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PROJECTIVE ANOSOV REPRESENTATIONS, CONVEX

COCOMPACT ACTIONS, AND RIGIDITY

Andrew Zimmer

Abstract

In this paper we show that many projective Anosov represen-
tations act convex cocompactly on some properly convex domain
in real projective space. In particular, if a non-elementary word
hyperbolic group is not commensurable to a non-trivial free prod-
uct or the fundamental group of a closed hyperbolic surface, then
any projective Anosov representation of that group acts convex
cocompactly on some properly convex domain in real projective
space. We also show that if a projective Anosov representation
preserves a properly convex domain, then it acts convex cocom-
pactly on some (possibly different) properly convex domain.

We then give three applications. First, we show that Anosov
representations into general semisimple Lie groups can be defined
in terms of the existence of a convex cocompact action on a prop-
erly convex domain in some real projective space (which depends
on the semisimple Lie group and parabolic subgroup). Next, we
prove a rigidity result involving the Hilbert entropy of a projec-
tive Anosov representation. Finally, we prove a rigidity result
which shows that the image of the boundary map associated to
a projective Anosov representation is rarely a C2 submanifold of
projective space. This final rigidity result also applies to Hitchin
representations.

1. Introduction

If G is a connected simple Lie group with trivial center and K ≤ G
is a maximal compact subgroup, then X = G/K has a unique (up to
scaling) Riemannian symmetric metric g such that G = Isom0(X, g).
The metric g is non-positively curved and X is simply connected, hence
every two points in X are joined by a unique geodesic segment. A subset
C ⊂ X is called convex if for every x, y ∈ C the geodesic joining them is
also in C. Finally, a discrete group Γ ≤ G is said to be convex cocompact
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if there exists a non-empty closed convex set C ⊂ X such that γ(C) = C
for all γ ∈ Γ and the quotient Γ\ C is compact.

In the case in which G has real rank one, there are an abundance
of examples of convex cocompact subgroups and one has the following
characterization:

Theorem 1.1. Suppose G is a real rank one simple Lie group with
trivial center, (X, g) is the symmetric space associated to G, and Γ ≤ G
is a discrete subgroup. Then the following are equivalent:

1) Γ ≤ G is a convex cocompact subgroup,
2) Γ is finitely generated and for some (hence any) x ∈ X the map

γ ∈ Γ → γ · x

induces a quasi-isometric embedding of Γ into X,
3) Γ is word hyperbolic and there exists an injective, continuous, Γ-

equivariant map ξ : ∂Γ → X(∞).

Remark 1.2. For a proof of this theorem see Theorem 5.15 in [30]
which relies on results in [13].

When G has higher rank, the situation is much more rigid:

Theorem 1.3 (Kleiner-Leeb [39], Quint [51]). Suppose G is a simple
Lie group with real rank at least two and Γ ≤ G is a Zariski dense
discrete subgroup. If Γ is convex cocompact, then Γ is a cocompact
lattice in G.

Although the most natural definition of convex cocompact subgroups
leads to no interesting examples in higher rank, it turns out that the
third characterization in Theorem 1.1 can be used to define a rich
class of representations called Anosov representations. This class of
representations was originally introduced by Labourie [40] and then
extended by Guichard-Wienhard [30]. Since then several other charac-
terizations have been given by Kapovich-Leeb-Porti [36, 33, 37, 34,
35], Kapovich-Leeb [32], Guéritaud-Guichard-Kassel-Wienhard [29],
and Bochi-Potrie-Sambarino [12].

We refer the reader to [30] for a precise definition of Anosov represen-
tations, but informally: if Γ is word hyperbolic, G is a semisimple Lie
group, and P is a parabolic subgroup, then a representation ρ : Γ → G
is called P -Anosov if there exists an injective, continuous, ρ-equivariant
map ξ : ∂Γ → G/P satisfying certain dynamical properties. In the
case in which G has real rank one, every two parabolic subgroups are
conjugate and the quotient G/P can naturally be identified with X(∞).

Recently, Danciger, Guéritaud, and Kassel established a close connec-
tion between Anosov representations into PO(p, q) and convex cocom-
pact actions. However, the convex cocompact action is not on the asso-
ciated symmetric spaceX = PO(p, q)/P(O(p)×O(q)), but on a properly
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convex domain in the projective model of the pseudo-Riemannian hy-
perbolic space Hp,q−1. In this context convex cocompactness can be
defined as follows:

Definition 1.4 ([26]). Let

Hp,q−1 = {[x] ∈ P(Rp+q) : 〈x, x〉p,q < 0},

where 〈·, ·〉p,q is the standard bilinear form of signature (p, q). Then an

irreducible discrete subgroup Λ ≤ PO(p, q) is called Hp,q−1-convex co-
compact if there exists a non-empty properly convex subset C of P(Rp+q)
such that

1) C is a closed subset of Hp,q−1,
2) Λ acts properly discontinuously and cocompactly on C,
3) C has non-empty interior, and
4) C\ C contains no projective line segments.

Danciger, Guéritaud, and Kassel then proved the following theorem.

Theorem 1.5 (Danciger-Guéritaud-Kassel [26]). For p, q ∈ N∗ with
p + q ≥ 3, let Λ be an irreducible discrete subgroup of PO(p, q) and let
P p,q
1 ≤ PO(p, q) be the stabilizer of an isotropic line in (Rp+q, 〈·, ·〉p,q).

1) If Λ is Hp,q−1-convex cocompact, then it is word hyperbolic and the
inclusion representation Λ ↪→ PO(p, q) is P p,q

1 -Anosov.
2) Conversely, if Λ is word hyperbolic, ∂Λ is connected, and Λ ↪→

PO(p, q) is P p,q
1 -Anosov, then Λ is either Hp,q−1-convex cocom-

pact or Hq,p−1-convex cocompact (after identifying PO(p, q) with
PO(q, p)).

Remark 1.6. The special case when q = 2 and Λ is the fundamental
group of a closed hyperbolic p-manifold follows from work of Mess [45]
for p = 2 and work of Barbot-Mérigot [3] for p ≥ 3.

In this paper we further explore connections between Anosov repre-
sentations and convex cocompact actions on domains in real projective
space. In the general case, we make the following definition.

Definition 1.7. Suppose V is a finite dimensional real vector space,
Ω ⊂ P(V ) is a properly convex domain, and Λ ≤ Aut(Ω) is a discrete
subgroup. Then Λ is a convex cocompact subgroup of Aut(Ω) if there
exists a non-empty closed convex subset C ⊂ Ω such that g(C) = C for
all g ∈ Λ and the quotient Λ\ C is compact.

In the context of Anosov representations a more refined notion of
convex cocompactness is necessary: there exist properly convex domains
Ω ⊂ P(V ) with convex cocompact subgroups Λ ≤ Aut(Ω) which are
not word hyperbolic. To avoid such examples, we make the following
stronger definition.
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Definition 1.8. Suppose V is a finite dimensional real vector space,
Ω ⊂ P(V ) is a properly convex domain, and Λ ≤ Aut(Ω) is a discrete
subgroup. Then Λ is a regular convex cocompact subgroup of Aut(Ω) if
there exists a non-empty closed convex subset C ⊂ Ω such that g(C) = C
for all g ∈ Λ, the quotient Λ\ C is compact, and every point in C ∩ ∂Ω
is a C1 extreme point of Ω.

Remark 1.9.

1) When Λ is an irreducible subgroup of PGL(V ), we show that every
point in C ∩ ∂Ω is a C1 point of Ω if and only if every point in
C ∩ ∂Ω is a extreme point of Ω (see Theorem 1.22 below).

2) It turns out that Hp,q−1-convex cocompact subgroups always sat-
isfy this stronger condition. In particular, by Proposition 1.14
in [26]: If Γ ≤ PO(p, q) is irreducible, discrete, and Hp,q−1-convex
cocompact, then there exists a properly convex domain Ω ⊂
P(Rp+q) such that Λ is a regular convex cocompact subgroup of
Aut(Ω).

Finally we are ready to state our first main result.

Theorem 1.10 (see Section 6). Suppose G is a semisimple Lie group
with finite center and P ≤ G is a parabolic subgroup. Then there exists a
finite dimensional real vector space V and an irreducible representation
φ : G → PSL(V ) with the following property: if Γ is a word hyperbolic
group and ρ : Γ → G is a Zariski dense representation with finite kernel,
then the following are equivalent:

1) ρ is P -Anosov,
2) there exists a properly convex domain Ω ⊂ P(V ) such that (φ◦ρ)(Γ)

is a regular convex cocompact subgroup of Aut(Ω).

Properly convex domains and their projective automorphism groups
have been extensively studied, especially in the case in which there exists
a discrete group Γ ≤ Aut(Ω) such that Γ\Ω is compact. Such domains
are called convex divisible domains and have a number of remarkable
properties, see the survey papers by Benoist [10], Marquis [44], and
Quint [52].

Theorem 1.10 provides a way to use the rich theory of convex divisible
domains to study general Anosov representations. For instance, the
proofs of Theorem 1.35 and Theorem 1.46 below are inspired by rigidity
results for convex divisible domains.

1.1. Projective Anosov representations. The first step in the proof
of Theorem 1.10 is to use a result of Guichard and Wienhard to reduce
to the case of projective Anosov representations. A projective Anosov
representation is simply an P -Anosov representation in the special case
when G = PGLd(R) and P ≤ PGLd(R) is the stabilizer of a line. This
special class of Anosov representations can be defined as follows.
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Definition 1.11. Suppose that Γ is a word hyperbolic group, ∂Γ is
the Gromov boundary of Γ, and ρ : Γ → PGLd(R) is a representation.
Two maps ξ : ∂Γ → P(Rd) and η : ∂Γ → P(Rd∗) are called:

1) ρ-equivariant if ξ ◦ γ = ρ(γ) ◦ ξ and η ◦ γ = ρ(γ) ◦ η for all γ ∈ Γ,
2) dynamics-preserving if for every γ ∈ Γ of infinite order with

attracting fixed point x+γ ∈ ∂Γ the points ξ(x+γ ) ∈ P(Rd) and

η(x+γ ) ∈ P(Rd∗) are attracting fixed points of the action of ρ(γ) on

P(Rd) and P(Rd∗), and
3) transverse if for every distinct pair x, y ∈ ∂Γ we have ξ(x) +

ker η(y) = Rd.

Definition 1.12. Given an element g ∈ PGLd(R) let

λ1(g) ≥ · · · ≥ λd(g)

denote the absolute values of the eigenvalues (counted with multiplicity)
of some (any) lift g̃ ∈ GLd(R) of g with det g̃ = ±1.

Definition 1.13. Suppose that Γ is word hyperbolic, S is a finite
symmetric generating set, and dS is the associated word metric on Γ.
Then for γ ∈ Γ, let `S(γ) denote the minimal translation distance of γ
acting on the Cayley graph of (Γ, S), that is

`S(γ) = inf
x∈Γ

dS(γx, x).

A representation ρ : Γ → PGLd(R) is then called a projective Anosov
representation if there exist continuous, ρ-equivariant, dynamics pre-
serving, and transverse maps ξ : ∂Γ → P(Rd), η : ∂Γ → P(Rd∗) and
constants C, c > 0 such that

log
λ1(ρ(γ))

λ2(ρ(γ))
≥ C`S(γ)− c(1)

for all γ ∈ Γ.

Remark 1.14. This is not the initial definition of Anosov representa-
tions given by Labourie [40] or Guichard-Wienhard [30], but a nontriv-
ial characterization proved in [29, Theorem 1.7]. We use this character-
ization as our definition because it is more elementary to state than the
original definition, but it is not necessary for any of the proofs in the
paper. We should also note that this is far from the simplest definition
of Anosov representations, for instance if one replaces the estimate in
Equation (1) with a similar estimate on singular values, then it follows
from work of Kapovich, Leeb, and Porti [37] that one does not need
to assume that the maps η, ξ exist or even that Γ is a word hyperbolic
group (only finite generation is required). But since many of the results
that follow involve these boundary maps and eigenvalues, it seems like
this definition is the most natural in the context of this paper.
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Guichard and Wienhard proved the following connection between
general Anosov representations and projective Anosov representations.

Theorem 1.15 (Guichard-Wienhard [30, Section 4]). Suppose G is
a semisimple Lie group with finite center and P ≤ G is a parabolic sub-
group. Then there exist a finite dimensional real vector space V0 and an
irreducible representation φ0 : G → PSL(V0) with the following prop-
erty: if Γ is a word hyperbolic group and ρ : Γ → G is a representation,
then the following are equivalent:

1) ρ is P -Anosov,
2) φ0 ◦ ρ is projective Anosov.

Remark 1.16. Proofs of this theorem can also be found in [29, Sec-
tion 3] and [14, Subsection 2.3].

Using Theorem 1.15, the proof of Theorem 1.10 essentially reduces to
the case of projective Anosov representations. In this case, we consider
the following two questions.

Question 1.17.

1) Given a properly convex domain Ω ⊂ P(V ) and a convex cocom-
pact subgroup Λ ≤ Aut(Ω), what geometric conditions on Ω im-
ply that the inclusion representation Λ ↪→ PGL(V ) is a projective
Anosov representation?

2) Given a projective Anosov representation ρ : Γ → PGL(V ) what
conditions on ρ or Γ imply that ρ(Γ) acts convex cocompactly on
a properly convex domain in P(V )?

Remark 1.18. Projective Anosov representations are closely related
to the representations studied by Danciger, Guéritaud, and Kassel [26]
in the PO(p, q) case. In particular, if ρ : Γ → PO(p, q) is a representa-
tion of a word hyperbolic group, then (by definition) the following are
equivalent:

1) ρ is P p,q
1 -Anosov where P p,q

1 ≤ PO(p, q) be the stabilizer of an
isotropic line in (Rp+q, 〈·, ·〉p,q),

2) ρ is projective Anosov when viewed as a representation into
PGLp+q(R).

Thus Theorem 1.5 provides answers to the above questions for projective
Anosov representations whose images preserve a non-degenerate bilinear
form.

1.2. When a convex cocompact action leads to a projective

Anosov representation. When Ω ⊂ P(Rd) and Λ ≤ Aut(Ω) is a dis-
crete group which acts cocompactly on Ω, Benoist has provided geomet-
ric conditions on Ω so that the inclusion representation Λ ↪→ PGLd(R)
is projective Anosov.
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Theorem 1.19 (Benoist [8]). Suppose Ω ⊂ P(Rd) is a properly con-
vex domain and Λ ≤ Aut(Ω) is a discrete group which acts cocompactly
on Ω. Then the following are equivalent:

1) Λ is word hyperbolic,
2) ∂Ω is a C1 hypersurface,
3) Ω is strictly convex.

Moreover, when these conditions are satisfied the inclusion representa-
tion Λ ↪→ PGLd(R) is projective Anosov.

Remark 1.20. There exist examples of properly convex domains Ω ⊂
P(Rd) with discrete subgroups Λ ≤ Aut(Ω) where Λ acts co-compactly
on Ω and Λ is not word hyperbolic, see [9] and [2].

The case of convex cocompact actions is more complicated as the
next example shows.

Example 1.21. Let

C =

{
(x1, x2, y) ∈ R3 : y >

√
x21 + x22

}
.

Then C is a properly convex cone and the group SO0(1, 2) preserves C.
Let Λ0 ≤ SO0(1, 2) be a cocompact lattice. Next consider the properly
convex domain

Ω = {[(v1, v2)] ∈ P(R6) : v1 ∈ C, v2 ∈ C}

and the discrete group

Λ =

{[
ϕ 0
0 ϕ

]
∈ PGL6(R) : ϕ ∈ Λ0

}
.

Let C0 = {[(v, v)] ∈ P(Rd) : v ∈ C} and for r > 0 let

Cr = {p ∈ Ω : dΩ(p, C0) ≤ r} ⊂ Ω.

Then each Cr is convex (see [16, Result 18.9] or [20, Corollary 1.10])
and the quotient Λ\ Cr is compact. This example has the following
properties:

1) Λ is word hyperbolic (since Λ0 is word hyperbolic),
2) the inclusion representation Λ ↪→ PGL6(R) is not projective

Anosov,
3) Λ ≤ Aut(Ω) is a convex cocompact subgroup,
4) when r > 0 there exist line segments in ∂Ω ∩ Cr, and
5) every point in ∂Ω ∩ Cr is not a C1 point of ∂Ω.

Despite examples like these, we will prove the following analogue of
Benoist’s theorem for convex cocompact subgroups
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Theorem 1.22 (see Section 5). Suppose Ω ⊂ P(Rd) is a properly
convex domain and Λ ≤ Aut(Ω) is a discrete irreducible subgroup of
PGLd(R). If Λ preserves and acts cocompactly on a closed convex subset
C ⊂ Ω, then the following are equivalent:

1) every point in C ∩ ∂Ω is a C1 point of ∂Ω,
2) every point in C ∩ ∂Ω is an extreme point of Ω.

Moreover, when these conditions are satisfied Λ is word hyperbolic and
the inclusion representation Λ ↪→ PGLd(R) is projective Anosov.

Remark 1.23.

1) Theorem 1.22 can be seen as a generalization of Theorem 1.5 part
(1) to the case when the representation is not assumed to preserve
a non-degenerate bilinear form (see Remarks 1.9 and 1.18).

2) This result was established independently by Danciger, Guéritaud,
and Kassel, see Theorems 1.4 and 1.15 in [25] and Subsection 1.5
below.

1.3. When a projective Anosov representation acts convex co-

compactly. In general a projective Anosov representation will not pre-
serve a properly convex domain:

Example 1.24. Consider a cocompact lattice Λ ≤ SL2(R) and con-
sider the representation ρ : SL2(R) → SL3(R) given by

ρ(g) =

(
g

1

)
.

Then the representation ρ|Λ : Λ → PSL3(R) is projective Anosov and
the image of the boundary map is

L := {[x1 : x2 : 0] ∈ P(R3) : x1, x2 ∈ R, (x1, x2) 6= 0}.

From this, it is easy to see that ρ(Λ) cannot preserve a properly convex
domain Ω because then we would have L ⊂ ∂Ω.

The above example is simple to construct, but is not an irreducible
representation. To obtain an example of an irreducible projective
Anosov representation which does not preserve a properly convex do-
main, one can consider Hitchin representations of surface groups in
SL2d(R), see Proposition 1.7 in [25].

With some mild conditions on Γ we can prove that every projective
Anosov representation of Γ acts convex cocompactly on a properly con-
vex domain.

Theorem 1.25 (see Section 3). Suppose Γ is a non-elementary word
hyperbolic group which is not commensurable to a non-trivial free prod-
uct or the fundamental group of a closed hyperbolic surface. If ρ : Γ →
PGLd(R) is an irreducible projective Anosov representation, then there
exists a properly convex domain Ω ⊂ P(Rd) such that ρ(Γ) is a regular
convex cocompact subgroup of Aut(Ω).
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Remark 1.26. Work of Stallings implies that Γ is not commensurable
to a non-trivial free product if and only if ∂Γ is connected [55, 54]. So
Theorem 1.25 can be seen as an analogue of Theorem 1.5 part (2) in
the case when the representation is not assumed to preserve a non-
degenerate bilinear form.

We can also prove that once the image acts on some properly convex
domain, then it acts convex cocompactly on some (possibly different)
properly convex domain:

Theorem 1.27 (see Section 3). Suppose Γ is a word hyperbolic group.
If ρ : Γ → PGLd(R) is an irreducible projective Anosov representation
and ρ(Γ) preserves a properly convex domain in P(Rd), then there exists
a properly convex domain Ω ⊂ P(Rd) such that ρ(Γ) is a regular convex
cocompact subgroup of Aut(Ω).

Remark 1.28. This result was established independently by Dan-
ciger, Guéritaud, and Kassel, see Theorems 1.4 and 1.15 in [25] and
Subsection 1.5 below.

Using Theorem 1.27, we can construct a convex cocompact action for
any projective Anosov representation by post composing with another
representation.

Example 1.29. Let Symd(R) be the vector space of symmetric d-
by-d real matrices and consider the representation

S : PGLd(R) → PGL(Symd(R))

given by

S(g)X = gX tg.

Then

P := {[X] ∈ P(Symd(R)) : X > 0}

is a properly convex domain in P(Symd(R)) and S(PGLd(R)) ≤ Aut(P).

Combining Theorem 1.27 with the above examples establishes the
following corollary.

