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PROJECTIVE ANOSOV REPRESENTATIONS, CONVEX
COCOMPACT ACTIONS, AND RIGIDITY

ANDREW ZIMMER

Abstract

In this paper we show that many projective Anosov represen-
tations act convex cocompactly on some properly convex domain
in real projective space. In particular, if a non-elementary word
hyperbolic group is not commensurable to a non-trivial free prod-
uct or the fundamental group of a closed hyperbolic surface, then
any projective Anosov representation of that group acts convex
cocompactly on some properly convex domain in real projective
space. We also show that if a projective Anosov representation
preserves a properly convex domain, then it acts convex cocom-
pactly on some (possibly different) properly convex domain.

We then give three applications. First, we show that Anosov
representations into general semisimple Lie groups can be defined
in terms of the existence of a convex cocompact action on a prop-
erly convex domain in some real projective space (which depends
on the semisimple Lie group and parabolic subgroup). Next, we
prove a rigidity result involving the Hilbert entropy of a projec-
tive Anosov representation. Finally, we prove a rigidity result
which shows that the image of the boundary map associated to
a projective Anosov representation is rarely a C? submanifold of
projective space. This final rigidity result also applies to Hitchin
representations.

1. Introduction

If G is a connected simple Lie group with trivial center and K < G
is a maximal compact subgroup, then X = G/K has a unique (up to
scaling) Riemannian symmetric metric g such that G = Isomg(X,g).
The metric g is non-positively curved and X is simply connected, hence
every two points in X are joined by a unique geodesic segment. A subset
C C X is called convez if for every =,y € C the geodesic joining them is
also in C. Finally, a discrete group I' < (G is said to be convexr cocompact
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if there exists a non-empty closed convex set C C X such that v(C) =C
for all 4 € T and the quotient I'\ C is compact.

In the case in which G has real rank one, there are an abundance
of examples of convex cocompact subgroups and one has the following
characterization:

Theorem 1.1. Suppose G is a real rank one simple Lie group with
trivial center, (X, g) is the symmetric space associated to G, andI' < G
1s a discrete subgroup. Then the following are equivalent:

1) I' < G is a convex cocompact subgroup,
2) T is finitely generated and for some (hence any) x € X the map

yell = vy-x

induces a quasi-isometric embedding of I' into X,
3) T' is word hyperbolic and there exists an injective, continuous, I'-
equivariant map & : OI' — X (c0).

REMARK 1.2. For a proof of this theorem see Theorem 5.15 in [30]
which relies on results in [13].

When G has higher rank, the situation is much more rigid:

Theorem 1.3 (Kleiner-Leeb [39], Quint [51]). Suppose G is a simple
Lie group with real rank at least two and I' < G is a Zariski dense
discrete subgroup. If T' is convexr cocompact, then I' is a cocompact
lattice in G.

Although the most natural definition of convex cocompact subgroups
leads to no interesting examples in higher rank, it turns out that the
third characterization in Theorem 1.1 can be used to define a rich
class of representations called Anosov representations. This class of
representations was originally introduced by Labourie [40] and then
extended by Guichard-Wienhard [30]. Since then several other charac-
terizations have been given by Kapovich-Leeb-Porti [36, 33, 37, 34,
35], Kapovich-Leeb [32], Guéritaud-Guichard-Kassel-Wienhard [29],
and Bochi-Potrie-Sambarino [12].

We refer the reader to [30] for a precise definition of Anosov represen-
tations, but informally: if I" is word hyperbolic, G is a semisimple Lie
group, and P is a parabolic subgroup, then a representation p: I' = G
is called P-Anosov if there exists an injective, continuous, p-equivariant
map & : OI' — G/P satisfying certain dynamical properties. In the
case in which G has real rank one, every two parabolic subgroups are
conjugate and the quotient G/ P can naturally be identified with X (c0).

Recently, Danciger, Guéritaud, and Kassel established a close connec-
tion between Anosov representations into PO(p,¢) and convex cocom-
pact actions. However, the convex cocompact action is not on the asso-
ciated symmetric space X = PO(p, q)/P(O(p) xO(q)), but on a properly
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convex domain in the projective model of the pseudo-Riemannian hy-
perbolic space HP9~!. In this context convex cocompactness can be
defined as follows:

Definition 1.4 ([26]). Let
HPI~! = {[z] € PRPY) : (3, ), , < O},

where (-,-) is the standard bilinear form of signature (p,q). Then an

P.g
irreducible discrete subgroup A < PO(p, q) is called HP?~!-convez co-
compact if there exists a non-empty properly convex subset C of P(RP*9)

such that

1) C is a closed subset of HPY~1,

2) A acts properly discontinuously and cocompactly on C,
3) C has non-empty interior, and

4) C\ C contains no projective line segments.

Danciger, Guéritaud, and Kassel then proved the following theorem.

Theorem 1.5 (Danciger-Guéritaud-Kassel [26]). For p,q € N* with
p+q >3, let A be an irreducible discrete subgroup of PO(p,q) and let

PPY < PO(p,q) be the stabilizer of an isotropic line in (RP1Y, (., ->p7q).

1) If A is HP9~L - convex cocompact, then it is word hyperbolic and the
inclusion representation A — PO(p, q) is PP"?-Anosov.

2) Conversely, if A is word hyperbolic, DA is connected, and A —»
PO(p,q) is PP%-Anosov, then A is either HP9~'-conver cocom-
pact or HYP~L_convex cocompact (after identifying PO(p,q) with

PO(q,p))-

REMARK 1.6. The special case when ¢ = 2 and A is the fundamental
group of a closed hyperbolic p-manifold follows from work of Mess [45]
for p = 2 and work of Barbot-Mérigot [3] for p > 3.

In this paper we further explore connections between Anosov repre-
sentations and convex cocompact actions on domains in real projective
space. In the general case, we make the following definition.

Definition 1.7. Suppose V is a finite dimensional real vector space,
2 C P(V) is a properly convex domain, and A < Aut(2) is a discrete
subgroup. Then A is a convex cocompact subgroup of Aut(2) if there
exists a non-empty closed convex subset C C € such that g(C) = C for
all g € A and the quotient A\ C is compact.

In the context of Anosov representations a more refined notion of
convex cocompactness is necessary: there exist properly convex domains
Q c P(V) with convex cocompact subgroups A < Aut(f2) which are
not word hyperbolic. To avoid such examples, we make the following
stronger definition.
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Definition 1.8. Suppose V is a finite dimensional real vector space,
2 C P(V) is a properly convex domain, and A < Aut(2) is a discrete
subgroup. Then A is a regular convex cocompact subgroup of Aut(Q) if
there exists a non-empty closed convex subset C C 2 such that g(C) =C
for all g € A, the quotient A\ C is compact, and every point in C N 9
is a C! extreme point of .

REMARK 1.9.

1) When A is an irreducible subgroup of PGL(V'), we show that every
point in C N 9N is a C! point of Q if and only if every point in
CNON is a extreme point of Q (see Theorem 1.22 below).

2) It turns out that HPY~-convex cocompact subgroups always sat-
isfy this stronger condition. In particular, by Proposition 1.14
in [26]: If ' < PO(p, q) is irreducible, discrete, and HP*¢~*-convex
cocompact, then there exists a properly convex domain € C
P(RPT?) such that A is a regular convex cocompact subgroup of
Aut(Q).

Finally we are ready to state our first main result.

Theorem 1.10 (see Section 6). Suppose G is a semisimple Lie group
with finite center and P < G is a parabolic subgroup. Then there exists a
finite dimensional real vector space V' and an irreducible representation
¢ : G — PSL(V') with the following property: if ' is a word hyperbolic
group and p : I' = G is a Zariski dense representation with finite kernel,
then the following are equivalent:

1) p is P-Anosov,

2) there exists a properly convex domain Q2 C P(V') such that (¢op)(I")

is a regular conver cocompact subgroup of Aut(€2).

Properly convex domains and their projective automorphism groups
have been extensively studied, especially in the case in which there exists
a discrete group I' < Aut(2) such that T'\Q is compact. Such domains
are called convex divisible domains and have a number of remarkable
properties, see the survey papers by Benoist [10], Marquis [44], and
Quint [52].

Theorem 1.10 provides a way to use the rich theory of convex divisible
domains to study general Anosov representations. For instance, the
proofs of Theorem 1.35 and Theorem 1.46 below are inspired by rigidity
results for convex divisible domains.

1.1. Projective Anosov representations. The first step in the proof
of Theorem 1.10 is to use a result of Guichard and Wienhard to reduce
to the case of projective Anosov representations. A projective Anosov
representation is simply an P-Anosov representation in the special case
when G = PGL4(R) and P < PGL4(R) is the stabilizer of a line. This
special class of Anosov representations can be defined as follows.
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Definition 1.11. Suppose that I" is a word hyperbolic group, oI is
the Gromov boundary of I', and p : I' — PGL4(R) is a representation.
Two maps ¢ : ' — P(RY) and 7 : 9T — P(R%) are called:
1) p-equivariant if oy = p(y)o& and no~y = p(y)on for all y € T,
2) dynamics-preserving if for every v € TI' of infinite order with
attracting fixed point 23 € OI the points £{(zF) € P(R?) and
n(zt) € P(R%) are attracting fixed points of the action of p(7) on
P(R?%) and P(R%), and

3) transverse if for every distinct pair z,y € OI' we have {(x) +
kern(y) = R%.

Definition 1.12. Given an element g € PGL4(R) let
A(g) =+ = Aalg)

denote the absolute values of the eigenvalues (counted with multiplicity)
of some (any) lift § € GL4(R) of g with det g = £1.

Definition 1.13. Suppose that I' is word hyperbolic, S is a finite
symmetric generating set, and dg is the associated word metric on T.
Then for v € T', let £g(7) denote the minimal translation distance of -y
acting on the Cayley graph of (T",S), that is

ls(y) = if ds(yz, ).

A representation p : I' — PGLg4(R) is then called a projective Anosov
representation if there exist continuous, p-equivariant, dynamics pre-
serving, and transverse maps ¢ : O — P(RY),  : T — P(R%) and
constants C, ¢ > 0 such that

A(p(7))

S o8 (o))

> Cls(y) —c

for all v € T.

REMARK 1.14. This is not the initial definition of Anosov representa-
tions given by Labourie [40] or Guichard-Wienhard [30], but a nontriv-
ial characterization proved in [29, Theorem 1.7]. We use this character-
ization as our definition because it is more elementary to state than the
original definition, but it is not necessary for any of the proofs in the
paper. We should also note that this is far from the simplest definition
of Anosov representations, for instance if one replaces the estimate in
Equation (1) with a similar estimate on singular values, then it follows
from work of Kapovich, Leeb, and Porti [37] that one does not need
to assume that the maps n, £ exist or even that I' is a word hyperbolic
group (only finite generation is required). But since many of the results
that follow involve these boundary maps and eigenvalues, it seems like
this definition is the most natural in the context of this paper.
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Guichard and Wienhard proved the following connection between
general Anosov representations and projective Anosov representations.

Theorem 1.15 (Guichard-Wienhard [30, Section 4]). Suppose G is
a semisimple Lie group with finite center and P < G is a parabolic sub-
group. Then there exist a finite dimensional real vector space Vy and an
irreducible representation ¢g : G — PSL(Vy) with the following prop-
erty: if I is a word hyperbolic group and p : I' — G is a representation,
then the following are equivalent:

1) p is P-Anosov,
2) ¢o o p is projective Anosov.

REMARK 1.16. Proofs of this theorem can also be found in [29, Sec-
tion 3] and [14, Subsection 2.3].

Using Theorem 1.15, the proof of Theorem 1.10 essentially reduces to
the case of projective Anosov representations. In this case, we consider
the following two questions.

QUESTION 1.17.

1) Given a properly convex domain 2 C P(V') and a convex cocom-
pact subgroup A < Aut(2), what geometric conditions on 2 im-
ply that the inclusion representation A — PGL(V) is a projective
Anosov representation?

2) Given a projective Anosov representation p : I' = PGL(V') what
conditions on p or I' imply that p(T") acts convex cocompactly on
a properly convex domain in P(V)?

REMARK 1.18. Projective Anosov representations are closely related
to the representations studied by Danciger, Guéritaud, and Kassel [26]
in the PO(p, q) case. In particular, if p : I' — PO(p, ¢) is a representa-
tion of a word hyperbolic group, then (by definition) the following are
equivalent:

1) p is PP%-Anosov where PP*Y < PO(p,q) be the stabilizer of an
isotropic line in (RP*Y, (-, Vpg)s

2) p is projective Anosov when viewed as a representation into
PGLy,(R).

Thus Theorem 1.5 provides answers to the above questions for projective
Anosov representations whose images preserve a non-degenerate bilinear
form.

1.2. When a convex cocompact action leads to a projective
Anosov representation. When Q ¢ P(R?) and A < Aut(9) is a dis-
crete group which acts cocompactly on €2, Benoist has provided geomet-
ric conditions on 2 so that the inclusion representation A — PGL4(RR)
is projective Anosov.
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Theorem 1.19 (Benoist [8]). Suppose Q C P(R?) is a properly con-
vex domain and A < Aut(Q) is a discrete group which acts cocompactly
on ). Then the following are equivalent:

1) A is word hyperbolic,

2) 08 is a C' hypersurface,

3) Q is strictly convex.
Moreover, when these conditions are satisfied the inclusion representa-
tion A — PGL4(R) is projective Anosov.

REMARK 1.20. There exist examples of properly convex domains {2 C
P(RY) with discrete subgroups A < Aut() where A acts co-compactly
on © and A is not word hyperbolic, see [9] and [2].

The case of convex cocompact actions is more complicated as the
next example shows.

Example 1.21. Let

C= {(azl,azg,y) eER?:y> \/x%-hrg}.

Then C'is a properly convex cone and the group SOg(1,2) preserves C.
Let Ag < SOq(1,2) be a cocompact lattice. Next consider the properly
convex domain

Q= {[(01,02)] S P(RG) U € C, Vg € C}

and the discrete group

A:{[‘g g] ePGL6(R):<peAO}.

Let Co = {[(v,v)] € P(RY) : v € C} and for r > 0 let
Cr={p€Q:da(p,Co) <r}C

Then each C, is convex (see [16, Result 18.9] or [20, Corollary 1.10])
and the quotient A\C, is compact. This example has the following
properties:

1) A is word hyperbolic (since Ay is word hyperbolic),

2) the inclusion representation A — PGLg(R) is not projective
Anosov,

3) A < Aut(9) is a convex cocompact subgroup,

4) when 7 > 0 there exist line segments in 92N C,, and

5) every point in 9Q N C, is not a C! point of 9.

Despite examples like these, we will prove the following analogue of
Benoist’s theorem for convex cocompact subgroups
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Theorem 1.22 (see Section 5). Suppose Q C P(R?) is a properly
convex domain and A < Aut(Q) is a discrete irreducible subgroup of
PGL4(R). If A preserves and acts cocompactly on a closed convex subset
C C Q, then the following are equivalent:

1) every point in CN O is a C! point of 09,

2) every point in C N OS) is an extreme point of €.

Moreover, when these conditions are satisfied A is word hyperbolic and
the inclusion representation A — PGL4(R) is projective Anosov.

REMARK 1.23.

1) Theorem 1.22 can be seen as a generalization of Theorem 1.5 part
(1) to the case when the representation is not assumed to preserve
a non-degenerate bilinear form (see Remarks 1.9 and 1.18).

2) This result was established independently by Danciger, Guéritaud,
and Kassel, see Theorems 1.4 and 1.15 in [25] and Subsection 1.5
below.

1.3. When a projective Anosov representation acts convex co-
compactly. In general a projective Anosov representation will not pre-
serve a properly convex domain:

Example 1.24. Consider a cocompact lattice A < SLa(R) and con-
sider the representation p : SLy(R) — SL3(R) given by

p(9) = <g 1) ~

Then the representation p|p : A — PSL3(R) is projective Anosov and
the image of the boundary map is

= {[xl 1 X9 0] S P(Rg) 1 T1,T2 € R, (371,1'2) 75 O}.

From this, it is easy to see that p(A) cannot preserve a properly convex
domain ) because then we would have £ C 0f).

The above example is simple to construct, but is not an irreducible
representation. To obtain an example of an irreducible projective
Anosov representation which does not preserve a properly convex do-
main, one can consider Hitchin representations of surface groups in
SLaq(R), see Proposition 1.7 in [25].

With some mild conditions on I' we can prove that every projective
Anosov representation of I' acts convex cocompactly on a properly con-
vex domain.

