if h̃ = Ψ ◦ h ◦ Ψ−1, then

h̃(w, z) = (μw, Dz)

for some 0 < μ < 1 and D a diagonal complex matrix,

(2) there exists a neighborhood U of �+
h in ∂Ω where Ψ extends to a smooth map 

Ψ : U → ∂ P and Ψ(�+
h ) = 0.

(3) Ψ is an infinitesimal CR-automorphism (see page 431 in [30]).

Now let ũt : P → P be the one-parameter group of automorphisms ũt(w, z) = (w+t, z)

and let ut = Ψ−1 ◦ ũt ◦ Ψ. Using the fact that Ψ is an infinitesimal CR-automorphism 

we see that

d

dt

∣∣∣∣
t=0

ut(�
+
h ) /∈ T C

�+

h

∂Ω.

Further,

h̃nũth̃
−n(w, z) = (w + μnt, z) = ũμnt

so

lim
n→∞

hnuth
−n = id

in Aut(Ω). Next fix some z0 ∈ Ω. Then

ut(�
−
h ) = ut

(
lim

n→∞
h−nz0

)
= lim

n→∞
h−n

(
hnuth

−nz0

)
= �−

h .

This establishes Part (2).

We now prove Part (3). Since p is a weighted homogeneous polynomial, there exists 

a one-parameter group of the form

ãt(w, z) = (etw, Atz)

where At is a matrix. Then let at = Ψ−1 ◦ ãt ◦ Ψ. Since
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an log(μ)(Ψ
−1(w, 0)) = hn(Ψ−1(w, 0)),

we see that �±
at

= �±
h when t > 0. So at is hyperbolic when t �= 0. This establishes Part 

(3).

We now prove Part (4). By Part (3), there exists an hyperbolic element g ∈ Aut0(Ω). 

Then by Part (2), there exist two one-parameter subgroups u+
t , u−

t such that

u+
t (�−

g ) = �−
g and u−

t (�+
g ) = �+

g .

Further, the maps

t → u+
t (�+

g ) and t → u−
t (�−

g )

are non-constant. By Theorem 2.7 the curves

t → u+
t (�+

g ) and t → u−
t (�−

g )

are continuous, so we can pick t1, t2 such that

u+
t1

(�+
g ), u−

t2
(�−

g ) /∈ {x1, . . . , xN }

and

u+
t1

(�+
g ), u−

t2
(�−

g ), �+
h , �−

h

are all distinct.

Now let

g1 = u+
t1

gu+
−t1

and g2 = u−
t2

gu−
−t2

then �+
g1

= u+
t1

(�+
g ), �−

g1
= u+

t2
(�−

g ) = �−
g , �+

g2
= u−

t2
(�+

g ), and �−
g2

= u−
t2

(�+
g ) = �+

g . So

�+
g1

, �−
g1

, �+
g2

, �−
g2

are all distinct. Then let φn = gn
1 g−n

2 . By applying Corollary 3.5 to g1 and g2 we see 

that

lim
n→∞

φnz = �+
g1

and

lim
n→∞

φ−1
n z = �+

g2
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for all z ∈ Ω. Then Lemma 3.7 implies that φn is hyperbolic for large n with �+
φn

→ �+
g1

and �−
φn

→ �+
g2

. So for n large enough

�+
φn

, �−
φn

/∈ {x1, . . . , xN }.

Further, φn ∈ Aut0(Ω) since g ∈ Aut0(Ω).

Finally, Part (5) follows from Part (4) and Theorem 2.8. �

4. Solvable subgroups

In this section we establish an analogue of a result of Byers [10]: if X is a complete 

simply connected Riemannian manifold with sectional curvature bounded above by a 

negative number and S is a solvable subgroup of the isometry group of X, then either 

S has a fixed point in X, a fixed point in the geodesic boundary of X, or leaves some 

geodesic in X invariant.

For finite type domains we prove the following analogue of Byer’s theorem.

Theorem 4.1. Suppose Ω is a bounded pseudoconvex domain with C∞ boundary and finite 

type. If S ≤ Aut(Ω) is a closed non-compact solvable subgroup, then either

(1) there exists a term Sm+1 of the derived series of S such that every element of Sm+1

is elliptic, Sm+1 is non-compact, and L(Ω; Sm+1) is a single point;

(2) S contains a hyperbolic element h such that S preserves the set {�+
h , �−

h } and the 

quotient S/{hn : n ∈ Z} is compact; or

(3) S contains a parabolic element u and S fixes �+
u .

Further, if N is a connected subgroup of Aut(Ω) which normalizes S, then N has a fixed 

point in ∂Ω.

Remark 4.2. It seems possible that case (1) never actually occurs. In particular, every 

non-compact solvable subgroup S of Aut(Bd) contains a hyperbolic or parabolic element, 

so for Bd case (1) never occurs. More generally, when Ω is a bounded pseudoconvex 

domain with finite type and L(Ω) contains at least two points, then Theorem 1.2 implies 

that case (1) never occurs.

Proof. Let S = S0 ≥ S1 ≥ S2 ≥ · · · ≥ SM = 1 be the derived series of S. Then each Sj

is a closed subgroup of Aut(Ω).

Let m be the largest number such that Sm contains a non-elliptic element. In the case 

in which every element of S is elliptic, let m = −1.

Case A: Sm+1 is non-compact. Since Sm+1 is closed and Aut(Ω) acts properly on Ω, the 

limit set L(Ω; Sm+1) is non-empty. By assumption, every element of Sm+1 is elliptic, so 
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Lemma 3.7 implies that # L(Ω; Sm+1) < 2. So L(Ω; Sm+1) = {x0} for some point. Thus 

we are in case (1) of the theorem.

Case B: Sm+1 is compact and Sm contains a hyperbolic element h. We first claim that 

Sm+1 fixes �+
h and �−

h . Fix some z0 ∈ Ω. Then, since Sm+1 is compact, the set

{sz0 : s ∈ Sm+1}

is compact in Ω. Then for s ∈ Sm+1 we have

s(�±
h ) = lim

n→∞
shnz0 = lim

n→∞
hn(h−nshn)z0 = �±

h

by Theorem 2.8 since h−nshn is in Sm+1.