Corollary 1.30 (see Section 3.3). Suppose Γ is a word hyperbolic
group and ρ : Γ → PGLd(R) is an irreducible projective Anosov repre-
sentation. Let

V = SpanR{ξ(x)
tξ(x) : x ∈ ∂Γ} ⊂ Symd(R).

Then there exists a properly convex domain Ω ⊂ P(V ) such that (S ◦
ρ)(Γ) is a regular convex cocompact subgroup of Aut(Ω).
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In the context of Theorem 1.27, it is also worth mentioning a the-
orem of Benoist which gives a necessary and sufficient condition for a
subgroup of GLd(R) to preserve a properly convex cone. Before stating
Benoist theorem we need some terminology. An element g ∈ GLd(R) is
called proximal if it has a unique eigenvalue of maximal absolute value
and a proximal element g ∈ GLd(R) is called positively proximal if its
unique eigenvalue of maximal absolute value is positive. Then a sub-
group G ≤ GLd(R) is called positively proximal if G contains a proximal
element and every proximal element in G is positively proximal. With
this language, Benoist proved the following theorem.

Theorem 1.31 (Benoist [6, Proposition 1.1]). If G ≤ GLd(R) is an
irreducible subgroup, then the following are equivalent:

1) G is positively proximal
2) G preserves a properly convex cone C ⊂ Rd.

As an application, we will apply Theorem 1.27 and Benoist’s theorem
to Hitchin representations in certain dimensions.

Definition 1.32. Suppose that Γ ≤ PSL2(R) is a torsion-free cocom-
pact lattice and ι : Γ ↪→ PSL2(R) is the inclusion representation. For
d > 2, let τd : PSL2(R) → PSLd(R) be the unique (up to conjugation)
irreducible representation. Then the connected component of τd ◦ ι in
Hom(Γ,PSLd(R)), denoted Hd(Γ), is called the Hitchin component of Γ
in PSLd(R). Labourie [40] proved that every representation in Hd(Γ)
is projective Anosov (it is actually B-Anosov where B ≤ PSLd(R) is a
minimal parabolic subgroup).

Corollary 1.33. Suppose that Γ ≤ PSL2(R) is a torsion-free cocom-
pact lattice and ρ : Γ → PSLd(R) is in the Hitchin component. If d is
odd, then there exists a properly convex domain Ω ⊂ P(Rd) such that
ρ(Γ) is a regular convex cocompact subgroup of Aut(Ω).

Remark 1.34. This result was also established independently by
Danciger, Guéritaud, and Kassel, see Proposition 1.7 in [25] and Sub-
section 1.5 below. In the case where d is even, Danciger, Guéritaud,
and Kassel showed that ρ(Γ) cannot even preserve a properly convex
domain in R(Rd).

Since the proof is short we include it here.

Proof. If we identify Rd with the vector space of homogenous poly-
nomials P : Rd → R of degree d − 1, then the representation τd :
PSL2(R) → PSLd(R) is given by

τd(g) · P = P ◦ g−1.
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Since d is odd, PSLd(R) = SLd(R) and if g ∈ PSL2(R) has eigenvalues
with absolute values λ, λ−1 then τd(g) has eigenvalues

λd−1, λd−3, . . . , λ−(d−1).

Hence each eigenvalue of τd(g) is positive.
Now fix some ρ ∈ Hd(Γ). Since Hd(Γ) is connected, we see that

ρ(Γ) is positively proximal. So by Benoist’s theorem ρ(Γ) preserves
a properly convex cone C ⊂ Rd. So by Theorem 1.27, there exists a
properly convex domain Ω ⊂ P(Rd) so that ρ(Γ) is a regular convex
cocompact subgroup of Aut(Ω). q.e.d.

1.4. Other applications.

1.4.1. Entropy rigidity. Suppose that Γ is a group and let [Γ] be the
conjugacy classes of Γ. Given a representation ρ : Γ → PGLd(R) define
the Hilbert entropy to be

Hρ = lim sup
r→∞

1

r
log#

{
[γ] ∈ [Γ] :

1

2
log

(
λ1(ρ(γ))

λd(ρ(γ))

)
≤ r

}
.

We will prove the following upper bound on entropy.

Theorem 1.35 (see Section 7). Suppose Γ is a word hyperbolic group
and ρ : Γ → PGLd(R) is an irreducible projective Anosov representation.
If ρ(Γ) preserves a properly convex domain in P(Rd), then

Hρ ≤ d− 2

with equality if and only if ρ(Γ) is conjugate to a cocompact lattice in
PO(1, d− 1).

Remark 1.36. Theorem 1.25 shows that Theorem 1.35 applies to
many Anosov representations.

Theorem 1.35 is a generalization of a theorem of Crampon.

Theorem 1.37 (Crampon [23]). Suppose Ω ⊂ P(Rd) is a properly
convex domain and Λ ≤ Aut(Ω) is a discrete word hyperbolic group
which acts cocompactly on Ω. If ι : Λ ↪→ PGLd(R) is the inclusion
representation, then

Hι ≤ d− 2

with equality if and only if Λ is conjugate to a cocompact lattice in
PO(1, d− 1).

Remark 1.38. In the context of Theorem 1.37, Theorem 1.19 implies
that ι is a projective Anosov representation and so Theorem 1.35 is a
true generalization of Theorem 1.37. Recently, Theorem 1.37 was also
generalized in a different direction in [4].

Theorem 1.35 also improves, in some cases, bounds due to Sambarino.
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Theorem 1.39 (Sambarino [53, Theorem A]). Suppose Γ is a convex
cocompact group of a CAT(−1) space X and let ρ : Γ → PGLd(R) be
an irreducible projective Anosov representation with d ≥ 3. Then

αHρ ≤ δΓ(X),

where the boundary map ξ : ∂Γ → P(Rd) is α-Hölder and δΓ(X) is the
Poincaré exponent of Γ acting on X.

Remark 1.40. In Theorem 1.39, ξ is Hölder with respect to a visual
metric of X restricted to the limit set of Γ and a distance on P(Rd)
induced by a Riemannian metric. Sambarino also proves a rigidity result
in the case when αHρ = δΓ(X) and X is real hyperbolic k-space, for
details see Corollary 3.1 in [53].

Remark 1.41. If Γ satisfies the hypothesis of Theorem 1.25 and

α <
δΓ(X)

d− 2
,

then Theorem 1.35 can be used to provide a better upper bound on
entropy.

1.4.2. Regularity rigidity. In this subsection we describe some rigid-
ity results related to the regularity of the limit curve of a projective
Anosov representation. We should note that if the boundary of a word
hyperbolic group is a topological manifold, then it actually must be a
sphere (see for instance [31, Theorem 4.4]).

For certain types of projective Anosov representations, the image of
the boundary map is actually a C1 submanifold.

Example 1.42. Suppose Ω ⊂ P(Rd) is a properly convex domain
and Λ ≤ Aut(Ω) is a discrete group which acts cocompactly on Ω.
If Λ is word hyperbolic, then Theorem 1.19 implies that the inclusion
representation Λ ↪→ PGLd(R) is projective Anosov. The image of the
associated boundary map is ∂Ω which is a C1 submanifold of P(Rd) by
Theorem 1.19.

Example 1.43. Suppose that Γ ≤ PSL2(R) is a torsion-free co-
compact lattice and ρ : Γ → PSLd(R) is in the Hitchin component. If
ξ : ∂Γ → P(Rd) is the boundary map associated to ρ, then ξ(∂Γ) is a C1

submanifold of P(Rd). This follows from the fact that ξ is a hyperconvex
Frenet curve, see [40, Theorem 1.4].

In both of theses cases it is known that the image of the boundary
map cannot be too regular unless the representation is very special.

Theorem 1.44 (Benoist [8]). Suppose Ω ⊂ P(Rd) is a properly con-
vex domain and Λ ≤ Aut(Ω) is a discrete group which acts cocompactly
on Ω. If ∂Ω is a C1,α hypersurface for every α ∈ (0, 1), then Ω is pro-
jectively isomorphic to the ball and hence Λ is conjugate to a cocompact
lattice in PO(1, d− 1).
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Theorem 1.45 (Potrie-Sambarino [49]). Suppose that Γ ≤ PSL2(R)
is a torsion-free cocompact lattice and ρ : Γ → PSLd(R) is in the Hitchin
component. If ξ : ∂Γ → P(Rd) is the associated boundary map and
ξ(∂Γ) is a C∞ submanifold of P(Rd), then there exists a representation
ρ0 : Γ → PSL2(R) such that ρ is conjugate to τd ◦ ρ0.

Using Theorem 1.25, we will prove the following.

Theorem 1.46 (see Section 8). Suppose d > 2, Γ is a word hyper-
bolic group, and ρ : Γ → PGLd(R) is an irreducible projective Anosov
representation with boundary map ξ : ∂Γ → P(Rd). If

1) M = ξ(∂Γ) is a C2 k-dimensional submanifold of P(Rd) and
2) the representation ∧k+1ρ : Γ → PGL(∧k+1Rd) is irreducible,

then

λ1(ρ(γ))

λ2(ρ(γ))
=

λk+1(ρ(γ))

λk+2(ρ(γ))

for all γ ∈ Γ.

Remark 1.47.

1) Notice that the regularity assumption concerns the set ξ(∂Γ) and
not the map ξ : ∂Γ → P(Rd).

2) As before, λ1(g) ≥ · · · ≥ λd(g) denote the absolute values of
the eigenvalues (counted with multiplicity) of some (any) lift g̃ ∈
GLd(R) of g with det g̃ = ±1.

3) Theorem 1.25 is only needed in the case when k > 1.

When ρ : Γ → PGLd(R) has Zariski dense image, then ρ and ∧k+1ρ
are irreducible. Moreover in this case the main result in [5] implies that
there exists some γ ∈ Γ such that

λ1(ρ(γ))

λ2(ρ(γ))
6=

λk+1(ρ(γ))

λk+2(ρ(γ))
.

So we have the following corollary of Theorem 1.46.

Corollary 1.48. Suppose d > 2, Γ is a word hyperbolic group, and ρ :
Γ → PGLd(R) is a Zariski dense projective Anosov representation with
boundary map ξ : ∂Γ → P(Rd). Then ξ(∂Γ) is not a C2 submanifold of
P(Rd).

The proof of Theorem 1.46 can also be used to prove the following
rigidity result for Hitchin representations.

Theorem 1.49 (see Section 8). Suppose that Γ ≤ PSL2(R) is a
torsion-free cocompact lattice and ρ : Γ → PSLd(R) is in the Hitchin
component. If ξ : ∂Γ → P(Rd) is the associated boundary map and
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ξ(∂Γ) is a C2 submanifold of P(Rd), then

λ1(ρ(γ))

λ2(ρ(γ))
=

λ2(ρ(γ))

λ3(ρ(γ))

for all γ ∈ Γ.

Remark 1.50. This corollary greatly restricts the Zariski closure of
ρ(Γ) when ρ is Hitchin and ξ(∂Γ) is a C2 submanifold (see [5] again).
In particular, the corollary implies that in this case:

1) ρ(Γ) cannot be Zariski dense,
2) if d = 2n > 2, then the Zariski closure of ρ(Γ) cannot be conjugate

to PSp(2n,R),
3) if d = 2n + 1 > 3 then the Zariski closure of ρ(Γ) cannot be

conjugate to PSO(n, n+ 1), and
4) if d = 7, then the Zariski closure of ρ(Γ) cannot be conjugate to

the standard realization of G2 in PSL7(R).

See Section B in the appendix for details.
Guichard has announced that these are the only possibilities for the

Zariski closure of ρ(Γ) when ρ is Hitchin but not Fuchsian (that is
conjugate to a representation of the form τd ◦ ρ0), see for instance [14,
Section 11.3].

1.5. Convex cocompactness in thework ofDanciger,Guéritaud,

and Kassel. After I finished writing this paper, Danciger, Guéritaud,
and Kassel informed me of their preprint [25] which has some over-
lapping results with this paper. They consider a class of subgroups of
PGLd(R) which they call strongly convex cocompact which (using the
terminology of this paper) are discrete subgroups Γ ≤ PGLd(R) which
act convex cocompactly on a properly convex domain which is strictly
convex and has C1 boundary. This notion appears to be first studied
in work of Crampon and Marquis [24]. Danciger, Guéritaud, and Kas-
sel also show (stated with different terminology) that if Λ ≤ Aut(Ω)
is a regular convex cocompact subgroup (as in Definition 1.8), then it
is actually a strongly convex cocompact subgroup of PGLd(R), that
is there exists a possibly different properly convex domain Ω′ where
Λ ≤ Aut(Ω′) is a convex cocompact subgroup and Ω′ is a strictly con-
vex domain with C1 boundary (see Theorem 1.15 in [25]). Danciger,
Guéritaud, and Kassel also study a notion of convex cocompact actions
on general properly convex domains (see Definition 1.11 in [25]) that is
different than the one we consider in Definition 1.7 above.

The main overlap in the two papers is in Theorems 1.22, 1.27, and
Corollary 1.33 above and Theorems 1.4, 1.15 and Proposition 1.7 in [26].

Acknowledgments. I would like to thank Thomas Barthelmé and Lu-
dovic Marquis for many helpful conversations. In particular, we jointly
observed the fact that an argument due to G. Liu could be used to
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prove Proposition 7.4 during the course of writing our joint paper En-
tropy rigidity of Hilbert and Riemannian metrics [4].

I would also like to thank the referees for their careful reading of this
paper and their many helpful comments and corrections.

This material is based upon work supported by the National Science
Foundation under grants DMS-1400919 and DMS-1760233.

2. Preliminaries

In this section we recall some facts that we will use in the arguments
that follow.

2.1. Some notations.

1) If M ⊂ P(Rd) is a C1 k-dimensional submanifold of P(Rd) and
m ∈ M we will let TmM ⊂ P(Rd) be the k-dimensional projective
subspace of P(Rd) which is tangent to M at m.

2) If V ⊂ Rd is a linear subspace, we will let P(V ) ⊂ P(Rd) denote
its projectivization. In most other cases, we will use [o] to denote
the projective equivalence class of an object o, for instance:
a) if v ∈ Rd \{0}, then [v] denotes the image of v in P(Rd),
b) if φ ∈ GLd(R), then [φ] denotes the image of φ in PGLd(R),

and
c) if T ∈ End(Rd) \ {0}, then [T ] denotes the image of T in

P(End(Rd)).
3) A line segment in P(Rd) is a connected subset of a projective line.

Given two points x, y ∈ P(Rd) there is no canonical line segment
with endpoints x and y, but we will use the following convention:
if Ω is a properly convex domain and x, y ∈ Ω, then (when the
context is clear) we will let [x, y] denote the closed line segment
joining x to y which is contained in Ω. In this case, we will also let
(x, y) = [x, y] \ {x, y}, [x, y) = [x, y] \ {y}, and (x, y] = [x, y] \ {x}.

2.2. Gromov hyperbolicity. Suppose (X, d) is a metric space. If
I ⊂ R is an interval, a curve σ : I → X is a geodesic if

d(σ(t1), σ(t2)) = |t1 − t2|

for all t1, t2 ∈ I. A geodesic triangle in a metric space is a choice of three
points in X and geodesic segments connecting these points. A geodesic
triangle is said to be δ-thin if any point on any of the sides of the triangle
is within distance δ of the other two sides.

Definition 2.1. A proper geodesic metric space (X, d) is called δ-
hyperbolic if every geodesic triangle is δ-thin. If (X, d) is δ-hyperbolic
for some δ ≥ 0 then (X, d) is called Gromov hyperbolic.

We will use the following (probably well known) characterization of
Gromov hyperbolicity.
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Proposition 2.2. Suppose (X, d) is a proper geodesic metric space,
δ > 0, and there exists a map

(x, y) ∈ X ×X → σx,y ∈ C([0, d(x, y)], X),

where σx,y is a geodesic segment joining x to y. If for every x, y, z ∈ X
distinct, the geodesic triangle formed by σx,y, σy,z, σz,x is δ-thin, then
(X, d) is Gromov hyperbolic.

We begin the proof with a definition and a lemma. Define the Gromov
product of x, y ∈ X with respect to o ∈ X to be

(x|y)o :=
1

2
(d(x, o) + d(o, y)− d(x, y)) .

Lemma 2.3. Suppose (X, d) is a metric space, x, y, o ∈ X, and
σ : [0, T ] → X is a geodesic with σ(0) = x and σ(T ) = y. Then

(x|y)o ≤ d(o, σ) := inf{d(o, σ(t)) : t ∈ [0, T ]}.

Proof. For t ∈ [0, T ],

d(x, y) = d(x, σ(t)) + d(σ(t), y)

and so the triangle inequality implies that:

2(x|y)o = d(x, o) + d(o, y)− d(x, y) ≤ 2d(o, σ(t)). q.e.d.

Proof of Proposition 2.2. We start by proving the following claim:

Claim: If x, y, o ∈ X and t ≤ (x|y)o − δ, then

d(σox(t), σoy(t)) ≤ 2δ.

It is enough to consider the case when t < (x|y)o − δ. In this case

d(σox(t), σxy) ≥ d(o, σxy)− d(σox(t), o) ≥ (x|y)o − t > δ.

So by the thin triangle condition, there exists s such that
d(σox(t), σoy(s)) ≤ δ. Then

δ ≥ d(σox(t), σoy(s)) ≥ |d(σox(t), o)− d(o, σoy(s))| = |t− s| .

So

d(σox(t), σoy(t)) ≤ d(σox(t), σoy(s)) + d(σoy(s), σoy(t)) ≤ 2δ

and the claim is established.
By Proposition 1.22 in Chapter III.H in [15], (X, d) is Gromov hy-

perbolic if and only if there exists some δ0 > 0 such that

(x|y)o ≥ min{(x|z)o, (y|z)o} − δ0

for all o, x, y, z ∈ X.
Fix o, x, y, z ∈ X. We claim that

(x|y)o ≥ min{(x|z)o, (y|z)o} − 3δ.
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Let m = min{(x|z)o, (y|z)o}. Since (x|y)o ≥ 0, the inequality is trivial
when m ≤ δ. So we can assume m > δ. Then the triangle inequality
implies that

min{d(x, o), d(y, o), d(z, o)} ≥ m > δ.

Then let x′ = σox(m− δ), y′ = σoy(m− δ), and z′ = σoz(m− δ). Then
by the claim

d(x′, y′) ≤ d(x′, z′) + d(z′, y′) ≤ 4δ.

Then

2(x|y)o = d(x, o) + d(o, y)− d(x, y)

= d(x, x′) + d(x′, o) + d(o, y′) + d(y′, y)− d(x, y)

≥ d(x′, o) + d(o, y′)− d(x′, y′)

≥ m− δ +m− δ − 4δ = 2m− 6δ.

So

(x|y)o ≥ min{(x|z)o, (y|z)o} − 3δ. q.e.d.

By combining several deep theorems from geometric group theory we
can deduce the following.

Theorem 2.4. Suppose Γ is a non-elementary word hyperbolic group
which does not split over a finite group and is not commensurable to the
fundamental group of a closed hyperbolic surface. Then

1) ∂Γ is connected,
2) ∂Γ \ {x} is connected for every x ∈ ∂Γ, and
3) there exist u,w ∈ ∂Γ distinct such that ∂Γ \ {u,w} is connected.

The argument below comes from the proof of Theorem 3.1 in [48].

Proof. By work of Stallings, ∂Γ is disconnected if and only if Γ splits
over a finite group [55, 54]. So ∂Γ must be connected. Then a theorem
of Swarup [56] implies that ∂Γ \ {x} is connected for every x ∈ ∂Γ.

Now suppose for a contradiction that ∂Γ \ {u,w} is disconnected
for every u,w ∈ ∂Γ distinct. Then ∂Γ is homeomorphic to the circle
by [46, Chapter IV, Theorem 12.1]. But then by work of Gabai [28] and
Tukia [59], Γ is commensurable to the fundamental group of a closed
hyperbolic surface. q.e.d.

2.3. Properly convex domains. In this subsection we review some
basic definitions involving convexity in real projective space.

Definition 2.5.

1) A set Ω ⊂ P(Rd) is called a domain if Ω is open and connected
2) A set Ω ⊂ P(Rd) is called convex if L∩Ω is connected and L∩Ω 6= L

for every projective line L ⊂ P(Rd).
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3) A convex domain Ω ⊂ P(Rd) is called a properly convex domain if
L ∩ Ω 6= L for every projective line L ⊂ P(Rd).