Theorem 1.25 (see Section 3). Suppose I' is a non-elementary word
hyperbolic group which is not commensurable to a non-trivial free prod-
uct or the fundamental group of a closed hyperbolic surface. If p : T' —
PGL4(R) is an irreducible projective Anosov representation, then there
exists a properly convex domain Q C P(R?) such that p(T) is a regular
convex cocompact subgroup of Aut(2).
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REMARK 1.26. Work of Stallings implies that I" is not commensurable
to a non-trivial free product if and only if OI" is connected [55, 54]. So
Theorem 1.25 can be seen as an analogue of Theorem 1.5 part (2) in
the case when the representation is not assumed to preserve a non-
degenerate bilinear form.

We can also prove that once the image acts on some properly convex
domain, then it acts convex cocompactly on some (possibly different)
properly convex domain:

Theorem 1.27 (see Section 3). Suppose I is a word hyperbolic group.
If p: T' = PGLy(R) is an irreducible projective Anosov representation
and p(T) preserves a properly convex domain in P(R?), then there exists
a properly convex domain Q C P(R?) such that p(T') is a regular convex
cocompact subgroup of Aut(f).

REMARK 1.28. This result was established independently by Dan-
ciger, Guéritaud, and Kassel, see Theorems 1.4 and 1.15 in [25] and
Subsection 1.5 below.

Using Theorem 1.27, we can construct a convex cocompact action for
any projective Anosov representation by post composing with another
representation.

Example 1.29. Let Sym,(R) be the vector space of symmetric d-
by-d real matrices and consider the representation

S : PGLy(R) — PGL(Sym,(R))
given by
S(g)X =gX'g.
Then
P = {[X] € B(Symy(R)) : X > 0)
is a properly convex domain in P(Sym,(R)) and S(PGL4(R)) < Aut(P).

Combining Theorem 1.27 with the above examples establishes the
following corollary.

Corollary 1.30 (see Section 3.3). Suppose I' is a word hyperbolic
group and p : T' — PGLy4(R) is an irreducible projective Anosov repre-
sentation. Let

V = Spang {£(x) '€(x) : « € AT} C Symy(R).

Then there exists a properly convex domain @ C P(V) such that (S o
p)(I") is a regular convex cocompact subgroup of Aut(€2).
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In the context of Theorem 1.27, it is also worth mentioning a the-
orem of Benoist which gives a necessary and sufficient condition for a
subgroup of GL4(R) to preserve a properly convex cone. Before stating
Benoist theorem we need some terminology. An element g € GL4(R) is
called proximal if it has a unique eigenvalue of maximal absolute value
and a proximal element g € GL4(R) is called positively proximal if its
unique eigenvalue of maximal absolute value is positive. Then a sub-
group G < GL4(R) is called positively prozimal if G contains a proximal
element and every proximal element in G is positively proximal. With
this language, Benoist proved the following theorem.

Theorem 1.31 (Benoist [6, Proposition 1.1]). If G < GL4(R) is an
irreducible subgroup, then the following are equivalent:

1) G is positively proximal
2) G preserves a properly convex cone C C RY.

As an application, we will apply Theorem 1.27 and Benoist’s theorem
to Hitchin representations in certain dimensions.

Definition 1.32. Suppose that I' < PSLy(R) is a torsion-free cocom-
pact lattice and ¢ : I' < PSLy(R) is the inclusion representation. For
d > 2, let 74 : PSLy(R) — PSL4(R) be the unique (up to conjugation)
irreducible representation. Then the connected component of 74 o ¢ in
Hom(T', PSL4(R)), denoted H4(T'), is called the Hitchin component of T'
in PSLg(R). Labourie [40] proved that every representation in Hq(I")
is projective Anosov (it is actually B-Anosov where B < PSL4(R) is a
minimal parabolic subgroup).

Corollary 1.33. Suppose that I' < PSLs(R) is a torsion-free cocom-
pact lattice and p : T' — PSLy(R) is in the Hitchin component. If d is
odd, then there exists a properly conver domain 2 C P(Rd) such that
p(I") is a regular convex cocompact subgroup of Aut(€).

REMARK 1.34. This result was also established independently by
Danciger, Guéritaud, and Kassel, see Proposition 1.7 in [25] and Sub-
section 1.5 below. In the case where d is even, Danciger, Guéritaud,
and Kassel showed that p(I') cannot even preserve a properly convex
domain in R(R?).

Since the proof is short we include it here.

Proof. If we identify R? with the vector space of homogenous poly-
nomials P : R? — R of degree d — 1, then the representation 74 :
PSLy(R) — PSL4(R) is given by

Ti(g) - P=Pog™".
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Since d is odd, PSL4(R) = SL4(R) and if g € PSLa(R) has eigenvalues
with absolute values A\, A\~! then 74(g) has eigenvalues

DU Ut SO Sl Gt

Hence each eigenvalue of 74(g) is positive.

Now fix some p € Hy4(I'). Since H4(I') is connected, we see that
p(T") is positively proximal. So by Benoist’s theorem p(I") preserves
a properly convex cone C C R? So by Theorem 1.27, there exists a
properly convex domain Q C P(R?) so that p(T') is a regular convex
cocompact subgroup of Aut(£2). q.e.d.

1.4. Other applications.

1.4.1. Entropy rigidity. Suppose that I" is a group and let [I'] be the
conjugacy classes of I'. Given a representation p : I' = PGL4(R) define
the Hilbert entropy to be

. 1 1 Al(p(v))) }
H, =limsup —lo ell:zlog| ———= | <r;.
We will prove the following upper bound on entropy.

Theorem 1.35 (see Section 7). Suppose I is a word hyperbolic group
and p : T' = PGLy(R) is an irreducible projective Anosov representation.
If p(T') preserves a properly convex domain in P(R?), then

H,<d-2
with equality if and only if p(I') is conjugate to a cocompact lattice in
PO(1,d —1).

REMARK 1.36. Theorem 1.25 shows that Theorem 1.35 applies to
many Anosov representations.

Theorem 1.35 is a generalization of a theorem of Crampon.

Theorem 1.37 (Crampon [23]). Suppose Q@ C P(R?) is a properly
conver domain and A < Aut() is a discrete word hyperbolic group
which acts cocompactly on Q. If v : A — PGLy(R) is the inclusion
representation, then

H <d-2
with equality if and only if A is conjugate to a cocompact lattice in
PO(1,d —1).

REMARK 1.38. In the context of Theorem 1.37, Theorem 1.19 implies
that ¢ is a projective Anosov representation and so Theorem 1.35 is a
true generalization of Theorem 1.37. Recently, Theorem 1.37 was also
generalized in a different direction in [4].

Theorem 1.35 also improves, in some cases, bounds due to Sambarino.
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Theorem 1.39 (Sambarino [53, Theorem A]). Suppose I is a convex
cocompact group of a CAT(—1) space X and let p : ' — PGL4(R) be
an irreducible projective Anosov representation with d > 3. Then

OéHp S (5F(X),

where the boundary map & : O — P(RY) is a-Hélder and 5p(X) is the
Poincaré exponent of I' acting on X.

REMARK 1.40. In Theorem 1.39, £ is Holder with respect to a visual
metric of X restricted to the limit set of I' and a distance on P(RY)
induced by a Riemannian metric. Sambarino also proves a rigidity result
in the case when aH, = 0r(X) and X is real hyperbolic k-space, for
details see Corollary 3.1 in [53].

REMARK 1.41. If T" satisfies the hypothesis of Theorem 1.25 and
or(X)
<
d—2"
then Theorem 1.35 can be used to provide a better upper bound on
entropy.

1.4.2. Regularity rigidity. In this subsection we describe some rigid-
ity results related to the regularity of the limit curve of a projective
Anosov representation. We should note that if the boundary of a word
hyperbolic group is a topological manifold, then it actually must be a
sphere (see for instance [31, Theorem 4.4]).

For certain types of projective Anosov representations, the image of
the boundary map is actually a C'' submanifold.

Example 1.42. Suppose Q C P(R?) is a properly convex domain
and A < Aut(Q) is a discrete group which acts cocompactly on (.
If A is word hyperbolic, then Theorem 1.19 implies that the inclusion
representation A < PGLg4(R) is projective Anosov. The image of the
associated boundary map is 9Q which is a C' submanifold of P(R?) by
Theorem 1.19.

Example 1.43. Suppose that I' < PSLy(R) is a torsion-free co-
compact lattice and p : I' — PSL4(R) is in the Hitchin component. If
¢ : 0T — P(R?) is the boundary map associated to p, then £(9T) is a C'*
submanifold of P(R?). This follows from the fact that ¢ is a hyperconvez
Frenet curve, see [40, Theorem 1.4].

In both of theses cases it is known that the image of the boundary
map cannot be too regular unless the representation is very special.

Theorem 1.44 (Benoist [8]). Suppose Q C P(R?) is a properly con-
vex domain and A < Aut(Q) is a discrete group which acts cocompactly
on Q. If 9Q is a CY* hypersurface for every a € (0,1), then Q is pro-
jectively isomorphic to the ball and hence A is conjugate to a cocompact
lattice in PO(1,d — 1).



ANOSOV REPRESENTATIONS AND CONVEX COCOMPACT ACTIONS 525

Theorem 1.45 (Potrie-Sambarino [49]). Suppose that I' < PSLa(R)
is a torsion-free cocompact lattice and p : I' — PSLg(R) is in the Hitchin
component. If £ : O — ]P’(]Rd) is the associated boundary map and
£(A0) is a C™ submanifold of P(RY), then there exists a representation
po : I' = PSLa(R) such that p is conjugate to 740 pg.

Using Theorem 1.25, we will prove the following.

Theorem 1.46 (see Section 8). Suppose d > 2, T' is a word hyper-
bolic group, and p : T' — PGL4(R) is an irreducible projective Anosov
representation with boundary map & : 0T — P(R?). If

1) M = &(T) is a C? k-dimensional submanifold of P(R?) and

2) the representation N*t1p: T — PGL(AFTIRY) is irreducible,
then

M(p(7) _ Aka(p(7)
A(p()  Akr2(p(7))

forally eT.

REMARK 1.47.

1) Notice that the regularity assumption concerns the set £(9I') and
not the map ¢ : 9I' — P(RY).

2) As before, A\1(g) > --- > Ai(g) denote the absolute values of
the eigenvalues (counted with multiplicity) of some (any) lift g €
GL4(R) of g with det g = +1.

3) Theorem 1.25 is only needed in the case when k > 1.

When p : I' = PGLg(R) has Zariski dense image, then p and A¥+1p
are irreducible. Moreover in this case the main result in [5] implies that
there exists some v € I' such that

M(p() |, Mera(p(y))
Aa(p(7)) 7 Argalp(y))

So we have the following corollary of Theorem 1.46.

Corollary 1.48. Supposed > 2, I" is a word hyperbolic group, and p :
I' = PGL4(R) is a Zariski dense projective Anosov representation with
boundary map & : OT — P(RY). Then £(dT) is not a C? submanifold of
P(R?).

The proof of Theorem 1.46 can also be used to prove the following
rigidity result for Hitchin representations.

Theorem 1.49 (see Section 8). Suppose that I' < PSLa(R) is a
torsion-free cocompact lattice and p : I' — PSL4(R) is in the Hitchin
component. If &€ : OI' — P(Rd) 1s the associated boundary map and
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£(0T) is a C? submanifold of P(RY), then

A(p(7) _ Ae(p())
A2(p(7))  As(p(7))

for all v €T.

REMARK 1.50. This corollary greatly restricts the Zariski closure of
p(T') when p is Hitchin and £(AT) is a C? submanifold (see [5] again).
In particular, the corollary implies that in this case:

1) p(I") cannot be Zariski dense,

2) if d = 2n > 2, then the Zariski closure of p(I') cannot be conjugate

to PSp(2n,R),

3) if d = 2n+ 1 > 3 then the Zariski closure of p(I') cannot be

conjugate to PSO(n,n 4 1), and

4) if d = 7, then the Zariski closure of p(I') cannot be conjugate to

the standard realization of G in PSL7(R).

See Section B in the appendix for details.

Guichard has announced that these are the only possibilities for the
Zariski closure of p(I') when p is Hitchin but not Fuchsian (that is
conjugate to a representation of the form 7, o pg), see for instance [14,
Section 11.3].

1.5. Convex cocompactness in the work of Danciger, Guéritaud,
and Kassel. After I finished writing this paper, Danciger, Guéritaud,
and Kassel informed me of their preprint [25] which has some over-
lapping results with this paper. They consider a class of subgroups of
PGL4(R) which they call strongly conver cocompact which (using the
terminology of this paper) are discrete subgroups I' < PGL4(R) which
act convex cocompactly on a properly convex domain which is strictly
convex and has C! boundary. This notion appears to be first studied
in work of Crampon and Marquis [24]. Danciger, Guéritaud, and Kas-
sel also show (stated with different terminology) that if A < Aut(Q)
is a regular convex cocompact subgroup (as in Definition 1.8), then it
is actually a strongly convex cocompact subgroup of PGL4(R), that
is there exists a possibly different properly convex domain €' where
A < Aut(Y) is a convex cocompact subgroup and € is a strictly con-
vex domain with C'! boundary (see Theorem 1.15 in [25]). Danciger,
Guéritaud, and Kassel also study a notion of convex cocompact actions
on general properly convex domains (see Definition 1.11 in [25]) that is
different than the one we consider in Definition 1.7 above.

The main overlap in the two papers is in Theorems 1.22; 1.27, and
Corollary 1.33 above and Theorems 1.4, 1.15 and Proposition 1.7 in [26].
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2. Preliminaries

In this section we recall some facts that we will use in the arguments
that follow.

2.1. Some notations.

1) If M Cc P(RY) is a C' k-dimensional submanifold of P(R?) and
m € M we will let T;, M C P(R?) be the k-dimensional projective
subspace of P(R?) which is tangent to M at m.

2) If V. R? is a linear subspace, we will let P(V) ¢ P(R?) denote
its projectivization. In most other cases, we will use [o] to denote
the projective equivalence class of an object o, for instance:

a) if v € R¥\{0}, then [v] denotes the image of v in P(RY),

b) if ¢ € GL4(R), then [¢] denotes the image of ¢ in PGL4(R),
and

¢) if T € End(R?) \ {0}, then [T] denotes the image of T in
P(End(R%)).

3) A line segment in P(R?) is a connected subset of a projective line.
Given two points z,y € P(R?) there is no canonical line segment
with endpoints  and y, but we will use the following convention:
if Q is a properly convex domain and x,y € Q, then (when the
context is clear) we will let [z,y] denote the closed line segment
joining x to y which is contained in €. In this case, we will also let

(z,9) = [z, Y] \{z, y}, [2,y) = [z, 9]\ {y}, and (2, y] = [z,y]\ {z}.

2.2. Gromov hyperbolicity. Suppose (X,d) is a metric space. If
I C R is an interval, a curve o : I — X is a geodesic if

d(o(t1),o(t2)) = [t1 — 12
for all t1,t9 € I. A geodesic triangle in a metric space is a choice of three
points in X and geodesic segments connecting these points. A geodesic

triangle is said to be d-thin if any point on any of the sides of the triangle
is within distance § of the other two sides.

Definition 2.1. A proper geodesic metric space (X,d) is called §-
hyperbolic if every geodesic triangle is d-thin. If (X, d) is d-hyperbolic
for some § > 0 then (X, d) is called Gromov hyperbolic.

We will use the following (probably well known) characterization of
Gromov hyperbolicity.
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Proposition 2.2. Suppose (X, d) is a proper geodesic metric space,
& > 0, and there exists a map
(‘Tay) eEXXxX— Ozy € C([O,d($7y)],X),

where 04 15 a geodesic segment joining x to y. If for every x,y,z € X
distinct, the geodesic triangle formed by 04y, 0y 2,05 i 0-thin, then
(X,d) is Gromov hyperbolic.

We begin the proof with a definition and a lemma. Define the Gromov
product of z,y € X with respect to o € X to be

(sly)o 1= 5 (d(z,0) + d(0,y) — d(z,)).
Lemma 2.3. Suppose (X,d) is a metric space, z,y,0 € X, and
0:[0,T] — X is a geodesic with 0(0) = x and o(T) =y. Then
(z[y)o < d(0,0) := inf{d(0,0(t)) : t € [0, T]}.
Proof. For t € [0,T],
d(z,y) = d(z,0(t)) + d(o(t),y)
and so the triangle inequality implies that:
2(zly)o = d(z,0) +d(0,y) — d(z,y) < 2d(0,0(t)).  qed.
Proof of Proposition 2.2. We start by proving the following claim:
Claim: If z,y,0 € X and t < (x|y), — 6, then
d(0ox(t), o0y (t)) < 26.
It is enough to consider the case when ¢ < (z]y), — 0. In this case
d(00x(t), 0ay) > d(0,00y) — d(00x(t),0) > (x]y)o — 1 > 0.

