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Abstract
We demonstrate under appropriate finiteness condi-
tions that a coarse embedding induces an inequality of
homological Dehn functions. Applications of the main
results include a characterization of what finitely pre-
sentable groups may admit a coarse embedding into a
hyperbolic group of geometric dimension 2, characteri-
zations of finitely presentable subgroups of groups with
quadratic Dehn function with geometric dimension 2,
and to coarse embeddings of nilpotent groups into other
nilpotent groups of the same growth and into hyper-
bolic groups.
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1 INTRODUCTION

A coarse embedding of one metric space into another generalizes the notion of a quasi-isometry.
It allows for themetric to be distorted by any functions that tend to infinity, rather than just linear
functions allowed in quasi-isometries.

Definition 1.1. We say that a map 𝑓∶ 𝑋 → 𝑌 is a coarse embedding if there are functions
𝜌−, 𝜌+ ∶ ℝ → ℝ such that lim𝑥→∞ 𝜌−(𝑥) = lim𝑥→∞ 𝜌+(𝑥) = ∞ and where the following inequal-
ity holds:

𝜌−(𝑑(𝑥, 𝑦)) ⩽ 𝑑(𝑓(𝑥), 𝑓(𝑦)) ⩽ 𝜌+(𝑑(𝑥, 𝑦)).

In geometric group theory, a coarse embedding is a geometric version of subgroup containment.
Indeed, if 𝐻 is a finitely generated subgroup of 𝐺, then the inclusion map is a coarse embed-

© 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.

Bull. London Math. Soc. 2022;1–15. wileyonlinelibrary.com/journal/blms 1

mailto:pengitore.1@osu.edu
https://wileyonlinelibrary.com/journal/blms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fblms.12580&domain=pdf&date_stamp=2022-04-13


2 ROBERT KROPHOLLER and MARK PENGITORE

ding. Thus, there are questions about which results on subgroups remain true when passing to
coarse embeddings.
In general, coarse embedding are wilder than subgroups. For instance, every finitely generated,

infinite group admits a coarse embedding of ℤ, however, there are infinite finitely generated tor-
sion groups. Moreover, in the class of hyperbolic groups, there are coarse embeddings of ℤ2 into
hyperbolic groups while it certainly cannot be a subgroup.
For the statement of our theorems, we let Fill𝑘𝐺(𝓁) be the 𝑘-dimensional homological Dehn

function for 𝐺, that is, the difficulty of filling (𝑘 − 1)-cycles with 𝑘-chains. Additionally, if
𝑓, g ∶ ℕ → ℕ are functions, we say that 𝑓 ≺ g if there is a constant 𝐶 > 0 such that for all 𝑛 we
have that 𝑓(𝑛) ⩽ 𝐶g(𝐶𝑛 + 𝐶) + 𝐶𝑛 + 𝐶. We say that 𝑓 ∼ g when 𝑓 ≺ g and g ≺ 𝑓. For a group 𝐺,
we denote𝐾(𝐺, 1) as a choice of an Eilenberg–Maclane space for 𝐺. We say a group 𝐺 has geomet-
ric dimension 2 if the minimal dimension of a 𝐾(𝐺, 1) is 2. Finally, we say that a group 𝐺 is of type
𝐹𝑛 if it admits a 𝐾(𝐺, 1) with a compact 𝑛-skeleton.
In this paper, we study the preservation of homological filling functions under coarse embed-

dings. It is known that there are groups 𝐻 ⊂ 𝐺 for which the homological filling function vary
greatly. For instance, consider the inclusionGL3(ℤ) ↪ GL5(ℤ), the former has exponential Dehn
function [4, Chapter 11] whereas the latter has quadratic Dehn function [17].
This type of example does not exist if 𝐺 is assumed to have cohomological dimension 2. See the

remark after Theorem 4.6 of [5].

Theorem 1.2. Let 𝐺 be a group a cohomological dimension 2, and let 𝐻 be a finitely presented
subgroup. Then Fill2𝐻(𝓁) ≺ Fill2𝐺(𝓁).

In this paper,we take amore geometric approach andprove a similar theorem for coarse embed-
dings. Aswe cannot use the algebra of cohomology,wemust replace the cohomological dimension
assumption with the corresponding geometric dimension assumption. We prove the following.