When Ω ⊂ P(Rd) is a properly convex domain, there exists an affine
chart A ⊂ P(Rd) which contains Ω as a bounded convex domain (see for
instance [1, Chapter 1]).

Definition 2.6. Given a properly convex domain Ω ⊂ P(Rd), a hy-
perplane H ⊂ P(Rd) is a supporting hyperplane of Ω at x ∈ ∂Ω if x ∈ H
and H ∩ Ω = ∅.

One of the most important properties of properly convex domains is
that every boundary point is contained in at least one supporting hyper-
plane (which follows from the supporting hyperplane characterization
of convexity in Euclidean space).

Definition 2.7. Suppose that Ω ⊂ P(Rd) is a properly convex do-
main. Then

1) a point x ∈ ∂Ω is a C1 point of Ω if x is contained in a unique
supporting hyperplane of Ω. In this case, we let Tx∂Ω denote this
unique supporting hyperplane.

2) a point x ∈ ∂Ω is an extreme point of Ω if there does not exist a
line segment (p, q) in ∂Ω with x ∈ (p, q).

It is straightforward to show that x ∈ ∂Ω is a C1 point of Ω (in
the sense above) if and only if ∂Ω is locally the graph of a function
which is differentiable at x. Moreover, in this case if xn ∈ ∂Ω is a
sequence converging to x and Hn is a supporting hyperplane at xn,
then limn→∞Hn = Tx∂Ω.

Given a properly convex domain Ω ⊂ P(Rd) the dual set is defined
to be:

Ω∗ = {f ∈ P(Rd∗) : f(x) 6= 0 for all x ∈ Ω}.

The set Ω∗ is a properly convex domain in P(Rd∗) and the two sets have
the following relation.

Observation 2.8. If f ∈ ∂Ω∗, then P(ker f) is a supporting hyper-
plane of Ω.

2.4. The Hilbert metric. For distinct points x, y ∈ P(Rd) let xy be
the projective line containing them. Suppose Ω ⊂ P(Rd) is a properly
convex domain. If x, y ∈ Ω are distinct let a, b be the two points in
xy ∩ ∂Ω ordered a, x, y, b along xy. Then define the Hilbert distance
between x and y to be

dΩ(x, y) =
1

2
log[a, x, y, b],
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where

[a, x, y, b] =
|x− b| |y − a|

|x− a| |y − b|

is the cross ratio. Using the invariance of the cross ratio under projective
maps and the convexity of Ω it is possible to establish the following (see
for instance [17, Section 28]).

Proposition 2.9. Suppose Ω ⊂ P(Rd) is a properly convex domain.
Then dΩ is a complete Aut(Ω)-invariant metric on Ω which generates
the standard topology on Ω. Moreover, if p, q ∈ Ω, then there exists a
geodesic joining p and q whose image is the line segment [p, q].

We will use the following observation (which follows immediately from
the definition of dΩ).

Observation 2.10 (see Lemma 3 in [60]). Suppose Ω ⊂ P(Rd) is a
properly convex domain and pn, qn ∈ Ω are sequences. If pn → p ∈ Ω
and dΩ(pn, qn) → 0, then qn → p.

We will also use the following estimate.

Lemma 2.11 (see Lemma 8.3 in [23]). Suppose Ω ⊂ P(Rd) is a
properly convex domain and [a, b], [c, d] ⊂ Ω are line segments. If p ∈
[a, b], then

dΩ(p, [c, d]) ≤ dΩ(a, c) + dΩ(b, d).

We will also consider the Gromov product induced by the Hilbert
metric: given a properly convex domain Ω ⊂ P(Rd) define the Gromov
product of p, q ∈ Ω based at o ∈ Ω to be

(p|q)Ωo =
1

2
(dΩ(p, o) + dΩ(o, q)− dΩ(p, q)) .

Karlsson and Noskov established the following estimates.

Lemma 2.12. [38, Theorem 5.2] Suppose Ω ⊂ P(Rd) is a properly
convex domain, o ∈ Ω, pn ∈ Ω is a sequence with pn → p ∈ ∂Ω, and
qm ∈ Ω is a sequence with qm → q ∈ ∂Ω.

1) If p = q, then limn,m→∞(pn|qm)Ωo = ∞.
2) If lim supn,m→∞(pn|qm)Ωo = ∞, then [p, q] ⊂ ∂Ω.

2.5. A fact about Anosov representations. In this subsection we
describe the behavior of sequences of elements in a projective Anosov
representation.

When a matrix is proximal, its iterates have the following behavior.

Observation 2.13. Suppose g ∈ PGLd(R) is proximal. Viewing
PGLd(R) as a subset of P(End(Rd)), the limit

T = lim
n→∞

gn
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exists in P(End(Rd)). Moreover, the image of T is the eigenline of g
corresponding to the eigenvalue with maximal modulus.

Proof. By changing coordinates we can assume that

g =

[
λ 0
0 A

]
,

where [1 : 0 : · · · : 0] is the eigenline of g corresponding to the eigenvalue
with maximal modulus and A is a (d− 1)-by-(d− 1) matrix. Then

gn =

[
1 0
0 1

λnAn

]

and the observation immediately follows from Gelfand’s formula (see
Theorem C.1). q.e.d.

Notice that if g ∈ PGLd(R) is proximal, then the representation m ∈
Z → gm is projective Anosov. A well known analogue of the above
observation holds for general projective Anosov representations.

Lemma 2.14. Suppose that Γ is a word hyperbolic group. Let ρ :
Γ → PGLd(R) be an irreducible projective Anosov representation with
boundary maps ξ : ∂Γ → P(Rd) and η : ∂Γ → P(Rd∗). Assume γn ∈ Γ is
a sequence such that γn → x+ ∈ ∂Γ and γ−1

n → x− ∈ ∂Γ. Then viewing
PGLd(R) as a subset of P(End(Rd)),

T = lim
n→∞

ρ(γn),

where Im(T ) = ξ(x+) and kerT = ker η(x−). In particular,

ξ(x+) = lim
n→∞

ρ(γn)v

for all v ∈ P(Rd) \ P(ker η(x−)) and the convergence is uniform on
compact subsets of P(Rd) \ P(ker η(x−)).

Since the proof is short we include it.

Proof. We first consider the case in which #∂Γ = 2. Then since ρ is
irreducible and ρ preserves ξ(∂Γ) we see that d = 2. Then the lemma
follows easily from the dynamics of 2-by-2 matrices acting on P(R2).

So suppose that #∂Γ > 2. Then #∂Γ = ∞ and ∂Γ is a perfect space.
Since P(End(Rd)) is compact it is enough to show that every convergent
subsequence of ρ(γn) converges to T . So suppose that ρ(γn) → S in
P(End(Rd)).

We first claim that Im(S) = ξ(x+). Since ρ : Γ → PGLd(R) is irre-
ducible, there exists x1, . . . , xd ∈ ∂Γ such that ξ(x1), . . . , ξ(xd) spans R

d.
Since ∂Γ is a perfect space, we can perturb the xi (if necessary) and as-
sume that

x− /∈ {x1, . . . , xd}.
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Then γnxi → x+ and since ξ is ρ-equivariant, we then see that
ρ(γn)ξ(xi) → ξ(x+). Since ξ(x1), . . . , ξ(xd) spans R

d this implies that

Im(S) = ξ(x+).

Next view tρ(γn) as an element of P(End(Rd∗)). Then tρ(γn) con-
verges to tS in P(End(Rd∗)). Since

tρ(γn)η(x) = η(γ−1
n x),

repeating the argument above shows that

Im(tS) = η(x−).

But this implies that

kerS = ker η(x−). q.e.d.

This lemma has the following corollary.

Corollary 2.15. Suppose that Γ is a word hyperbolic group. Let
ρ : Γ → PGLd(R) be an irreducible projective Anosov representation
with boundary maps ξ : ∂Γ → P(Rd) and η : ∂Γ → P(Rd∗). If ρ(Γ)
preserves a properly convex domain Ω ⊂ P(Rd), then

ξ(∂Γ) ⊂ ∂Ω and η(∂Γ) ⊂ ∂Ω∗.

Proof. Fix some x ∈ ∂Γ. Then there exists γn ∈ Γ such that γn → x.
Now suppose that γ−1

n → x−. Since Ω is open, there exists some v ∈
Ω \ P(ker η(x−)). Then

ξ(x) = lim
n→∞

ρ(γn)v ∈ Ω.

On the other hand, ρ has finite kernel (by definition) and discrete image
by Theorem 5.3 in [30]. Further, since Aut(Ω) preserves the Hilbert
metric on Ω, Aut(Ω) acts properly on Ω. So we must have ξ(x) ∈ ∂Ω.
Since x ∈ ∂Γ was an arbitrary point we then have ξ(∂Γ) ⊂ ∂Ω.

Repeating the same argument on Ω∗ shows that η(∂Γ) ⊂ ∂Ω∗. q.e.d.

3. Constructing a convex cocompact action

In this section we establish Theorems 1.25 and 1.27 from the intro-
duction. The argument has two parts: first we show that we can lift the
boundary maps ξ, η to maps into Rd,Rd∗ and then we will show that
whenever we can lift ξ, η we obtain a regular convex cocompact action.

3.1. Lifting the maps. Before stating the theorem we need some no-
tation: fix a norm ‖·‖ on Rd, this induces a norm on Rd∗ by

‖f‖ = max{|f(v)| : ‖v‖ = 1}.
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Then let Sd−1 ⊂ Rd and S(d−1)∗ ⊂ Rd∗ be the unit spheres relative to
these norms. In the statement and proof of the next theorem we will
use the standard action of GLd(R) on Sd−1 and S(d−1)∗ given by

g · v =
gv

‖gv‖
and g · f =

f ◦ g−1

‖f ◦ g−1‖
.

Finally let

SL±
d (R) = {g ∈ GLd(R) : det g = ±1}.

Theorem 3.1. Suppose Γ is a word hyperbolic group. Let ρ : Γ →
PGLd(R) be an irreducible projective Anosov representation with bound-
ary maps ξ : ∂Γ → P(Rd) and η : ∂Γ → P(Rd∗).

If one of the following conditions hold:

1) there exists a properly convex domain Ω0 ⊂ P(Rd) such that ρ(Γ) ≤
Aut(Ω0) or

2) Γ is a non-elementary word hyperbolic group which is not com-
mensurable to a non-trivial free product or the fundamental group
of a closed hyperbolic surface,

then there exist lifts ρ̃ : Γ → SL±
d (R), ξ̃ : ∂Γ → Sd−1, η̃ : ∂Γ → S(d−1)∗

of ρ, ξ, η respectively such that ξ̃ and η̃ are continuous, ρ̃-equivariant,
and

η̃(y)
(
ξ̃(x)

)
> 0

for all x, y ∈ ∂Γ distinct.

Proof of Theorem 3.1. We will consider each case separately.

Case 1: Suppose that there exists a properly convex domain Ω0 ⊂
P(Rd) such that ρ(Γ) ≤ Aut(Ω0).

Let π : Rd \{0} → P(Rd) be the natural projection. Since Ω0 is
properly convex, π−1(Ω0) has two connected components C1 and C2.
Moreover, C1 and C2 are properly convex cones and C1 = −C2.

By Corollary 2.15, we see that ξ(∂Γ) ⊂ ∂Ω0 and η(∂Γ) ⊂ ∂Ω∗
0. Now

for x ∈ ∂Γ let ξ̃(x) ∈ Sd−1 be the unique representative of ξ(x) such

that ξ̃(x) ∈ C1 and let η̃(x) ∈ S(d−1)∗ be the unique representative of
η(x) such that

η̃(x)(v) > 0

for all v ∈ C1. Then by construction,

η̃(x)
(
ξ̃(y)

)
≥ 0

with equality if and only if x = y. Moreover, uniqueness implies that ξ̃
and η̃ are continuous.
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Now for γ ∈ Γ let ρ̃(γ) ∈ SL±
d (R) be the unique lift that preserves C1.

Then ρ̃ : Γ → SL±
d (R) is a homomorphism and ξ̃ and η̃ are ρ̃-equivariant.

Case 2: Suppose that Γ is a non-elementary word hyperbolic group
which is not commensurable to a non-trivial free product or a funda-
mental group of a closed hyperbolic surface.

We will reduce to Case 1 by constructing a properly convex domain
Ω0 ⊂ P(Rd) such that ρ(Γ) ≤ Aut(Ω0).

Let Λ = ρ(Γ). Then by Selberg’s lemma Λ has a torsion-free finite
index subgroup Λ0. Moreover, Λ0 is commensurable to Γ and ∂Λ0 is
homeomorphic to ∂Γ. Since Λ0 is torsion-free, the condition on Γ implies
that Λ0 does not split over a finite group and is not commensurable
to the fundamental group of a closed hyperbolic surface. Hence by
Theorem 2.4, we see that

1) ∂Γ is connected,
2) ∂Γ \ {x} is connected for every x ∈ ∂Γ, and
3) there exist u,w ∈ ∂Γ distinct such that ∂Γ \ {u,w} is connected.

The space P(Rd)\ (P(ker η(u))∪P(ker η(w))) has two connected com-
ponents which we denote by A+ and A−. Since ξ(∂Γ \ {u,w}) is con-
nected, by relabelling we can assume that ξ(∂Γ \ {u,w}) ⊂ A+. Then

ξ(∂Γ) ⊂ A+.

Next define C := ∩γ∈Γρ(γ)A+. By construction C is closed, ξ(∂Γ) ⊂
C, and ρ(γ)C = C for every γ ∈ Γ. Let C0 denote the connected
component of C which contains ξ(∂Γ) and let Ω0 denote the interior
of C0.

We claim that Ω0 is a properly convex domain and ρ(Γ) ≤ Aut(Ω0).
By construction, ρ(γ)Ω0 = Ω0 for every γ ∈ Γ and so it is enough to
show that Ω0 is a properly convex domain. To accomplish this we recall
the following terminology: a subset E ( P(Rd) is called linearly convex
if for every x ∈ P(Rd) \ E there exists a hyperplane H ⊂ P(Rd) such
that H ∩ Ω = ∅. We also recall the following basic properties of these
sets:

1) every convex set is linearly convex,
2) every connected component of a linearly convex set is convex,
3) the intersection of a collection of linearly convex sets is linearly

convex, and
4) if E ⊂ P(Rd) is linearly convex and g ∈ PGLd(R), then gE is

linearly convex.

Proofs of Properties 1 and 2 can be found in [1, Chapter 1]. Properties 3
and 4 are direct consequences of the definition. Since A+ is projectively
equivalent to {[1 : x1 : · · · : xd−1] : x1 > 0}, we see that A+ is linearly
convex. Thus by Properties 2, 3, and 4, C0 is convex.
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Since ρ is irreducible, {ξ(x) : x ∈ ∂Γ} spans Rd. Since ξ(∂Γ) ⊂ C0,
this implies that C0 has non-empty interior. So Ω0 is a non-empty
convex domain. Since Ω0 ⊂ A+, we see that Ω0∩P(ker η(u)) = ∅. Since
Γ · u ⊂ ∂Γ is dense, η is continuous, and ρ(γ)Ω0 = Ω0 for every γ ∈ Γ,
we then have

Ω0 ∩ P(ker η(x)) = ∅

for all x ∈ ∂Γ. Since ρ is irreducible, η(∂Γ) spans Rd∗ and so Ω0 must
be properly convex. q.e.d.

Remark 3.2. It is easy to construct examples of “half spaces”
E1, E2 ⊂ P(Rd) such that E1 ∩ E2 is disconnected (and hence not con-
vex). For instance, let E1 be the connected component of P(Rd)\({x1 =
0} ∪ {x2 = 0}) which contains [1 : 1 : 0 : · · · : 0]. And let E2 be the
connected component of

P(Rd) \ ({x1 − x2 = 0} ∪ {2x1 − x2 = 0})

which contains [1 : 3 : 0 : · · · : 0]. Then

E1 ∩ E2 = {[1 : x2 : · · · : xd] : x2 ∈ (0, 1) ∪ (2,∞)}.

Examples like these are why we consider linearly convex sets in the proof
of Theorem 3.1.

3.2. Showing the action is convex cocompact.

Theorem 3.3. Suppose Γ is a word hyperbolic group. Let ρ : Γ →
PGLd(R) be an irreducible projective Anosov representation with bound-
ary maps ξ : ∂Γ → P(Rd) and η : ∂Γ → P(Rd∗).

If there exist lifts ρ̃ : Γ → SL±
d (R), ξ̃ : ∂Γ → Sd−1, η̃ : ∂Γ → S(d−1)∗

of ρ, ξ, η respectively such that ξ̃ and η̃ are continuous, ρ̃-equivariant,
and

η̃(y)
(
ξ̃(x)

)
> 0

for all x, y ∈ ∂Γ distinct, then there exists a properly convex domain
Ω ⊂ P(Rd) such that ρ(Γ) is a regular convex cocompact subgroup of
Aut(Ω).

For the rest of this subsection let Γ, ρ, ξ, η, ρ̃, ξ̃, and η̃ satisfy the
hypothesis of Theorem 3.3.

Define

Ω :=
{
[v] ∈ P(Rd) : η̃(x)(v) > 0 for all x ∈ ∂Γ

}
.
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Lemma 3.4. With the notation above, Ω is a properly convex do-
main, ρ(Γ) ≤ Aut(Ω), and if N > 1; λ1, . . . , λN > 0; and x1, . . . , xN ∈
∂Γ are distinct, then

[
N∑

i=1

λiξ̃(xi)

]
∈ Ω.

Proof. If N > 1; λ1, . . . , λN > 0; and x1, . . . , xN ∈ ∂Γ are distinct,
then

η̃(y)

(
N∑

i=1

λiξ̃(xi)

)
> 0

for all y ∈ ∂Γ. So
[

N∑

i=1

λiξ̃(xi)

]
∈ Ω.

In particular, Ω is non-empty.
We now show that Ω is open. Suppose p0 ∈ Ω. Then there exists

v0 ∈ Rd such that p0 = [v0] and η̃(x)(v0) > 0 for all x ∈ ∂Γ. Since ∂Γ

is compact and η̃ : ∂Γ → S(d−1)∗ is continuous, we have

0 < r := inf
x∈∂Γ

η̃(x)(v0).

So

{[v] ∈ P(Rd) : ‖v − v0‖ < r} ⊂ Ω.

Hence Ω is open.
By construction Ω is a convex domain and

Ω ∩ P(ker η(x)) = ∅

for all x ∈ ∂Γ. Since ρ is irreducible, η(∂Γ) spans Rd∗ and so Ω must
be properly convex.

Finally, since

ρ(γ)[v] = [ρ̃(γ)(v)]

when v ∈ Rd and γ ∈ Γ, we see that ρ(Γ) ≤ Aut(Ω). q.e.d.

Lemma 3.5. With the notation above, ξ(∂Γ) ⊂ ∂Ω and η(∂Γ) ⊂
∂Ω∗.

Proof. This follows immediately from Corollary 2.15, but here is a
direct proof: by the definition of Ω we see that η(∂Γ) ⊂ Ω∗. Moreover,
if x, y ∈ ∂Γ are distinct, then

ξ(x) = lim
λ→∞

[
λξ̃(x) + ξ̃(y)

]
∈ Ω.
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So ξ(∂Γ) ⊂ Ω. Then, since

η(x)(ξ(x)) = 0

for all x ∈ ∂Γ we see that ξ(∂Γ) ⊂ ∂Ω and η(∂Γ) ⊂ ∂Ω∗. q.e.d.

Next let C be the closed convex hull of ξ(∂Γ) in Ω.

Proposition 3.6. With the notation above, ρ(Γ) acts cocompactly
on C.

Proposition 3.6 follows from either a recent result of Kapovich and
Leeb [32] or a recent result of Kapovich, Leeb, and Porti [36]. In par-
ticular, the action of ρ(Γ) on ξ(∂Γ) is a uniform convergence action and
so ρ(Γ) acts cocompactly on C by Theorem 1.9 in [32]. Alternatively,
one can use C to construct an invariant set in the space of flags of the
form (line, hyperplane) and then apply Theorem 1.5 in [36] to see that
ρ(Γ) acts cocompactly on C.

We will provide a proof of Proposition 3.6 that only uses elementary
properties of convex sets. This direct argument requires a few prelimi-
nary lemmas.