Next we claim that {s�+
h , s�−

h } = {�+
h , �−

h } for every s ∈ S. Suppose s ∈ Si for some 

i ≤ m then shs−1h−1 ∈ Si+1 so by induction

shs−1h−1{�+
h , �−

h } = {�+
h , �−

h }.

But then

shs−1{�+
h , �−

h } = {�+
h , �−

h }.

However, shs−1 is hyperbolic with fixed points s�±
h . So by Corollary 3.5 we must have 

that

{s�+
h , s�−

h } = {�+
h , �−

h }.

We now argue that the quotient S/{hn : n ∈ Z} is compact. So suppose that sn ∈ S

is a sequence. We claim that there exist nk → ∞ and a sequence mk ∈ Z such that 

snk
hmk converges. By Proposition 3.10 there exist λ ≥ 1, κ ≥ 0, T > 0, and an (λ, κ)-

almost-geodesic γ : R → Ω such that

hmγ(t) = γ(t + mT )

for all t ∈ R and m ∈ N. Since the set γ([0, T ]) ⊂ Ω is compact, Theorem 2.8 implies 

that

lim
t→±∞

γ(t) = �±
h .

Next consider the almost-geodesics γn = snγ. Since S{�+
h , �−

h } = {�+
h , �−

h } we see that

lim
t→±∞

γn(t) = sn

(
lim

t→±∞
γ(t)

)
∈ {�+

h , �−
h }.
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Then Theorem 2.4 implies that there exist nk → ∞, Tk ∈ R, and z0 ∈ Ω such that 

γnk
(Tk) → z0 ∈ Ω. Then there exist tk ∈ [0, T ] and mk ∈ Z such that

snk
hmk γ(tk) = γnk

(Tk).

Then

lim
k→∞

snk
hmk γ(tk) = z0.

Since Aut(Ω) acts properly on Ω, we can pass to another subsequence such that snk
hmk

converges in Aut(Ω). Since sn ∈ S was an arbitrary sequence, we then see that the 

quotient S/{hn : n ∈ Z} is compact. Thus we are in case (2) of the theorem.

Case C: Sm+1 is compact and Sm contains a parabolic element u ∈ Sm. Arguing as in 

Case B, one can show that S�+
u = �+

u . Thus we are in case (3) of the theorem.

We now prove the “further” part of the proof. Let N be a connected subgroup that 

normalizes S.

First suppose that there exists a term Sm+1 of the derived series of S such that 

every element of Sm+1 is elliptic, Sm+1 is non-compact, and L(Ω; Sm+1) = {x0}. If N

normalizes S, then N also normalizes Sm+1. Thus Nx0 = x0 by Proposition 2.9.

Next suppose that S contains a hyperbolic element h such that S preserves the set 

{�+
h , �−

h }. If n ∈ N , then nhn−1 is hyperbolic with attracting/repelling fixed points n�±
h . 

Since nhn−1 ∈ S, we also have that

nhn−1{�+
h , �−

h } = {�+
h , �−

h }.

So by Corollary 3.5, we must have {n�+
h , n�−

h } = {�+
h , �−

h }. Since N is connected, we then 

have n�±
h = �±

h for all n ∈ N .

Finally, suppose that S contains a parabolic element u and S fixes �+
u . Then arguing 

as in the previous case shows that n�+
u = �+

u for all n ∈ N . �

5. Proof of Theorem 1.2

For the rest of this section, suppose that Ω is a bounded pseudoconvex domain with 

C∞ boundary and finite type. Further assume that L(Ω) contains at least two points.

5.1. Constructing the group G

Lemma 5.1. With the notation above, Ω is biholomorphic to a weighted homogeneous 

polynomial domain. In particular, Aut0(Ω) is non-compact and Aut0(Ω) acts without 

fixed points on ∂Ω.
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Proof. By Proposition 3.8, Aut(Ω) contains a hyperbolic element. Then by S.Y. Kim’s 

rigidity result, see Theorem 1.12, Ω is biholomorphic to a weighted homogeneous polyno-

mial domain. Then Theorem 3.12 implies that Aut0(Ω) is non-compact and acts without 

fixed points on ∂Ω. �

Let Gsol ≤ Aut0(Ω) be the solvable radical of Aut0(Ω), that is let Gsol be the maximal 

connected, closed, normal, solvable subgroup of Aut0(Ω). Notice that Gsol is also a 

normal subgroup of Aut(Ω). Next let Gss ≤ Aut0(Ω) be a semisimple subgroup such 

that Aut0(Ω) = GssGsol is a Levi-Malcev decomposition of Aut0(Ω).

Lemma 5.2. With the notation above, Gsol is compact. In particular, Gss is non-compact.

Proof. If Gsol were non-compact, then the “further” part of Theorem 4.1 would imply 

that Aut0(Ω) fixes a point in ∂Ω which is impossible by the last lemma. �

Lemma 5.3. With the notation above, Gsol is a torus and Gsol is in the center of Aut0(Ω).

Proof. First, note that Gsol is a torus (every compact, connected, solvable Lie group is 

isomorphic to a torus). Then since Gsol is normal in Aut(Ω), every g ∈ Aut(Ω) induces 

an automorphism τ : Aut(Ω) → Aut(Gsol) defined by τ(g)(h) = ghg−1. Since Gsol is a 

torus, Aut(Gsol) is isomorphic to GLn(Z) for some n. Since Aut0(Ω) is connected, we 

then see that Aut0(Ω) ≤ ker τ and hence Gsol is in the center of Aut0(Ω). �

Remark 5.4. Lemma 5.3 implies that Aut0(Ω) is a reductive group, which immediately 

implies the next two lemmas. But to minimize the amount of Lie theory required we give 

direct proofs.

Lemma 5.5. With the notation above, Gss is a normal subgroup in Aut(Ω).