Theorem 4.2. Let 𝐺 be a finitely presented group of geometric dimension 2, and suppose that 𝐻 is
a finitely presented group which admits a coarse embedding into 𝐺. Then Fill2𝐻(𝓁) ≺ Fill2𝐺(𝓁).

Due to [5, Theorem 5.2], we know that a finitely presented group 𝐺 is word hyperbolic if and
only if Fill2𝐺(𝓁) ∼ 𝓁. Thus, the first consequence of the above theorem is a geometric generaliza-
tion of Gersten’s characterization of finitely presented subgroups of hyperbolic groups of geomet-
ric dimension 2. [5, Theorem 5.4].

Theorem 4.3. Let 𝐺 be a hyperbolic group of geometric dimension 2, and suppose 𝐻 is a finitely
presented group that admits a coarse embedding into 𝐺. Then𝐻 is a hyperbolic group.

For the next corollary, we collect a few observations. First note that if 𝛿𝐺(𝓁) is theDehn function
of 𝐺, then Fill2𝐺(𝓁) ≺ 𝛿𝐺(𝓁). Moreover, [12, Proposition 8] implies that if Fill2𝐺(𝓁) grows strictly
slower than 𝓁2, then 𝐺 is hyperbolic. Thus, we may use Theorem 4.3 to obtain a characterization
of subgroups of groups with quadratic Dehn function of geometric dimension 2.

Corollary 1.3. Let 𝐺 be be a finitely presented group of geometric dimension 2 with quadratic Dehn
function. If 𝐻 is a finitely presented group that admits a coarse embedding into 𝐺, then either 𝐻 is
a hyperbolic group or𝐻 has quadratic Dehn function. In particular, all finitely presented subgroups
of 𝐺 are either hyperbolic or have quadratic Dehn function.
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The next theorem generalizes [7, Theorem 1.1] to the context of coarse embeddings. It says
that under appropriate finiteness conditions the higher dimensional homological Dehn filling
functions are non-decreasing under coarse embeddings.

Theorem 4.4. Let 𝑘 ⩾ 1. Suppose that 𝐺 admits a finite (𝑘 + 1)-dimensional 𝐾(𝐺, 1) and that 𝐻
is a finitely presented group of type 𝐹𝑘+1. If 𝐻 admits a coarse embedding into 𝐺, then Fill𝑘+1

𝐻
(𝓁) ≺

Fill𝑘+1
𝐺

(𝓁).

Since the inclusion of a horosphere in hyperbolic (𝑘 + 1)-space gives a coarse embedding of ℤ𝑘

into 𝜋1(𝑀) when𝑀 is a closed (𝑘 + 1)-dimensional real hyperbolic manifold, the above theorem
cannot be improved. In contrast, the following application of Theorem4.4 demonstrates that there
exists no coarse embedding of a torsion free, finitely generated nilpotent group whose integral
cohomological dimension is 𝑘 + 1 into 𝜋1(𝑀). Thus, whenever a torsion free, finitely generated
nilpotent admits a coarse embedding into 𝜋1(𝑀), its integral cohomological dimension must be
strictly less than that of the integral cohomological dimension of𝑀. This follows from the fact that
[10, Theorem 4] implies all homological filling functions for hyperbolic groups are linear and that
[15, IV 5.8 Theorem] and [6] together imply the top-dimensional homological filling functions for
torsion free, finitely generated nilpotent group are superlinear. Similarly, [9, Theorem 3.3] implies
that torsion free, finitely generated nilpotent groups of integral cohomological dimension 𝑘 + 1

cannot coarsely embed into a nonamenable integral Poincaré duality group of dimension 𝑘 + 1.

Corollary 1.4. Let 𝐺 be either a hyperbolic group that admits a finite (𝑘 + 1)-dimensional 𝐾(𝐺, 1)

or a nonamenable integral Poincaré duality group of dimension 𝑘 + 1. Then a torsion-free, finitely
generated nilpotent group of integral cohomological dimension 𝑘 + 1 cannot admit a coarse embed-
ding into 𝐺.