Given a set A ⊂ Ω and a point p ∈ Ω define

dΩ(p,A) := inf
a∈A

dΩ(p, a).

Then given two sets A,B ⊂ Ω define the Hausdorff distance in dΩ
between A and B to be:

dHaus
Ω (A,B) := max

{
sup
a∈A

dΩ(a,B), sup
b∈B

dΩ(b, A)

}
.

Next fix a finite, symmetric generating set S of Γ and let dS be the
induced word metric on Γ.

Lemma 3.7. With the notation above, suppose that p0 ∈ Ω. Then
there exists some R > 0 with the following property: if g1, . . . , gN ∈ Γ
is a geodesic in (Γ, dS), then

dHaus
Ω

(
{ρ(g1)p0, . . . , ρ(gN )p0}, [ρ(g1)p0, ρ(gN )p0]

)
≤ R.

Proof. We first claim that there exists some R1 > 0 with the following
property: if g1, . . . , gN ∈ Γ is a geodesic in (Γ, dS), then

max
1≤i≤N

dΩ

(
ρ(gi)p0, [ρ(g1)p0, ρ(gN )p0]

)
≤ R1.

Suppose not, then after possibly translating by elements in Γ we can
assume: for any n > 0 there exists a geodesic

g
(n)
−Mn

, g
(n)
−Mn+1, . . . , g

(n)
Nn
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in (Γ, dS) such that g
(n)
0 = id and

dΩ

(
ρ
(
g
(n)
0

)
p0,
[
ρ
(
g
(n)
−Mn

)
p0, ρ

(
g
(n)
Nn

)
p0

])

= dΩ

(
p0,
[
ρ
(
g
(n)
−Mn

)
p0, ρ

(
g
(n)
Nn

)
p0

])
> n.

Notice that we must have Mn, Nn → ∞. Now by passing to a subse-
quence, we can suppose that the limits

gi = lim
n→∞

g
(n)
i

exists for all i. Then

. . . , g−2, g−1, g0 = id, g1, g2, . . .

is a geodesic in (Γ, dS). So there exist x+, x− ∈ ∂Γ distinct such that

lim
i→±∞

gi = x±.

By the standard geodesic ray definition of the topology on Γ ∪ ∂Γ, we
have

lim
n→∞

g
(n)
Nn

= x+

and

lim
n→∞

g
(n)
−Mn

= x−.

Now P(ker η(x−)) ∩ Ω = ∅ and so Lemma 2.14 implies that

lim
n→∞

ρ
(
g
(n)
Nn

)
p0 = ξ(x+).

The same reasoning implies that

lim
n→∞

ρ
(
g
(n)
−Mn

)
p0 = ξ(x−).

Since x+, x− ∈ ∂Γ are distinct, Lemma 3.4 implies that (ξ(x−), ξ(x+)) ⊂
Ω and so

dΩ
(
p0, (ξ(x

−), ξ(x+))
)
< ∞.

Then since

∞ = lim
n→∞

dΩ

(
p0,
[
ρ
(
g
(n)
−Mn

)
p0, ρ

(
g
(n)
Nn

)
p0

])
= dΩ

(
p0, (ξ(x

−), ξ(x+))
)

< ∞

we have a contradiction. Hence, there exists some R1 > 0 such that: if
g1, . . . , gN ∈ Γ is a geodesic in (Γ, dS), then

max
1≤i≤N

dΩ (ρ(gi)p0, [ρ(g1)p0, ρ(gN )p0]) ≤ R1.

Now let

C = max{dΩ(p0, ρ(g)p0) : g ∈ S}.
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We claim that: if g1, . . . , gN ∈ Γ is a geodesic in (Γ, dS) and if p ∈
[ρ(g1)p0, ρ(gN )p0], then

dΩ (p, {ρ(g1)p0, . . . , ρ(gN )p0}) ≤ 2R1 + C/2.

For each 1 ≤ i ≤ N , let pi be a closest point to ρ(gi)p0 in
[ρ(g1)p0, ρ(gN )p0]. Then

dΩ(pi, pi+1) ≤ dΩ(pi, ρ(gi)p0) + dΩ(ρ(gi)p0, ρ(gi+1)p0)

+ dΩ(ρ(gi+1)p0, pi+1)

≤ R1 + C +R1 = 2R1 + C.

Since p1 = ρ(g1)p0 and pN = ρ(gN )p0 we see that: for any p ∈
[ρ(g1)p0, ρ(gN )p0]

min
1≤i≤N

dΩ(p, pi) ≤
1

2
(2R1 + C) = R1 + C/2

and so

dΩ (p, {ρ(g1)p0, . . . , ρ(gN )p0}) ≤ 2R1 + C/2.

So R = 2R1 + C/2 satisfies the conclusion of the lemma. q.e.d.

Lemma 3.8. With the notation above, suppose that p0 ∈ Ω. For any
N ≥ 2 there exists CN > 0 such that: if

p =

[
N∑

i=1

λiξ̃(xi)

]
,

where λ1, . . . , λN > 0 and x1, . . . , xN ∈ ∂Γ are distinct, then

dΩ(p, ρ(Γ) · p0) ≤ CN .

Proof. We induct on N . Let R be the constant from Lemma 3.7.
For the N = 2 case suppose that x1, x2 ∈ ∂Γ are distinct. Then

there exist sequences gn, hn ∈ Γ such that gn → x1 and hn → x2. By
Lemma 2.14

ρ(gn)p0 → ξ(x1) and ρ(hn)p0 → ξ(x2).

So if

p =
[
λ1ξ̃(x1) + λ2ξ̃(x2)

]

for some λ1, λ2 > 0, then there exists a sequence pn ∈ [ρ(gn)p0, ρ(hn)p0]
such that pn → p. Lemma 3.7 implies that

dΩ(pn, ρ(Γ) · p0) ≤ R

and so

dΩ(p, ρ(Γ) · p0) ≤ R.
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Next suppose that N > 2 and consider

p =

[
N∑

i=1

λiξ̃(xi)

]
,

where λ1, . . . , λN > 0 and x1, . . . , xN ∈ ∂Γ are distinct. We claim that

dΩ(p, ρ(Γ) · p0) ≤ 2CdN/2e +R.

Let

p1 =


 ∑

1≤i<dN/2e

λiξ̃ (xi) +
1

2
λdN/2eξ̃

(
xdN/2e

)



and

p2 =


1
2
λdN/2eξ̃

(
xdN/2e

)
+

∑

dN/2e<i≤N

λiξ̃(xi)


 .

Then, by induction there exist elements g1, g2 ∈ Γ such that

dΩ(pi, ρ(gi) · p0) ≤ CdN/2e.

Now p ∈ [p1, p2] and so by Lemma 2.11 there exists q ∈ [ρ(g1) ·p0, ρ(g2) ·
p0] such that

dΩ(p, q) ≤ 2CdN/2e.

Then Lemma 3.7 implies that

dΩ(q, ρ(Γ) · p0) ≤ R

and hence

dΩ(p, ρ(Γ) · p0) ≤ 2CdN/2e +R. q.e.d.

Proof of Proposition 3.6. By Carathéodory’s convex hull theorem any
p ∈ C can be written as

p =

[
N∑

i=1

λiξ̃(xi)

]
,

where 2 ≤ N ≤ d+1; λ1, . . . , λN > 0; and x1, . . . , xN ∈ ∂Γ are distinct.
Thus by the previous lemma there exists some M > 0 such that

C = ∪g∈Γρ(g)
(
BΩ(p0;M) ∩ C

)
,

where BΩ(p0;M) is the closed metric ball of radius M in (Ω, dΩ). q.e.d.

Lemma 3.9. With the notation above, if f ∈ Ω∗, then there exists
1 ≤ N ≤ d+ 1; λ1, . . . , λN > 0; and x1, . . . , xN ∈ ∂Γ distinct so that

f =

[
N∑

i=1

λiη̃(xi)

]
.
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Proof. By the definition of Ω, the set Ω∗ is the image of

ConvexHull {η̃(x) : x ∈ ∂Γ} ⊂ Rd∗

in P(Rd∗). Then since η̃ : ∂Γ → Rd∗ is continuous, Carathéodory’s
convex hull theorem implies that f can be written as

f =

[
N∑

i=1

λiη̃(xi)

]

for some 1 ≤ N ≤ d+ 1; λ1, . . . , λN > 0; and x1, . . . , xN ∈ ∂Γ. q.e.d.

Lemma 3.10. With the notation above,

ξ(∂Γ) = C ∩ ∂Ω,

every point in C ∩ ∂Ω is a C1 extreme point of Ω, and

Tξ(x)∂Ω = P(ker η(x))

for all x ∈ ∂Γ.

Proof. Lemma 3.4 and the definition of C imply that

ξ(∂Γ) = C ∩ ∂Ω.

So suppose that x ∈ ∂Γ. We first show that ξ(x) is a C1 point of
Ω. Suppose that H is a supporting hyperplane of Ω at ξ(x). Then
H = P(ker f) for some f ∈ Ω∗. By Lemma 3.9

f =

[
N∑

i=1

λiη̃(xi)

]

for some 1 ≤ N ≤ d+ 1; λ1, . . . , λN > 0; and x1, . . . , xN ∈ ∂Γ distinct.
Since f(ξ(x)) = 0, we then have

0 =

N∑

i=1

λiη̃(xi)
(
ξ̃(x)

)
.

By hypothesis

η̃(y)
(
ξ̃(z)

)
> 0

when y, z ∈ ∂Γ are distinct and so we must have N = 1 and x1 = x.
Thus f = η(x) and H = P(ker η(x)). Since H was an arbitrary sup-
porting hyperplane of Ω at ξ(x) we see that ξ(x) is a C1 point of ∂Ω
and

Tξ(x)∂Ω = P(ker η(x)).

We next show that ξ(x) is an extreme point of Ω. This follows imme-
diately from Lemma 5.3 below, but we will provide a direct argument.
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Suppose for a contradiction that ξ(x) is not an extreme point, then
there exists p′, q′ ∈ ∂Ω such that

ξ(x) ∈ (p′, q′) ⊂ ∂Ω.

Fix a point c0 ∈ C and consider a sequence of points qn along the line
[c0, ξ(x)) which converge to ξ(x). Since ρ(Γ) acts cocompactly on C,
there exist some M1 > 0 and elements γn ∈ Γ such that

dΩ(ρ(γn)c0, qn) ≤ M1.

Next fix some p ∈ (p′, q′) ⊂ ∂Ω with p 6= ξ(x). Then, by the definition
of the Hilbert metric, we can find a sequence of points pn along the line
[c0, p) such that

M2 := sup
n≥0

dΩ(pn, qn) < +∞.

Next let kn = ρ(γn)
−1qn and `n = ρ(γn)

−1pn. Then

kn, `n ∈ BΩ(c0;M1 +M2),

where BΩ(c0;M1+M2) is closed metric ball of radiusM1+M2 in (Ω, dΩ).
Since the Hilbert metric is proper, we can pass to a subsequence such
that kn → k ∈ Ω and `n → ` ∈ Ω. Then

lim
n→∞

dΩ(ρ(γn)k, ρ(γn)kn) = lim
n→∞

dΩ(k, kn) = 0

which implies from the definition of the Hilbert metric, see Observa-
tion 2.10, that

lim
n→∞

ρ(γn)k = lim
n→∞

ρ(γn)kn = ξ(x).

The same reasoning shows that

lim
n→∞

ρ(γn)` = lim
n→∞

ρ(γn)`n = p.

Next view PGLd(R) as a subset of P(End(Rd)) and pass to a subse-
quence so that ρ(γn) converges to some T in P(End(Rd)). By Lemma
2.14, T has image ξ(x+) and kernel ker η(x−) for some x+, x− ∈ ∂Γ.
Since P(ker η(x−)) ∩ Ω = ∅ we see that

ξ(x+) = T (k) = lim
n→∞

ρ(γn)k = ξ(x).

However, by the same reasoning we have

ξ(x+) = T (`) = lim
n→∞

ρ(γn)` = p.

Hence ξ(x) = p which is a contradiction. Thus ξ(x) is an extreme point
of Ω. q.e.d.
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3.3. Proof of Corollary 1.30. For the rest of this subsection suppose
that Γ is a word hyperbolic group and ρ : Γ → PGLd(R) is an irreducible
projective Anosov representation. Let ξ : ∂Γ → R(Rd) and η : ∂Γ →
P(Rd∗) denote the boundary maps associated to ρ. Then define

V = SpanR{ξ(x)⊗ ξ(x) : x ∈ ∂Γ} ⊂ Symd(R)

where we make the identification v ⊗ v = v tv ∈ Symd(R) when v ∈ Rd.
Let ρS : Γ → PGL(V ) be the representation

ρS(γ)X = ρ(γ)X tρ(γ).

Using Theorem 1.27 it is enough to show that ρS is an irreducible pro-
jective Anosov representation and there exists a properly convex domain
Ω0 ⊂ P(V ) such that ρS(Γ) ≤ Aut(Ω0).

Lemma 3.11. There exists a properly convex domain Ω0 ⊂ P(V )
such that ρS(Γ) ≤ Aut(Ω0).

Proof. As in Example 1.29, let

P := {[X] ∈ P(Symd(R)) : X > 0}.

Then P is a properly convex domain in P(Symd(R)). Since ρ is irre-
ducible, there exists x1, . . . , xd ∈ ∂Γ such that ξ(x1), . . . , ξ(xd) span Rd.
If v1, . . . , vd ∈ Rd are representatives of ξ(x1), . . . , ξ(xd) respectively,
then

[
d∑

i=1

vi ⊗ vi

]
∈ P ∩V.

So Ω0 := P ∩P(V ) is a non-empty properly convex domain in P(V ) and
by construction ρS(Γ) ≤ Aut(Ω0). q.e.d.

Given γ ∈ Γ with infinite order, let x+γ ∈ ∂Γ be the attracting fixed
point of γ. And given a vector space W and g ∈ PGL(W ) proximal
let `+g ∈ P(W ) be the eigenline of g corresponding to the eigenvalue of
maximal modulus.

Lemma 3.12. If γ ∈ Γ has infinite order, then g = ρS(γ) is proximal
and

`+g = ξ(x+γ )⊗ ξ(x+γ ).

Proof. If λ1 > λ2 ≥ · · · ≥ λd are the absolute values of the eigenvalues
of ρ(γ) normalized to have product one, then there exists C > 0 such
that some subset of

Cλiλj for 1 ≤ i ≤ j ≤ d
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are the absolute values of the eigenvalues of g = ρS(γ) normalized to
have product one. By construction ξ(x+γ )⊗ ξ(x+γ ) ∈ V and is the eigen-

line corresponding to Cλ2
1, so g is proximal and

`+g = ξ(x+γ )⊗ ξ(x+γ ). q.e.d.

Lemma 3.13. ρS is irreducible.

Proof. Let G be the Zariski closure of ρ(Γ) in PGLd(R) and consider
the representation

τ : G → PGL(V )

given by

τ(g)X = gX tg.

Since ρ is an irreducible representation, G acts irreducibly on Rd. So
G acts minimally on the set

{`+g : g ∈ G is proximal} ⊂ P(Rd),

see for instance [6, Lemma 2.5]. So τ(G) acts minimally on the set

X = {`+g ⊗ `+g : g ∈ G is proximal} ⊂ P(Symd(R)).

Since X ∩ P(V ) 6= ∅, τ(G) acts minimally on X, and τ(G) · V = V , we
see that X ⊂ P(V ). Further, X spans V by the definition of V .

Since G is semisimple (see for instance [14, Lemma 2.19]), we can de-
compose V = ⊕m

i=1Wi where each Wi ≤ V is τ(G)-invariant and the in-
duced representation G → PGL(Wi) is irreducible (see for instance [47,
Chapter 5, Theorem 13]).

Fix some γ ∈ Γ with infinite order and let h = ρ(γ). Then τ(h) ≤
PGL(V ) is proximal by Lemma 3.12. Viewing PGL(V ) as a subset of
P(End(V )), Observation 2.13 implies that

T = lim
n→∞

φ(h)n

in P(End(V )) and the image of T is `+h ⊗ `+h . By relabeling the Wi, we
can suppose that there exists some element w ∈ W1 \ kerT . Then

`+h ⊗ `+h = T ([w]) = lim
k→∞

φ(h)nk [w] ⊂ W1.

Then since τ(G) acts minimally on the set

X = {`+g ⊗ `+g : g ∈ G is proximal}

and X spans V , we see that W1 = V . Hence τ : G → PGL(V ) is
an irreducible representation. Since ρ(Γ) is Zariski dense in G and
ρS = τ ◦ ρ, we then see that ρS is also irreducible. q.e.d.

Lemma 3.14. ρS is projective Anosov.
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Proof. We define boundary maps ξS : ∂Γ → P(V ) and ηS : ∂Γ →
P(V ∗) as follows. First, let

ξS(x) = ξ(x)⊗ ξ(x).

Next, let f ∈ Rd∗ be a lift of η(x) and pick w ∈ Rd such that f(v) = twv.
Then define ηS(x) by

ηS(x) (X) = twXw.

By construction the maps ξS , ηS are ρS-equivariant and continuous.
Since the maps ξ, η are transverse and

ηS(x) (ξS(y)) = η(x) (ξ(y))2 ,

the maps ξS , ηS are also transverse. Thus ρS is projective Anosov by
Proposition 4.10 in [30]. q.e.d.

4. Basic properties of convex cocompact actions

In this section we establish some basic properties of convex cocompact
actions on properly convex domains.

4.1. Quasi-isometries. The fundamental lemma of geometric group
theory (see [27, Chapter IV, Theorem 23]) immediately implies the
following.

Proposition 4.1. Suppose Ω ⊂ R(Rd) is a properly convex domain
and Λ ≤ Aut(Ω) is a discrete convex cocompact group. Then Λ is finitely
generated and for any p0 ∈ Ω the map

ϕ ∈ Λ → ϕp0

induces an quasi-isometric embedding Λ → (Ω, dΩ).

4.2. Rescaling. Given a finite dimensional real vector space V , let
K(V ) denote the set of all compact subsets in P(V ) equipped with the
Hausdorff topology (with respect to a distance on P(V ) induced by a
Riemannian metric).

Next let X(V ) denote the set of properly convex open sets in P(V ).
Then the map

Ω ∈ X(V ) → Ω ∈ K(V )

is injective and so X(V ) has a natural topology coming from K(V ).
Finally, we let

X0(V ) = {(Ω, x) : Ω ∈ X(V ), x ∈ Ω}

equipped with the product topology.
In the 1960’s Benzécri proved the following theorem.
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Theorem 4.2 (Benzécri’s theorem). The group PGL(V ) acts prop-
erly and cocompactly on X0(V ). Moreover, if Ω ⊂ P(V ) is a prop-
erly convex domain and Aut(Ω) acts cocompactly on Ω, then the orbit
PGL(V ) · Ω is closed in X(V ).

In this section we will use a result of Benoist to prove an analogue of
Benzécri’s theorem for convex cocompact actions.

Theorem 4.3. Suppose Ω ⊂ P(Rd) is a properly convex domain,
G ≤ Aut(Ω) is a subgroup, and there exists a closed convex subset C ⊂ Ω
such that g C = C for all g ∈ G and G\ C is compact. Assume V ⊂ P(Rd)
is a subspace that intersects C, cn ∈ C ∩V , and hn ∈ PGL(V ) satisfy

1) hn(Ω ∩ V ) → ΩV where ΩV is a properly convex domain in P(V ),
2) hn(C ∩V ) → CV where CV is a properly convex closed set in P(V ),
3) hn(cn) → p∞ ∈ ΩV .

Then there exists some ϕ ∈ PGLd(R) so that

ϕ(Ω) ∩ V = ΩV

and

ϕ(C) ∩ V ⊃ CV .

Before starting the proof of the theorem we make two observation
about the Hausdorff topology.

Observation 4.4. Suppose Ωn → Ω in X(Rd) and K ⊂ Ω is a
compact set. Then K ⊂ Ωn for n sufficiently large.

Proof. We can pick an affine chart A ⊂ P(Rd) such that Ω is relatively
compact in A. Then for n sufficiently large, Ωn is also relatively compact
in A. Then we can identify A with Rd−1 and view Ωn,Ω as convex
subsets of Rd−1 (at least for n sufficiently large). Then Ωn → Ω is the
Hausdorff distance induced by the Euclidean distance on Rd−1.