So by the thin triangle condition, there exists s such that
d(00x(t), 00y(s)) < 6. Then

0 = d(00x(t), 00y(s)) = |d(00a(t), 0) — d(0,00y(s))| = [t — 5|
So
d(002(t), Ooy(t)) < d(00x(t), 00y(5)) + d(00y(5), Toy(t)) < 20
and the claim is established.
By Proposition 1.22 in Chapter III.H in [15], (X, d) is Gromov hy-
perbolic if and only if there exists some dy > 0 such that
(al)o = min{(al2)o, (412)o} = &

for all 0,2,y,2z € X.
Fix o,x,y,2z € X. We claim that

(2ly)o > min{(z[2)o, (y]2)o} — 30.
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Let m = min{(z|z),, (y|2)o}. Since (z|y), > 0, the inequality is trivial
when m < §. So we can assume m > J. Then the triangle inequality
implies that

min{d(z, 0),d(y,0),d(z,0)} > m > 0.

Then let 2/ = 0op(m — ), Yy = 0oy(m —0), and 2’ = 0,,(m — ). Then
by the claim

d(z',y) <d(2',2) +d(Z,y) < 46.

Then
2(x[y)o = d(x,0) + d(o,y) — d(z,y)
=d(z,2") +d(2',0) + d(o,y") + d(y,y) — d(z,y)
> d(2,0) +d(o,y") — d(z',y)
>m—0+m—0—45 = 2m — 69.
So

(z]y)o > min{(z|2),, (y]2)o} — 36. q.e.d.

By combining several deep theorems from geometric group theory we
can deduce the following.

Theorem 2.4. Suppose I' is a non-elementary word hyperbolic group
which does not split over a finite group and is not commensurable to the
fundamental group of a closed hyperbolic surface. Then

1) OT' is connected,
2) OI'\ {x} is connected for every x € OT', and
3) there exist u,w € OI' distinct such that O \ {u,w} is connected.

The argument below comes from the proof of Theorem 3.1 in [48].

Proof. By work of Stallings, 0T is disconnected if and only if T" splits
over a finite group [55, 54]. So OI' must be connected. Then a theorem
of Swarup [56] implies that OI' \ {z} is connected for every x € OI'.

Now suppose for a contradiction that OI' \ {u,w} is disconnected
for every u,w € 90U distinct. Then OI' is homeomorphic to the circle
by [46, Chapter IV, Theorem 12.1]. But then by work of Gabai [28] and
Tukia [59], T' is commensurable to the fundamental group of a closed
hyperbolic surface. q.e.d.

2.3. Properly convex domains. In this subsection we review some
basic definitions involving convexity in real projective space.
Definition 2.5.

1) A set Q € P(RY) is called a domain if © is open and connected
2) Aset Q C P(R?)is called conve if LNSY is connected and LNQ # L

for every projective line L C P(R%).
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3) A convex domain Q C P(R?) is called a properly convex domain if
LNQ # L for every projective line L C P(R?).

When Q € P(R?) is a properly convex domain, there exists an affine
chart A C P(R?) which contains © as a bounded convex domain (see for
instance [1, Chapter 1]).

Definition 2.6. Given a properly convex domain Q C P(R?), a hy-
perplane H C ]P’(]Rd) is a supporting hyperplane of Q at x € 0Q if x € H
and HNQ = 0.

One of the most important properties of properly convex domains is
that every boundary point is contained in at least one supporting hyper-
plane (which follows from the supporting hyperplane characterization
of convexity in Euclidean space).

Definition 2.7. Suppose that Q c P(R?) is a properly convex do-
main. Then

1) a point z € 9Q is a C! point of Q if x is contained in a unique
supporting hyperplane of €. In this case, we let T,,0€) denote this
unique supporting hyperplane.

2) a point = € 0N is an extreme point of 2 if there does not exist a
line segment (p, q) in IQ with = € (p, q).

It is straightforward to show that x € 9Q is a C! point of Q (in
the sense above) if and only if 99 is locally the graph of a function
which is differentiable at xz. Moreover, in this case if x,, € 0N is a
sequence converging to x and H, is a supporting hyperplane at z,,
then lim,,_,o H,, = T,,05).

Given a properly convex domain Q@ C P(R?) the dual set is defined
to be:

Q= {f e P(R™) : f(x) #0 for all z € Q}.

The set Q* is a properly convex domain in P(R?) and the two sets have
the following relation.

Observation 2.8. If f € 9Q*, then P(ker f) is a supporting hyper-
plane of €.

2.4. The Hilbert metric. For distinct points z,y € P(R?) let Zy be
the projective line containing them. Suppose 2 C IP’(]Rd) is a properly
convex domain. If x,y € Q are distinct let a,b be the two points in
Ty N 02 ordered a,x,y,b along Ty. Then define the Hilbert distance
between x and y to be

1
dQ(iU,y) = 5 log[a,x, Y, b]’
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where
|z —blly —a
[a,2,y,b] = —————
’ [z —ally — bl
is the cross ratio. Using the invariance of the cross ratio under projective
maps and the convexity of €2 it is possible to establish the following (see
for instance [17, Section 28]).

Proposition 2.9. Suppose Q C P(RY) is a properly convexr domain.
Then dg is a complete Aut(Q)-invariant metric on Q0 which generates
the standard topology on 2. Moreover, if p,q € §2, then there exists a
geodesic joining p and q whose image is the line segment [p, q].

We will use the following observation (which follows immediately from
the definition of dg).

Observation 2.10 (see Lemma 3 in [60]). Suppose Q C P(R?) is a
properly convex domain and p,, g, € ) are sequences. If p, — p € Q
and dq(pn, qn) — 0, then ¢, — p.

We will also use the following estimate.

Lemma 2.11 (see Lemma 8.3 in [23]). Suppose Q C P(R?) is a
properly convex domain and [a,b],[c,d] C Q are line segments. If p €
[a,b], then

da(p, [c,d]) < dq(a,c) + da(b,d).

We will also consider the Gromov product induced by the Hilbert
metric: given a properly convex domain Q € P(R?) define the Gromov
product of p,q € Q based at o € 2 to be

1
(pla)g = 5 (da(p, 0) +da(o, q) — da(p, )
Karlsson and Noskov established the following estimates.

Lemma 2.12. [38, Theorem 5.2] Suppose 2 C ]P’(Rd) is a properly
convexr domain, o € €, p, € Q is a sequence with p, — p € 082, and
gm € ) is a sequence with ¢, — q € 0S).

1) If p=gq, then liln,w,nb_mo(pn|qm)g2 = 00.

2) If lim511pn7m_>oo(pn\qm)f)2 = 00, then [p,q] C 09.

2.5. A fact about Anosov representations. In this subsection we
describe the behavior of sequences of elements in a projective Anosov
representation.

When a matrix is proximal, its iterates have the following behavior.

Observation 2.13. Suppose g € PGLy(R) is proximal. Viewing
PGL4(R) as a subset of P(End(R?)), the limit

T = lim ¢g"

n—00
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exists in P(End(R?)). Moreover, the image of T is the eigenline of g
corresponding to the eigenvalue with maximal modulus.

Proof. By changing coordinates we can assume that
A0
g = 0 A ’
where [1:0: ---: 0] is the eigenline of g corresponding to the eigenvalue
with maximal modulus and A is a (d — 1)-by-(d — 1) matrix. Then

o= [1 0 }
- 1 gAn
0 wA
and the observation immediately follows from Gelfand’s formula (see
Theorem C.1). q.e.d.

Notice that if g € PGL4(R) is proximal, then the representation m €
Z — g™ is projective Anosov. A well known analogue of the above
observation holds for general projective Anosov representations.

Lemma 2.14. Suppose that T' is a word hyperbolic group. Let p :
I' —» PGL4(R) be an irreducible projective Anosov representation with
boundary maps ¢ : 9T — P(RY) and 1 : T — P(R¥™). Assume v, € T is
a sequence such that v, — x € O and v, — 2= € OT. Then viewing
PGLy(R) as a subset of P(End(R?)),

n—oo
where Im(T) = &(z™) and ker T = kern(x™). In particular,
+ _ .
§(z7) = lim p(yn)v

for all v € P(RY) \ P(kern(xz~)) and the convergence is uniform on
compact subsets of P(R?) \ P(ker n(z™)).

Since the proof is short we include it.

Proof. We first consider the case in which #0I' = 2. Then since p is
irreducible and p preserves £(9I') we see that d = 2. Then the lemma
follows easily from the dynamics of 2-by-2 matrices acting on P(R?).

So suppose that #9I" > 2. Then #0I' = co and JI' is a perfect space.
Since P(End(R?)) is compact it is enough to show that every convergent
subsequence of p(v,) converges to T. So suppose that p(y,) — S in
P(End(R%)).

We first claim that Im(S) = £(z). Since p : T' — PGL4(R) is irre-
ducible, there exists z1, . .., zq € OT such that £(z1), ..., &(zq) spans RY.
Since OI' is a perfect space, we can perturb the z; (if necessary) and as-
sume that

x ¢ {xy,...,zq}.
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Then 7,x; — 2 and since £ is p-equivariant, we then see that
p(m)€(x;) — E(xt). Since &(z1), ..., &(xq) spans RY this implies that

Im(S) = &(a).

Next view ‘p(7,) as an element of P(End(R%)). Then p(v,) con-
verges to S in P(End(R%)). Since

Yp(m)n(z) = n(v, ' a),

repeating the argument above shows that
Im("S) = n(z").

But this implies that
ker S = kern(z™). q.e.d.

This lemma has the following corollary.

Corollary 2.15. Suppose that I is a word hyperbolic group. Let
p: ' = PGL4(R) be an irreducible projective Anosov representation
with boundary maps € : OT — P(RY) and n : T — P(R¥). If p(T')
preserves a properly convex domain  C P(Rd), then

£(0r') C 99 and n(0T") C 0N*.

Proof. Fix some x € OI'. Then there exists v, € I' such that v, — x.
Now suppose that 7,1 — z~. Since Q is open, there exists some v €
Q\ P(kern(x~)). Then

&(x) = lim p(vy,)v € Q.

n—oo

On the other hand, p has finite kernel (by definition) and discrete image
by Theorem 5.3 in [30]. Further, since Aut({2) preserves the Hilbert
metric on Q, Aut(2) acts properly on . So we must have {(z) € 99.
Since z € OI' was an arbitrary point we then have {(9I") C 0.
Repeating the same argument on Q* shows that n(9') C 9Q*. q.e.d.

3. Constructing a convex cocompact action

In this section we establish Theorems 1.25 and 1.27 from the intro-
duction. The argument has two parts: first we show that we can lift the
boundary maps &, to maps into R, R* and then we will show that
whenever we can lift £, 7 we obtain a regular convex cocompact action.

3.1. Lifting the maps. Before stating the theorem we need some no-
tation: fix a norm ||| on R%, this induces a norm on R%* by

[fII = max{|f(v)] : [Jo]] = 1}.
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Then let S%1 ¢ R? and S@D* ¢ R%* be the unit spheres relative to
these norms. In the statement and proof of the next theorem we will
use the standard action of GLg(R) on S4~! and S@~1* given by

fog™?
[fog=t||

lgvll

Finally let
SLE(R) = {g € GLg(R) : det g = £1}.

Theorem 3.1. Suppose I' is a word hyperbolic group. Let p : I' —
PGL4(R) be an irreducible projective Anosov representation with bound-
ary maps & : OT — P(R?) and n : OT — P(R).

If one of the following conditions hold:

1) there exists a properly convex domain Qo C P(RY) such that p(T') <

Aut(Q) or
2) T is a non-elementary word hyperbolic group which is not com-
mensurable to a non-trivial free product or the fundamental group
of a closed hyperbolic surface,
then there exist lifts p : I’ — SLdi(]R), §~: o — S4=1 5. 9T — Sld—1)x
of p,&,n respectively such that §~ and 7 are continuous, p-equivariant,
and

for all x,y € OT" distinct.
Proof of Theorem 8.1. We will consider each case separately.

Case 1: Suppose that there exists a properly convex domain 2y C
P(R?) such that p(I') < Aut(€).

Let 7 : R1\{0} — P(R?) be the natural projection. Since Qq is
properly convex, 7 !(Qg) has two connected components C; and Cs.
Moreover, C1 and Co are properly convex cones and C1 = — Cs.

By Corollary 2.15, we see that £(0I") C 0§ and n(0I') C 0€;. Now

for € AT let £(x) € S be the unique representative of £(z) such

that £(x) € C; and let 7j(z) € S@ D* be the unique representative of
n(z) such that

1(z)(v) >0
for all v € C1. Then by construction,

ii@) (€w)) = 0

with equality if and only if x = y. Moreover, uniqueness implies that E
and 7] are continuous.



ANOSOV REPRESENTATIONS AND CONVEX COCOMPACT ACTIONS 535

Now for v € ' let () € SLE(R) be the unique lift that preserves Cj.
Thenp: T — SL;(R) is a homomorphism and £ and 7 are p-equivariant.

Case 2: Suppose that I' is a non-elementary word hyperbolic group
which is not commensurable to a non-trivial free product or a funda-
mental group of a closed hyperbolic surface.

We will reduce to Case 1 by constructing a properly convex domain
Qo € P(R?) such that p(I') < Aut(Qyp).

Let A = p(I'). Then by Selberg’s lemma A has a torsion-free finite
index subgroup Ag. Moreover, Ay is commensurable to I' and dAg is
homeomorphic to JI'. Since Ay is torsion-free, the condition on I' implies
that Ag does not split over a finite group and is not commensurable
to the fundamental group of a closed hyperbolic surface. Hence by
Theorem 2.4, we see that

1) O is connected,
2) o'\ {x} is connected for every z € JI', and
3) there exist u,w € A" distinct such that O\ {u,w} is connected.

The space P(R?) \ (P(ker n(u)) UP(ker n(w))) has two connected com-
ponents which we denote by A™ and A~. Since £(9T" \ {u,w}) is con-
nected, by relabelling we can assume that £(OT" \ {u,w}) C A*. Then
£(r) C A+,

Next define C := Nyerp(y)AT. By construction C is closed, £(9T) C
C, and p(y)C = C for every v € I'. Let Cp denote the connected
component of C' which contains £(9T") and let Qg denote the interior
of CO-

We claim that Qg is a properly convex domain and p(I') < Aut(Qp).
By construction, p(y)Qy = Qo for every v € T and so it is enough to
show that Qg is a properly convex domain. To accomplish this we recall
the following terminology: a subset E C P(R?) is called linearly convex
if for every z € P(R?) \ E there exists a hyperplane H C P(R?) such
that H N Q = (). We also recall the following basic properties of these
sets:

1) every convex set is linearly convex,

2) every connected component of a linearly convex set is convex,

3) the intersection of a collection of linearly convex sets is linearly
convex, and

4) if E ¢ P(R?) is linearly convex and g € PGLy(R), then gE is
linearly convex.

Proofs of Properties 1 and 2 can be found in [1, Chapter 1]. Properties 3
and 4 are direct consequences of the definition. Since A7 is projectively
equivalent to {[1: 2 :---: xq_1] : 21 > 0}, we see that A+ is linearly
convex. Thus by Properties 2, 3, and 4, Cj is convex.
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Since p is irreducible, {&(x) : x € AT} spans R?. Since £(AT') C Cy,
this implies that Cy has non-empty interior. So {2y is a non-empty
convex domain. Since Qy C AT, we see that Qo NP(kern(u)) = 0. Since
I'-u C 0T is dense, 7 is continuous, and p(7y)Qy = Qo for every v € T,
we then have

Qo NP(kern(z)) =0

for all 2 € AT'. Since p is irreducible, n(dT) spans R and so Qy must
be properly convex. q.e.d.

REMARK 3.2. It is easy to construct examples of “half spaces”
E1, By € P(RY) such that E; N Ey is disconnected (and hence not con-
vex). For instance, let F; be the connected component of P(R%)\ ({z1 =
0} U {x2 = 0}) which contains [1 : 1:0:---:0]. And let E5 be the
connected component of

]P)(Rd) \ ({$1 — X9 = O} @] {21‘1 — X9 = 0})
which contains [1:3:0:---:0]. Then
ExnNEy={[l:2a: 2422 € (0,1)U(2,00)}.

Examples like these are why we consider linearly convex sets in the proof
of Theorem 3.1.

3.2. Showing the action is convex cocompact.

Theorem 3.3. Suppose I' is a word hyperbolic group. Let p : I' —
PGL4(R) be an irreducible projective Anosov representation with bound-
ary maps & : OT — P(RY) and n : OT — P(R).

If there exist lifts p: T — SLE(R), € : 9T — S 1,77 : 9T — §@-1x
of p,&,n respectively such that 5 and 7 are continuous, p-equivariant,
and

i) (€)) >0

for all x,y € OU distinct, then there exists a properly convexr domain
Q c P(RY) such that p(T') is a regular convex cocompact subgroup of
Aut(Q).