Our next application of Theorem 4.4 is to coarse embeddings between torsion free, finitely
generated nilpotent groups 𝐺 and 𝐻 with integral cohomological dimensions equal to 𝑛. Since
asymptotic dimension, integral cohomological dimension, and Hirsch length are all equal for tor-
sion free, finitely generated nilpotent groups, one must appeal to other invariants such as word
growth or the asymptotic cone to obstruct the existence of coarse embeddings between 𝐺 and 𝐻.
For instance, when 𝐺 and 𝐻 equal polynomial degrees of word growth, [3, Theorem 1.2] implies
that there exist no coarse embeddings from either 𝐺 to 𝐻 or vice versa when 𝐺 and 𝐻 have
distinct asymptotic cones. When 𝐺 and 𝐻 have word growth of polynomial degrees 𝑑1 and 𝑑2,
respectively, where 𝑑1 < 𝑑2, monotonicity of word growth under coarse embeddings implies that
there are no coarse embeddings of 𝐻 into 𝐺. Since [15, IV 5.8 Theorem] and [6] together imply

that Fill𝑛𝐺(𝓁) ∼ 𝓁
𝑑1

𝑑1−1 and Fill𝑛𝐻(𝓁) ∼ 𝓁
𝑑2

𝑑2−1 , Theorem 4.4 implies that 𝐺 does not admit a coarse
embedding into𝐻. These facts together imply a nearly complete classification ofwhat torsion free,
finitely generated nilpotent groups of the same integral cohomological dimension admit coarse
embeddings into each other.

Corollary 1.5. Let 𝐺 and𝐻 be torsion free, finitely generated nilpotent groups of the same integral
cohomological dimension. If the asymptotic cones of 𝐺 and𝐻 are not isomorphic as Lie groups, then
𝐺 and𝐻 cannot admit coarse embeddings into one another.

The only case that remains is when two torsion free, finitely generated nilpotent groups 𝐺

and 𝐻 who have the same asymptotic cone. These are groups will share many properties such
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as growth rate and integral cohomological dimension. Moreover, by [15, IV 5.8 Theorem], we have
that Fill𝑛𝐺(𝓁) ∼ Fill𝑛𝐻(𝓁) where 𝑛 is the topological dimension of the asymptotic cone. In certain
cases, such as when 𝐺 and 𝐻 are cocompact lattices in the associated asymptotic cone, we have
that 𝐺 and 𝐻 are bi-Lipschitz. Hence, they naturally admit coarse embeddings into each other.
However, when either𝐺 or𝐻 is not a lattice in the asymptotic cone, thenwhether a coarse embed-
ding or even a Lipschitz embedding exists is open.
Finally, we apply the techniques of Theorem 4.2, to obtain characterizations of finitely pre-

sented subgroups of infinitely presented small cancelation groups.

Theorem 5.5. Let 𝐺 be finitely generated group that admits an infinite 𝐶′(1∕6)-small cancelation
presentation where no relator is a proper power. If𝐻 is finitely presented group that admits a coarse
embedding into 𝐺, then 𝐻 is a hyperbolic group. In particular, all finitely presented subgroups of 𝐺
are hyperbolic.

Thus, small cancelation groups contain no finitely presented subgroup obstructions to hyper-
bolicity. However, there are many examples of small cancelation groups that cannot coarsely
embed into hyperbolic groups [8].

1.1 Structure of the article

In Section 2, we introduce basic definitions and embedding results betweenCWcomplexes associ-
ated to Lipschitz embeddings between finitely generated groups. Using these embedding results,
Section 3 introduces homological filling functions and relates homological fillings of codimension
0 subcomplexes with fillings in the ambient complex. Sections 4 and 5 give the proofs of the main
results. Section 6 finishes with some questions.

2 EMBEDDING LEMMAS

In this section, we will obtain various embedding results between classifying spaces.
Throughout we will be interested in CW complexes with 𝐺-actions. To make the article easier,

we will focus on a particular subset of CW complexes namely, combinatorial complexes.

Definition 2.1. Combinatorial complexes and combinatorial maps between them are defined
recursively on dimension. Zero-dimensional CW complexes are defined to be combinatorial as
are arbitrary maps between them. In general, a continuous map between CW complexes is said
to be combinatorial if it the image of each open cell of the domain is an open cell of the target. A
combinatorial (𝑘 + 1)-complex is a CW complex whose 𝑘-skeleton is a combinatorial 𝑘 complex
and whose attaching maps 𝜙𝑒 of (𝑘 + 1)-cells 𝑒 are combinatorial maps for suitable combinatorial
structures on 𝜕𝐷𝑘+1

𝑒 = 𝑆𝑘.