Now suppose, for a contradiction, that there exist nj → ∞ and kj ∈
K such that kj /∈ Ωnj

. By passing to a subsequence we can assume that
kj → k. Now since Ω is open, there exists some ε > 0 such that

{x ∈ Rd−1 : ‖k − x‖ ≤ ε} ⊂ Ω.

Since each Ωnj
is convex, we can find an real hyperplane Hj such that

kj ∈ Hj and Ωnj
∩ Hj = ∅. Then for j sufficiently large, there exists

some xj ∈ Rd \Ωnj
such that dEuc(xj , Hj) ≥ ε/2 and ‖k − xj‖ ≤ ε. But

then xj ∈ Ω and so

dHaus
Euc (Ωnj

,Ω) ≥ dEuc(Ωnj
, xj) ≥ ε/2

which is a contradiction. q.e.d.

Observation 4.5. Suppose Ωn → Ω in X(Rd). If V ⊂ P(Rd) is a
subspace and V ∩ Ω 6= ∅, then Ωn ∩ V → Ω ∩ V in X(V ).
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Proof. Since K(V ) is compact, it is enough to show that every con-
vergent subsequence of Ωn ∩ V converges to Ω ∩ V . So suppose that
Ωn ∩ V → C in K(V ).

Then by the definition of the Hausdorff topology we have C ⊂ Ω ∩ V .
Since Ω is convex, we have Ω∩V = Ω ∩ V . So we can pick a sequence

Km ⊂ Ω ∩ V of compact sets such that

∪Km = Ω ∩ V .

Fix m. Then Km ⊂ Ωn for n sufficiently large by Observation 4.4. So
Km ⊂ C. Since m was arbitrary

Ω ∩ V = ∪Km ⊂ C.

Hence C = Ω ∩ V . q.e.d.

Proof of Theorem 4.3. By Lemma 2.8 in [7] there exists gn ∈ PGLd(R)
and a properly convex domain Ω′ ⊂ P(Rd) such that

1) gn|V = hn,
2) Ωn := gnΩ → Ω′, and
3) Ω′ ∩ V = ΩV .

Now fix a point p0 ∈ C. Then there exist R ≥ 0 and a sequence
γn ∈ G such that

dΩ(cn, γnp0) ≤ R.

Next consider the element ϕn = gnγn. Note that

dΩn(ϕnp0, gncn) = dΩ(γnp0, cn) ≤ R.

Then since

lim
n→∞

gncn = lim
n→∞

hncn = p∞ ∈ Ω′

and dΩn converges locally uniformly to dΩ′ we can pass to a subsequence
so that ϕnp0 → q∞ ∈ Ω′.

Then ϕn(Ω, p0) → (Ω′, q∞) and since PGLd(R) acts properly on
X0(R

d), we can pass to a subsequence such that ϕn → ϕ ∈ PGLd(R).
Then by the Observation 4.5

ϕ(Ω) ∩ V = lim
n→∞

ϕn(Ω) ∩ V = lim
n→∞

gn(Ω) ∩ V = Ω′ ∩ V = ΩV .

By passing to a subsequence we can suppose that the sequence gn(C)∩
V converges in K(V ). Then, by the definition of the Hausdorff topology,

ϕ(C) ∩ V ⊃ lim
n→∞

ϕn(C) ∩ V = lim
n→∞

gn(C) ∩ V

⊃ lim
n→∞

hn(C ∩ V ) ∩ V = lim
n→∞

hn(C ∩ V ) = CV .
q.e.d.
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5. Regular convex cocompactness implies projective

Anosovness

In this section we prove Theorem 1.22 from the introduction. The
proof uses many ideas from Benoist’s work on the Hilbert metric [7, 8].

Theorem 5.1. Suppose Ω ⊂ P(Rd) is a properly convex domain and
Λ ≤ Aut(Ω) is a discrete convex cocompact subgroup. Let C be a closed
convex subset of Ω such that g C = C for all g ∈ Λ and Λ\ C is com-
pact. If Λ is an irreducible subgroup of PGLd(R), then the following are
equivalent:

1) every point in C ∩ ∂Ω is a C1 point of ∂Ω,
2) every point in C ∩ ∂Ω is an extreme point of ∂Ω

Moreover, when these conditions are satisfied Λ is word hyperbolic and
the inclusion representation Λ ↪→ PGLd(R) is projective Anosov.

Remark 5.2. In the special case when Ω = C, Theorem 5.1 was
established by Benoist [8], see Theorem 1.19 in the introduction.

For the rest of the section fix a properly convex domain Ω ⊂ P(Rd), a
discrete convex cocompact subgroup Λ ≤ Aut(Ω), and a closed convex
subset C ⊂ Ω which satisfy the hypothesis of Theorem 5.1.

Notice that C has non-empty interior since Λ is irreducible and pre-
serves the subspace SpanR {c : c ∈ C}.

Lemma 5.3. With the notation above, if each q ∈ ∂Ω ∩ C is a C1

point of ∂Ω, then each q ∈ ∂Ω ∩ C is an extreme point of Ω.

Proof. Suppose for a contradiction that there exists a point q ∈ ∂Ω∩C
which is not an extreme point of Ω. Then after making a change of
coordinates we can assume the following:

1) q = [1 : 0 : · · · : 0] ∈ ∂Ω ∩ C,
2) [1 : 0 : 1 : 0 : · · · : 0] ∈ C,
3) Ω ⊂ {[1 : x1 : x2 : · · · : xd−1] ∈ P(Rd) : x2 > 0}, and
4) {[1 : t : 0 : · · · : 0] ∈ P(Rd) : t ∈ [−1, 1]} ⊂ ∂Ω.

Now let

V = {[x1 : x2 : x3 : 0 : · · · : 0] ∈ P(Rd) : x1, x2, x3 ∈ R},

cn =
[
1 : 0 : 1

n : 0 : · · · : 0
]
∈ C ∩V , and hn ∈ PGL(V ) be given by

hn[x1 : x2 : x3 : 0 : · · · : 0] = [x1 : x2 : nx3 : 0 : · · · : 0].

Then hncn → [1 : 0 : 1 : 0 : · · · : 0],

hn(Ω ∩ V ) → ΩV

:= {[1 : s : t : 0 : · · · : 0] ∈ P(Rd) : [1 : s : 0 : · · · : 0] ∈ ∂Ω and t > 0},
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and

hn(C ∩V ) → CV

:= {[1 : s : t : 0 : · · · : 0] ∈ P(Rd) : [1 : s : 0 : · · · : 0]∈∂Ω ∩ C and t > 0}.

Clearly ΩV is properly convex and so by Theorem 4.3, there exists some
ϕ ∈ PGLd(R) such that ϕ(Ω) ∩ V = ΩV and CV ⊂ ϕ(C) ∩ V . But then

[0 : 0 : 1 : 0 : · · · : 0]

is a not a C1 point of ∂ΩV and hence

ϕ−1[0 : 0 : 1 : 0 : · · · : 0] ∈ C ∩ ∂Ω

is not a C1 point of ∂Ω. So we have a contradiction. q.e.d.

Lemma 5.4. With the notation above, if each q ∈ ∂Ω ∩ C is an
extreme point of Ω, then each q ∈ ∂Ω ∩ C is a C1 point of ∂Ω.

Proof. Suppose for a contradiction that there exists a point q ∈ ∂Ω∩C
which is not a C1 point of ∂Ω. Then there exist two different hyperplanes
H1, H2 such that q ∈ H1 ∩H2 and H1 ∩ Ω = H2 ∩ Ω = ∅. Since C has
non-empty interior, there exists a two dimensional subspace V ⊂ P(Rd)
so that V intersects the interior of C, and V ∩H1 6= V ∩H2.

By making a change of coordinates, we can assume that

1) q = [1 : 0 : · · · : 0],
2) V = {[x1 : x2 : x3 : 0 : · · · : 0] ∈ P(Rd) : x1, x2, x3 ∈ R},
3) Ω ∩ V ⊂ {[1 : x1 : x2 : 0 : · · · : 0] ∈ P(Rd) : x2 > 0},
4) [1 : 0 : 1 : · · · : 0] is contained in the interior of C, and
5) there exists α1 < 0 < α2 such that

Hi ∩ V = {[1 : t : αit : 0 : · · · : 0] ∈ P(Rd) : t ∈ R} ∪ {[0 : 1 : αi]}.

Now since [1 : 0 : 1 : · · · : 0] is contained in the interior of C, there
exists ε > 0 and β1 < 0 < β2 such that

{[1 : t : β2t : 0 : · · · : 0] ∈ P(Rd) : 0 < t < ε} ⊂ C

and

{[1 : t : β1t : 0 : · · · : 0] ∈ P(Rd) : −ε < t < 0} ⊂ C .

Next consider the points cn = [1 : 0 : 1
n : 0 : · · · : 0] and let hn ∈

PGL(V ) be given by

hn[x1 : x2 : x3 : 0 : · · · : 0] = [x1 : nx2 : nx3 : 0 : · · · : 0] .

Then hncn → [1 : 0 : 1 : 0 : · · · : 0], hn(Ω ∩ V ) converges to the tangent
cone T Cq(Ω∩ V ) of Ω∩ V at q, and hn(C ∩V ) converges to the tangent
cone T Cq(C ∩V ) of C ∩V at q.
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By construction T Cq(Ω∩V ) is a properly convex domain in V . So by
Theorem 4.3, there exists some ϕ ∈ PGLd+1(R) such that ϕ(Ω) ∩ V =

T Cg(Ω ∩ V ) and ϕ(C) ∩ V ⊃ T Cg(C ∩V ). But then

ϕ−1{[0 : 1 : s : 0 : · · · : 0] ∈ P(Rd) : β1 ≤ s ≤ β2} ⊂ C ∩ ∂Ω

which contradicts the fact that every point in C ∩ ∂Ω is an extreme
point. q.e.d.

For the remainder of the section we assume, in addition, that

1) every point in C ∩ ∂Ω is a C1 point of ∂Ω and
2) every point in C ∩ ∂Ω is an extreme point of ∂Ω.

Lemma 5.5. With the notation above, Λ is word hyperbolic.

Proof. Fix a finite symmetric generating set S of Λ. By Proposi-
tion 4.1, (Λ, dS) is quasi-isometric to (C, dΩ) and so it is enough to
show that (C, dΩ) is Gromov hyperbolic. Now for each x, y ∈ C let
σx,y be the geodesic joining x to y which parametrizes the line segment
joining them. By Proposition 2.2 it is enough to show that there ex-
ists an δ > 0 such that every geodesic triangle in (C, dΩ) of the form
σx,y, σy,z, σz,x is δ-thin. Suppose not. Then for every n > 0 there exists
points xn, yn, zn, un ∈ C such that un ∈ σxn,yn and

dΩ(un, σyn,zn ∪ σzn,xn) > n.

By replacing the points xn, yn, zn, un by gnxn, gnyn, gnzn, gnun for some
gn ∈ Λ we can assume that the sequence un is relatively compact in C.
Then by passing to a subsequence we can suppose that un → u ∈ C.
By passing to another subsequence we can assume that xn, yn, zn →
x, y, z ∈ C. Since

dΩ(un, {xn, yn, zn}) > n

we must have x, y, z ∈ C ∩ ∂Ω. The image of σxn,yn converges to a line
segment containing x, y, u. Since u ∈ C and x, y ∈ ∂Ω we must have
x 6= y. Then either z 6= x or z 6= y. By relabeling we may assume that
z 6= x. Then the image of σxn,zn converges to the line segment [x, z].

Since every point in C ∩ ∂Ω is an extreme point of ∂Ω and x 6= z, we
must have (x, z) ⊂ Ω. So

∞ = lim
n→∞

dΩ(un, σzn,xn) = dΩ(u, (z, x)) < ∞.

So we have a contradiction and hence Λ is word hyperbolic. q.e.d.

Lemma 5.6. With the notation above, there exists a Λ-equivariant
homeomorphism ξ : ∂Λ → C ∩ ∂Ω.

Proof. Since every point in C ∩ ∂Ω is an extreme point, this follows
from Lemma 2.12. q.e.d.
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Lemma 5.7. With the notation above, the inclusion representation
Λ ↪→ PGLd(R) is projective Anosov.

Proof. Let ξ : ∂Λ → C ∩ ∂Ω be the Λ-equivariant homeomorphism
from the previous lemma. Since every point in C ∩∂Ω is a C1 point, the
map η : ∂Λ → P(Rd∗) with

P(ker η(x)) = Tξ(x)∂Ω

is well defined, continuous, and Λ-equivariant.
We claim that

ξ(x) + ker η(y) = Rd

for x, y ∈ ∂Γ distinct. If not, then

[ξ(x), ξ(y)] ⊂ C ∩ P(ker η(y)) = C ∩ Tξ(y)∂Ω ⊂ C ∩ ∂Ω.

But since each q ∈ ∂Ω ∩ C is an extreme point of ∂Ω we see that this is
impossible.

Then Proposition 4.10 in [30] implies that the inclusion representa-
tion is projective Anosov. q.e.d.

6. Proof of Theorem 1.10

We now prove Theorem 1.10 from the introduction:

Theorem 6.1. Suppose G is a semisimple Lie group with finite
center and P ≤ G is a parabolic subgroup. Then there exists a fi-
nite dimensional real vector space V and an irreducible representation
φ : G → PSL(V ) with the following property: if Γ is a word hyperbolic
group and ρ : Γ → G is a Zariski dense representation with finite kernel,
then the following are equivalent:

1) ρ is P -Anosov,
2) there exists a properly convex domain Ω ⊂ P(V ) such that (φ◦ρ)(Γ)

is a regular convex cocompact subgroup of Aut(Ω).

For the rest of the section fix G a semisimple Lie group with finite
center and P ≤ G a parabolic subgroup.

By Theorem 1.15, there exist a finite dimensional real vector space
V0 and an irreducible representation φ0 : G → PSL(V0) with the fol-
lowing property: if Γ is a word hyperbolic group and ρ : Γ → G is a
representation, then the following are equivalent:

1) ρ is P -Anosov,
2) φ0 ◦ ρ is projective Anosov.

We will construct a new representation of G by taking the tensor
product of φ0 with itself. In general, this will not produce an irreducible
representation and so we will construct a subspace of V0 ⊗ V0 where
φ0 ⊗ φ0 acts irreducibly.
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For a proximal element g ∈ PSL(V0) let `
+
g ∈ P(V0) be the eigenline

of g corresponding to the eigenvalue of largest absolute value. Then
consider the vector space

V = SpanR{`
+
g ⊗ `+g : g ∈ φ0(G) is proximal}

and the representation φ : G → SL(V ) given by

φ(g)(v ⊗ v) = (φ0(g)v)⊗ (φ0(g)v).

Notice that we can assume that V 6= (0), for otherwise there is nothing
to prove.

Lemma 6.2. With the notation above, if g ∈ G and φ0(g) is prox-
imal, then φ(g) is proximal and `+φ0(g)

⊗ `+φ0(g)
is the eigenline of φ(g)

corresponding to the eigenvalue of largest absolute value.

Proof. The argument is similar to the proof of Lemma 3.12. q.e.d.

Lemma 6.3. With the notation above, φ : G → SL(V ) is an irre-
ducible representation.

Proof. The argument is similar to the proof of Lemma 3.13. q.e.d.

We now complete the proof of the theorem.

Lemma 6.4. With the notation above, if Γ is a word hyperbolic group
and ρ : Γ → G is a Zariski dense representation with finite kernel, then
the following are equivalent:

1) ρ is P -Anosov,
2) there exists a properly convex domain Ω ⊂ P(V ) such that (φ◦ρ)(Γ)

is a regular convex cocompact subgroup of Aut(Ω).

Proof. If ρ is P -Anosov, then φ0 ◦ ρ is projective Anosov representa-
tion by our choice of φ0. Let ξ0 : ∂Γ → P(V0) and η0 : ∂Γ → P(V ∗

0 ) be
the associated boundary maps. Since φ0 : G → PSL(V0) is irreducible
and ρ(Γ) ≤ G is Zariski dense, we see that φ0 ◦ ρ : Γ → PSL(V0) is
irreducible. So by Corollary 1.30, if

V ′ = Span{ξ0(x)⊗ ξ0(x) : x ∈ ∂Γ},

then there exists a properly convex domain Ω ⊂ P(V ′) so that (φ◦ρ)(Γ)
is a regular convex cocompact subgroup of Aut(Ω). Since φ : G →
PSL(V ) is irreducible and ρ(Γ) ≤ G is Zariski dense, we see that φ ◦ ρ :
Γ → PSL(V ) is irreducible. Then since V ′ ⊂ V , we must have V ′ = V .

Next suppose that there exists some properly convex domain Ω ⊂
P(V ) such that (φ ◦ ρ)(Γ) ≤ Aut(Ω) is a regular convex cocompact
subgroup. Since φ : G → PSL(V ) is irreducible and ρ(Γ) ≤ G is Zariski
dense, we see that φ◦ρ : Γ → PSL(V ) is irreducible. Hence Theorem 5.1
implies that φ ◦ ρ is a projective Anosov representation. Let ξ : ∂Γ →
P(V ) and η : ∂Γ → P(V ∗) be the associated boundary maps.
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We claim that there exist maps ξ0 : ∂Γ → P(V0) and η0 : ∂Γ → P(V ∗
0 )

such that

ξ(x) = ξ0(x)⊗ ξ0(x)

and

η(x) = η0(x)⊗ η0(x)

for all x ∈ ∂Γ. Since ρ(Γ) is Zariski dense in G and φ0(G) contains
proximal elements, there exists some ϕ ∈ Γ such that (φ0 ◦ ρ)(ϕ) is
proximal, see for instance [50]. Let x+ ∈ ∂Γ be the attracting fixed point
of ϕ in ∂Γ. Then ξ(x+) is the eigenline of (φ ◦ ρ)(ϕ) whose eigenvalue
has maximal absolute value. Since (φ0 ◦ ρ)(ϕ) is proximal, Lemma 6.2
says that

ξ(x+) = `+ ⊗ `+,

where `+ ∈ P(V ) is the eigenline of (φ0 ◦ ρ)(ϕ) whose eigenvalue has
maximal absolute value. Now

1) ξ : ∂Γ → P(V ) is continuous and (φ ◦ ρ)-equivariant,
2) the set

A = {[v ⊗ v] : v ∈ V0 \ {0}} ⊂ P(V )

is closed and φ(G)-invariant, and
3) the set Γ · x+ is dense in ∂Γ.

Since ξ(x+) ∈ A, the three properties above imply that ξ(∂Γ) ⊂ A.
Hence there exists a map ξ0 : ∂Γ → P(V0) such that

ξ(x) = ξ0(x)⊗ ξ0(x)

for all x ∈ ∂Γ. Since

[v] ∈ P(V0) → [v ⊗ v] ∈ A

is a diffeomorphism, the map ξ0 is continuous. Finally, by construction,
the map ξ0 is (φ0 ◦ ρ)-equivariant.

Applying this same argument to η yields a continuous (φ0 ◦ ρ)-equi-
variant map η0 : ∂Γ → P(V ∗

0 ) such that

η(x) = η0(x)⊗ η0(x)

for all x ∈ ∂Γ.
If x, y ∈ ∂Γ, then

η(y) (ξ(x)) = η0(y)⊗ η0(y) (ξ0(x)⊗ ξ0(x)) = η0(y) (ξ0(x))
2 .

Since ξ and η are transverse, this implies that ξ0 and η0 are transverse.
Finally, since the representation φ0 : G → PSL(V0) is irreducible

and ρ(Γ) ≤ G is Zariski dense, we see that φ0 ◦ ρ : Γ → PSL(V0) is
irreducible. Hence by Proposition 4.10 in [30] we see that φ0◦ρ : Γ → G
is a projective Anosov representation. Thus by our choice of φ0 we see
that ρ : Γ → G is P -Anosov. q.e.d.
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7. Entropy rigidity

The proof of Theorem 1.35 has three steps: first we use results of
Coornaert-Knieper, Coornaert, and Cooper-Long-Tillmann to transfer
to the Hilbert metric setting, then we use a result of Tholozan to transfer
to the Riemannian metric setting, and finally we use an argument of Liu
to prove rigidity. This general approach is based on the arguments in [4].

It will also be more notationally convenient in this section to work
with P(Rd+1) instead of P(Rd).