For the rest of this subsection let T', p, &, 7, p, §~, and 77 satisfy the
hypothesis of Theorem 3.3.
Define

Q= {[v] e P(RY) : 7j(z)(v) > 0 for all z € 8F} .
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Lemma 3.4. With the notation above, §2 is a properly convex do-
main, p(I') < Aut(Q), and if N > 1; A\1,...,Any > 0; and x1,...,xN €
OI' are distinct, then

e Q.

N ~
[Z Ai€ (i)

=1

Proof. f N > 1; Ay,..., Ay > 0; and x1,...,xny € Ol are distinct,
then

N
n(y) <Z >\i5~($i)> >0
i=1
for all y € OI'. So

N ~
[Z Nié(z;)| € Q.
i=1
In particular, £ is non-empty.

We now show that  is open. Suppose pg € 2. Then there exists
vy € R? such that pg = [vg] and 7j(z)(vg) > 0 for all z € dI'. Since OT'
is compact and 77 : L' — S@=D* is continuous, we have

0<r:= xiengr n(x)(vo).
So
{[v] € P(RY) : v —vo| < r} C Q.

Hence (2 is open.
By construction 2 is a convex domain and

QNPkern(z)) =10

for all z € OT. Since p is irreducible, n(AT) spans R and so Q must
be properly convex.
Finally, since

p(7)[v] = [p(7)(v)]

when v € R? and v € T, we see that p(I') < Aut(Q). q.e.d.
Lemma 3.5. With the notation above, £(OT') C 9Q and n(oT") C
o0*.

Proof. This follows immediately from Corollary 2.15, but here is a
direct proof: by the definition of Q2 we see that n(9I') C Q*. Moreover,
if x,y € O are distinct, then

§) = Jim [AE(x) +E)] e @
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So £(AT) C Q. Then, since

n(x)(§(x)) =0
for all z € OT" we see that £(OT") C 92 and n(9T") C ON*. q.e.d.

Next let C be the closed convex hull of £(9I') in Q.

Proposition 3.6. With the notation above, p(T') acts cocompactly
on C.

Proposition 3.6 follows from either a recent result of Kapovich and
Leeb [32] or a recent result of Kapovich, Leeb, and Porti [36]. In par-
ticular, the action of p(I') on £(9T") is a uniform convergence action and
so p(T") acts cocompactly on C by Theorem 1.9 in [32]. Alternatively,
one can use C to construct an invariant set in the space of flags of the
form (line, hyperplane) and then apply Theorem 1.5 in [36] to see that
p(I") acts cocompactly on C.

We will provide a proof of Proposition 3.6 that only uses elementary
properties of convex sets. This direct argument requires a few prelimi-
nary lemmas.

Given a set A C Q2 and a point p € € define

do(p, A) = ;ggdﬂ(p, a).

Then given two sets A, B C € define the Hausdorff distance in dq
between A and B to be:

diaus(A, B) := max {sup dq(a, B),sup dq(b, A)} .
acA beB
Next fix a finite, symmetric generating set S of I' and let dg be the

induced word metric on I'.

Lemma 3.7. With the notation above, suppose that py € 2. Then
there exists some R > 0 with the following property: if g1,...,9gnv € T
is a geodesic in (I',dg), then

4 ({p(g0)po. - plon)pol}. lo(gr)po. plon)po]) < B.

Proof. We first claim that there exists some Ry > 0 with the following
property: if g1,...,gn € I' is a geodesic in (T, dg), then
da(plg:)po. : ) < R
max dg p(gi)pos [p(91)po, p(gn)po] ) < Ra
Suppose not, then after possibly translating by elements in I' we can
assume: for any n > 0 there exists a geodesic

g g g
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in (I',dg) such that g(()n) = id and

do (p (g(()")) Po, [p (9(_"1\)%) Po, P (g%l) ) poD
=dg (pm [p (g%n) o, p (g](?,f ) po]) > n.

Notice that we must have M,,, N,, — co. Now by passing to a subse-
quence, we can suppose that the limits

(n)

i

n—oo

exists for all . Then

3 9-2,9-1,90 = 1d, g1, 92, . - .
is a geodesic in (T',dg). So there exist 2,2~ € 9T distinct such that

lim g; =+
i gi=
By the standard geodesic ray definition of the topology on I' U dI', we
have

: (n) _  +
AL 9N, =2
and
lim g(n) =z .
n—o0” ~Mn

Now P(kern(z~)) N = and so Lemma 2.14 implies that

lim p (gj(\ygz) po = &(z).

n—oo

The same reasoning implies that

tim p ("), ) po = €(a7).

n—oo
Since 21,z € 9T are distinct, Lemma 3.4 implies that ({(z7),&(zT)) C
2 and so

da (po, (£(x7), &(z1))) < oo.

Then since

0o = lim do (po. | (93, ) po.p (o)) po] ) = da (po. (6(a7). &(a™))

< 00
we have a contradiction. Hence, there exists some R > 0 such that: if
g1,...,9n € I'is a geodesic in (', dg), then

. < .
max da (p(gi)po, [p(91)po, p(gn)po]) < Ri

Now let
C = max{da(po, p(9)po) : g € S}.
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We claim that: if ¢1,...,g5 € I' is a geodesic in (I',dg) and if p €
[p(91)po, p(9n)po], then

do (p, {p(g1)po, - - -, p(gn)po}) < 2Ry + C/2.

For each 1 < i < N, let p; be a closest point to p(gi)po in
[p(91)po, p(gn)po). Then

do(pi, pi+1) < do(pi, p(gi)po) + da(p(g:)po, p(gi+1)Po0)

+ do(p(git1)Po, Pit1)
<Ri+C+ Ry =2R;+C.

Since p1 = p(g1)po and py = p(gn)po we see that: for any p €
[p(g1)po, p(gn)Po]

1
min do(p, p;) < 5(2R1 +C)=R1+C/2

1<i<N
and so
do (p, {p(g91)p0, - - - P(9N)P0}) < 2Ry + C/2.
So R = 2R; + C/2 satisfies the conclusion of the lemma. q.e.d.

Lemma 3.8. With the notation above, suppose that pg € Q2. For any
N > 2 there exists Cn > 0 such that: if

N
p= [Z Aiﬁ(%‘)] :
i=1
where A1,...,An >0 and x1,...,xy € O are distinct, then

da(p, p(') - po) < Cn.

Proof. We induct on N. Let R be the constant from Lemma 3.7.
For the N = 2 case suppose that z1,z2 € OI' are distinct. Then
there exist sequences gy, h,, € I' such that g, — 1 and h,, — x2. By
Lemma 2.14
p(gn)po — &(x1) and p(hn)po — §(22).
So if

p= [ M&(@1) + Aok(w2)

for some A1, A2 > 0, then there exists a sequence p,, € [p(gn)po, p(hn)po]
such that p, — p. Lemma 3.7 implies that

da(pn, p(I') - po) < R

and so

da(p, p(T') - po) < R.
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Next suppose that N > 2 and consider

N
p= [Z )\ig(ﬂji)] ;
i=1
where Aq,..., Ay >0 and zq,...,zy € OI' are distinct. We claim that

do(p, p(T') - po) < 2Cn/21 + R.
Let

- 1 -
p1= > (@) + SRTEINS (z1n/21)

1<i<[N/2]

and

1 - -
p2 = | GANynE (i) + DL Nib(a)
[N/2]<i<N

Then, by induction there exist elements g1, g2 € I' such that
da(pi; p(9:) - po) < Cinya)-

Now p € [p1,pe2] and so by Lemma 2.11 there exists ¢ € [p(g1) - po, p(g2) -
po] such that

da(p,q) < 2Cn/a-
Then Lemma 3.7 implies that

do(q,p(T') - po) < R

and hence
do(p, p(T') - po) < 2Cn/21 + R. q.e.d.

Proof of Proposition 3.6. By Carathéodory’s convex hull theorem any
p € C can be written as

N ~
p= [Z )\iﬁ(ﬂ?i)] ,
i—1

where 2 < N < d+1; A,...,Any > 0; and z1,...,zy € OI are distinct.
Thus by the previous lemma there exists some M > 0 such that

C = Ugerp(g) (Ba(po; M)NC),
where Bq(po; M) is the closed metric ball of radius M in (€, dq). q.e.d.

Lemma 3.9. With the notation above, if f € Q0*, then there exists
1< N<d+1; A,...., A >0; and x1,...,xn € I distinct so that

N
f= [Z Aiﬁ(l’i)] :
=1
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Proof. By the definition of 2, the set Q* is the image of
ConvexHull {7j(z) : € T} ¢ R*™

in P(R¥). Then since 77 : OI' — R% is continuous, Carathéodory’s
convex hull theorem implies that f can be written as

N
f= [Z )\iﬁ(l'i)]
i=1
forsome 1 < N <d+1; A,...,Ay >0;and z1,...,xy € OI". q.e.d.
Lemma 3.10. With the notation above,
£(0r) =CnoQ,
every point in C N ON is a C' extreme point of Q, and
Te(2)0Q = P(ker n(z))
for all x € OT.
Proof. Lemma 3.4 and the definition of C imply that
£(OT) = C N oN.

So suppose that = € OI'. We first show that £(x) is a C' point of
Q. Suppose that H is a supporting hyperplane of Q at {(z). Then
H = P(ker f) for some f € Q*. By Lemma 3.9

N
f= [Z /\iﬁ(ffi)]

for some 1 < N <d+1; A\i,..., Ay > 0; and z1,...,zx € Il distinct.
Since f(&(x)) =0, we then have

N ~
0=">" Aii(z:) (g(g;)) .
i=1
By hypothesis
i) (£)) >0

when y,z € 0T are distinct and so we must have N = 1 and z1 = x.
Thus f = n(z) and H = P(kern(z)). Since H was an arbitrary sup-
porting hyperplane of  at £(z) we see that £(z) is a C' point of 9
and

Te(2) 0 = P(ker n(z)).

We next show that £(x) is an extreme point of 2. This follows imme-
diately from Lemma 5.3 below, but we will provide a direct argument.
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Suppose for a contradiction that £(x) is not an extreme point, then
there exists p/, ¢’ € 9 such that

&(z) € (', q) coQ.

Fix a point ¢y € C and consider a sequence of points g, along the line
[co,&(x)) which converge to £(x). Since p(I') acts cocompactly on C,
there exist some M; > 0 and elements -y, € I' such that

dQ(p(’Yn)COv Qn) < M.

Next fix some p € (p/,¢') C 9Q with p # £(z). Then, by the definition
of the Hilbert metric, we can find a sequence of points p,, along the line
[co, p) such that

My := sup dq(pn, gn) < +00.
n>0

Next let k, = p(7n) 'qn and £, = p(v,) 'pn. Then
k‘n, En € EQ(C(); M1 =+ Mg),

where Bq(co; M1+ M) is closed metric ball of radius M;+Ms in (Q, dg).
Since the Hilbert metric is proper, we can pass to a subsequence such
that k, — k€ Q and ¢, — £ € Q. Then

Jim_ do(p()k, p(yn)kn) = lim do(k, kn) =0

which implies from the definition of the Hilbert metric, see Observa-
tion 2.10, that

Jim p(yn)k = lim p(yn)kn = ().
The same reasoning shows that
Jim p(y,)f = lim p(n)é = p.

Next view PGL4(R) as a subset of P(End(R?)) and pass to a subse-
quence so that p(v,) converges to some T in P(End(R%)). By Lemma
2.14, T has image £(z7) and kernel kern(z~) for some z*,z~ € 9r.
Since P(kern(z7)) NQ = () we see that

¢(@") =T(k) = lim p(yn)k = &(2).
However, by the same reasoning we have
§(@T) =T() = lim p(yn)l = p.

Hence £(z) = p which is a contradiction. Thus £(x) is an extreme point
of Q. q.e.d.
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3.3. Proof of Corollary 1.30. For the rest of this subsection suppose
that I" is a word hyperbolic group and p : I' — PGLg4(R) is an irreducible
projective Anosov representation. Let & : OI' — R(R?) and n : o' —
P(R%) denote the boundary maps associated to p. Then define

V = Spanp{&(x) ® {(z) : € OT'} C Symy,(R)

where we make the identification v ® v = vtv € Symy(R) when v € R%
Let ps : I' = PGL(V) be the representation

ps(M)X = p(1)X "p(v).

Using Theorem 1.27 it is enough to show that pg is an irreducible pro-
jective Anosov representation and there exists a properly convex domain
Qo C P(V) such that pg(I") < Aut(Qy).

Lemma 3.11. There exists a properly convexr domain Qo C P(V)
such that ps(T") < Aut(p).

Proof. As in Example 1.29, let
P = {[X] € P(Symy(R)) : X > 0}.

Then P is a properly convex domain in P(Sym,(R)). Since p is irre-
ducible, there exists z1, ..., x4 € OT such that &(z1), ..., &(zq) span RY.

If vi,...,uq3 € R? are representatives of &(x1),...,&(xq) respectively,
then
d
Z v; Qu;| € PNV.
i=1

So Qg :=PNP(V) is a non-empty properly convex domain in P(V') and
by construction pg(T') < Aut(Qp). q.e.d.

Given v € I" with infinite order, let a:,t € OI" be the attracting fixed
point of 7. And given a vector space W and g € PGL(W) proximal
let £; € P(W) be the eigenline of g corresponding to the eigenvalue of
maximal modulus.

Lemma 3.12. If v € ' has infinite order, then g = ps(7y) is prozimal
and

0 =t o ad).

Proof. If A1 > Ao > -+ > Ay are the absolute values of the eigenvalues
of p() normalized to have product one, then there exists C' > 0 such
that some subset of
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are the absolute values of the eigenvalues of ¢ = pg(7y) normalized to
have product one. By construction 6(3:#) ® f(m?) € V and is the eigen-

line corresponding to C'A\}, so g is proximal and
E;r = f(foyr) ® f(l’?) q.e.d.
Lemma 3.13. pg is irreducible.

Proof. Let G be the Zariski closure of p(I') in PGL4(R) and consider
the representation

7:G— PGL(V)
given by
T(9)X = gX 'g.

Since p is an irreducible representation, G acts irreducibly on R%. So
G acts minimally on the set

{¢ : g € G is proximal} C P(RY),
see for instance [6, Lemma 2.5]. So 7(G) acts minimally on the set
X = {E; ® E; : g € G is proximal} C P(Sym,(R)).

Since X NP(V) # 0, 7(G) acts minimally on X, and 7(G) -V =V, we
see that X C P(V). Further, X spans V' by the definition of V.

Since G is semisimple (see for instance [14, Lemma 2.19]), we can de-
compose V' = @, W; where each W; <V is 7(G)-invariant and the in-
duced representation G — PGL(W}) is irreducible (see for instance [47,
Chapter 5, Theorem 13]).

Fix some v € I" with infinite order and let h = p(vy). Then 7(h) <
PGL(V) is proximal by Lemma 3.12. Viewing PGL(V) as a subset of
P(End(V)), Observation 2.13 implies that

T = lim ¢(h)"
n—oo
in P(End(V)) and the image of T is ¢} ® ¢;. By relabeling the W;, we
can suppose that there exists some element w € Wi \ ker T. Then

el =T([w]) = klim d(h)™ w] C Wi.
—00
Then since 7(G) acts minimally on the set
_pt et : -
X ={l; ®t; : g€ G is proximal}

and X spans V, we see that W; = V. Hence 7 : G — PGL(V) is
an irreducible representation. Since p(I') is Zariski dense in G and
ps = T o p, we then see that pg is also irreducible. q.e.d.

Lemma 3.14. pg is projective Anosov.
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Proof. We define boundary maps &g : ' — P(V) and ng : o' —
P(V*) as follows. First, let
Es(x) = &) ® E().

Next, let f € R% be a lift of n(z) and pick w € R such that f(v) = fwo.
Then define ng(x) by

ns(z) (X) = 'wXw.

By construction the maps &g, ng are pg-equivariant and continuous.
Since the maps &, n are transverse and

ns(@) (Es(y)) = n(x) E(y))*,

the maps &g, ng are also transverse. Thus pg is projective Anosov by
Proposition 4.10 in [30]. q.e.d.

4. Basic properties of convex cocompact actions

In this section we establish some basic properties of convex cocompact
actions on properly convex domains.

4.1. Quasi-isometries. The fundamental lemma of geometric group
theory (see [27, Chapter IV, Theorem 23]) immediately implies the
following.

Proposition 4.1. Suppose 2 C R(]Rd) s a properly convexr domain
and A < Aut(Q) is a discrete convex cocompact group. Then A is finitely
generated and for any po € 2 the map

© e A= ppo

induces an quasi-isometric embedding A — (Q,dq).

4.2. Rescaling. Given a finite dimensional real vector space V, let
K (V') denote the set of all compact subsets in P(V') equipped with the
Hausdorff topology (with respect to a distance on P(V') induced by a
Riemannian metric).