Every simplicial complex is a combinatorial complex. Since every CW complex is homotopy
equivalent to a simplicial complex, we see that, up to homotopy, the class of combinatorial com-
plexes is equivalent to the class of CW complexes.
When given a combinatorial complex 𝑋, we denote its 𝑘-skeleta as 𝑋(𝑘). We denote 𝑆𝑘 as the

𝑘-sphere and 𝐷𝑘 as the 𝑘-disk.
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Definition 2.2. We say that a map 𝑓∶ 𝐻 → 𝐺 is a coarse embedding if there are nondecreasing
functions 𝜌−, 𝜌+ ∶ ℝ → ℝ such that lim𝑥→∞ 𝜌−(𝑥) = lim𝑥→∞ 𝜌+(𝑥) = ∞ andwhere the following
inequality holds:

𝜌−(𝑑(𝑥, 𝑦)) ⩽ 𝑑(𝑓(𝑥), 𝑓(𝑦)) ⩽ 𝜌+(𝑑(𝑥, 𝑦)).

Throughout 𝑓∶ 𝐻 → 𝐺 will be a coarse embedding of groups. The following is useful in that
we can replace the upper bound by a linear function.

Proposition 2.3. Let 𝑓∶ 𝐻 → 𝐺 be a coarse embedding. Then 𝑓 is 𝜌+(1)-Lipschitz.

Proof. Let 𝑥, 𝑦 be arbitrary elements of 𝐻. There is a sequence of elements 𝑥 = 𝑧0, 𝑧1, … , 𝑧𝓁 = 𝑦

such that 𝑧𝑖 and 𝑧𝑖+1 are at distance 1 apart and 𝓁 = 𝑑(𝑥, 𝑦). Since 𝑧𝑖 and 𝑧𝑖+1 are at distance
1, we have that 𝑑(𝑓(𝑧𝑖), 𝑓(𝑧𝑖+1)) ⩽ 𝜌+(1), and so, 𝑑(𝑓(𝑥), 𝑓(𝑦)) ⩽

∑
𝑖 𝑑(𝑓(𝑧𝑖), 𝑓(𝑧𝑖+1)) ⩽ 𝓁𝜌+(1) =

𝜌+(1)𝑑(𝑥, 𝑦). □

Proposition 2.4. Let 𝑓∶ 𝐻 → 𝐺 be a coarse embedding. Then the preimage of each 𝑓−1(g) is uni-
formly bounded

Proof. Since 𝜌− is nondecreasing and lim𝑥→∞ 𝜌−(𝑥) = ∞, there is an 𝑙 such that 𝜌−(𝑥) > 0 for all
𝑥 ⩾ 𝑙. Thus if 𝑓(ℎ1) = 𝑓(ℎ2), then 𝑑(ℎ1, ℎ2) ⩽ 𝑙. Thus the preimage of g is bounded by the size of
the ball of radius 𝑙 in 𝐻. □

Definition 2.5. A Cayley 𝑛-complex for a group 𝐺 is an 𝑛-dimensional cell complex 𝑋 equipped
with a free, cellular 𝐺-action such that 𝜋𝑖(𝑋) = 1 for all 𝑖 < 𝑛. We say that 𝑋 is cocompact if there
are finitely many orbits of 𝑘-cells for each 𝑘.

A Cayley 𝑛-complex for 𝐺 is exactly the 𝑛-skeleton of the universal cover of a 𝐾(𝐺, 1). Indeed,
by adding cells of dimension greater than 𝑛, we can obtain a contractible complex with a free,
cellular 𝐺 action. Thus, the quotient is a 𝐾(𝐺, 1).

Remark 2.6. If a Cayley 𝑛-complex has one orbit of vertices, then the 1-skeleton is a Cayley graph
for the group. By collapsing a 𝐺 invariant fores,t we can always arrange this situation.

The following lemma follows immediately from the definition of type 𝐹𝑛.

Lemma 2.7. A group 𝐺 is of type 𝐹𝑛 if and only if it admits a cocompact Cayley 𝑛-complex.