Proof. If g ∈ Aut(Ω), then

gGssg−1Gsol = gGssg−1gGsolg−1 = gGssGsolg−1 = g Aut0(Ω)g−1 = Aut0(Ω)

since Gsol and Aut0(Ω) are normal subgroups of Aut(Ω). So gGssg−1 is a Levi factor of 

Aut0(Ω). Since every two Levi factors are conjugate (see [41, Chapter 6, Theorem 3]), 

there exists h ∈ Aut0(Ω) such that hGssh−1 = gGssg−1. But then h = h1s for h1 ∈ Gss

and s ∈ Gsol. Then since Gsol is in the center of Aut0(Ω), we see that

gGssg−1 = hGssh−1 = h1Gssh−1
1 = Gss. �

As in Section A we can write Gss as an almost direct product G1, . . . , Gm where each 

Gi is a closed simple Lie subgroup of Gss. Then define

G :=
∏

{Gi : Gi is non-compact}.
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Lemma 5.6. With the notation above, G is a normal subgroup of Aut(Ω).

Proof. Since Gss is a normal subgroup of Aut(Ω), any g ∈ Aut(Ω) induces an automor-

phism Cg : Gss → Gss defined by Cg(h) = ghg−1. Next let g be the Lie algebra of G. 

Then

g = g1 ⊕ · · · ⊕ gm

where gi is the Lie subalgebra of Gi (see the discussion in Section A). Let πi : g → gi

denote the natural projection. Now fix some Gj and some g ∈ Aut(Ω). Consider the 

induced map πi ◦ d(Cg)|gj
: gj → gi. Since gj is a simple Lie algebra, πi ◦ d(Cg)|gj

is 

either injective or the zero map. For the same reason, πj ◦ d(C−1
g )|gi

is either injective 

or the zero map. Thus πi ◦ d(Cg)|gj
is either an isomorphism or the zero map. So

d(Cg)(gj) ⊂ ⊕{gi : gi is isomorphic to gj}.

However, Gj is compact if and only if the Killing form of gj is a negative definite 

bilinear form [32, Chapter IV, Proposition 4.27]. This implies that when Gi is non-

compact we have Cg(Gi) ≤ G. So G is a normal subgroup of Aut(Ω). �

Lemma 5.7. With the notation above, G contains a hyperbolic element and L(Ω; G) =

L(Ω).

Proof. Since Gss is non-compact, G is also non-compact and so L(Ω; G) is non-empty. 

By Proposition 2.9, L(Ω; G) is closed and Aut(Ω)-invariant. By Lemma 5.1, Aut(Ω) has 

no fixed points in ∂Ω, so L(Ω; G) contains at least two points. So G contains a hyperbolic 

element by Proposition 3.8.

Now fix some x ∈ L(Ω). Then there exist z0 ∈ Ω and ϕn ∈ Aut(Ω) such that ϕn(z0) →

x. By passing to a subsequence we can suppose that ϕ−1
n (z0) → y ∈ ∂Ω. Then by 

Theorem 2.8, ϕn(z) → x for all z ∈ Ω \ {y}. Since L(Ω; G) is not a single point, there 

exists some z ∈ L(Ω; G) such that z �= y. Then ϕn(z) → x. By Lemma 2.9, L(Ω; G) is 

closed and Aut(Ω)-invariant, so we see that x ∈ L(Ω; G). Since x ∈ L(Ω) was arbitrary, 

we see that L(Ω; G) = L(Ω). �

Lemma 5.8. With the notation above, G acts without fixed points on ∂Ω.

Proof. Let

N0 :=
∏

{Gi : Gi is compact}.

Then define N1 := N0Gsol. Then, by construction, Aut0(Ω) is the almost direct product 

of G and N1.
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Now suppose that x0 ∈ ∂Ω. We claim that there exists g ∈ G such that gx0 �= x0. By 

Theorem 3.12 Part (3) there exists a hyperbolic element h ∈ Aut0(Ω) such that

�+
h , �−

h , x0

are pairwise distinct. Now h = gk for some g ∈ G and k ∈ N1. Fix some z0 ∈ Ω. Since N1

is compact the set {kn(z0) : n ∈ Z} is relatively compact in Ω. So Theorem 2.8 implies 

that

lim
n→±∞

gn(z0) = lim
n→±∞

hn(k−nz0) = �±
h .

So g is hyperbolic and �±
g = �±

h . Since x0 �= �−
h , Theorem 2.8 implies that gnx0 → �+

h . So 

gx0 �= x0. �

5.2. Real rank one and finite center

In this subsection we will show that G is a simple Lie group with real rank one and 

finite center.

Given g ∈ G, let C(g) denote the centralizer of g in G.

Lemma 5.9. With the notation above, if h ∈ G is hyperbolic, then the quotient C(h)/{hn :

n ∈ Z} is compact.

Proof. Fix a sequence gn ∈ C(h). We claim that there exist nk → ∞ and a sequence 

mk ∈ Z such that gnk
hmk converges.

By Proposition 3.10 there exist λ ≥ 1, κ ≥ 0, T > 0, and an (λ, κ)-almost-geodesic 

σ : R → Ω such that

hmσ(t) = σ(t + mT )

for all t ∈ R and m ∈ Z. Since the set σ([0, T ]) ⊂ Ω is compact, Theorem 2.8 implies 

that

lim
t→±∞

σ(t) = �±
h .

Consider the almost-geodesics σn = gnσ. Since

gn�±
h = �±

gnhg−1
n

= �±
h

we then have that

lim
t→±∞

σn(t) = �±
h
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for all n.

Then Theorem 2.4 implies that there exist nk → ∞, Tk ∈ R, and z0 ∈ Ω such that 

σnk
(Tk) → z0 ∈ Ω. Then we can find mk ∈ Z and tk ∈ [0, T ] such that

σnk
(Tk) = gnk

hmk σ(tk).

Then

lim
k→∞

gnk
hmk σ(tk) = z0.

Since Aut(Ω) acts properly on Ω, we can pass to another subsequence such that gnk
hmk

converges in Aut(Ω). Since gn was an arbitrary sequence in C(h) we then see that 

C(h)/{hn : n ∈ Z} is compact. �

Lemma 5.10. With the notation above, G has finite center.

Proof. Since G is semisimple, the center of G is discrete. So this follows immediately 

from Lemma 5.9. �

Fix a norm on g, the Lie algebra of G, and let ‖·‖ be the associated operator norm 

on SL(g).