7.1. Some notation. Suppose (X, d) is a proper metric space and x0 ∈
X is some point. If G ≤ Isom(X, d) is a discrete subgroup, then define
the Poincaré exponent of G to be

δG(X, d) := lim sup
r→∞

1

r
log# {g ∈ G : d(x0, gx0) ≤ r} .

Notice that δG(X, d) does not depend on x0. If X has a measure µ one
can also define the volume growth entropy relative to µ as

hvol(X, d, µ) := lim sup
r→∞

1

r
logµ ({x ∈ X : d(x, x0) ≤ r}) .

If the measure µ is Isom(X, d)-invariant, finite on bounded sets, and
positive on open sets, then

δG(X, d) ≤ hvol(X, d, µ)

by the proof of Proposition 2 in [41]. In the case in which (X, g) is a
Riemannian manifold, we will let

hvol(X, g) := hvol(X, d,Vol),

where d is the distance induced by g and Vol is the Riemannian volume
associated to g.

7.2. Transferring to the Hilbert metric setting. As in the intro-
duction, we define the Hilbert entropy of a representation ρ : Γ →
PGLd(R) to be

Hρ = lim sup
r→∞

1

r
log#

{
[γ] ∈ [Γ] :

1

2
log

(
λ1(ρ(γ))

λd(ρ(γ))

)
≤ r

}

where [Γ] is the set of conjugacy classes of Γ. By combining results
of Coornaert-Knieper, Coornaert, and Cooper-Long-Tillmann, we will
establish the following proposition.

Proposition 7.1. Suppose Γ is a word hyperbolic group, ρ : Γ →
PGLd+1(R) is an irreducible projective Anosov representation, and Ω ⊂
P(Rd+1) is a properly convex domain such that ρ(Γ) ≤ Aut(Ω) is a
regular convex cocompact subgroup. Then

Hρ = δρ(Γ)(Ω, dΩ).



556 A. ZIMMER

Moreover, for any p0 ∈ Ω there exists C ≥ 1 such that

1

C
eHρr ≤ # {γ ∈ Γ : dΩ(p0, ρ(γ)p0) ≤ r} ≤ CeHρr.

Proof. Let C ⊂ Ω be a closed convex subset such that g C = C for all
g ∈ ρ(Γ), ρ(Γ)\ C is compact, and every point in C ∩∂Ω is a C1 extreme
point of Ω.

Using Selberg’s lemma, we can find a finite index subgroup Γ0 ≤
Γ such that ρ(Γ0) is torsion free. Then Hρ = Hρ|Γ0

, δρ(Γ0)(Ω, dΩ) =

δρ(Γ)(Ω, dΩ), and ρ(Γ0)\ C is compact.
For γ ∈ Γ0 define

τ(γ) = inf
c∈C

dΩ(ρ(γ)c, c).

Since (C, dΩ) is a proper geodesic metric space, ρ(Γ0) acts cocompactly
on C, Γ0 is word hyperbolic, and ker ρ is finite, Theorem 1.1 in [21] says
that

δρ(Γ0)(Ω, dΩ) = lim
r→∞

1

r
log# {[γ] ∈ [Γ0] : τ(γ) ≤ r} .(2)

Next we claim that

τ(γ) =
1

2
log

(
λ1(ρ(γ))

λd+1(ρ(γ))

)

for every γ ∈ Γ0. Fix some γ ∈ Γ0. Then Proposition 2.1 in [20] says
that

inf
x∈Ω

dΩ(ρ(γ)x, x) =
1

2
log

(
λ1(ρ(γ))

λd+1(ρ(γ))

)

and so

τ(γ) ≥
1

2
log

(
λ1(ρ(γ))

λd+1(ρ(γ))

)
.

Since γ has infinite order we see that ρ0(γ) is biproximal, that is ρ0(γ)
and ρ0(γ)

−1 are proximal. So if `+ and `− are the attracting and re-
pelling eigenlines of ρ0(γ) respectively, then Corollary 2.15 implies that
`+, `− ∈ C ∩ ∂Ω. Since every point in C ∩ ∂Ω is an extreme point of Ω,
we then see that (`+, `−) ⊂ C. But if p ∈ (`+, `−), then

dΩ(ρ0(γ)p, p) =
1

2
log

(
λ1(ρ(γ))

λd+1(ρ(γ))

)

by the definition of the Hilbert distance. Hence

τ(γ) =
1

2
log

(
λ1(ρ(γ))

λd+1(ρ(γ))

)
.(3)
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Then by Equations (2) and (3)

δρ(Γ0)(Ω, dΩ) = lim
r→∞

1

r
log# {[γ] ∈ [Γ0] : τ(γ) ≤ r}

= lim
r→∞

1

r
log#

{
[γ] ∈ [Γ0] :

1

2
log

(
λ1(ρ(γ))

λd+1(ρ(γ))

)
≤ r

}
= Hρ|Γ0

and so

Hρ = Hρ|Γ0
= δρ(Γ0)(Ω, dΩ) = δρ(Γ)(Ω, dΩ).

Finally by Théorème 7.2 in [22], for any p0 ∈ Ω there exists C ≥ 1 such
that

1

C
eHρr ≤ # {γ ∈ Γ : dΩ(p0, ρ(γ)p0) ≤ r} ≤ CeHρr. q.e.d.

7.3. Transferring to the Riemannian setting. Associated to every
properly convex domain Ω ⊂ P(Rd+1) is a Riemannian distance BΩ on
Ω called the Blaschke distance (see, for instance, [43, 11]). This Rie-
mannian distance is Aut(Ω)-invariant and by a result of Calabi [18] has
Ricci curvature bounded below by −(d − 1). Since the Ricci curvature
is bounded below by −(d− 1), the Bishop-Gromov volume comparison
theorem implies that

hvol(Ω, BΩ) ≤ d− 1.

Benzécri’s theorem (see Theorem 4.2) provides a simple proof that
the Hilbert distance and the Blaschke distance are bi-Lipschitz (see for
instance [44, Section 9.2]) and Tholozan recently proved the following
refined relationship between the two distances:

Theorem 7.2. [57] If Ω ⊂ P(Rd+1) is a properly convex domain,
then

BΩ < dΩ + 1.

In particular, if Γ ≤ Aut(Ω) is a discrete group, then

δΓ(Ω, dΩ) ≤ δΓ(Ω, BΩ) ≤ hvol(Ω, BΩ) ≤ d− 1.

7.4. Rigidity in the Riemannian setting. The Bishop-Gromov vol-
ume comparison theorem implies that amongst the class of Riemann-
ian d-manifolds with Ric ≥ −(d − 1) the volume growth entropy is
maximized when (X, g) is isometric to real hyperbolic d-space. There
are many other examples which maximize volume growth entropy, but
if X has “enough” symmetry then it is reasonable to suspect that
hvol(X, g) = d − 1 if and only if X is isometric to real hyperbolic d-
space. This was proved by Ledrappier and Wang when X covers a
compact manifold:

Theorem 7.3 (Ledrappier-Wang [41]). Let (X, g) be a complete sim-
ply connected Riemannian d-manifold with Ric ≥ −(d − 1). Suppose
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that X is the Riemannian universal cover of a compact manifold. Then
hvol(X, g) = d−1 if and only if X is isometric to real hyperbolic d-space.

Later Liu [42] provided an alternative proof of Ledrappier andWang’s
result and Liu’s argument can be adapted to prove the following.

Proposition 7.4. Let (X, g) be a complete simply connected Rie-
mannian d-manifold with Ric ≥ −(d − 1) and bounded sectional cur-
vature. Suppose Γ ≤ Isom(X, g) is a discrete subgroup and there exist
C, r0 > 0 and x0 ∈ X such that

Ce(d−1)r ≤ #{γ ∈ Γ : dX(x0, γx0) ≤ r}

for every r > r0. Then X is isometric to real hyperbolic d-space.

We will prove this result in Section A of the appendix.

7.5. Proof of Theorem 1.35. Suppose Γ is a finitely generated word
hyperbolic group, ρ : Γ → PGLd+1(R) is an irreducible projective
Anosov representation, and ρ(Γ) preserves a properly convex domain
in P(Rd+1). Using Theorem 1.27, there exists a properly convex domain
Ω ⊂ P(Rd+1) such that ρ(Γ) ≤ Aut(Ω) is a regular convex cocompact
subgroup.

Combining Proposition 7.1 and Theorem 7.2 we see that

Hρ = δρ(Γ)(Ω, dΩ) ≤ d− 1.

Now suppose that Hρ = d− 1. By Theorem 7.2 and Proposition 7.1
there exists some C0 > 0 such that

C0e
(d−1)r ≤ # {γ ∈ Γ : BΩ(p0, ρ(γ)p0) ≤ r}

for all r ≥ 0. Moreover, Benzécri’s theorem implies thatBΩ has bounded
sectional curvature (see for instance [4, Lemma 3.1]). So by Proposi-
tion 7.4, (Ω, BΩ) is isometric to the real hyperbolic d-space. Hence
(Ω, dΩ) is projectively equivalent to the Klein-Beltrami model of hyper-
bolic space (see [61]). In particular, by conjugating ρ(Γ) we can assume

Ω =

{
[1 : x1 : · · · : xd] ∈ P(Rd) :

d∑

i=1

x2i < 1

}

and Aut(Ω) = PO(1, d). Then ρ(Γ) is a convex cocompact subgroup of
PO(1, d) in the classical sense.

Since

δρ(Γ)(Ω, dΩ) = d− 1,

Theorem D in [58] implies that

∂Ω ∩ C = ∂Ω.

Then since C is convex we see that C = Ω. Then since ρ(Γ)\ C = ρ(Γ)\Ω
is compact, we see that ρ(Γ) ≤ PO(1, d) is a co-compact lattice.
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8. Regularity rigidity

In this section we will prove Theorems 1.46 and 1.49 from the in-
troduction. The proof of both theorems are based on the following
observation.

Observation 8.1. Suppose g ∈ PGLd(R) is proximal and `+g ∈ P(Rd)
is the eigenline of g corresponding to the eigenvalue of largest absolute
value. Let dP is a distance on P(Rd) induced by a Riemannian metric.
If v 6= `+g and gnv → `+g , then

log
λ2(g)

λ1(g)
≥ lim sup

n→∞

1

n
log dP

(
gnv, `+g

)
.

Moreover, there exists a proper subspace V ⊂ P(Rd) such that: if v ∈
P(Rd) \ V and gnv → `+g , then

log
λ2(g)

λ1(g)
= lim

n→∞

1

n
log dP

(
gnv, `+g

)
.

We give a proof of the observation in Appendix C.

8.1. Proof of Theorem 1.46. We begin by recalling the theorem.

Theorem 8.2. Suppose d > 2, Γ is a word hyperbolic group, and
ρ : Γ → PGLd(R) is an irreducible projective Anosov representation
with boundary map ξ : ∂Γ → P(Rd). If

1) M = ξ(∂Γ) is a C2 k-dimensional submanifold of P(Rd) and
2) the representation ∧k+1ρ : Γ → PGL(∧k+1Rd) is irreducible,

then

λ1(ρ(γ))

λ2(ρ(γ))
=

λk+1(ρ(γ))

λk+2(ρ(γ))

for all γ ∈ Γ.

For the rest of the subsection, fix a word hyperbolic group Γ and a
projective Anosov representation ρ : Γ → PGLd(R) which satisfy the
hypothesis of Theorem 8.2.

Define a map Φ : M → P(∧k+1Rd) by

Φ(m) = [v1 ∧ · · · ∧ vk+1],

where TmM = P(SpanR{v1, . . . , vk+1}). Since M is a C2 submanifold,
Φ is a C1 map.

Lemma 8.3. With the notation above, Φ : M → P(∧k+1Rd) is a C1

immersion.

Proof. We break the proof into two cases: when k = 1 and when
k > 1.
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Case 1: Assume k = 1. We first consider the case when d(Φ)m = 0 for
every m ∈ M . Then there exists a two dimensional subspace V ⊂ Rd

such that TmM = P(V ) for all m. Then we must have M ⊂ P(V ). Since
ρ is irreducible, the elements in M span Rd and so d ≤ 2. Thus we have
a contradiction. So d(Φ)m 6= 0 on an open set in M . But since

Φ ◦ ρ(γ) = (∧2ρ(γ)) ◦ Φ

for every γ ∈ Γ and Γ acts minimally on M , we see that d(Φ)m 6= 0 for
every m.

Case 2: Assume k > 1. Then by Theorem 1.25 there exists a properly
convex domain Ω ⊂ P(Rd) such that ρ(Γ) ≤ Aut(Ω) is a regular convex
cocompact subgroup. Suppose C ⊂ Ω is a closed convex subset such
that g C = C for all g ∈ ρ(Γ), ρ(Γ)\ C is compact, and every point in
∂Ω ∩ C is a C1 extreme point of Ω.

We first claim that Φ is injective. By Lemma 2.14 we have

ξ(∂Γ) ⊂ ∂Ω ∩ C

and

η(∂Γ) ⊂ ∂Ω∗.

Then since ξ(x) is a C1 point of ∂Ω we have

Tξ(x)∂Ω = P(ker η(x)).

Further since M ⊂ ∂Ω we see that

Tξ(x)M ⊂ Tξ(x)∂Ω = P(ker η(x))

for every x ∈ ∂Γ. Now suppose that Tξ(x)M = Tξ(y)M for some x, y ∈
∂Γ. Then

ξ(x) ∈ Tξ(x)M = Tξ(y)M ⊂ P(ker η(y)).

So x = y and hence Φ is injective.
Since Φ is injective and C1, d(Φ) must have full rank at some point.

By continuity, d(Φ) has full rank on an open set. But since

Φ ◦ ρ(γ) = (∧k+1ρ(γ)) ◦ Φ

for every γ ∈ Γ and Γ acts minimally on M , we see that d(Φ) has full
rank everywhere. Hence, since M is compact and Φ is injective, Φ is a
C1 embedding. q.e.d.

Next fix distances d1 on P(Rd) and d2 on P(∧k+1Rd) which are in-
duced by Riemannian metrics. Since Φ is a C1 immersion, there exists
C ≥ 1 such that

1

C
d1(m1,m2) ≤ d2(Φ(m1),Φ(m2)) ≤ Cd1(m1,m2)(4)

for all m1,m2 ∈ M sufficiently close.
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Now fix some γ ∈ Γ with infinite order and let g ∈ GLd(R) be a lift
of ρ(γ) with det g = ±1. Suppose that

λ1 ≥ λ2 ≥ · · · ≥ λd

are the absolute values of the eigenvalues of g. Then the absolute values
of the eigenvalues of ∧k+1g have the form

λi1λi2 · · ·λik+1

for 1 ≤ i1 < i2 < · · · < ik+1 ≤ d. In particular,

λ1λ2 · · ·λk+1

is the absolute value of the largest eigenvalue of ∧k+1g and

λ1λ2 · · ·λkλk+2

is the absolute value of the second largest eigenvalue of ∧k+1g.
Next let x+, x− be the attracting and repelling fixed points of γ in

∂Γ.

Lemma 8.4. With the notation above, ∧k+1ρ(γ) is proximal with
attracting fixed point Φ(ξ(x+)).

Proof. We first show that Φ(ξ(x+)) is an eigenline of ∧k+1g whose
eigenvalue has absolute value λ1 · · ·λk+1.

Fix a norm on End(∧k+1Rd). Then we can find a sequence nm → ∞
such that 1

‖(∧k+1g)nm‖
(∧k+1g)nm converges to some T ∈ End(∧k+1Rd).

Then

T (v) = lim
m→∞

(∧k+1ρ(γ))nmv(5)

for every v ∈ P(∧k+1Rd) \ P(kerT ).
By Observation C.4, every element in the image of T is a sum of gen-

eralized complex eigenvectors of ∧k+1g whose eigenvalue has maximal
absolute value (that is, λ1 · · ·λk+1). We will show that the image of T is
Φ(ξ(x+)) and hence Φ(ξ(x+)) is an eigenline of ∧k+1g whose eigenvalue
has absolute value λ1 · · ·λk+1.

Now since ∧k+1ρ : Γ → PGL(∧k+1Rd) is irreducible, there exists
x1, . . . , xN ∈ ∂Γ such that

Φ(ξ(x1)), . . . ,Φ(ξ(xN ))

span ∧k+1Rd. By perturbing the xi (if necessary) we can also assume
that

x− /∈ {x1, . . . , xN}.

Next by relabelling the xi we can also assume that there exists 1 ≤ m ≤
N such that

Φ(ξ(x1)) + · · ·+Φ(ξ(xm)) + kerT = ∧k+1Rd
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and
(
Φ(ξ(x1)) + · · ·+Φ(ξ(xm))

)
∩ kerT = (0).

Then by Equation (5)

T (Φ(ξ(xi))) = lim
m→∞

(∧k+1ρ(γ))nmΦ(ξ(xi)) = lim
m→∞

Φ(ξ(γnmx))

= Φ(ξ(x+))

for 1 ≤ i ≤ m. So the image of T is Φ(ξ(x+)) and so Observation C.4
implies that Φ(ξ(x+)) is an eigenline of ∧k+1g whose eigenvalue has
absolute value λ1 · · ·λk+1.

We next argue that ∧k+1ρ(γ) is proximal. Suppose not, then by
Observation C.5 there exists a proper subspace V ⊂ P(∧k+1Rd) such
that: if v ∈ P(∧k+1Rd) \ V , then

0 = lim
n→∞

1

n
log d2

(
(∧k+1ρ(γ))nv,Φ(ξ(x+))

)
.

Since ∧k+1ρ : Γ → PGL(∧k+1Rd) is irreducible there exists x ∈ ∂Γ
such that Φ(ξ(x)) /∈ V . Then by perturbing x (if necessary) we can also
assume that x 6= x−. Then

ρ(γ)nξ(x) = ξ(γnx) → ξ(x+) and

(∧k+1ρ(γ))nΦ(ξ(x)) = Φ(ξ(γnx)) → Φ(ξ(x+)).

So by Observation 8.1 applied to ρ(γ)

0 > log
λ2

λ1
≥ lim sup

n→∞

1

n
log d1

(
ρ(γ)nξ(x), ξ(x+)

)

= lim sup
n→∞

1

n
log d1

(
ξ(γnx), ξ(x+)

)

= lim sup
n→∞

1

n
log d2

(
Φ(ξ(γnx)),Φ(ξ(x+))

)

= lim sup
n→∞

1

n
log d2

(
(∧k+1ρ(γ))nΦ(ξ(x)),Φ(ξ(x+))

)
= 0.

Notice that we used Equation (4) in the second equality. So we have a
contradiction and hence ∧k+1ρ(γ) is proximal. q.e.d.

By Observation 8.1, there exists a proper subspace V1 ⊂ P(Rd) such
that

log
λ2

λ1
= lim

n→∞

1

n
log d1

(
ρ(γ)nv, ξ(x+)

)
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for all v ∈ P(Rd) \ V1 with ρ(γ)nv → ξ(x+). By the same observation,
there exists a proper subspace V2 ⊂ P(∧k+1Rd+1) such that

log
λk+2

λk+1
= log

λ1λ2 · · ·λkλk+2

λ1λ2 · · ·λk+1

= lim
n→∞

1

n
log d2

(
(∧k+1ρ(γ))nw,Φ(ξ(x+γ ))

)

for all w ∈ P(∧k+1Rd) \ V2 with (∧k+1ρ(γ))nw → Φ(ξ(x+γ )).

Since ρ is irreducible, {ξ(x) : x ∈ ∂Γ} spans Rd. So we can pick some
x ∈ ∂Γ such that ξ(x) /∈ V1. By perturbing x (if necessary) we can also
assume that x 6= x−. Then γnx → x+ and so

log
λ2

λ1
= lim

n→∞

1

n
log d1

(
ρ(γ)nξ(x), ξ(x+)

)

= lim
n→∞

1

n
log d1

(
ξ(γnx), ξ(x+)

)

= lim
n→∞

1

n
log d2

(
Φ(ξ(γnx)),Φ(ξ(x+))

)

= lim
n→∞

1

n
log d2

(
(∧k+1ρ(γ))nΦ(ξ(x)),Φ(ξ(x+))

)
.

Notice that we used Equation (4) in the third equality. Then applying
Observation 8.1 to ∧k+1ρ(γ) we have

log
λ2

λ1
≤ log

λk+1

λk
.