Next let X(V') denote the set of properly convex open sets in P(V).
Then the map

QeX(V)—=QecK(V)

is injective and so X(V) has a natural topology coming from K (V).
Finally, we let

Xo(V) = {(Q,2): Qe X(V),z € Q}

equipped with the product topology.
In the 1960’s Benzécri proved the following theorem.
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Theorem 4.2 (Benzécri’s theorem). The group PGL(V') acts prop-
erly and cocompactly on Xo(V). Moreover, if Q@ C P(V) is a prop-
erly convex domain and Aut(SQ) acts cocompactly on §Q, then the orbit

PGL(V) - Q is closed in X(V).

In this section we will use a result of Benoist to prove an analogue of
Benzécri’s theorem for convex cocompact actions.

Theorem 4.3. Suppose Q0 C P(Rd) 18 a properly conver domain,
G < Aut(Q) is a subgroup, and there exists a closed convex subset C C )
such that gC = C for all g € G and G\ C is compact. AssumeV C P(R?)
is a subspace that intersects C, ¢, € CNV, and h,, € PGL(V) satisfy

1) hp(2NV) = Qy where Qy is a properly convex domain in P(V'),

2) h,(CNV) — Cy where Cy is a properly convex closed set in P(V),

3) hn(Cn) — Poo € Qy.

Then there exists some ¢ € PGL4(R) so that

QO(Q) NV =Qy

and

go(é) NV >Cy.
Before starting the proof of the theorem we make two observation
about the Hausdorff topology.

Observation 4.4. Suppose €, — € in X(Rd) and K C Qis a
compact set. Then K C §,, for n sufficiently large.

Proof. We can pick an affine chart A ¢ P(R?) such that Q is relatively
compact in A. Then for n sufficiently large, €, is also relatively compact
in A. Then we can identify A with R"! and view Q,,Q as convex
subsets of R™! (at least for n sufficiently large). Then Q, — Q is the
Hausdorff distance induced by the Euclidean distance on R4,

Now suppose, for a contradiction, that there exist n; — oo and k; €
K such that k; ¢ ;. By passing to a subsequence we can assume that
k; — k. Now since (2 is open, there exists some ¢ > 0 such that

{zeRT: k—z)| <el
Since each €, is convex, we can find an real hyperplane H; such that
k;j € Hj and Q,; N H; = (. Then for j sufficiently large, there exists
some z; € R? \Qy; such that dgyuc(zj, Hj) > €/2 and ||k — ;]| < e. But
then x; € Q2 and so

dHauS(an’Q) > dEuc(anawj) >€/2

Euc

which is a contradiction. q.e.d.

Observation 4.5. Suppose 2, — Q in X(R?). If V c P(R?) is a
subspace and VN Q # 0, then 2, NV — QN V in X(V).



548 A. ZIMMER

Proof. Since K (V) is compact, it is enough to show that every con-
vergent subsequence of 2, NV converges to 2N V. So suppose that
Q,NV = Cin K(V).

Then by the definition of the Hausdorff topology we have C C QN V.

Since Q is convex, we have QNV = QN V. So we can pick a sequence
K,, C 2NV of compact sets such that

UK, =QnV.

Fix m. Then K,, C Q, for n sufficiently large by Observation 4.4. So
K,, C C. Since m was arbitrary

QNV =UK,, c C.
Hence C =QnNV. q.e.d.

Proof of Theorem 4.3. By Lemma 2.8 in [7] there exists g, € PGL4(R)
and a properly convex domain ' C P(RY) such that

1) gn‘V = hm
2) Qp =g, — Q' and
3) ANV =Qy.

Now fix a point pg € C. Then there exist R > 0 and a sequence
Yn € G such that

do(cn, npo) < R.

Next consider the element ¢, = g,7v,. Note that

dQn (90np07 gncn) = dQ(’VnPO; Cn) <R.

Then since

lim gpc, = lim hpc, = po €
n—oo n—oo
and dq,, converges locally uniformly to dg/ we can pass to a subsequence
so that ©,py — ¢oo € .
Then ¢,(Q,p0) — (,¢) and since PGL4(R) acts properly on
Xo(RY), we can pass to a subsequence such that ¢, — ¢ € PGLy(R).
Then by the Observation 4.5

() NV = lim p,(Q)NV = lim g,(Q)NV =Q"NV =Qy.
n—oo n—oo
By passing to a subsequence we can suppose that the sequence g,,(C)N
V converges in K (V). Then, by the definition of the Hausdorff topology,

p(C)NV D ILm en(C)NV = li_>m am(C)NV
O lim h,(CNV)NV = lim h,(CNV)=Cy.

n—o0

q.e.d.
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5. Regular convex cocompactness implies projective
Anosovness

In this section we prove Theorem 1.22 from the introduction. The
proof uses many ideas from Benoist’s work on the Hilbert metric [7, 8].

Theorem 5.1. Suppose 2 C ]P’(]Rd) is a properly conver domain and
A < Aut(Q) is a discrete convex cocompact subgroup. Let C be a closed
convex subset of Q such that gC = C for all g € A and A\C is com-
pact. If A is an irreducible subgroup of PGLg4(R), then the following are
equivalent:

1) every point in ?ﬁ 0 is a C' point of 09,
2) every point in C N O is an extreme point of O

Moreover, when these conditions are satisfied A is word hyperbolic and
the inclusion representation A — PGL4(R) is projective Anosov.

REMARK 5.2. In the special case when €2 = C, Theorem 5.1 was
established by Benoist [8], see Theorem 1.19 in the introduction.

For the rest of the section fix a properly convex domain 2 C P(Rd), a
discrete convex cocompact subgroup A < Aut(2), and a closed convex
subset C C 2 which satisfy the hypothesis of Theorem 5.1.

Notice that C has non-empty interior since A is irreducible and pre-
serves the subspace Spang {c: ¢ € C}.

Lemma 5.3. With the notation above, if each ¢ € 92N CisaCh
point of IS, then each g € Q. NC is an extreme point of §2.

Proof. Suppose for a contradiction that there exists a point ¢ € 9QNC
which is not an extreme point of 2. Then after making a change of
coordinates we can assume the following:

1) g=[1:0:---:0] €90NC,
2) 1:0:1:0:---:0]€C,
3)Qc{[l:xy:ay:-:xq 1] € P(RY) : 29 > 0}, and
4) {1:t:0:---:0] € P(RY) : t € [-1,1]} C IN.
Now let
VZ{[$12$2$$3:0:---:0]EP(Rd):xl,xQ,JJgER},
¢n=1[1:0:1:0:---:0] eCcnV, and h, € PGL(V) be given by
hplxy i@ @3 :0:---:0]=[z1:22 :nx3:0:---:0].
Then hpe, —[1:0:1:0:---:0],

hn(2NV) = Qy
={1:5:t:0:---:0]€PRY):[1:5:0:---:0] € I and t > 0},
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and
hn(CNV) — Cy
={[1:5:t:0:---:0€P(RY) :[1:5:0:---:0]€dQNC and t > 0}.

Clearly Qy is properly convex and so by Theorem 4.3, there exists some

¢ € PGL4(R) such that ¢(Q) NV =Qy and Cy C ¢(C) N V. But then
0:0:1:0:---:0]
is a not a C'!' point of 9y and hence
@ M0:0:1:0:---:0] €CNIN
is not a C'' point of €. So we have a contradiction. q.e.d.

Lemma 5.4. With the notation above, if each ¢ € 9 N C is an
extreme point of Q, then each ¢ € 00 NC is a C' point of ON).

Proof. Suppose for a contradiction that there exists a point ¢ € 9QNC
which is not a C! point of 9§2. Then there exist two different hyperplanes
Hy, Hy such that ¢ € Hi N Hy and H1 NQ = Hy,NQ = (. Since C has
non-empty interior, there exists a two dimensional subspace V' C P(R?)
so that V intersects the interior of C, and V N Hy # V N Hs.

By making a change of coordinates, we can assume that

1) g=[1:0:---:0],
2) V={[z1:22:23:0:---:0] € P(RY) : 21, 29, 23 € R},
3) ANV C{[l:z:22:0:---:0] € P(RY) : 25 > 0},
4) [1:0:1:---:0] is contained in the interior of C, and
5) there exists a; < 0 < ag such that
HNV={l:t:at:0:---:0cP®RY):tcR}U{[0:1: ]}
Now since [1: 0 :1:---: 0] is contained in the interior of C, there
exists € > 0 and B < 0 < (B2 such that
{[1:t:Bat:0:---:0]ePRY):0<t<e}CC
and
{[1:t:B1t:0:---:0€eP(RY): —e<t<0}CC.
Next consider the points ¢;, = [1:0: L :0:---:0] and let h,, €

PGL(V) be given by
hplz1:xe:2g:0:-+-:0]=[x1 :nze :nx3:0:---:0].

Then hpc, = [1:0:1:0:---:0], hp(2N V) converges to the tangent
cone TCy(2NV) of NV at g, and hy,(CNV') converges to the tangent
cone TCq,(CNV) of CNV at g.
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By construction 7C4(2NV) is a properly convex domain in V. So by
Theorem 4.3, there exists some ¢ € PGLg441(R) such that o(Q)NV =

TC,(2NV) and ¢(C)NV D TCy(CNV). But then
e H[0:1:5:0:---:0] € P(RY) : B; <5< B} CCNIN

which contradicts the fact that every point in C N 02 is an extreme
point. q.e.d.

For the remainder of the section we assume, in addition, that

1) every point in ? N O is a C' point of O and
2) every point in C N OS2 is an extreme point of 9<).

Lemma 5.5. With the notation above, A is word hyperbolic.

Proof. Fix a finite symmetric generating set S of A. By Proposi-
tion 4.1, (A,dg) is quasi-isometric to (C,dq) and so it is enough to
show that (C,dq) is Gromov hyperbolic. Now for each z,y € C let
02,y be the geodesic joining x to y which parametrizes the line segment
joining them. By Proposition 2.2 it is enough to show that there ex-
ists an > 0 such that every geodesic triangle in (C,dq) of the form
Oy, 0y,z, 0z is 6-thin. Suppose not. Then for every n > 0 there exists
points Tp, Yn, 2n, U, € C such that u, € oy, 4, and

dQ (un7 O-ynyzn U UZn@'n) > n.

By replacing the points Ty, Yn, Zn, Un BY 9nZn, 9nYn, In2n, gnlly for some
gn € A we can assume that the sequence u,, is relatively compact in C.
Then by passing to a subsequence we can suppose that u, — u € C.
By passing to another subsequence we can assume that x,,yn, 2z, —
x,y,z € C. Since

dQ(Um {1‘n7 Yn, Zn}) >n

we must have x,y,z € C N 9Q. The image of 0, 4, converges to a line
segment containing x,y,u. Since u € C and z,y € 92 we must have
x # y. Then either z # = or z # y. By relabeling we may assume that
z # x. Then the image of oy, ., converges to the line segment [z, z].
Since every point in C N 9 is an extreme point of O and = # z, we
must have (z,z) C Q. So

oo = lim dq(un, 02, 4,) = da(u, (z,2)) < cc.
n—o0

So we have a contradiction and hence A is word hyperbolic. q.e.d.

Lemma 5.6. With the notation above, there exists a A-equivariant
homeomorphism & : OA — C N OS).

Proof. Since every point in C N 02 is an extreme point, this follows
from Lemma 2.12. q.e.d.
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Lemma 5.7. With the notation above, the inclusion representation
A — PGL4(R) is projective Anosov.

Proof. Let € : OA — C N 09 be the A-equivariant homeomorphism
from the previous lemma. Since every point in CN O is a C! point, the
map 7 : IA — P(R¥) with

P(kern(x)) = Te(5)0

is well defined, continuous, and A-equivariant.
We claim that

£(x) +kern(y) =R
for z,y € O distinct. If not, then
[£(2),&(y)] € CNP(kern(y)) = C N Tep 00 C C N O

But since each g € 9QNC is an extreme point of I we see that this is

impossible.
Then Proposition 4.10 in [30] implies that the inclusion representa-
tion is projective Anosov. q.e.d.

6. Proof of Theorem 1.10
We now prove Theorem 1.10 from the introduction:

Theorem 6.1. Suppose G is a semisimple Lie group with finite
center and P < G is a parabolic subgroup. Then there exists a fi-
nite dimensional real vector space V' and an irreducible representation
¢ : G — PSL(V) with the following property: if T' is a word hyperbolic
group and p : I' — G is a Zariski dense representation with finite kernel,
then the following are equivalent:

1) p is P-Anosov,

2) there exists a properly convex domain Q2 C P(V') such that (¢op)(I")

is a regular conver cocompact subgroup of Aut(€2).

For the rest of the section fix G a semisimple Lie group with finite
center and P < G a parabolic subgroup.

By Theorem 1.15, there exist a finite dimensional real vector space
Vo and an irreducible representation ¢¢ : G — PSL(V)) with the fol-
lowing property: if I' is a word hyperbolic group and p : ' — G is a
representation, then the following are equivalent:

1) pis P-Anosov,

2) ¢o o p is projective Anosov.

We will construct a new representation of G by taking the tensor
product of ¢g with itself. In general, this will not produce an irreducible
representation and so we will construct a subspace of Vy ® Vj where
b0 ® ¢g acts irreducibly.
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For a proximal element g € PSL(Vp) let £ € P(Vp) be the eigenline
of g corresponding to the eigenvalue of largest absolute value. Then
consider the vector space

V= SpanR{Q; ® E; : g € ¢o(G) is proximal}
and the representation ¢ : G — SL(V') given by
P(9)(v®@v) = (¢o(g)v) ® (do(g)v).

Notice that we can assume that V' # (0), for otherwise there is nothing
to prove.

Lemma 6.2. With the notation above, if g € G and ¢o(g) is proz-
imal, then ¢(g) is proxrimal and Ego(g) ® E;O(g) is the eigenline of ¢(g)
corresponding to the eigenvalue of largest absolute value.

Proof. The argument is similar to the proof of Lemma 3.12. q.e.d.

Lemma 6.3. With the notation above, ¢ : G — SL(V) is an irre-
ducible representation.

Proof. The argument is similar to the proof of Lemma 3.13. q.e.d.
We now complete the proof of the theorem.

Lemma 6.4. With the notation above, if I is a word hyperbolic group
and p: ' = G is a Zariski dense representation with finite kernel, then
the following are equivalent:

1) p is P-Anosov,
2) there exists a properly convex domain  C P(V') such that (¢op)(T")
is a regular convexr cocompact subgroup of Aut().

Proof. 1If p is P-Anosov, then ¢q o p is projective Anosov representa-
tion by our choice of ¢g. Let &y : OI' = P(Vp) and 1y : OI' — P(V") be
the associated boundary maps. Since ¢g : G — PSL(V}) is irreducible
and p(I') < G is Zariski dense, we see that ¢gop : I' — PSL(1)) is
irreducible. So by Corollary 1.30, if

V' = Span{&y(x) ® &(z) : € AT},

then there exists a properly convex domain Q C P(V”) so that (¢op)(T)
is a regular convex cocompact subgroup of Aut(f2). Since ¢ : G —
PSL(V) is irreducible and p(T") < G is Zariski dense, we see that ¢ o p :
I' —» PSL(V) is irreducible. Then since V' C V, we must have V' = V.

Next suppose that there exists some properly convex domain 2 C
P(V) such that (¢ o p)(I') < Aut(Q) is a regular convex cocompact
subgroup. Since ¢ : G — PSL(V) is irreducible and p(I") < G is Zariski
dense, we see that ¢pop : I' — PSL(V) is irreducible. Hence Theorem 5.1
implies that ¢ o p is a projective Anosov representation. Let £ : 9" —
P(V) and n : OT' — P(V*) be the associated boundary maps.
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We claim that there exist maps & : OI' — P(Vp) and 7o : O — P(Vy)
such that

§(x) = o(x) @ &o(x)

and

n(x) = mno(x) @mo(x)
for all x € OI'. Since p(I') is Zariski dense in G and ¢¢(G) contains
proximal elements, there exists some ¢ € I' such that (¢o o p)(p) is
proximal, see for instance [50]. Let 2™ € OI" be the attracting fixed point
of ¢ in OT'. Then &(x) is the eigenline of (¢ o p)(p) whose eigenvalue
has maximal absolute value. Since (¢g o p)(¢) is proximal, Lemma 6.2
says that

E(xt)y =0T 0T,

where T € P(V) is the eigenline of (¢g o p)(y) whose eigenvalue has
maximal absolute value. Now

1) £: 0T — P(V) is continuous and (¢ o p)-equivariant,

2) the set

A={vev]:veVy\{0}} CP(V)
is closed and ¢(G)-invariant, and
3) the set I' -z is dense in OT.