Lemma 5.11. With the notation above, if z0 ∈ Ω, then there exist some α ≥ 1 and β ≥ 0

such that

KΩ(g(z0), z0) ≤ α log ‖Ad(g)‖ + β

for all g ∈ G.

Proof. By Theorem A.5, there exist a compact subgroup K ≤ G and a connected abelian 

subgroup A ≤ G such that G = KAK and Ad(A) is diagonalizable in SL(g). Let a be 

the Lie algebra of A. Since A is abelian and connected the map X ∈ a → exp(X) ∈ A is 

an Lie group isomorphism. Next let ‖·‖
a

be a norm on a. Since Ad(A) is diagonalizable 

in SL(g) there exists α0 ≥ 1 such that

1

α0
‖X‖

a
≤ log

∥∥Ad(eX)
∥∥ ≤ α0 ‖X‖

a
.

Since the action on Aut(Ω) on Ω is smooth, there exists an C > 0 such that

KΩ(eXz0, z0) ≤ C ‖X‖
a

for all X ∈ a with ‖X‖
a

≤ 1. Then if X ∈ a let X0 = X/ ‖X‖
a

and n = �‖X‖
a
�. Then
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KΩ(eXz0, z0) ≤ KΩ(eXz0, enX0z0) + KΩ(enX0z0, e(n−1)X0z0) + · · · + KΩ(eX0z0, z0)

≤ C ‖X − nX0‖
a

+ C ‖X0‖
a

+ · · · + C ‖X0‖
a

= C ‖X‖
a

.

Further, since K is compact, there exists some R ≥ 0 such that

KΩ(k(z0), z0) ≤ R

for all k ∈ K. By increasing R if necessary, we can further assume that

log ‖Ad(k)‖ ≤ R

for all k ∈ K.

Now suppose that g ∈ G. Then g = k1eXk2 for some X ∈ a and k1, k2 ∈ K. Then

KΩ(g(z0), z0) ≤ 2R + KΩ(eXz0, z0) ≤ 2R + C ‖X‖
a

≤ 2R + α0C log
∥∥Ad(eX)

∥∥ .

Further

log
∥∥Ad(eX)

∥∥ ≤ log
∥∥Ad(k−1

1 )
∥∥ ‖Ad(g)‖

∥∥Ad(k−1
2 )

∥∥ ≤ 2R + log ‖Ad(g)‖ .

So

KΩ(g(z0), z0) ≤ 2R(1 + α0C) + α0C log ‖Ad(g)‖ . �

Definition 5.12. An element g ∈ G is L-hyperbolic (respectively L-elliptic, L-unipotent) 

if g is hyperbolic (respectively elliptic, unipotent) in G in the Lie group sense (see 

Section A).

Lemma 5.13. With the notation above, there exists an element g ∈ G which is both 

hyperbolic and L-hyperbolic.

Proof. By Lemma 5.7 there exists some g ∈ G which is hyperbolic. Then by Lemma 3.11

lim
n→∞

KΩ(gn(z), z)

n
> 0

for all z ∈ Ω. So by Lemma 5.11

lim inf
n→∞

log ‖Ad(g)n‖

n
> 0. (1)

Using the Jordan decomposition, see Theorem A.3, we can write g = khu where k is 

L-elliptic, h is L-hyperbolic, u is L-unipotent, and k, h, u commute. Then since Ad(k) is 

elliptic and Ad(u) is unipotent we have
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lim
n→∞

log ‖Ad(ku)n‖

n
≤ lim

n→∞

log ‖Ad(k)n‖ + log ‖Ad(u)n‖

n
= 0

so

lim inf
n→∞

log ‖Ad(h)n‖

n
≥ lim inf

n→∞

log ‖Ad(g)n‖ − log ‖Ad(ku)n‖

n
> 0.

Thus Ad(h) �= 1.

We claim that ku is elliptic (as in Definition 3.3). Since

lim
n→∞

log ‖Ad(ku)n‖

n
= 0

Lemmas 3.11 and 5.11 imply that ku is not hyperbolic. Now fix some z0 ∈ Ω. Since ku

commutes with g we see that

ku(�±
g ) = ku

(
lim

n→±∞
gnz0

)
= lim

n→±∞
gnkuz0 = �±

g .

So ku cannot be parabolic by Corollary 3.6. So ku must be elliptic.

Now since ku is elliptic, the set {(ku)nz0 : n ∈ Z} is relatively compact in Ω. So by 

Corollary 3.5

lim
n→±∞

hn(z0) = lim
n→±∞

gn((ku)−nz0) = �±
g .

So h is hyperbolic. �

Lemma 5.14. With the notation above, G is a simple Lie group of non-compact type and 

has real rank one.

Proof. Pick an element h ∈ G which is hyperbolic and L-hyperbolic. By Proposition A.4, 

there exists a maximal Cartan subgroup A ≤ G such that h ∈ Z(G)A. Then Z(G)A ≤

C(h) and so by Lemma 5.9 the quotient Z(G)A/{hn : n ∈ Z} is compact. Since A is 

isomorphic to Rr where r = rankR(G), this implies that r = 1. �

5.3. The automorphism group has finitely many components

In this section we show that Aut0(Ω) has finite index in Aut(Ω).

Since G is a normal subgroup in Aut(Ω), associated to every g ∈ Aut(Ω) is an element 

τ(g) ∈ Aut(G) defined by

τ(g)(h) = ghg−1.

Next let Inn(G) denote the inner automorphisms of G, that is the automorphisms of 

the form g → hgh−1 where h ∈ G. Then let Out(G) = Aut(G)/Inn(G). Finally define 

[τ ] : Aut(Ω) → Out(G) by letting [τ ](g) denote the equivalence class of τ(g).
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Since G is semisimple, Out(G) is finite (see for instance [22, Chapter X]). So to prove 

that Aut0(Ω) has finite index in Aut(Ω), it is enough to prove the following.

Lemma 5.15. With the notation above, Aut0(Ω) has finite index in ker[τ ]. In particular, 

Aut0(Ω) has finite index in Aut(Ω).