We prove the opposite inequality in exactly the same way. Since
∧k+1ρ is irreducible, {Φ(ξ(x)) : x ∈ ∂Γ} spans Rd. So we can pick some
x ∈ ∂Γ such that Φ(ξ(x)) /∈ V2. By perturbing x (if necessary) we can
assume that x 6= x−. Then γnx → x+ and so

log
λk+1

λk
= lim

n→∞

1

n
log d2

(
(∧k+1ρ(γ))nΦ(ξ(x)),Φ(ξ(x+))

)

= lim
n→∞

1

n
log d2

(
Φ(ξ(γnx)),Φ(ξ(x+))

)

= lim
n→∞

1

n
log d1

(
ξ(γnx), ξ(x+)

)

= lim
n→∞

1

n
log d1

(
ρ(γ)nξ(x), ξ(x+)

)
≤ log

λ2

λ1
.

Hence

λ2

λ1
=

λk+1

λk

and since γ ∈ Γ was an arbitrary element with infinite order this proves
the theorem.
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8.2. Proof of Theorem 1.49. We begin by recalling the theorem.

Theorem 8.5. Suppose that Γ ≤ PSL2(R) is a torsion-free cocompact
lattice and ρ : Γ → PSLd(R) is in the Hitchin component. If ξ : ∂Γ →
P(Rd) is the associated boundary map and ξ(∂Γ) is a C2 submanifold of
P(Rd), then

λ1(ρ(γ))

λ2(ρ(γ))
=

λ2(ρ(γ))

λ3(ρ(γ))

for all γ ∈ Γ.

For the rest of the section suppose that Γ ≤ PSL2(R) is a torsion-free
cocompact lattice and ρ : Γ → PSLd(R) is in the Hitchin component.

Let F(Rd) denote the full flag manifold of Rd. Then by Theorem 4.1
and Proposition 3.2 in [40] there exists a continuous, ρ-equivariant map

F = (ξ(1), . . . , ξ(d)) : ∂Γ → F(Rd) such that:

1) ξ = ξ(1).
2) If x, y, z ∈ ∂Γ are distinct, k1, k2, k3 ≥ 0, and k1 + k2 + k3 = d,

then

ξ(k1)(x) + ξ(k2)(y) + ξ(k3)(z) = Rd

is a direct sum.
3) If x, y, z ∈ ∂Γ are distinct and 0 ≤ k < d− 2, then

ξ(k+1)(y) + ξ(d−k−2)(x) +
(
ξ(k+1)(z) ∩ ξ(d−k)(x)

)
= Rd

is a direct sum.
4) If γ ∈ Γ \ {1}, then the absolute values of the eigenvalues of ρ(γ)

satisfy

λ1(ρ(γ)) > · · · > λd(ρ(γ)).

5) If γ ∈ Γ \ {1} and x+γ ∈ ∂Γ is the attracting fixed point of γ, then

ξ(k)(x+γ ) is the span of the eigenspaces of ρ(γ) corresponding to
the eigenvalues

λ1(ρ(γ)), . . . , λk(ρ(γ)).

Throughout the following argument we will identify a k-dimensional
subspace W = Span{w1, . . . , wk} of Rd with the point [w1 ∧ · · · ∧wk] ∈
P(∧k Rd).

Next fix distances d1 on P(Rd) and d2 on P(∧2Rd) which are induced
by Riemannian metrics.

Lemma 8.6. With the notation above, if γ ∈ Γ \ {1} and x ∈ ∂Γ \
{x+γ , x

−
γ }, then

log
λ2(ρ(γ))

λ1(ρ(γ))
= lim

n→∞

1

n
log d1

(
ξ(γnx), ξ(x+γ )

)



ANOSOV REPRESENTATIONS AND CONVEX COCOMPACT ACTIONS 565

and

log
λ3(ρ(γ))

λ2(ρ(γ))
= lim

n→∞

1

n
log d2

(
ξ(2)(γnx), ξ(2)(x+γ )

)
.

Proof. Fix γ ∈ Γ\{1} and let λi = λi(ρ(γ)). Then let v1, . . . , vd ∈ Rd

be eigenvectors of ρ(γ) corresponding to λ1, . . . , λd. Then by Prop-
erty (5)

ξ(k)(x+γ ) = Span{v1, . . . , vk}

and

ξ(k)(x−γ ) = Span{vd−k+1, . . . , vd}.

Further, if w /∈ Span{v1, v3, . . . , vd} then

log
λ2

λ1
= lim

n→∞

1

n
log d1

(
ρ(γ)n[w], ξ(x+γ )

)
.

Notice, if x ∈ ∂Γ \ {x+γ , x
−
γ } then Property (2) implies that

ξ(x) /∈ P(ξ(x+γ )⊕ ξ(d−2)(x−γ )) = P(Span{v1, v3, . . . , vd})

and so

log
λ2

λ1
= lim

n→∞

1

n
log d1

(
ξ(γnx), ξ(x+γ )

)
.

For the second equality, notice that vi∧vj are eigenvectors of ∧
2ρ(γ).

So λ1λ2 is the absolute value of the largest eigenvalue of ∧2ρ(γ) and
λ1λ3 is the absolute value of the second largest eigenvalue of ∧2ρ(γ). So
if

w /∈ Span{vi ∧ vj : {i, j} 6= {1, 3}},

then

log
λ3

λ2
= log

λ1λ3

λ1λ2
= lim

n→∞

1

n
log d2

(
(∧2ρ(γ))n[w], ξ(2)(x+γ )

)
.

Now we claim that ξ(2)(x) /∈ P(Span{vi ∧ vj : {i, j} 6= {1, 3}}) when

x ∈ ∂Γ \ {x+γ , x
−
γ }. Suppose that ξ(2)(x) = [w1 ∧ w2] where

w1 =

d∑

i=1

αivi and w2 =

d∑

i=1

βivi.

Then

ξ(2)(x) =


 ∑

1≤i<j≤d

(αiβj − αjβi)vi ∧ vj


 .

Now Property (3) implies that

ξ(2)(x) + ξ(d−3)(x−γ ) +
(
ξ(2)(x+γ ) ∩ ξ(d−1)(x−γ )

)
= Rd
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is direct. Since

ξ(d−3)(x−γ ) +
(
ξ(2)(x+γ ) ∩ ξ(d−1)(x−γ )

)
= Span{v2, v4, . . . , vd}

we see that α1β3 − α3β1 6= 0. Thus ξ(2)(x) /∈ P(Span{vi ∧ vj : {i, j} 6=
{1, 3}}). So

log
λ3

λ2
= lim

n→∞

1

n
log d2

(
ξ(2)(γnx), ξ(2)(x+γ )

)
.

q.e.d.

Now assume that M = ξ(∂Γ) is a C2 submanifold in P(Rd). Then
define a map Φ : M → P(∧2Rd) by

Φ(m) = [v1 ∧ v2],

where TmM = P(SpanR{v1, v2}). Since M is a C2 submanifold, Φ is a
C1 map.

Lemma 8.7. With the notation above, Φ(ξ(x)) = ξ(2)(x) for all x ∈
∂Γ.

Proof. Since {x+γ : γ ∈ Γ \ {1}} is dense in ∂Γ, it is enough to show

that Φ(ξ(x+γ )) = ξ(2)(x+γ ) for γ ∈ Γ \ {1}. By property (5) above,

ξ(k)(x+γ ) is the span of the eigenspaces of ρ(γ) corresponding to the
eigenvalues

λ1(ρ(γ)), . . . , λk(ρ(γ))

while ξ(k)(x−γ ) is the span of the eigenspaces of ρ(γ) corresponding to
the eigenvalues

λd−k+1(ρ(γ)), . . . , λd(ρ(γ)).

Now fix y ∈ ∂Γ \ {x+γ , x
−
γ }. By Properties (1) and (2),

ξ(y) /∈ P(ξ(x+γ )⊕ ξ(d−2)(x−γ ))

and so ξ(γny) = ρ(γ)nξ(y) approaches ξ(x+γ ) along an orbit tangential

to ξ(2)(x+γ ). Which implies that Φ(ξ(x+γ )) = ξ(2)(x+γ ). q.e.d.

Lemma 8.8. With the notation above, Φ : M → P(∧2Rd) is a C1

embedding.

Proof. By the previous lemma and Property (2), Φ is injective. Since
Φ is also C1, d(Φ)m 6= 0 for some m ∈ M . So d(Φ)m 6= 0 on an open
set. But since

Φ ◦ ρ(γ) = (∧2ρ(γ)) ◦ Φ

for every γ ∈ Γ and Γ acts minimally on M , we see that d(Φ)m 6= 0 for
all m ∈ M . Hence, since M is compact and Φ is injective, Φ is a C1

embedding. q.e.d.
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Since Φ is a C1 embedding, there exists C ≥ 1 such that

1

C
d1(m1,m2) ≤ d2(Φ(m1),Φ(m2)) ≤ Cd1(m1,m2)

for all m1,m2 ∈ M . Then by Lemma 8.6 we have

λ3(ρ(γ))

λ2(ρ(γ))
=

λ2(ρ(γ))

λ1(ρ(γ))

for all γ ∈ Γ.

Appendix A. An argument of Liu

In this section we explain how an argument of Liu [42] can be adapted
to prove the following.

Proposition A.1. Let (X, g) be a complete simply connected Rie-
mannian d-manifold with Ric ≥ −(d − 1) and bounded sectional cur-
vature. Suppose Γ ≤ Isom(X, g) is a discrete subgroup and there exist
C, r0 > 0 and x0 ∈ X such that

Ce(d−1)r ≤ #{γ ∈ Γ : dX(x0, γx0) ≤ r}

for every r > r0. Then X is isometric to real hyperbolic d-space.

Essentially the only change in Liu’s argument is replacing the words
“by a standard covering technique” with the proof of Lemma A.4 below.

Suppose for the rest of the section that (X, g) is a Riemannian man-
ifold and Γ ≤ Isom(X, g) is a discrete subgroup which satisfy the hy-
pothesis of the theorem. Let dX : X × X → R be the distance, Vol
denote the volume form, ∇ denote the gradient, and let ∆ denote the
Laplace-Beltrami operator on (X, g). Also, for x ∈ X and r > 0 define

Br(x) = {y ∈ X : dX(x, y) < r}.

We begin by recalling a result of Ledrappier and Wang.

Lemma A.2. [41] If there exists a C∞ function u : X → R such
that ‖∇u‖ ≡ 1 and ∆u ≡ d − 1, then X is isometric to real hyperbolic
space.

Proof. Define φ = e(d−1)u. Then φ is positive and by the chain rule

∆(φ) = e(d−1)u
(
(d− 1)2 ‖∇u‖2 − (d− 1)∆u

)
= 0.

Further, ‖∇ log φ‖ = (d− 1) ‖∇u‖ ≡ d− 1. So by Theorem 6 in [41], X
is isometric to real hyperbolic space. q.e.d.

Next fix a point x0 ∈ X and some very large R > 0. Let d0 : X → R

be the function d0(x) = dX(x, x0). Next let C0 ⊂ X denote the cut
locus of x0. Then d0 is smooth on X \ (C0 ∪{x0}) and Vol(C0) = 0.
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Lemma A.3. There exists rn → ∞ such that: if

An = {x ∈ X : rn − 50R ≤ dX(x0, x) ≤ rn + 50R},

then

lim
n→∞

1

Vol(An)

∫

An\C0

∆d0(x)dV = d− 1.

Proof. This is essentially claim 1 and claim 2 from [42]. First, the
Laplacian comparison theorem (see Theorem [63, Theorem 2.2]) imme-
diately implies that

lim sup
n→∞

1

Vol(An)

∫

An\C0

∆d0(x)dV ≤ d− 1

and so we just have to prove

lim inf
n→∞

1

Vol(An)

∫

An\C0

∆d0(x)dV ≥ d− 1.

Let Sx0
X denote the unit tangent sphere at x0. For v ∈ Sx0

X let

τ(v) = min{t > 0 : expx0
(tv) ∈ C0}.

Next for r > 0 define

C(r) = {v ∈ Sx0
X : r < τ(v)}.

Let J(r, v) be the non-negative function defined on ∪r>0{r}×C(r) such
that: if ϕ ∈ L1(X, dV ), then

∫

X
ϕ(x)dV =

∫ ∞

0

∫

C(r)
ϕ(expx0

(rv))J(r, v)dµ(v)dr,

where dµ is the Lebesgue measure on Sx0
X.

For r > 0 let

Sr =

∫

C(r)
J(r, v)dµ(v).

Then by Fubini’s theorem
∫ R

0
Srdr = Vol(Bg(x0, R))(6)

for every R > 0. We claim that there exists rn → ∞ such that

lim inf
n→∞

Srn+50R

Srn−50R
≥ e100(d−1)R.

Suppose such a sequence does not exist, then there exists ε > 0 and
R0 > 0 such that

Sr+50R

Sr−50R
≤ e100(d−1)R(1− ε)
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for every r > R0. But then an iteration argument implies that

Sr ≤ C(1− ε)
r

100R e(d−1)r

for some C > 0 which is independent of r. But then Equation (6)
implies that hvol(X, g) < (d− 1). So we have a contradiction and hence
there exists rn → ∞ such that

lim inf
n→∞

Srn+50R

Srn−50R
≥ e100(d−1)R.

Next for v ∈ Sx0
X and r ∈ (0, τ(v)), defineH(r, v)=(∆d0)(expp(rv)).

We have the following well known relationship between J and H, see
for instance [19, Equation 1.159],

H(r, v)J(r, v) =
∂

∂r
J(r, v).(7)

Next define

an(v) := min{τ(v), rn − 50R} and bn(v) := min{rn + 50R, τ(v)}.

Then by Equation (7)
∫

An\C0

∆d0(x)dV =

∫

Sx0
X

∫ bn(v)

an(v)
H(r, v)J(r, v)drdµ(v)

=

∫

Sx0
X

∫ bn(v)

an(v)

∂J

∂r
(r, v)drdµ(v)

=

∫

Sx0
X
J(bn(v), v)− J(an(v), v)dµ(v)

= Srn+50R − Srn−50R +

∫

{rn−50R<τ(v)<rn+50R}
J(bn(v), v)dµ(v)

≥ Srn+50R − Srn−50R.

By using the volume comparison theorem for annuli, see [63, Theorem
3.1], we have

lim sup
n→∞

Vol(An)

Srn−50Rn

≤
1

d− 1

(
e100(d−1)Rn − 1

)

and so

lim inf
n→∞

1

Vol(An)

∫

An\C0

∆d0(x)dV ≥ lim inf
n→∞

Srn+50R − Srn−50R

Vol(An)

≥

(
lim inf
n→∞

Srn+50R

Srn−50R
− 1

)
lim inf
n→∞

Srn−50R

Vol(An)

≥ d− 1. q.e.d.

Next let Mn ⊂ Γ be a maximal set such that

1) if γ ∈ Mn, then γBR(x0) ⊂ An,
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2) if γ1, γ2 ∈ Mn are distinct, then

γ1BR(x0) ∩ γ2BR(x0) = ∅.

Then let

En = Mn ·BR(x0) ⊂ An.

Lemma A.4. For R > 0 sufficiently large,

lim inf
n→∞

Vol(An)

e(d−1)rn
> 0

and

lim inf
n→∞

Vol(En)

Vol(An)
> 0.

Proof. We prove the second inequality first. Fix some δ ∈ (0, R) such
that: if γ1, γ2 ∈ Γ and

γ1Bδ(x0) ∩ γ2Bδ(x0) 6= ∅,

then γ1x0 = γ2x0. Then let s0 = #{γ ∈ Γ : γx0 = x0} and

Nn = {γ ∈ Γ : rn − 49R < d(γx0, x0) ≤ rn + 49R}.

Then

Vol(Nn ·Bδ(x0)) =
Vol(Bδ(x0))

s0
#Nn.

Moreover, since Mn was chosen maximally, we have

Nn ·Bδ(x0) ⊂ Mn ·B2R+δ(x0).

Then since

Vol(Mn ·B2R+δ(x0))

Vol(Mn ·BR(x0))
≤

Vol(B2R+δ(x0))

Vol(BR(x0))

we have

lim inf
n→∞

Vol(En)

#Nn
> 0.

So it is enough to show that

lim inf
n→∞

#Nn

Vol(An)
> 0.

Now

#Nn = #{γ ∈ Γ : dX(x0, γx0) ≤ rn + 49R}

−#{γ ∈ Γ : dX(x0, γx0) ≤ rn − 49R}

≥ Ce(d−1)(rn+49R) −
s0

VolBδ(x0)
VolBrn−49R(x0).
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By the Bishop volume comparison theorem, see [63, Corollary 3.3], there
exists V0 > 0 so that

VolBrn−49R(x0) ≤ V0e
(d−1)(rn−49R)

for all n > 0. So

#Nn ≥ e(d−1)rn
(
Ce49R −

s0V0

VolBδ(x0)
e−49R

)
.

Now C, s0, V0, δ do not depend on R > 0 and R is some very large
number so we may assume that

(
Ce49R −

s0V0

VolBδ(x0)
e−49R

)
≥ 1.

Then

#Nn ≥ e(d−1)rn .(8)

Finally, by the volume comparison theorem for annuli (see [63, Theorem
3.1]) we have

lim inf
n→∞

e(d−1)rn

Vol(An)
> 0

and so

lim inf
n→∞

#Nn

Vol(An)
> 0.

This proves the second inequality.
To prove the first inequality, notice that

Vol(An) ≥
VolBδ(x0)

s0
#Nn

and then use Equation (8). q.e.d.

Lemma A.5. There exists a sequence εn > 0 with limn→∞ εn = 0
such that: if ϕ : An → [0, 1] is a C∞ function compactly supported in
An, then ∣∣∣∣∣

∫

X
d0∆ϕdV −

∫

X\C0

ϕ∆d0dV

∣∣∣∣∣ ≤ εnVol(An).

Remark A.6. When d0 is smooth on X \ {x0} and ϕ is compactly
supported in X \ {x0}, then

∫

X
d0∆ϕdV =

∫

X
ϕ∆d0dV

by integration by parts. So Lemma A.5 says that we can still do inte-
gration by parts in the case when d0 is not smooth, but at the cost of
some additive error which depends on the support of ϕ.
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Proof. Let τ(v), J(r, v), an(v), and bn(v) be as in the proof of
Lemma A.3. Let I =

∫
X d0∆ϕdV . Since integration by parts holds

for Lipschitz functions, we have

I = −

∫

X
∇d0 · ∇ϕdV = −

∫

Sx0
X

∫ bn(v)

an(v)

∂ϕ̂

∂r
(r, v)J(r, v)drdµ(v)

where ϕ̂(r, v) = ϕ(expx0
(rv)). Integrating by parts again and using

Equation (7)

I =

∫

Sx0
X

∫ bn(v)

an(v)
ϕ̂(r, v)

∂J

∂r
(r, v)drdµ(v)

−

∫

Sx0
X
ϕ̂(r, v)J(r, v)

∣∣∣∣∣

bn(v)

an(v)

dµ(v)

=

∫

X\C0

ϕ∆d0dV −

∫

Sx0
X
ϕ̂(r, v)J(r, v)

∣∣∣∣∣

bn(v)

an(v)

dµ(v).

Next we estimate the absolute value of the second term in last equa-
tion. If τ(v) > rn + 50R, then

ϕ̂(an(v), v) = ϕ̂(bn(v), v) = 0

since ϕ is compactly supported in An. Further, if τ(v) < rn−50R, then
an(v) = bn(v). Hence, if

ϕ̂(r, v)J(r, v)|
bn(v)
an(v)

6= 0,

then we must have τ(v) ∈ [rn− 50R, rn+50R]. By the volume compar-
ison theorem, there exists J0 > 0 such that

J(r, v) ≤ J0e
(d−1)r.

Then since |ϕ̂| ≤ 1, we have
∣∣∣∣∣∣

∫

Sx0
X
ϕ̂(r, v)J(r, v)

∣∣∣∣∣

bn(v)

an(v)

dµ(v)

∣∣∣∣∣∣

≤ J0e
(d−1)rµ ({v : τ(v) ∈ [rn − 50R, rn + 50R]}) .

Since µ is a finite measure, we have

lim
n→∞

µ ({v : τ(v) ∈ [rn − 50R, rn + 50R]}) = 0.