Since £(z) € A, the three properties above imply that £(OT') C A.
Hence there exists a map & : 9I' — P(Vp) such that

§(x) = &o(z) @ o(x)
for all z € OI". Since
[v] € P(V) = [y @] € A
is a diffeomorphism, the map &g is continuous. Finally, by construction,
the map & is (¢g o p)-equivariant.

Applying this same argument to 7 yields a continuous (¢g o p)-equi-
variant map 7o : OI' — P(Vj') such that

n(x) = no(z) @ no(z)
for all z € OT.
If x,y € OI', then

n(y) (£(x)) = no(y) @ noly) (€o(x) @ &(z)) = m0(y) (Co(z))? .

Since £ and n are transverse, this implies that &y and ng are transverse.

Finally, since the representation ¢y : G — PSL(V}) is irreducible
and p(I') < G is Zariski dense, we see that ¢g o p : I' — PSL(Vp) is
irreducible. Hence by Proposition 4.10 in [30] we see that ¢gop: I' = G
is a projective Anosov representation. Thus by our choice of ¢g we see
that p: ' — G is P-Anosov. q.e.d.
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7. Entropy rigidity

The proof of Theorem 1.35 has three steps: first we use results of
Coornaert-Knieper, Coornaert, and Cooper-Long-Tillmann to transfer
to the Hilbert metric setting, then we use a result of Tholozan to transfer
to the Riemannian metric setting, and finally we use an argument of Liu
to prove rigidity. This general approach is based on the arguments in [4].

It will also be more notationally convenient in this section to work
with P(R4™!) instead of P(RY).

7.1. Some notation. Suppose (X, d) is a proper metric space and o €
X is some point. If G < Isom(X,d) is a discrete subgroup, then define
the Poincaré exponent of G to be

1
da(X,d) :=limsup —log# {g € G : d(x¢, gzo) < r}.
r—oo T

Notice that dg(X,d) does not depend on xg. If X has a measure p one
can also define the volume growth entropy relative to u as
1
hoot (X, d, ) :=limsup —logu ({x € X : d(x,z0) <r}).

r—oo T
If the measure p is Isom(X,d)-invariant, finite on bounded sets, and
positive on open sets, then

5G(X7 d) < hvol(Xa da M)

by the proof of Proposition 2 in [41]. In the case in which (X, g) is a
Riemannian manifold, we will let

hvol(X7 g) = hvol(X7 d7 V01)7

where d is the distance induced by g and Vol is the Riemannian volume
associated to g.

7.2. Transferring to the Hilbert metric setting. As in the intro-
duction, we define the Hilbert entropy of a representation p : I' —
PGL4(R) to be

H, = ligségpilog# {[’Y] e[l: %log (W) < r}

where [I'] is the set of conjugacy classes of I'. By combining results
of Coornaert-Knieper, Coornaert, and Cooper-Long-Tillmann, we will
establish the following proposition.

Proposition 7.1. Suppose I' is a word hyperbolic group, p : I' —
PGLg41(R) is an irreducible projective Anosov representation, and £ C
P(R¥1Y) is a properly convexr domain such that p(T') < Aut(Q) is a
reqular convexr cocompact subgroup. Then

Hy = 6,1)(Q, dq).
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Moreover, for any pg € Q) there exists C > 1 such that

1
5er” < #{y €' :da(po, p(Y)po) < r} < Ce'lr”.

Proof. Let C C € be a closed convex subset such that gC = C for all
g € p(), p(T")\ C is compact, and every point in CN AN is a C! extreme
point of €.

Using Selberg’s lemma, we can find a finite index subgroup I'g <
I' such that p(I'g) is torsion free. Then H, = H,. , 0,1, (%, da) =
0, (22, dg), and p(I'g)\ C is compact.

For v € I'y define

T(y) = inf do (p(7)e;c).

Since (C,dgq) is a proper geodesic metric space, p(I'g) acts cocompactly
on C, I'p is word hyperbolic, and ker p is finite, Theorem 1.1 in [21] says
that

() Gywy(@do) = lim Tlog# {h] € [To] :m(7) < 7}

Next we claim that

1 (Ml
) =g los <Ad+1<p<v>>>

for every v € T'y. Fix some v € I'y. Then Proposition 2.1 in [20] says

that
. 1 A1(p(7))
gt = 308 (11605 )

and so

A(p(7)) )
Aari(p(7) /)

Since « has infinite order we see that po(7) is biproximal, that is po(7)
and po(y)~! are proximal. So if £t and ¢~ are the attracting and re-
pelling eigenlines of pg(y) respectively, then Corollary 2.15 implies that
¢+, 0= € CNoR. Since every point in C N 0N is an extreme point of €2,
we then see that (¢7,¢7) C C. But if p € (¢*,¢7), then

da(po(v)p,p) = %log (/m>

by the definition of the Hilbert distance. Hence

L (Mol
®) ) =g los <Ad+1<p<v>>) '

T(v) > %log (
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Then by Equations (2) and (3)
o1
Op(ro) (R da) = lim —log# {[7] € [To] : 7(7) <7}

= lim % log # {[7] € [To] : %log (%) < r} = Hy.,

and so
H,= lero = (Sp(l"o)(Q,dQ) = 5p(p)(Q,dQ).

Finally by Théoreme 7.2 in [22], for any py € 2 there exists C' > 1 such
that

L e < 4y € T da(po, p(x)po) < 7} < Cellr

C = : ’ == : q.e.d.
7.3. Transferring to the Riemannian setting. Associated to every
properly convex domain Q C P(R%*1) is a Riemannian distance Bq on
Q2 called the Blaschke distance (see, for instance, [43, 11]). This Rie-
mannian distance is Aut(§2)-invariant and by a result of Calabi [18] has
Ricci curvature bounded below by —(d — 1). Since the Ricci curvature
is bounded below by —(d — 1), the Bishop-Gromov volume comparison
theorem implies that

hvol(QaBQ) < d—1.

Benzécri’s theorem (see Theorem 4.2) provides a simple proof that
the Hilbert distance and the Blaschke distance are bi-Lipschitz (see for
instance [44, Section 9.2]) and Tholozan recently proved the following
refined relationship between the two distances:

Theorem 7.2. [57] If Q C P(RY) is a properly convex domain,
then
Bq <dqg +1.

In particular, if T' < Aut(Q) is a discrete group, then
or(Q,da) < 6r (2, Ba) < hyat(2, Ba) <d— 1.

7.4. Rigidity in the Riemannian setting. The Bishop-Gromov vol-
ume comparison theorem implies that amongst the class of Riemann-
ian d-manifolds with Ric > —(d — 1) the volume growth entropy is
maximized when (X, g) is isometric to real hyperbolic d-space. There
are many other examples which maximize volume growth entropy, but
if X has “enough” symmetry then it is reasonable to suspect that
hyot(X,9) = d — 1 if and only if X is isometric to real hyperbolic d-
space. This was proved by Ledrappier and Wang when X covers a
compact manifold:

Theorem 7.3 (Ledrappier-Wang [41]). Let (X, g) be a complete sim-
ply connected Riemannian d-manifold with Ric > —(d — 1). Suppose
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that X is the Riemannian universal cover of a compact manifold. Then
hoot (X, g) = d—1 if and only if X is isometric to real hyperbolic d-space.

Later Liu [42] provided an alternative proof of Ledrappier and Wang’s
result and Liu’s argument can be adapted to prove the following.

Proposition 7.4. Let (X,g) be a complete simply connected Rie-
mannian d-manifold with Ric > —(d — 1) and bounded sectional cur-
vature. Suppose I' < Isom(X, g) is a discrete subgroup and there exist
C,rg >0 and xo € X such that

Celd—Dr < #{veT :dx(zg,yx0) <71}
for every r > ro. Then X is isometric to real hyperbolic d-space.

We will prove this result in Section A of the appendix.

7.5. Proof of Theorem 1.35. Suppose I is a finitely generated word
hyperbolic group, p : ' — PGL411(R) is an irreducible projective
Anosov representation, and p(I') preserves a properly convex domain
in P(R¥*1). Using Theorem 1.27, there exists a properly convex domain
Q c P(RT) such that p(T') < Aut(Q) is a regular convex cocompact
subgroup.

Combining Proposition 7.1 and Theorem 7.2 we see that

H, = 0,1)(Qdo) < d— 1.

Now suppose that H, = d — 1. By Theorem 7.2 and Proposition 7.1
there exists some Cy > 0 such that

Coel® D7 < 4 {y € T : Bq(po, p(7)po) < r}

for all » > 0. Moreover, Benzécri’s theorem implies that Bg has bounded
sectional curvature (see for instance [4, Lemma 3.1]). So by Proposi-
tion 7.4, (Q, Bq) is isometric to the real hyperbolic d-space. Hence
(Q,dq) is projectively equivalent to the Klein-Beltrami model of hyper-
bolic space (see [61]). In particular, by conjugating p(I') we can assume

d
Q:{[lle:‘--:xd]GIP’(Rd):Za:?<1}

i=1
and Aut(Q2) = PO(1,d). Then p(I") is a convex cocompact subgroup of
PO(1,d) in the classical sense.
Since

(5p(p)(Q, dg)=d—-1,
Theorem D in [58] implies that
o0NC = oN.

Then since C is convex we see that C = €. Then since p(I")\ C = p(I')\Q
is compact, we see that p(I') < PO(1,d) is a co-compact lattice.
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8. Regularity rigidity

In this section we will prove Theorems 1.46 and 1.49 from the in-
troduction. The proof of both theorems are based on the following
observation.

Observation 8.1. Suppose g € PGL4(R) is proximal and E; € P(Rd)
is the eigenline of g corresponding to the eigenvalue of largest absolute
value. Let dp is a distance on P(R?) induced by a Riemannian metric.
If v # £ and g"v — £}, then

A2(g) . 1
> ] —logd T, 01,
08 3 gy 2 imsup - log IP’(Q v, g)

Moreover, there exists a proper subspace V C P(Rd) such that: if v €
P(R?)\ V and g"v — £}, then

)‘2(9) IRT 1 n +
lo M) —nh_g)loglogdp(g v,fg).

1

We give a proof of the observation in Appendix C.

8.1. Proof of Theorem 1.46. We begin by recalling the theorem.

Theorem 8.2. Suppose d > 2, ' is a word hyperbolic group, and
p: I' = PGLy(R) is an irreducible projective Anosov representation
with boundary map & : O — P(RY). If

1) M = &(T) is a C? k-dimensional submanifold of P(R?) and

2) the representation AN*t1p: T — PGL(AFTIRY) is irreducible,
then

M(p(7) _ Aka(p(7)
() Me+2(p(7))

forally eT.

For the rest of the subsection, fix a word hyperbolic group I' and a
projective Anosov representation p : I' — PGLgy(R) which satisfy the
hypothesis of Theorem 8.2.

Define a map ® : M — P(AFT1RY) by

<I>(m) = [Ul VANREIWAN Uk—l—l]v

where T,, M = P(Spang{vi,...,vk11}). Since M is a C? submanifold,
® is a C! map.

Lemma 8.3. With the notation above, ® : M — P(AFTRY) is o C1
1MIMETSIon.

Proof. We break the proof into two cases: when k£ = 1 and when
k> 1.
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Case 1: Assume k = 1. We first consider the case when d(®),, = 0 for
every m € M. Then there exists a two dimensional subspace V C R?
such that T, M = IP(V') for all m. Then we must have M C P(V'). Since
p is irreducible, the elements in M span R? and so d < 2. Thus we have
a contradiction. So d(®),, # 0 on an open set in M. But since

®op(v) = (A*p(7)) o @

for every v € I and T" acts minimally on M, we see that d(®),, # 0 for
every m.

Case 2: Assume k > 1. Then by Theorem 1.25 there exists a properly
convex domain Q C P(R?) such that p(I'") < Aut(Q) is a regular convex
cocompact subgroup. Suppose C C 2 is a closed convex subset such
that gC = C for all g € p(I"), p(I')\C is compact, and every point in
00 NC is a C! extreme point of €.

We first claim that @ is injective. By Lemma 2.14 we have

E@rycoanc
and
n(or') C 09Q*.
Then since £(z) is a C! point of 9§ we have
Te(2)08 = P(ker n(z)).
Further since M C 0f) we see that
Te(z)yM C Te(3)0Q = P(ker n(z))

for every x € OI'. Now suppose that T¢, M = T¢(,, )M for some z,y €
OI'. Then

f(l’) c Tg(m)M = Tg(y)M C ]P’(ker n(y))

So x = y and hence @ is injective.
Since ® is injective and C*, d(®) must have full rank at some point.
By continuity, d(®) has full rank on an open set. But since

®op(y) = (N p(y) 0 @

for every v € T and T" acts minimally on M, we see that d(®) has full
rank everywhere. Hence, since M is compact and & is injective, ® is a
C' embedding. q.e.d.

Next fix distances d; on P(R?) and dy on P(A¥*!1RY) which are in-
duced by Riemannian metrics. Since ® is a C'' immersion, there exists
C > 1 such that

(4) édl(ml,mg) S dg(fb(ml),fb(mg)) S Cdl(ml,mg)

for all m1, mo € M sufficiently close.
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Now fix some v € I" with infinite order and let g € GL4(R) be a lift
of p(y) with det g = £1. Suppose that

A=A > 2N

are the absolute values of the eigenvalues of g. Then the absolute values
of the eigenvalues of A¥*1g have the form

)‘i1 )‘i2 T )\ik+1
for 1 <141 <19 < -+ <igy1 < d. In particular,
A1A2 s Ayt

is the absolute value of the largest ecigenvalue of AFT1g and
A1A2 - A k42

is the absolute value of the second largest eigenvalue of AF+1g.
Next let z*, 2~ be the attracting and repelling fixed points of v in
Jor.

Lemma 8.4. With the notation above, AN¥T1p(v) is prozimal with
attracting fived point ®(&(xz)).

Proof. We first show that ®(£(21)) is an eigenline of A*+1g whose
eigenvalue has absolute value Aj - - - Ag41.
Fix a norm on End(A*+? R?). Then we can find a sequence n,, — 0o

such that m(/\kﬂg)”m converges to some T' € End(AF+!TRY).
Then
() T(v) = lim (\*p(y))"mo

m—ro0

for every v € P(AFT1RY) \ P(ker T).

By Observation C.4, every element in the image of T is a sum of gen-
eralized complex eigenvectors of A¥Tlg whose eigenvalue has maximal
absolute value (that is, A\ - - - Ag11). We will show that the image of T is
®(£(xT)) and hence ®(£(z1)) is an eigenline of AF*1g whose eigenvalue
has absolute value A; - - - Agq1.

Now since AFT1p : T' — PGL(A*TRY) is irreducible, there exists
x1,...,zNn € 0L such that

span AFT1R?. By perturbing the x; (if necessary) we can also assume
that

= ¢{x1,...,xN}.

Next by relabelling the x; we can also assume that there exists 1 < m <
N such that

D(E(x1)) + -+ P(E(zm)) + ker T = AFFTLRY
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and

(@) + -+ O(E(wm) ) Nker T = (0).
Then by Equation (5)

T(®(&(x:) = lim (A" p(9)"@(E(xs)) = lim D(E(Y""))

m—ro0 m—ro0

= ®(¢(=1))

for 1 < i < m. So the image of T'is ®(£(z ")) and so Observation C.4
implies that ®(£(xT)) is an eigenline of A¥+1lg whose eigenvalue has
absolute value A1 - - Ag41.

We next argue that A*1p(y) is proximal. Suppose not, then by
Observation C.5 there exists a proper subspace V. C P(AFF! ]Rd) such
that: if v € P(AF1RY) \ V, then

0= lim *logda((A*())", B(E(a")).

n—o0 M

Since AFtlp : T' — PGL(AFT1RY) is irreducible there exists z € dI
such that ®(£(z)) ¢ V. Then by perturbing z (if necessary) we can also
assume that x # z~. Then

p(M)"(z) = £(v"x) — &(a™) and
(N ()" @(&(x)) = D(E(Y"x)) — D(E(a™)).

So by Observation 8.1 applied to p(7)

0>logi— > lim sup — logd1< (y)" §(x),£(x+)>

1 n—oo N

= limsup — log di(&(y )

n—0o0

n—oo T

(¢
= lim sup — log ds (<I> (93+)))
((

= limsup — logdg (AR p( f(:v)),@(é’(:ﬁ))) =0.

n—oo
Notice that we used Equation (4) in the second equality. So we have a

contradiction and hence A¥+1p(y) is proximal. q.e.d.

By Observation 8.1, there exists a proper subspace V; C P(Rd) such
that

logi— lim —logd1< (v )”U,&(ﬂﬁ))

n—oo
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for all v € P(R%) \ Vi with p(y)"v — &(zT). By the same observation,
there exists a proper subspace Vo C P(AFF! Rd+1) such that

Ak42 A1A2 - AR Ak
lo =lo
g)\kJrl & /\1)\2 )\k+1
- k+1 n +
= lim = logda (A ()" w, D(E()))

for all w € P(AFFIRY)\ Vi with (AF+p(y))"w — P(&(x)).