Proof. It is enough to show that the quotient ker[τ ]/G is compact. So suppose that 

gn ∈ ker[τ ] is a sequence. We claim that there exist nk → ∞ and hk ∈ G such that 

gnk
hk converges in Aut(Ω). Now for each n ∈ N there exists some gn ∈ G such that 

τ(gn) = τ(gn). Then by replacing each gn with gng−1
n we can assume that

gngg−1
n = g

for every g ∈ G and n ∈ N. Now fix a hyperbolic element h ∈ G. Then gn ∈ C(h) and so 

by Lemma 5.9 there exist nk → ∞ and mk ∈ Z such that gnk
hmk converges in Aut(Ω). 

Since gn was an arbitrary sequence in ker[τ ] we see that ker[τ ]/G is compact. Hence 

Aut0(Ω) has finite index in ker[τ ]. �

5.4. The limit set is a sphere

In this subsection we show that L(Ω) is homeomorphic to a sphere.

We now consider the symmetric space associated to G, see Section A for more details. 

Let K ≤ G be a maximal compact subgroup and let X = G/K be the associated 

symmetric space. Since G has real rank one, X is negatively curved. Let X(∞) be the 

geodesic boundary of X. Fix a point ξ0 ∈ X(∞) and let P be the stabilizer of ξ0 in G. 

Since G acts transitively on X(∞), see Section A.1, we can identify X(∞) with G/P .

Lemma 5.16. With the notation above, there exists a point x0 ∈ L(Ω) such that

P = {g ∈ G : g(x0) = x0}.

Further, G · x0 = L(Ω) and L(Ω) is a smooth submanifold of ∂Ω diffeomorphic to a 

sphere of dim X − 1.

Proof. Since G acts transitively on X(∞), there exists an L-hyperbolic element h such 

that ω+
h = ξ0. Then by Theorem A.10 the limit

lim
n→∞

h−nphn ∈ G

exists for every p ∈ P .

Let x0 = �+
h . Then if p ∈ P and z ∈ Ω we have

px0 = p
(

lim
n→∞

hnz
)

= lim
n→∞

hn
(
h−nphn

)
z = x0
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by Theorem 2.8. So P fixes x0.

Let

H = {g ∈ G : g(x0) = x0}.

Then H is closed and P ≤ H. So by Theorem A.9 either H = P or H = G. However 

Lemma 5.8 implies that G · x0 �= {x0}, so we must have that

P = {g ∈ G : g(x0) = x0}.

Then the map g ∈ G/P → g ·x0 induces a continuous, injective map G/P → G ·x0. By 

the discussion in Section A.1, G/P is diffeomorphic to a sphere of dimension dim X − 1. 

Then, since G/P is compact, the map

g ∈ G/P → g · x0 ∈ G · x0

is actually a homeomorphism. In particular, G · x0 is a compact subset of ∂Ω. Since G

acts smoothly on ∂Ω and the orbit G · x0 is closed, it follows that G · x0 is a smooth 

submanifold of ∂Ω which is diffeomorphic to G/P , see for instance [48, Theorem 15.3.7].

We next show that G · x0 = L(Ω). Suppose that x ∈ L(Ω). By Lemma 5.7, L(Ω) =

L(Ω; G). So there exist z0 ∈ Ω and a sequence gn ∈ G such that gn(z0) → x. By passing 

to a subsequence we can suppose that g−1
n (z0) → y. Then by Theorem 2.8, gn(z) → x

for all z ∈ Ω \ {y}. Since G · x0 is not a single point, there exists some g0 ∈ G such that 

g0x0 �= y. Then gn(g0x0) → x. Since G · x0 is compact we then see that x ∈ G · x0. �

5.5. The group G is locally isomorphic to SU(1, k)

In this subsection we prove that G is locally isomorphic to SU(1, k) for some k ≥ 1.

If dimR X(∞) = 1, then by the classification of negatively curved symmetric spaces X

must be isometric to real hyperbolic 2-space. Then G is locally isomorphic to SU(1, 1).

Next assume that dimR X(∞) ≥ 2. Then

dimR Tz L(Ω) + dimR T C
z ∂Ω ≥ 2 + (2d − 2) = 2d

so

Tz L(Ω) ∩ T C
z ∂Ω �= (0)

for every z ∈ L(Ω).

Lemma 5.17. With the notation above, Tz L(Ω) is not contained in T C
z ∂Ω for every z ∈

L(Ω). In particular,
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dimR

(
Tz L(Ω) ∩ T C

z ∂Ω
)

= dim L(Ω) − 1

for all z ∈ L(Ω).

Proof. By Theorem 3.12 part (2), there exists a point z0 ∈ L(Ω) such that Tz0
L(Ω) is 

not contained in T C
z0

∂Ω. Then since G acts transitively on L(Ω) we see that Tz L(Ω) is 

not contained in T C
z ∂Ω for every z ∈ L(Ω). �

Then for z ∈ L(Ω) let

Vz = Tz L(Ω) ∩ T C
z ∂Ω.

Then z → Vz is a codimension one smooth distribution on L(Ω). Further, since G acts 

on Ω by biholomorphisms we see that d(g)zVz = Vgz for all g ∈ G. So Vz is a G-invariant 

distribution. So G/P has a G-invariant codimension one smooth distribution. But this 

is only possible if G is locally isomorphic to SU(1, k), see Theorem A.11.

5.6. Constructing an equivariant map

Recall that PU(1, k) is the image of SU(1, k) in PGLk+1(C) and PU(1, k) acts by 

fractional linear transformations on the unit ball Bk ⊂ C
k:

[
a bt

c D

]
· z =

c + Dz

a + btz
.

In fact, this action gives an isomorphism

ρ0 : PU(1, k) → Aut(Bk)

Since G is locally isomorphic to SU(1, k), there exists an isomorphism π : G/Z(G) →

PU(1, k). So we have an isomorphism ρ : G/Z(G) → Aut(Bk) defined by ρ = ρ0 ◦ π.

Now let P be the group from Section 5.4. Then ρ(P ) is the stabilizer of a point in 

w0 ∈ ∂ Bk. This follows from the fact that ρ(P ) is a parabolic subgroup of Aut(Bk) or 

by simply repeating the proof of Lemma 5.16 (since Bk is itself a bounded pseudoconvex 

domain with finite type).