Then by the first part of Lemma A.4,

εn := J0
e(d−1)r

Vol(An)
µ ({v : τ(v) ∈ [rn − 50R, rn + 50R]})

satisfies the conclusion of the lemma. q.e.d.
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Let {χi : i ∈ N} be a partition of unity for BR(x0). Then define φn =∑n
i=1 χi. Then each φn is smooth, maps into [0, 1], and has compact

support in BR(x0). Moreover, φ1 ≤ φ2 ≤ . . . and if K ⊂ BR(x0) is a
compact set, then K ⊂ φ−1

n (1) for n sufficiently large.

Next let φ̃n =
∑

γ∈Mn
φn ◦ γ−1. Then φ̃n is compactly supported in

En and

lim
n→∞

1

Vol(En)

∫

X
1En − φ̃ndV = 0.(9)

Lemma A.7. There exists a sequence γn ∈ Mn such that

lim
n→∞

∫

X
d0(γnx)∆φn(x)dV = (d− 1)Vol(BR(x0)).

Proof. Let

cn =
1

Vol(BR(x0))
max
γ∈Mn

∫

X
d0(γx)∆φn(x)dV.

By the Laplacian comparison theorem (see Theorem [63, Theorem 2.2]),

lim sup
x→∞

∆d0(x) ≤ d− 1

in the sense of distributions, so

lim sup
n→∞

cn ≤ d− 1.

And we just have to prove that

lim inf
n→∞

cn ≥ d− 1.

Using Lemma A.3 and the Laplacian comparison theorem we have

d− 1 = lim
n→∞

1

Vol(An)

∫

An\C0

∆d0dV

= lim
n→∞

1

Vol(An)

(∫

(An\En)\C0

∆d0dV +

∫

En\C0

∆d0dV

)

≤ lim inf
n→∞

1

Vol(An)

(
(d− 1)Vol(An \ En) +

∫

En\C0

∆d0(x)dV

)

= lim inf
n→∞

1

Vol(An)

(
(d− 1)Vol(An \ En) +

∫

X\C0

φ̃n∆d0dV

)
.

In the last equality above we used Equation (9) and the fact that ∆d0
is uniformly bounded.
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Then by Lemma A.5 and the definition of cn

d− 1 ≤ lim inf
n→∞

1

Vol(An)

(
(d− 1)Vol(An \ En) +

∫

X\C0

d0∆φ̃ndV

)

≤ (d− 1) + lim inf
n→∞

(cn − d+ 1)Vol(En)

Vol(An)
.

So by Lemma A.4, we must have lim infn→∞ cn ≥ d− 1. q.e.d.

Next consider the functions fn : BR(x0) → R given by

fn(x) = (d0 ◦ γn)(x)− (d0 ◦ γn)(x0) = d(x0, γnx)− d(x0, γnx0).

Then each fn is 1-Lipschitz and fn(x0) = 0, so we can pass to a
subsequence such that fn converges locally uniformally to a function
f : BR(x0) → R.

Lemma A.8. f is C∞, ∆f ≡ d− 1, and ‖∇f‖ ≡ 1.

Proof. Using elliptic regularity, to show the first two assertions it is
enough to verify that ∆f ≡ d−1 in the sense of distributions on BR(x0).
Let ϕ be a positive C∞ function compactly supported in BR(x0). We
can assume that ϕ ≤ 1. Then

∫

X
f(x)∆ϕ(x)dV = lim

n→∞

∫

BR(x0)
d0(γnx)∆ϕ(x)dV.

So by the Laplacian comparison theorem (see Theorem [63, Theorem
2.2])

∫

X
f(x)∆ϕ(x)dV ≤ (d− 1)

∫

X
ϕ(x)dV.

By Lemma A.7

lim
n→∞

∫

X
d0(γnx)∆(φn − ϕ)(x)dV

= (d− 1)Vol(BR(x0))−

∫

X
f(x)∆ϕ(x)dV.

Since ϕ ≤ 1 and is compactly supported in BR(x0), the function φn−ϕ
is non-negative for large n and so by the Laplacian comparison theorem

lim
n→∞

∫

X
d0(γnx)∆(φn − ϕ)(x)dV ≤ (d− 1) lim

n→∞

∫

X
(φn − ϕ)dV

= (d− 1)Vol(BR(x0))− (d− 1)

∫

X
ϕ(x)dV.

Thus ∫

X
f(x)∆ϕ(x)dV ≥ (d− 1)

∫

X
ϕ(x)dV.

Hence ∆f ≡ d− 1 on BR(x0).
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Finally, by construction f is the restriction of some Busemann func-
tion to BR(x0) and so ‖∇f‖ ≡ 1 on BR(x0) by Lemma 1 part (1) in [41].

q.e.d.

Now we fix a sequence Rn → ∞ and repeat the above argument
to obtain functions hn : BRn(x0) → R which satisfy ‖∇hn‖ ≡ 1 and
∆hn ≡ d− 1 on BRn(x0). Since each hn is 1-Lipschitz and hn(x0) = 0,
we can pass to a subsequence so that hn → h where h : X → R satisfies
‖∇h‖ ≡ 1 and ∆h ≡ d−1. Then X is isometric to real hyperbolic space
by Lemma A.2.

Appendix B. Eigenvalues of certain subgroups

Proposition B.1. Suppose d ≥ 3, Λ ≤ PSLd(R) is a discrete sub-
group, and G ≤ PSLd(R) is the Zariski closure of Λ. If

1) G = PSLd(R),
2) d = 2n > 2 and G is conjugate to PSp(2n,R),
3) d = 2n+ 1 > 3 and G is conjugate to PSO(n, n+ 1), or
4) d = 7 and G is conjugate to the standard realization of G2 in

PSL7(R),

then there exists some γ ∈ Λ such that

λ1(γ)

λ2(γ)
6=

λ2(γ)

λ3(γ)
.

Proof. By conjugating, we can assume that either G = PSLd(R),
d = 2n > 2 and G = PSp(2n,R), d = 2n+1 > 3 and G = PSO(n, n+1),
or d = 7 andG coincides with the standard realization ofG2 in PSL7(R).

By the main theorem in [5] it is enough to find some element g ∈ G
such that

λ1(g)

λ2(g)
6=

λ2(g)

λ3(g)
.

This is clearly possible when G = PSLd(R) and d ≥ 3.
Consider the case when d = 2n > 2 and G = PSp(2n,R). Then for

any σ1, . . . , σn ∈ R, G contains the matrix



eσ1

. . .

eσn

e−σ1

. . .

e−σn




.

So picking σ1 > σ2 > · · · > σn > 0 with σ1 − σ2 6= σ2 − σ3 does the job.
Consider the case when d = 2n+1 > 3 and G = PSO(n, n+1). Then

for any σ1, . . . , σn ∈ R, G contains a matrix g which is conjugate to the
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block diagonal matrix



cosh(σ1) sinh(σ1)
sinh(σ1) cosh(σ1)

. . .

cosh(σn) sinh(σn)
sinh(σn) cosh(σn)

1



.

Notice that this matrix has eigenvalues eσ1 , e−σ1 , . . . , eσn , e−σn , 1. So
picking σ1 > σ2 > · · · > σn > 0 with σ1 − σ2 6= σ2 − σ3 does the job
when n ≥ 3 and picking σ1 > σ2 > 0 with σ1 − σ2 6= σ2 does the job
when n = 2.

Finally consider the case when d = 7 and G coincides with the stan-
dard realization of G2 in PSL7(R). The standard realization of G2 in
PSL7(R) can be described as follows. First let

H = {a1 + a2i+ a3j + a4k : a1, . . . , a4 ∈ R}

be the quaternions. Then define the split Cayley algebra C
′ = H⊕H e

with multiplication

(a+ be)(c+ de) = (ac+ db) + (bc+ da)e.

This is an 8-dimensional algebra over R with conjugation

(a+ be) = a− be.

Next let G2 be the R-linear transformations of C′ which satisfy

α(xy) = α(x)α(y).

Then for α ∈ G2 and x ∈ C
′ it is straightforward to verify that α(x) =

α(x) (see for instance [62, Proposition 2]). So G2 preserves the subspace

SpanR{i, j, k, e, ie, je, ke}

of purely imaginary elements. Since α(1) = 1 for every α ∈ G2, if we
identify i, j, k, e, ie, je, ke with e1, . . . , e7 the standard basis of R7 we
obtain an embedding G2 ↪→ PSL7(R).

Now if t, s ∈ R a tedious calculation shows that



cosh(t) 0 0 0 sinh(t) 0 0
0 cosh(s) 0 0 0 sinh(s) 0
0 0 cosh(s+ t) 0 0 0 sinh(s+ t)
0 0 0 1 0 0 0

sinh(t) 0 0 0 cosh(t) 0 0
0 sinh(s) 0 0 0 cosh(s) 0
0 0 sinh(s+ t) 0 0 0 cosh(s+ t)




is contained in the image of this embedding. This matrix has eigenvalues

et, e−t, es, e−s, es+t, e−(s+t), 1.

So picking t > s > 0 with s 6= t− s does the job. q.e.d.
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Appendix C. Facts about linear transformations

In this section we describe some basic properties of the action of
PGLd(R) on P(Rd). These facts are used in Section 8 and are all simple
consequences of Gelfand’s formula. In this section we let ‖v‖ denote the
Euclidean norm of a vector v ∈ Rd.

For a non-zero d-by-d real matrix A let

λd(A) ≤ · · · ≤ λ1(A)

to be the absolute values of the eigenvalues of A (counting multiplicity)
and let

σd(A) ≤ · · · ≤ σ1(A)

denote the singular values of A.

Theorem C.1 (Gelfand’s Formula). Suppose that A is a non-zero
d-by-d real matrix. Then

λ1(A) = lim
n→∞

σ1(A
n)1/n.

Moreover, there exists a proper subspace V ⊂ Rd such that

log λ1(A) = lim
n→∞

1

n
log ‖Anv‖

for all v ∈ Rd \V .

Since the “moreover” part is usually not included in statements of
Gelfand’s formula we sketch the proof.

Proof of the “Moreover” part. Notice that the first part of Gelfand’s for-
mula implies that

lim sup
n→∞

1

n
log ‖Anv‖ ≤ lim sup

n→∞

1

n
log (σ1(A

n) ‖v‖) = log λ1(A)

for nonzero v ∈ Rd. So we just have to show that there exists a proper
subspace V ⊂ Rd such that

lim inf
n→∞

1

n
log ‖Anv‖ ≥ log λ1(A)

for all v ∈ Rd \V .
Using the Jordan decomposition we can write A as a product of three

commuting matrices A = ESU where E is elliptic, S is real diagonal-
izable, and U is unipotent. Let χ1, . . . , χk be the eigenvalues of S (not
counting multiplicity) and let Rd = ⊕k

i=1Vi denote the corresponding
eigenspace decomposition. Then let

V = ⊕{Vi : |χi| 6= λ1(S)}.
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Also, define a new norm ‖·‖∗ on Rd by

‖w‖∗ =

√√√√
k∑

i=1

‖vi‖
2,

where w =
∑k

i=1wi and wi ∈ Vi.
Since E is elliptic, there exists C > 1 such that:

1

C
‖w‖ ≤ ‖Enw‖ ≤ C ‖w‖

for all n ∈ Z and w ∈ Rd. Further, since U−1 is unipotent, Gelfand’s
formula implies that

lim
n→∞

1

n
log σ1(U

−n) = 0.

Then if v ∈ Rd \V we have

lim inf
n→∞

1

n
log ‖Anv‖ = lim inf

n→∞

1

n
log ‖EnSnUnv‖

= lim inf
n→∞

1

n
log ‖UnSnv‖ ≥ lim inf

n→∞

1

n
log

(
1

σ1(U−n)
‖Snv‖

)

= lim inf
n→∞

1

n
log ‖Snv‖ .

Then, by the equivalence of finite dimensional norms,

lim inf
n→∞

1

n
log ‖Snv‖ = lim inf

n→∞

1

n
log ‖Snv‖∗ = lim inf

n→∞

1

n
log (λ1(A)n ‖v‖)

= log λ1(A). q.e.d.

For the rest of the section, let dP be a distance on P(Rd) induced by
a Riemannian metric. We will use the following estimate.

Observation C.2. Suppose A ⊂ P(Rd) is an affine chart and ι :
Rd−1 → A is an affine automorphism. Then for any compact set K ⊂
Rd−1 there exists C > 1 such that

1

C
‖v − w‖ ≤ dP(ι(v), ι(w)) ≤ C ‖v − w‖

for all v, w ∈ K.

Proof. This follows from a compactness argument. q.e.d.

Observation C.3. Suppose g ∈ PGLd(R) is proximal and `+g ∈

P(Rd) is the eigenline of g corresponding to the eigenvalue of largest
absolute value. If v 6= `+g and gnv → `+g , then

log
λ2(g)

λ1(g)
≥ lim sup

n→∞

1

n
log dP

(
gnv, `+g

)
.
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Moreover, there exists a proper subspace V ⊂ P(Rd) such that: if v ∈
P(Rd) \ V and gnv → `+g , then

log
λ2(g)

λ1(g)
= lim

n→∞

1

n
log dP

(
gnv, `+g

)
.

Proof. By changing coordinates we can assume that

g =

[
λ 0
0 A

]
,

`+g = [1 : 0 : · · · : 0], |λ| = λ1(g), and λ1(A) = λ2(g).

Through out the proof we will use the notation [v1 : v2] ∈ P(Rd)
where v1 ∈ R and v2 ∈ Rd−1. With this notation

gn · [v1 : v2] = [λnv1 : A
nv2] =

[
v1 :

An

λn
v2

]
.(10)

By Gelfand’s formula An

λn → 0 and so gn · v → `+g if and only if v1 6= 0.

Next we fix a small neighborhood U of `+g such that

U ⊂ {[v1 : v2] : v1 6= 0}.

By Observation C.2 there exists C > 1 such that if v = [v1 : v2] and
w = [w1 : w2] are in U , then

1

C
‖v2/v1 − w2/w1‖ ≤ dP(v, w) ≤ C ‖v2/v1 − w2/w1‖ .(11)

So if v = [v1 : v2] ∈ P(Rd) and gnv → `+g , then by Equations (10)
and (11) we have

lim sup
n→∞

1

n
log dP

(
gnv, `+g

)
= lim sup

n→∞

1

n
log

(
1

|λ|n
‖Anv2‖

)

≤ lim sup
n→∞

1

n
log

(
1

|λ|n
σ1(A

n)

)
= log

λ2(g)

λ1(g)
.

Using the “moreover” part of Gelfand’s formula, there exists a proper
subspace V0 ⊂ Rd−1 such that

log λ1(A) = lim
n→∞

1

n
log ‖Anv‖

for all v ∈ Rd−1 \V0. Then let

V = {[v1 : v2] ∈ P(Rd) : v2 ∈ V0}.

Then if v = [v1 : v2] ∈ P(Rd)\V and gnv → `+g , Equations (10) and (11)
imply that

lim
n→∞

1

n
log dP

(
gnv, `+g

)
= lim

n→∞

1

n
log

(
1

|λ|n
‖Anv2‖

)
= log

λ2(g)

λ1(g)
.

q.e.d.
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Observation C.4. Suppose that A ∈ GLd(R) and there exists nk →
∞ such that

T = lim
k→∞

1

‖Ank‖
Ank

in End(Rd). If v ∈ Im(T ), then there exists generalized eigenvectors
v1, . . . , vm ∈ Cd of A such that

v = v1 + · · ·+ vm

and the eigenvalues corresponding to v1, . . . , vm all have absolute value
λ1(A).

Proof. By changing coordinates we can assume that

A =

(
A1 0
0 A2

)
,

where A1 ∈ GLk(R), A2 ∈ GLd−k(R), every eigenvalue of A1 has abso-
lute value λ1(A), and every eigenvalue of A2 has absolute value strictly
less than λ1(A). Then every v ∈ Span{e1, . . . , ek} can be written as a
linear combination of generalized eigenvectors in Cd whose correspond-
ing eigenvalues have absolute value λ1(A). Further by Gelfand’s formula

0 = lim
k→∞

1

‖Ank‖
Ank

2

and so

T =

(
T1 0
0 0

)

for some k-by-k matrix T1. q.e.d.

Observation C.5. Suppose that g ∈ GLd(R), λ1(g) = λ2(g), and
v0 ∈ Rd is an eigenvector of g whose eigenvalue has absolute value λ1(g).
Then there exists a proper subspace V ⊂ P(Rd) such that:

0 = lim
n→∞

1

n
log dP

(
gnv, [v0]

)

for every v ∈ P(Rd) \ V .

Proof. Suppose that gv0 = λv0. Let e1, . . . , em be the standard basis
of Rd. By making a change of coordinates we can assume that v0 = e1
and

g =

(
J 0
0 A

)
,

where J is a m-by-m upper triangular matrix with λ, . . . , λ down the
diagonal.
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By Observation C.2, we can fix a small neighborhood U of [e1] and
C > 1 such that: if w = [w1 : · · · : wd] ∈ U , then

1

C
‖(w2/w1, . . . , wd/w1)‖ ≤ dP([e1], w) ≤ C ‖(w2/w1, . . . , wd/w1)‖ .

(12)

Then fix δ > 0 such that: if w /∈ U , then dP(w, [e1]) ≥ δ.
We consider two cases:

Case 1: m > 1. Since J is upper triangular with λ, . . . , λ on the
diagonal,

gei ∈ λvi + Span{e1, . . . , ei−1} for i = 1, . . . ,m.

Let

V = [Span{e1, . . . , em−1, em+1, . . . , ed}].

Suppose that v = t(v1, . . . , vd) ∈ Rd and [v] /∈ V . Then vm 6= 0. Let

t(
v
(n)
1 , . . . , v

(n)
d

)
:= gnv.

Then ∣∣∣v(n)1

∣∣∣ ≤ ‖gnv‖ ≤ σ1(g
n) ‖v‖

and v
(n)
m = λnvm. Since dP has finite diameter we see that

0 ≥ lim sup
n→∞

1

n
log dP

(
gn[v], [e1]

)
.

If gn[v] /∈ U , then

1

n
log dP

(
gn[v], [e1]

)
≥

1

n
log δ.

And if gn[v] ∈ U , then by Equation (12)

1

n
log dP

(
gnv, [e1]

)
≥

−1

n
log(C) +

1

n
log

∣∣∣∣∣
v
(n)
m

v
(n)
1

∣∣∣∣∣

≥
−1

n
log(C) +

1

n
log |λ| −

1

n
log σ1(g

n)−
1

n
log ‖v‖ .

Hence Gelfand’s formula implies that

0 ≤ lim inf
n→∞

1

n
log dP

(
gn[v], [e1]

)
.

So

0 = lim
n→∞

1

n
log dP

(
gn[v], [e1]

)
.

Case 2: m = 1. Then

g =

(
λ 0
0 A

)
,



582 A. ZIMMER

where A ∈ GLd−1(R). Since λ1(g) = λ2(g), we see that λ1(A) = λ1(g).
By the “moreover” part of Gelfand’s formula there exists some proper
subspace V0 ⊂ Rd−1 such that

log λ1(A) = lim
n→∞

1

n
log ‖Anv‖(13)

for all v ∈ Rd−1 \V0.
We will use the notation [v1 : v2] ∈ P(Rd) where v1 ∈ R and v2 ∈

Rd−1. With this notation

gn · [v1 : v2] = [λnv1 : A
nv2] =

[
v1 :

An

λn
v2

]
.

Then define

V = {[v1 : v2] ∈ P(Rd) : v2 ∈ V0}.

Fix some v ∈ P(Rd) \ V . Since dP has finite diameter we see that

0 ≥ lim sup
n→∞

1

n
log dP

(
gn[v], [e1]

)
.

If gn[v] /∈ U , then

1

n
log dP

(
gn[v], [e1]

)
≥

1

n
log δ.

And if gn[v] ∈ U , then by Equation (12)

1

n
log dP

(
gn[v], [e1]

)
≥ −

1

n
logC +

1

n
log

∥∥∥∥
1

λn
Anv2

∥∥∥∥

= −
1

n
logC +− log |λ|+

1

n
log ‖Anv2‖ .

So by Equation (13)

lim inf
n→∞

1

n
log dP

(
gn[v], [e1]

)
≥ 0.

So

0 = lim
n→∞

1

n
log dP

(
gn[v], [e1]

)
. q.e.d.
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