Since p is irreducible, {¢(z) : 2 € T} spans R%. So we can pick some
x € OI' such that £(x) ¢ Vi. By perturbing z (if necessary) we can also
assume that z # 2. Then v"z — 2T and so

log 32 = i log d (pw)"s(a:), §))

n—oo

— lim —logdl £(y )

n—,oo N

(e
— JE& E log dz (@(¢(1"2)), ®((x ™))
(20 §<x>>,¢><§<x+>>)-

Notice that we used Equation (4) in the third equality. Then applying
Observation 8.1 to A¥*1p(y) we have

= lim —log do

n—,oo N,

Akt
A
We prove the opposite inequality in exactly the same way. Since
AF+1p is irreducible, {®(£(z)) : z € T} spans RY. So we can pick some
x € OI' such that ®(£(x)) ¢ Va. By perturbing z (if necessary) we can
assume that z # . Then v"z — 2 and so

A
log )\—j < log

log Y41 — iy llog o (AFH p()) (€ (), (E())
A

k n—,oo N,
_ L +
- i hsi(tc0mn 36)
~ Jim L logd, (g )
n—oQ n
A2
_ il zt )
= nh_{go - log dy (,0 )) < log N
Hence
A2 Akt
A1 Ak

and since v € I" was an arbitrary element with infinite order this proves
the theorem.
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8.2. Proof of Theorem 1.49. We begin by recalling the theorem.

Theorem 8.5. Suppose thatT' < PSLa(R) is a torsion-free cocompact
lattice and p : T' — PSL4(R) is in the Hitchin component. If £ : OT' —
P(R?) is the associated boundary map and (OT') is a C? submanifold of
P(RY), then

A(p(7) — Aalp(v))
A(p(7))  As(p(7))

forally eT.

For the rest of the section suppose that I' < PSLy(R) is a torsion-free
cocompact lattice and p : I' — PSLy(R) is in the Hitchin component.

Let F(R?Y) denote the full flag manifold of RY. Then by Theorem 4.1
and Proposition 3.2 in [40] there exists a continuous, p-equivariant map
F= (W, .. ¢9): 9T - F(R?) such that:

1) € =€),
2) If z,y,z € OI are distinct, ki, ko, ks > 0, and ki + ko + k3 = d,
then

M) (@) + €% (y) + €% (z) = RY

is a direct sum.
3) If z,y,z € O are distinct and 0 < k < d — 2, then

F(y) + €4 (@) + (¢4 () NP (@) = R

is a direct sum.
4) If v € T\ {1}, then the absolute values of the eigenvalues of p(~)
satisfy

Ai(p()) > - > Aalp(7))-
5) If y € '\ {1} and z € 9T is the attracting fixed point of ~, then

¢(k) (x#) is the span of the eigenspaces of p(7y) corresponding to
the eigenvalues

A (p(7)); -5 Ak(p(7))-

Throughout the following argument we will identify a k-dimensional
subspace W = Span{wy, ..., w;} of R? with the point [w; A --- Awy] €
P(AFRY).

Next fix distances d; on P(R?) and dy on P(A2R%) which are induced
by Riemannian metrics.

Lemma 8.6. With the notation above, if v € T'\ {1} and x € T\
{a, 27}, then

Aa(p() _ 1 n
logm = nlgfoloﬁlogdl (f(’y w)f@@))
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and

As(p(v) _ 4. 1 n
logm = nIL%HIOgdZ (5(2)(V x))f(Q)(QU'JYr))'

Proof. Fix vy € T\ {1} and let \; = \;(p(7)). Then let vy, ..., vy € R?
be eigenvectors of p() corresponding to Ai,...,Aq. Then by Prop-
erty (5)

e®)(at) = Span{vy, ..., vy}

and

f(k) ($;) = Span{vd,k+1, s 7Ud}’
Further, if w ¢ Span{vi,vs,...,vg} then
A2 _ 1 1 n +
log N Jim —logdy (p(’y) [w], & (7 ))-
Notice, if z € OT'\ {z, 27} then Property (2) implies that

E(x) ¢ P(E(e]) @ €7D (@) = P(Span{vi, vs, - ., va})

and so

A2 : 1 n +
log 5 = lim ~ logd (£(1"2).£})).

For the second equality, notice that v; Av; are eigenvectors of A%p(7y).
So A1)g is the absolute value of the largest eigenvalue of A%p(7y) and
A1)z is the absolute value of the second largest eigenvalue of A2p(7). So
if

w ¢ Span{v; Av; : {i,j} # {1,3}},
then
1
log 22 = log 2172 = lim L log ds ((A%p(7)"[u], € (a) ).
A2 A1 A2 K

n—oo n

Now we claim that ¢@)(z) ¢ P(Span{v; Av; : {i,j} # {1,3}}) when
x € dr \ {z, 27 }. Suppose that ¢@)(x) = [wy A ws] where

d d
w1, = E ;U5 and wo = E Blvl
i=1 =1

Then

@) =1 D (i — aiBi)vi Ao

1<i<j<d

Now Property (3) implies that

£0(@) + €99 (a)) + (6Pt N €@ D7) =R
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is direct. Since

40 (@7) + (€2(F) NN (@3)) = Span{vz, vs,. -, va}
we see that a3 — azf # 0. Thus €3)(x) ¢ P(Span{v; A vj : {i,j} #
{1,3}})- So

A3 L 1 (2)(m (2)(..+

Now assume that M = £(AT') is a C? submanifold in P(RY). Then
define a map ® : M — P(A?R?) by

®(m) = [v1 A va),

where T,, M = P(Spang{vi,va}). Since M is a C? submanifold, ® is a
C! map.

Lemma 8.7. With the notation above, ®(£(z)) = £ () for all z €
or.

Proof. Since {z : v € I'\ {1}} is dense in 9T, it is enough to show
that ®({(z7)) = 5(2)(:&{) for v € T'\ {1}. By property (5) above,
¢k) (z1) is the span of the eigenspaces of p(7) corresponding to the
eigenvalues

A(p(7)), -5 A(p(7))

while ¢®*) (z5) is the span of the eigenspaces of p(7) corresponding to
the eigenvalues

Ad—k+1(P(7))s -+ 5 Aa(p(7))-

Now fix y € o'\ {z,z7 }. By Properties (1) and (2),

(y) ¢ PE(ad) @ 2 (27))

(
and so £(7y"y) = p(7)"E(y) approaches £(27) along an orbit tangential
+
gl

to £ (zF). Which implies that ®(¢(2F)) = @ (a). q.e.d.

Lemma 8.8. With the notation above, ® : M — P(A2R?) is a C!
embedding.

Proof. By the previous lemma and Property (2), ® is injective. Since
® is also O, d(®),, # 0 for some m € M. So d(®),, # 0 on an open
set. But since

®op(y) = (A*p(7)) o @

for every v € I and T" acts minimally on M, we see that d(®),, # 0 for
all m € M. Hence, since M is compact and ® is injective, ® is a C!
embedding. q.e.d.
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Since ® is a C' embedding, there exists C' > 1 such that

édl(ml,mg) < dy(B(my), B(ms)) < Cdly (my, ms)

for all my,ms € M. Then by Lemma 8.6 we have

A3(p(v)) _ A2(p(7))
A(p(7)  Mlp(7))

for all y € T.

Appendix A. An argument of Liu

In this section we explain how an argument of Liu [42] can be adapted
to prove the following.

Proposition A.1. Let (X, g) be a complete simply connected Rie-
mannian d-manifold with Ric > —(d — 1) and bounded sectional cur-
vature. Suppose I' < Isom(X, g) is a discrete subgroup and there exist
C,rg >0 and zo € X such that

Ce=r < #{y €T : dx(zo,yz0) < 7}
for every r > rg. Then X is isometric to real hyperbolic d-space.

Essentially the only change in Liu’s argument is replacing the words
“by a standard covering technique” with the proof of Lemma A.4 below.

Suppose for the rest of the section that (X, g) is a Riemannian man-
ifold and T' < Isom(X, g) is a discrete subgroup which satisfy the hy-
pothesis of the theorem. Let dx : X x X — R be the distance, Vol
denote the volume form, V denote the gradient, and let A denote the
Laplace-Beltrami operator on (X, g). Also, for z € X and r > 0 define

Br(z) ={y € X :dx(z,y) <r}.
We begin by recalling a result of Ledrappier and Wang.

Lemma A.2. [41] If there exists a C* function u : X — R such
that ||Vul| =1 and Au = d — 1, then X is isometric to real hyperbolic
space.

Proof. Define ¢ = el % Then ¢ is positive and by the chain rule
A(g) = eld=Du ((d 1) |Vl = (d - 1)Au) ~0.

Further, [|[Vlog ¢|| = (d—1)||Vu|| = d—1. So by Theorem 6 in [41], X
is isometric to real hyperbolic space. q.e.d.

Next fix a point xg € X and some very large R > 0. Let dp : X — R
be the function do(x) = dx(x,z9). Next let Cy C X denote the cut
locus of xg. Then dy is smooth on X \ (CoU{xo}) and Vol(Cy) = 0.
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Lemma A.3. There exists r, — 0o such that: if
A, ={x € X :r, —50R < dx(xo,z) <1 + 50R},
then

1
lim ——— Ad dV =d —1.
nl_}II;o VOl(An) /An\Co 0(33)

Proof. This is essentially claim 1 and claim 2 from [42]. First, the
Laplacian comparison theorem (see Theorem [63, Theorem 2.2]) imme-
diately implies that

1
lim sup —— Ady(z)dV < d — 1
P Nol(A,) /An\co o(z)dV <

and so we just have to prove

1
lirninf/ Ady(x)dV > d—1.
n—00 VO](An) An\Co 0( ) B

Let S;,X denote the unit tangent sphere at xg. For v € S, X let
7(v) = min{t > 0 : exp,, (tv) € Co}.
Next for » > 0 define
C(r)={ve S, X :r<r(v)}
Let J(r,v) be the non-negative function defined on U,~o{r} x C(r) such
that: if o € L'(X,dV), then

[ ewav=[" [ PO ()00

where dyi is the Lebesgue measure on Sy, X.
For r > 0 let

Sy = /C(r) J(r,v)dp(v).

Then by Fubini’s theorem

R
(6) /O Sydr = Vol(B, (20, R))

for every R > 0. We claim that there exists r, — oo such that

n—o0 Or, 50R
Suppose such a sequence does not exist, then there exists ¢ > 0 and

Rp > 0 such that

Sr450R < 100-DR(] _ g
Sr_50R
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for every r > Ry. But then an iteration argument implies that
S < O(1 — €)0r (41"

for some C' > 0 which is independent of r. But then Equation (6)
implies that ke (X, g) < (d—1). So we have a contradiction and hence
there exists r,, — oo such that

lim inf 7ST"+5OR > l00(d-1)R,
n=00 S, —50R

Next for v € Sz, X and r € (0,7(v)), define H (r,v) = (Ado) (exp,(rv)).
We have the following well known relationship between J and H, see
for instance [19, Equation 1.159],

(7) H(r,v)J(r,v) = aarJ(r, v).
Next define
ap(v) := min{7(v),r, — 50R} and b, (v) := min{r, + 50R, 7(v)}.

Then by Equation (7)

bn (v)
/ Ady(z)dV = / / H(r,v)J(r,v)drdu(v)
An\CO Sz X an

/ / (r,v)drdu(v)
Szo X Jan(v)

_ / T(ba(v),v) — J(an(v), v)dp(v)
S,

z0
= Sr,+50R — Sr,—50R + / J(bn(v),v)du(v)
{rn—50R<7(v)<rn,+50R}

> Sp,+50R — Sr,—50R-

By using the volume comparison theorem for annuli, see [63, Theorem
3.1], we have

limn sup Vol(4y) < 1 <e100(d—1)Rn _ 1)
n—o00 rn—b0R, d—1

and so

.. 1 .. ¢ Sra4+50R — Sr,—50R
1 f———— A >1 f—= &
I [, MY = it S

> (T inf SEE0R 1) fipy g D50k
n—oo rn—50R n—o0 VOI(An)

>d-—1. q.e.d.

Next let M,, C I be a maximal set such that
1) if v € M, then vyBr(zg) C Ay,
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2) if y1,v2 € M, are distinct, then
Y1 Br(x0) N2 Br(xo) = 0.
Then let
E, = M, - Br(zo) C Ay.
Lemma A.4. For R > 0 sufficiently large,
lim inf Vol(Ay)

n—oo eld—L)rn

>0

and

Proof. We prove the second inequality first. Fix some § € (0, R) such
that: if 71,70 € I" and

N1 Bs(xo) N y2Bs(wo) # 0,
then y129 = v2xo. Then let so = #{y € " : vaxo = 2} and
Np={v€T :r,—49R < d(yzo,x0) < r + 49R}.
Then
Vol(Bgs(xg))

Vol(N,, - Bs(xo)) = a0

#N,.
Moreover, since M,, was chosen maximally, we have

N, - B(g(l‘o) c M, - BQR+5(x0).

Then since
VOI(Mn . B2R+§(.'E0)) < VOI(BQR_H;(.T()))
VOI(Mn . BR(.T())) - VOI(BR(.T()))
we have
liggigéf \/;l(]\? > 0.

So it is enough to show that

Ny,
lim inf i

i oia,) Y

Now
#N, = #{y €T :dx(xo,yx0) < 15 +49R}
— #{y eT :dx(xo,yx0) < ry — 49R}

> Celd=Dratd9R) _ 50 1B, _ _
= e Vol By(ag) "0 Bra-t0r(%0)
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By the Bishop volume comparison theorem, see [63, Corollary 3.3], there
exists V) > 0 so that
Vol By, —agr(wo) < Voel?~ Dl =49R)

for all n > 0. So

v
N, > eld=Drn 49rR __ SoVo —49R))
#hn 2 € (Ce Vol Bs(z0) - )

Now C, sg, Vp,6 do not depend on R > 0 and R is some very large
number so we may assume that

19R s0Vo —49R -
- 1.
(Ce Vol Bs(z0) ) =
Then
(8) #N,, > eld=Dm,

Finally, by the volume comparison theorem for annuli (see [63, Theorem
3.1]) we have

o e(dfl)rn

R e, 7

and so

... #Nn
R Vol ~
This proves the second inequality.
To prove the first inequality, notice that

> Vol Bs(xo)

Vol(4,,) .
0

#Nn
and then use Equation (8). q.e.d.

Lemma A.5. There exists a sequence €, > 0 with lim, ., €, = 0
such that: if ¢ : A, — [0,1] is a C*° function compactly supported in
A, then

/ doApdV —/ ©AdpdV| < e, Vol(Ay).
X X\Co

REMARK A.6. When dj is smooth on X \ {zo} and ¢ is compactly
supported in X \ {z¢}, then

/dgAgpdV:/ wAdydV
X X

by integration by parts. So Lemma A.5 says that we can still do inte-
gration by parts in the case when dy is not smooth, but at the cost of
some additive error which depends on the support of ¢.
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Proof. Let 7(v), J(r,v), an(v), and b,(v) be as in the proof of
Lemma A.3. Let I = fX doApdV . Since integration by parts holds
for Lipschitz functions, we have

bn (v) a@
I= —/ Vdy - VedV = —/ / —(r,v)J (r,v)drdu(v)
X SzoX Jan(v) or

where @(r,v) = @(exp,, (rv)). Integrating by parts again and using
Equation (7)

bn (v)
L:/ / 30, 0) 2L (1 v)drdpu()
Sz X Jan (v) or

bn (v)
= [ o]
Sug X
an(v)
bn (v)
:/ gpAdodV—/ o(r,v)J(r,v) dp(v).
X\C() Son an(v)

Next we estimate the absolute value of the second term in last equa-
tion. If 7(v) > r, + 50R, then

Blan(v), ) = Fbn(v),v) = 0

since ¢ is compactly supported in A,,. Further, if 7(v) < r, — 50R, then
an(v) = by(v). Hence, if

~ bn (v

Br,0)J (o)) £0,

then we must have 7(v) € [r, —50R, 1, + 50R]. By the volume compar-
ison theorem, there exists Jy > 0 such that

J(r,v) < Joeld=1r,

Then since |p| < 1, we have

/SIOX o(r,v)J(r,v)

< Joe V" ({v : 7(v) € [rp — 5OR, 7, + 50R]}) .
Since p is a finite measure, we have

ILm w({v:7() € rn —50R,m, + 50R]}) = 0.

bn (v)
dp(v)

an(v)

Then by the first part of Lemma A.4,
i 50R, 7, + 50R
€n = Omﬂ({v :7(v) € [rp — yTn + 1}

satisfies the conclusion of the lemma. q.e.d.
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Let {x; : i € N} be a partition of unity for Br(zp). Then define ¢, =
> 1 Xi- Then each ¢, is smooth, maps into [0,1], and has compact
support in Br(zg). Moreover, ¢; < ¢2 < ... and if K C Bpg(xo) is a
compact set, then K C ¢ !(1) for n sufficiently large.