Lemma 5.18. With the notation above, if ϕ ∈ Aut(Ω) commutes with G, then ϕ(x) = x

for all x ∈ L(Ω).

Proof. By Lemma 5.7, L(Ω) = L(Ω; G). So if x ∈ L(Ω) then there exist z0 ∈ Ω and a 

sequence gn ∈ G such that gn(z0) → x. Then

ϕ(x) = ϕ
(

lim
n→∞

gn(z0)
)

= lim
n→∞

ϕgn(z0) = lim
n→∞

gn(ϕz0) = x
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by Theorem 2.8. �

The above Lemma implies that Z(G) acts trivially on L(Ω) and so the action of G on 

L(Ω) induces an action of G/Z(G) on L(Ω). So we have a ρ-equivariant diffeomorphism 

F : L(Ω) → ∂ Bk defined by

F (gx0) = ρ(g)w0.

5.7. The automorphism group is an almost direct product

In this section we prove that Aut(Ω) is the almost direct product of G and a compact 

subgroup, but first a lemma.

Lemma 5.19. With the notation above, let C denote the centralizer of G in Aut(Ω). Then 

C is compact.

Proof. By Lemma 5.18 each c ∈ C acts trivially on L(Ω). Since # L(Ω) > 2, Theorem 2.8

implies that C is compact. �

As in Section 5.3, let τ : Aut(Ω) → Aut(G) denote the homomorphism given by 

τ(g)(h) = ghg−1. Notice that τ(g)(Z(G)) = Z(G) and so τ descends to an automorphism 

of G/Z(G). Then τ induces a homomorphism Φ : Aut(Ω) → Aut(PU(1, k)) defined by

Φ(g) = ρ ◦ τ(g) ◦ ρ−1.

Let θ : PU(1, k) → PU(1, k) denote the automorphism

θ(g) = g

and let Inn(PU(1, k)) denote the automorphisms of the form g → hgh−1 where h ∈

PU(1, k). Then it is well known that

Aut(PU(1, k)) = Inn(PU(1, k)) ∪ Inn(PU(1, k)) ◦ θ.

Finally define the subgroup

N = Φ−1 ({id, θ}) ≤ Aut(Ω).

Proposition 5.20. With the notation above,

(1) N is a compact normal subgroup of Aut(Ω),

(2) Aut(Ω) is the almost direct product of G and N .
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Proof. By definition N is a normal closed subgroup of Aut(Ω). Further, since π :

G/Z(G) → PU(1, k) is an isomorphism, we see that G ∩ N = Z(G). In particular, 

G ∩ N is finite.

We next claim that GN = Aut(Ω). Consider some g ∈ Aut(Ω). Then, since π :

G/Z(G) → PU(1, k) is an isomorphism, there exists some h ∈ G such that Φ(hg) ∈

{id, θ}. So g ∈ GN . So GN = Aut(Ω).

Next, we claim that G and N commute. Since G and N are normal subgroups we see 

that

[G, N ] ≤ G ∩ N = Z(G).

But for n ∈ N fixed, the set

{
ngn−1g−1 : g ∈ G

}
≤ [G, N ] ≤ Z(G)

is connected and finite, so we see that ngn−1g−1 = 1 for all g ∈ G. Since n ∈ N was 

arbitrary, we then see that ng = gn for all n ∈ N and g ∈ G.

Finally since N is closed and commutes with G, Lemma 5.19 implies that N is com-

pact. �

6. Finite jet determination

In this section we prove Corollary 1.4 from the introduction. We will use the following 

two facts from Riemannian geometry.

Lemma 6.1. Suppose K is a compact Lie group acting smoothly on a compact manifold 

M . Then there exists a K-invariant Riemannian metric on M .

Proof Sketch. Fix any Riemannian metric g on M and let μ be the Haar measure on K. 

Then define a new Riemannian metric g by

gx(v, w) =

∫

K

gkx (d(k)xv, d(k)xw) dμ(k).

Then g is an K-invariant Riemannian metric on M . �

Lemma 6.2. Suppose (M, g) is a Riemannian manifold. If F1, F2 : M → M are isometries 

and

j1(M, F1, x) = j1(M, F2, x)

for some x ∈ M , then there exists a neighborhood U of x such that F1|U = F2|U .
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Remark 6.3. When (M, g) is a complete Riemannian manifold, the conclusion of the 

lemma can be upgraded to say that F1 = F2.

Proof Sketch. For details see for instance [22, Chapter 1, Lemma 11.2]. The idea is to 

find a neighborhood V of 0 in TxM where the exponential map expx : V → M is well 

defined. Then prove that

F (expx(v)) = expF (x)(dFx(v))

when F : M → M is an isometry and v ∈ V . Then let U = expx(V ). �

We will also need the following basic fact about holomorphic maps.

Lemma 6.4. Suppose Ω ⊂ C
d is a bounded domain with C1 boundary and f : Ω → C is 

a holomorphic map that extends continuously to F : ∂Ω → C. If F −1(0) has non-empty 

interior in ∂Ω, then f is identically zero.

Proof. This is a simple consequence of the Luzin-Privalov theorem, see [12, Theorem 

2.5]. �

Now for the rest of the section, suppose that Ω ⊂ C
d is a bounded pseudoconvex 

domain with C∞ boundary and finite type. Further assume that L(Ω) contains at least 

two distinct points. Let G and N be the groups in Theorem 1.2.

Lemma 6.5. With the notation above, for any x ∈ ∂Ω the map

g ∈ N → j1(∂Ω, g, x) ∈ Jet1(Ω, x)

is injective.

Proof. Since N is a compact Lie group acting smoothly on ∂Ω, this follows from Lem-

mas 6.1, 6.2, and 6.4. �

Lemma 6.6. With the notation above, for any x ∈ L(Ω) the map

g ∈ Aut(Ω) → j2(∂Ω, g, x) ∈ Jet2(∂Ω, x)

is injective.

Proof. It is enough to show that: if ϕ ∈ Aut(Ω) and

j2(∂Ω, ϕ, x) = j2(∂Ω, id, x),
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then ϕ = id. Now ϕ = gk for some g ∈ G and k ∈ N . By Lemma 5.19, k(x) = x for all 

x ∈ L(Ω) and so

j2(L(Ω), g, x) = j2(L(Ω), ϕ, x) = j2(L(Ω), id, x).

Now there exists an isomorphism ρ : G/Z(G) → Aut(Bk) and a ρ-equivariant diffeomor-

phism F : L(Ω) → ∂ Bk. So

j2(∂ Bk, ρ(g), F (x)) = j2(∂ Bk, id, F (x)).

Which implies that ρ(g) = id and hence g ∈ Z(G). Since Z(G) ≤ N (by the construction 

of N), we then have that ϕ ∈ N . So by Lemma 6.5 we see that ϕ = id. �

Lemma 6.7. With the notation above, for any x ∈ ∂Ω\ L(Ω) the map

g ∈ Aut(Ω) → j1(∂Ω, g, x) ∈ Jet1(Ω, x)

is injective.

Proof. Let M := ∂Ω \L(Ω). We first observe that Aut(Ω) acts properly on M . To see this 

assume for a contradiction that ϕn → ∞ in Aut(Ω), but there exists a compact subset 

K ⊂ ∂M such that K ∩ ϕn(K) �= ∅. Now fix some z0 ∈ Ω. By passing to a subsequence 

we can assume that ϕn(z0) → x ∈ ∂Ω and ϕn(z0) → y. But then by Theorem 2.8, 

ϕn(z) converges locally uniformly to x on Ω \ {y}. Since x, y ∈ L(Ω) we then see that 

K ∩ ϕn(K) = ∅ for n large. So we have a contradiction.

Then by a result of Palais [42, Theorem 4.3.1], there exists a Aut(Ω)-invariant metric 

g on M . Then the result follows from Lemmas 6.2 and 6.4. �

7. Tits alternative

In this section we prove Corollary 1.6 from the introduction. We will reduce to the 

following variant of the Tits’ alternative.

Theorem 7.1 (Tits [47]). Suppose G is a Lie group with finitely many components and 

H ≤ G is a subgroup. Then either H contains a free group or has a finite index solvable 

subgroup.

For the rest of the section suppose that Ω is a bounded pseudoconvex domain with 

real analytic boundary and H ≤ Aut(Ω) is a subgroup. We claim that either H contains 

a free group or a finite index solvable subgroup. Since every bounded pseudoconvex 

domain with real-analytic boundary is of finite type (see Remark 1.7), we can apply 

Theorem 1.2.
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Now Aut(Ω) is a Lie group. If Aut(Ω) is compact, then it has finitely many compo-

nents. So we can apply Theorem 7.1. If Aut(Ω) is non-compact, then L(Ω) is non-empty. 

If L(Ω) contains at least two points, then Aut(Ω) has finitely many components by 

Theorem 1.2. So we can apply Theorem 7.1 again.

It remains to consider the case in which L(Ω) = {x0}. Then Aut(Ω) fixes x0 ∈ ∂Ω. 

Let Jk(∂Ω; x0) denote the group of k-jets of smooth maps f : ∂Ω → ∂Ω with f(x0) = x0. 

Then by [2, Theorem 5], there exists some N such that the induced homomorphism 

ι : Aut(Ω) → JN (∂Ω; x0) is injective. Further, JN (∂Ω; x0) is a Lie group with finitely 

many components so we can apply Theorem 7.1 again.

Appendix A. Semisimple Lie groups and symmetric spaces

In the proof of Theorem 1.2, we use some basic properties about semisimple Lie groups 

and the symmetric spaces they act on. In this section we recall these properties and give 

references.

For the rest of the section we make the following assumption.

Assumption. G is a connected semisimple Lie group with finite center.

Let g be the Lie algebra of G. Then there is a Lie algebra decomposition

g = g1 ⊕ · · · ⊕ gn

into simple Lie subalgebras, see for instance [32, Chapter 1, Theorem 1.54]. Then let Gi

be the connected subgroup of G generated by exp(gi).

Lemma A.1. Each Gi is a closed subgroup of G and G is the almost direct product of 

G1, . . . , Gn.

Proof. This is a well known fact, but here is a proof. By the Campbell-Baker-Hausdorff 

formula (see [32, Appendix B, Section 4]) distinct pairs of G1, . . . , Gn commute. So 

distinct pairs of G1, . . . , Gn have intersection in Z(G) and hence have finite intersection. 

The Campbell-Baker-Hausdorff formula also implies that the map

(X1, . . . , Xn) ∈ g1 ⊕ · · · ⊕ gn → exp(X1) exp(X2) . . . exp(Xn) ∈ G

is a local diffeomorphism at 0. So the product G1 · · · Gn contains a open neighborhood 

of id in G. Since G1 · · · Gn is a connected subgroup, this implies that G = G1 · · · Gn. 

Thus G is the almost direct product of G1, . . . , Gn.

Next we show that each Gi is closed. Suppose that g ∈ G1. Then g = g1 . . . gn for some 

gj ∈ Gj . So g−1
1 g ∈ G1 ∩ (G2 · · · Gn). Thus g−1

1 g ∈ Z(G). Since g ∈ G1 was arbitrary, we 

see that G1 ⊂ Z(G)G1 and in particular that G1 has finite index in G1. Since G1 and 
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G1 are both connected, this implies that G1 = G1. Applying the same argument to the 

other factors shows that each Gi is closed. �

We now make an additional assumption:

Additional Assumption. Every Gi is non-compact.

Next let Ad : G → SL(g) denote the adjoint representation. The kernel of Ad is the 

center of G, denoted Z(G), so we have an isomorphism G/Z(G) ∼= Ad(G).

Definition A.2. We then say an element g ∈ G is:

(1) semisimple if Ad(g) is diagonalizable in SL(gC),

(2) hyperbolic if Ad(g) is diagonalizable in SL(g) with all positive eigenvalues,

(3) unipotent if Ad(g) is unipotent in SL(g), and

(4) elliptic if Ad(g) is elliptic in SL(g).

Since G is semisimple, every element can be decomposed into a product of a elliptic, 

hyperbolic, and unipotent element. More precisely:

Theorem A.3 (Jordan decomposition). If g ∈ G, then there exist ge, gh, gu ∈ G such that

(1) g = geghgu,

(2) ge ∈ G is elliptic, gh ∈ G is hyperbolic, gu ∈ G is unipotent, and

(3) ge, gh, gu commute.