Next let <$n = Zve M, Pn o ~v~!. Then ¢~$n is compactly supported in
F, and

1 ~
im — [ 14— GpdV =0,
9) A oI(E) /X B~ ¢ndV =0

Lemma A.7. There exists a sequence v, € M, such that

lim do(Ynx) Agp(x)dV = (d — 1) Vol(Br(zo)).

n—oo

Proof. Let

1

Cn = W%%/Xdowx)Aﬁf)n(x)dv

By the Laplacian comparison theorem (see Theorem [63, Theorem 2.2]),

limsup Adp(z) <d—1

T—r00

in the sense of distributions, so

limsupc, <d-1.

n—oo

And we just have to prove that
liminfe, > d— 1.
n—oo

Using Lemma A.3 and the Laplacian comparison theorem we have

1
d—1=li A
= 5 G g, A0
1
i / AdodV + / AdodV
n—oc Vol(A,) < An\En)\Co En\Co
1
Stiminf ot ( (- 1) Vol(4,\ B, Adol)d
< liminf s (< Vo \Br) [ Adoto) V>

1 ~
= lim inf Vol(4,) ((d — 1) Vol(4, \ Ey) + /X\Co gf)nAdodV) .

n—oo Vol

In the last equality above we used Equation (9) and the fact that Ady
is uniformly bounded.
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Then by Lemma A.5 and the definition of ¢,

1 ~
d—1<liminf ——— [ (d — 1) Vol(4,, \ E, +/ do Ao, dV
n—o0 VO](An) <( ) ( \ ) X\Co 0 (b )
.. . (cn—d+1)Vol(E,)
<(d-1)+1 f
= =D+ B )
So by Lemma A.4, we must have liminf,, ,,o ¢, > d— 1. q.e.d.

Next consider the functions f, : Br(zo) — R given by
fu(x) = (do o vn)(x) — (do © ¥n)(20) = d(20, ) — d(x0, YnT0)-

Then each f, is 1-Lipschitz and f,(xg) = 0, so we can pass to a
subsequence such that f, converges locally uniformally to a function
f:B R(:CQ) — R.

Lemma A.8. f isC®, Af =d—1, and |Vf| = 1.

Proof. Using elliptic regularity, to show the first two assertions it is
enough to verify that Af = d—1 in the sense of distributions on Br(xg).
Let ¢ be a positive C* function compactly supported in Bgr(xg). We
can assume that ¢ < 1. Then

/X f(@)Ap(z)dV = lim do(ynx) Ap(z)dV.

n—oo Br (i[())

So by the Laplacian comparison theorem (see Theorem [63, Theorem
2.2])

[ s@ae@av <@-1) [ pav
X X
By Lemma A.7

lim [ do(vnz)A(dn — @) (z)dV
X

n—oo

— (d— 1) Vol( Bp(o)) — /X f(2) A ()dV.

Since ¢ < 1 and is compactly supported in Br(xo), the function ¢, — ¢
is non-negative for large n and so by the Laplacian comparison theorem

lim . do (@) A(¢n — ) (2)dV < (d — 1) lim (b — p)dV

n—oo n—oo X

— (d = 1) Vol(Bg(x0)) — (d— 1) /X o(x)dV.

Thus
[ s@ae@av = @-1) [ pav
X X
Hence Af =d — 1 on Bg(zo).
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Finally, by construction f is the restriction of some Busemann func-
tion to Br(zo) and so ||V f|| = 1 on Br(xo) by Lemma 1 part (1) in [41].
q.e.d.

Now we fix a sequence R, — oo and repeat the above argument
to obtain functions h,, : Bpg,(z9) — R which satisfy [|[Vh,| = 1 and
Ah, =d—1on Bg,(x). Since each hy, is 1-Lipschitz and hy(z9) = 0,
we can pass to a subsequence so that h,, — h where h : X — R satisfies
|IVh|| =1 and Ah = d—1. Then X is isometric to real hyperbolic space
by Lemma A.2.

Appendix B. Eigenvalues of certain subgroups

Proposition B.1. Suppose d > 3, A < PSL4(R) is a discrete sub-
group, and G < PSL4(R) is the Zariski closure of A. If

1) G = PSLy(R),

2) d=2n>2 and G is conjugate to PSp(2n,R),
3) d=2n+1> 3 and G is conjugate to PSO(n,n + 1), or
4) d = 7 and G is conjugate to the standard realization of Gg in

PSL7(R),
then there exists some v € A such that

M), A2(v)

A2(7) 7 As(7)
Proof. By conjugating, we can assume that either G = PSL4(R),
d=2n>2and G =PSp(2n,R), d=2n+1 > 3 and G = PSO(n,n+1),
or d = 7 and G coincides with the standard realization of G in PSL7(R).

By the main theorem in [5] it is enough to find some element g € G
such that

Ailg) , Aa(9)
Aa(g) © As(g)
This is clearly possible when G = PSLy(R) and d > 3.
Consider the case when d = 2n > 2 and G = PSp(2n,R). Then for
any o1,...,0, € R, GG contains the matrix

e’

e n

So picking 01 > g9 > -+ > g, > 0 with 01 — 09 # 03 — 03 does the job.
Consider the case when d = 2n+1 > 3 and G = PSO(n,n+1). Then
for any o1, ...,0, € R, G contains a matrix g which is conjugate to the
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block diagonal matrix

[cosh(oy)  sinh(oy)
sinh(oq) cosh(oy)

cosh(o,) sinh(oy,)
sinh(op,) cosh(oy,)
1

Notice that this matrix has eigenvalues e?,e %1, ..., e, e %, 1. So
picking o1 > 09 > -+ > o, > 0 with 01 — 09 # 09 — 03 does the job
when n > 3 and picking o1 > o9 > 0 with 01 — 09 # 09 does the job
when n = 2.

Finally consider the case when d = 7 and G coincides with the stan-
dard realization of Gy in PSL7(R). The standard realization of Gy in
PSL7(R) can be described as follows. First let

H = {a1 + a2i + a3j + a4k : a1, ...,a4 € R}
be the quaternions. Then define the split Cayley algebra ¢’ = Ho He
with multiplication
(a + be)(c + de) = (ac + db) + (bc + da)e.

This is an 8-dimensional algebra over R with conjugation

(a + be) =a — be.

Next let Gy be the R-linear transformations of € which satisfy
a(ry) = afz)a(y).

Then for € G2 and x € €' it is straightforward to verify that a(Z) =
a(x) (see for instance [62, Proposition 2]). So G preserves the subspace
Spang{i, j, k, e, i€, je, ke}
of purely imaginary elements. Since a(l) = 1 for every o € G, if we
identify i, j, k, e, ie, je, ke with eq, ..., ey the standard basis of R” we

obtain an embedding G2 — PSL7(R).
Now if t,s € R a tedious calculation shows that

[cosh(t) 0 0 0 sinh(?) 0 0 ]
0 cosh(s) 0 0 0 sinh(s) 0
0 0 cosh(s+t¢) 0 0 0 sinh(s + t)
0 0 0 1 0 0 0
sinh(¥) 0 0 0 cosh(t) 0 0
0 sinh(s) 0 0 0 cosh(s) 0
0 0 sinh(s+t) O 0 0 cosh(s +t)

is contained in the image of this embedding. This matrix has eigenvalues
el et s+t ef(s+t) 1.

So picking t > s > 0 with s # t — s does the job. q.e.d.

S —S
7676 76
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Appendix C. Facts about linear transformations

In this section we describe some basic properties of the action of
PGLg(R) on P(R?). These facts are used in Section 8 and are all simple
consequences of Gelfand’s formula. In this section we let ||[v|| denote the
Euclidean norm of a vector v € R%.

For a non-zero d-by-d real matrix A let

Aa(4) < < M(4)

to be the absolute values of the eigenvalues of A (counting multiplicity)
and let

o4(A) < < o1(A)
denote the singular values of A.

Theorem C.1 (Gelfand’s Formula). Suppose that A is a non-zero
d-by-d real matrix. Then

A(A) = lim oy (A"

n—oo

Moreover, there exists a proper subspace V.C R? such that
1
log A1 (A) = lim —log||A™v||
n—oo N

for allv e RA\V.

Since the “moreover” part is usually not included in statements of
Gelfand’s formula we sketch the proof.

Proof of the “Moreover” part. Notice that the first part of Gelfand’s for-
mula implies that

1 1

limsup — log ||A"v|| < limsup —log (g1(A") ||v|) = log A\1(A)
n—oo N n—soo N

for nonzero v € R%. So we just have to show that there exists a proper

subspace V C R? such that

1
liminf —log [|A"v|| > log A1 (A)
n—oo N

for all v € R? \V.

Using the Jordan decomposition we can write A as a product of three
commuting matrices A = ESU where F is elliptic, S is real diagonal-
izable, and U is unipotent. Let x1, ..., X be the eigenvalues of S (not
counting multiplicity) and let R? = EB;“:lVi denote the corresponding
eigenspace decomposition. Then let

V=a&{Vi:lxl # (9}
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Also, define a new norm ||-||, on R¢ by

where w = Zle w; and w; € V;.
Since F is elliptic, there exists C' > 1 such that:

1
¢ vl < [E" ] < Cllw|

for all n € Z and w € R Further, since U™! is unipotent, Gelfand’s
formula implies that

1
lim —logo(U™") = 0.

n—oo N
Then if v € R¥\V we have
hm mf ! log HA”UH = hm mf — log HE”S”U”UH
1
1
= liminf — log || S™v|| .
n—oo n
Then, by the equivalence of finite dimensional norms,
1
hmlnf log [|S™| = hmlnf log |S™], = liniinf —log (M (A)" [Jv]])
n—oo N
= log >\1(A). q.e.d.

For the rest of the section, let dp be a distance on P(R?) induced by
a Riemannian metric. We will use the following estimate.

Observation C.2. Suppose A C P(Rd) is an affine chart and ¢ :
R?! — A is an affine automorphism. Then for any compact set K C
R there exists C' > 1 such that

1
o v —wll < dp(e(v), e(w)) < C'flv —w]
for all v,w € K.
Proof. This follows from a compactness argument. q.e.d.

Observation C.3. Suppose g € PGL4(R) is proximal and £ €

P(Rd) is the eigenline of ¢ corresponding to the eigenvalue of largest
absolute value. If v # £ and g"v — £, then

A
log )\2(9) > lim sup — log dp <g"v,€;>.
1(9) n—oo N



ANOSOV REPRESENTATIONS AND CONVEX COCOMPACT ACTIONS 579

Moreover, there exists a proper subspace V C P(Rd) such that: if v €
PR\ V and g"v — £}, then

Aalg) .1 N
— lim - logdgp (g™, £F).
Mlg)  noeon 08 H”(g v 9)

log

Proof. By changing coordinates we can assume that
A0
g - 0 A 9
K; =[1:0:---:0], |\ = A1(9), and A1 (A) = Xa(g).

Through out the proof we will use the notation [v; : vs] € P(R?)
where v; € R and vy € R, With this notation

An
(10) g" - [vr v = [Ny s AMwg] = |:’U1 )\nvg] )

By Gelfand’s formula % — 0 and so g"-v — E; if and only if v; # 0.
Next we fix a small neighborhood U of E; such that

UcC {[’Ul : 02} T U1 75 0}.
By Observation C.2 there exists C' > 1 such that if v = [v1 : vg] and
w = [wy : ws] are in U, then

1
(11) ol lv2/v1 — w2 /wr || < dp(v,w) < Cllvg/v1 — w2/wi|.

So if v = [v1 : wa] € P(RY) and g"v — ¢y, then by Equations (10)
and (11) we have

hmsup—logdp<g v E*) = lim sup — log< - ||An02||>
A2(9)
og :
A1(9)

Using the “moreover” part of Gelfand’s formula, there exists a proper
subspace Vp € R?! such that

< lim sup 1 log (|>\1| (A”)> =1

n—oo

1
log A1 (A) = lim —log||A™v||
n—oo N
for all v € RT"1\Vy. Then let
V = {[v1 : vo] € P(RY) : vy € Vp}.
Then if v = [v; : v2] € P(R?)\V and g"v — (5, Equations (10) and (11)
imply that

.1 n o1 "
lim —logdp(g v,éj{) = nll—>HoloﬁlOg <|)\|n | A v2H> = log

n—oon,
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Observation C.4. Suppose that A € GL4(R) and there exists ng —
oo such that

T = lim ! A"k

k—o0 || ATk ||

in End(R?). If v € Im(T), then there exists generalized eigenvectors
V1, ..., Um € C% of A such that

V=111 + e _|_ fUm
and the eigenvalues corresponding to v1, ..., v, all have absolute value

A1 (A).

Proof. By changing coordinates we can assume that

(A O
= (05
where A; € GLg(R), Ay € GL4_k(R), every eigenvalue of A; has abso-
lute value A;(A), and every eigenvalue of A has absolute value strictly
less than A1(A). Then every v € Span{ey,...,ex} can be written as a

linear combination of generalized eigenvectors in C? whose correspond-
ing eigenvalues have absolute value A1 (A). Further by Gelfand’s formula

0= lim ——— A
hvoo || Ame|| 2

[Ty 0
(4 o)

for some k-by-k matrix 77. q.e.d.

and so

Observation C.5. Suppose that g € GL4(R), Ai(g) = A2(g), and
vo € R? is an eigenvector of g whose eigenvalue has absolute value A1(g)-
Then there exists a proper subspace V C P(R?) such that:

.1 n
0= lim —logdp (g v, [vo]>
for every v € P(RY) \ V.

Proof. Suppose that gvg = Avg. Let ey, ..., ey be the standard basis
of R%. By making a change of coordinates we can assume that vy = e;

and
_(J O
g - 0 A 9
where J is a m-by-m upper triangular matrix with A,..., A down the
diagonal.
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By Observation C.2, we can fix a small neighborhood U of [e;] and

C > 1 such that: if w=[w; :---:wy| € U, then
(12)
L/ fwn)| < defe] ) < C .. wgfo)]

Then fix § > 0 such that: if w ¢ U, then dp(w, [e1]) > 6.
We consider two cases:

Case 1: m > 1. Since J is upper triangular with A,..., A on the
diagonal,

ge; € \v; + Span{ey,...,e;_1} fori=1,...,m.
Let
V = [Span{ei,...,em—1,€m+1,---,€d}]

Suppose that v = "(v1,...,v4) € R? and [v] ¢ V. Then v, # 0. Let

t(vYL), .. ,vc(ln)) = g".

Then
o] < llg™oll < o1(g™) o]

and 117(7? ) = A"0,,. Since dp has finite diameter we see that

1
0 > lim sup log dp (g”[v], [61]).

n—0o0

If g"[v] ¢ U, then

1 1

- n > ~log 4.

- logdﬁ»(g [v], [61]) > —logd
And if ¢"[v] € U, then by Equation (12)
(n)

Um

1 n -1 1
ﬁlOngP(g v,[el]) 2 ——log(C) + —log o0

-1 1 1 1
> — log(C) + —log [A| = —logo1(g") — — log [[v]|.
n n n n
Hence Gelfand’s formula implies that
1
< liminf = n :
0 < liminf —log dp (g [v], [61])

So

1 .
0= lim —~logdp (9 [v], [61])-

Case 2: m = 1. Then
(A0
g - 0 A 9
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where A € GLg_1(R). Since A1(g) = A2(g), we see that A\1(A) = Ai(g).
By the “moreover” part of Gelfand’s formula there exists some proper
subspace Vy € R such that

1 .
(13) log A1(4) = lim —log || A™v]

for all v € R\ V5.
We will use the notation [v; : v5] € P(R?) where v; € R and vy €
R4, With this notation

An
g" [y s vg] = [Ny s Awg] = [vl : )\nvg] .
Then define
V= {[’Ul : 'UQ] S P(Rd) T U9 € V()}

Fix some v € P(R%) \ V. Since dp has finite diameter we see that

1
>1i — "
0 > lim sup-- log dp (g [v], [61])-
If g"[v] ¢ U, then

1 1

_ n > - .

~logdp(g"[0], [e1]) > = log 5
And if ¢g"[v] € U, then by Equation (12)

1 . 1 1 1
Elogd]p(g [v],[el]) > —nlogC—FnlogH)\nA V9

1 1
= ——logC' + —log |A| + — log || A" va]| .
n n
So by Equation (13)

1
lim inf — log dp (g”[v], [61]) > 0.

n—oo n
So
0= li 11 dp(g"
= nggoﬁ og p<g [v], [61]>~ q.e.d.
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