Moreover, the ge, gh, gu are unique up to factors in ker Ad = Z(G).

Proof. See for instance [18, Theorem 2.19.24]. �

A subgroup A ≤ G is called a Cartan subgroup if A is closed, connected, abelian, and 

every element in A is hyperbolic. The real rank of G, denoted by rankR(G), is defined 

to be

rankR(G) = max{dim A : A is a Cartan subgroup of G}.

We will need the following fact about Cartan subgroups.

Proposition A.4. If g ∈ G is hyperbolic and A ≤ G is a maximal Cartan subgroup, then 

g is conjugate to an element of Z(G)A.

Proof. See for instance [22, Chapter IX, Theorem 7.2]. �



38 A. Zimmer / Advances in Mathematics 366 (2020) 107085

Theorem A.5 (Iwasawa decomposition). If A ≤ G is a maximal Cartan subgroup, then 

there exists a compact subgroup K ≤ G such that G = KAK.

We now focus on the real rank one case.

Additional Assumption. rankR(G) = 1.

Since

rankR(G) =
n∑

i=1

rankR(Gi)

this implies that G is a simple Lie group. In addition, by the classification of simple Lie 

groups, G is locally isomorphic to one of SO(k, 1), SU(k, 1), Sp(k, 1), or F −20
4 .

Now fix K ≤ G a maximal compact subgroup. Then the quotient manifold X = G/K

is diffeomorphic to R
dim X and has a unique (up to scaling) non-positively curved G-

invariant Riemannian metric g, see [18, Section 2.2] for details. Let dX denote the distance 

induced by g.

Remark A.6. Clearly Z(G) ≤ K and so Z(G) acts trivially on X. For this reason, in 

many of the references cited in this section the group G is assumed to have trivial center.

In the rank one case, the associated symmetric space (X, dX) is either a real hy-

perbolic space, a complex hyperbolic space, a quaternionic hyperbolic space, or the 

Cayley-hyperbolic plane. In all these cases, (X, dX) is a negatively curved Riemannian 

manifold. For details see [39, Chapter 19].

Since X is a non-positively curved simply connected Riemannian manifold, there exists 

a compactification called the geodesic compactification which can be defined as follows. 

Let G denote the set of unit speed geodesic rays σ : [0, ∞) → X. Then we say two 

geodesics σ1, σ2 ∈ G are equivalent if

lim
t→∞

dX(σ1(t), σ2(t)) < ∞.

Finally let X(∞) = G / ∼. This gives a compactification X = X ∪X(∞) of X as follows. 

First fix a point x0 ∈ X. Since X is non-positively curved, for any x ∈ X there exists 

a unique geodesic segment σx joining x0 to x. We then say that a sequence xn ∈ X

converges to a point σ ∈ X(∞) if the geodesic segments σxn
converge locally uniformly 

to σ. This construction does not depend on the initial choice of x0. See [18, Section 1.7]

for details.

Since G acts by isometries on X and the construction of X(∞) is independent of base 

point, the action of G on X extends to an action on X ∪ X(∞). For a general non-

positively curved simply connected Riemannian manifold this action is only continuous, 

but for negatively curved symmetric spaces we have the following.
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Theorem A.7. With the notation above, X has a smooth structure, with this structure 

X(∞) is diffeomorphic to a sphere of dimension dim X − 1, and the action of G on X

extends to a smooth action on X(∞).

This theorem follows from considering the standard models of the negatively curved 

symmetric spaces, see [39, Chapter 19].

Although this will not be needed in the paper, it is worth observing the following fact 

about the action of hyperbolic elements.

Theorem A.8. Suppose h ∈ G is a hyperbolic element with Ad(h) �= id. Then there exist 

distinct points ω+
h , ω−

h ∈ X(∞) such that h(ω±
h ) = ω±

h . Further, if U is a neighborhood 

of ω+
h in X and V is a neighborhood of ω−

h in X, then there exists some N > 0 such that

hn
(
X \ V

)
⊂ U and h−n

(
X \ U

)
⊂ V

for all n ≥ N .

A.1. Parabolic subgroups

A subgroup P ≤ G is called a parabolic subgroup of G if P is the stabilizer of some 

ξ ∈ X(∞). Since G has real rank one, G acts transitively on X(∞), see for instance [18, 

Proposition 2.21.13], and so there is a natural identification of X(∞) and G/P . So G/P

is diffeomorphic to a sphere of dimension dim X − 1.

In the proof of Theorem 1.2, we use the following fact about parabolic subgroups.

Theorem A.9. With the notation above, if P ≤ G is a parabolic subgroup, then P is a 

maximal subgroup of G, that is: if H is a closed subgroup of G and P ≤ H, then either 

H = P or H = G.

Proof. Suppose P is the stabilizer of some ξ ∈ X(∞) and that H is a closed subgroup 

with P � H ≤ G. Then there exists h ∈ H with hξ = η and η �= ξ. Then hPh−1 ≤ H

is the stabilizer of η. Since G has real rank one, hPh−1 and P are opposite parabolic 

subgroups and so hPh−1P is dense in G, see [52, Proposition 1.2.4.10]. So H = G. �

Theorem A.10. With the notation above, suppose h ∈ G is hyperbolic and P is the 

stabilizer of ω+
h ∈ X(∞), then for every p ∈ P the limit

lim
n→∞

h−nphn

exists in G.

Proof. See for instance [18, Proposition 2.17.3]. �
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The action of G on G/P is very well understood and we have the following result 

about the existence of invariant distributions.

Theorem A.11. With the notation above, if P ≤ G is a parabolic subgroup and G/P has 

a non-trivial G-invariant smooth distribution V , then either

(1) G is locally isomorphic to SU(1, k) and V is a codimension one distribution,

(2) G is locally isomorphic to Sp(1, k) and V is a codimension three distribution, or

(3) G is locally isomorphic to F −20
4 and V is a codimension seven distribution.

Proof. In each case there is an explicit model of the symmetric space X, see for in-

stance [39, Chapter 19], and this result follows immediately from the considering these 

models. �
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