This next proposition demonstrates that under appropriate finiteness conditionswemay extend
the coarse embedding 𝑓∶ 𝐻 → 𝐺 to an inclusion of cocompact Cayley 𝑛-complexes.

Proposition 2.8. Let𝐻 be a group of type 𝐹𝑛 for 𝑛 > 1, and let𝑋 be a cocompact Cayley 𝑛-complex
for𝐻 with a single orbit of vertices.
Let 𝐺 be a group of type 𝐹𝑛−1, and let 𝑍 be Cayley 𝑛-complex for 𝐺 with a cocompact (𝑛 − 1)-

skeleton and a single orbit of vertices.
Let 𝑓∶ 𝐻 → 𝐺 be a coarse embedding. Then there exists a Cayley 𝑛-complex𝑌 for𝐺 such that the

following hold.
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F IGURE 1 An extra edge is added between every pair of points 𝑧1, 𝑧2 at distance ⩽ 𝐶. The resulting copy of
𝑆1 is then filled with a disk

∙ 𝑌 has cocompact (𝑛 − 1)-skeleton.
∙ 𝑍 is a deformation retract of 𝑌.
∙ There is a map 𝜙∶ 𝑋 → 𝑌 extending 𝑓, which is injective on 𝑛 − 1-skeleta.
∙ There exists𝑁 ⩾ 0 such that each 𝑛-cell of 𝑋 is mapped to a collection of ⩽ 𝑁 𝑛-cells in 𝑌.

Proof. There is a one-to-one correspondence between the vertex set of 𝑋 (respectively, 𝑍) and the
group𝐻 (respectively, 𝐺). Thus, we can view 𝑓 as a map of 0-skeleta.
Let 𝑃 be the constant from Proposition 2.4. Let Δ be a maximal tree in the simplex with 𝑃

vertices. Let 𝑥 be a base vertex of Δ. Let 𝑍0 be the space obtained from 𝑍 by taking a copy of
Δ denoted Δ𝑤 for each vertex 𝑤 of 𝑍 and identifying 𝑥 ∈ Δ𝑤 with 𝑤. Since we have wedged a
contractible space at each vertex of 𝑍, we can see that 𝑍 is a deformation retract of 𝑍0. Also we
can extend the 𝐺 action by insisting g ⋅ Δ𝑤 = Δg⋅𝑤. Thus, 𝑍0 is still a Cayley 𝑛-complex. Also 𝑍0

still has cocompact (𝑛 − 1)-skeleton as we have only added finitely many orbits of vertices and
finitely many orbits of edges.
For each𝑤 ∈ 𝐺 ⋅ 𝑣, there is an injection 𝑓−1(𝑤) to the vertices of Δ𝑤. Thus, we obtain an injec-

tion 𝑓′ from the 0-skeleton of 𝑋 to the 0-skeleton of 𝑍0. Moreover, if 𝑑(𝑓(ℎ1), 𝑓(ℎ2)) ⩽ 𝐷, then
𝑑(𝑓′(ℎ2), 𝑓

′(ℎ2)) ⩽ 𝐷 + 2.
Since 𝑓 is 𝜌+(1)-Lipschitz, the end points of each edge of 𝑋 are mapped by 𝑓′ to points at

distance at most 𝐶 = 𝜌+(1) + 2 apart. Let 𝑍′
1
be the space obtained from 𝑍0 by adding an edge

between every pair of points 𝑧1, 𝑧2 such that 𝑑(𝑧1, 𝑧2) ⩽ 𝐶. Since 𝑍0 has a cocompact 1-skeleton,
we only add finitely many orbits of edges in this process. For each orbit of edges [𝑒] added to 𝑍0,
let 𝛾𝑒 be a minimal length path in 𝑍0 between the endpoints of 𝑒. Now attach a 2-cell to 𝑍′

1
with

boundary 𝛾𝑒𝑒. Let 𝑍1 be the complex obtained by adding these disks equivariantly. Since we only
added finitely many orbits of edges to 𝑍0 to obtain 𝑍′

1
, we only add finitely many orbits of 2-cells

to 𝑍′
1
to obtain 𝑍1. We can now extend 𝑓′ to an injective cellular map 𝑋(1) → 𝑍

(1)
1
. See figure 1 for

a depiction of this procedure.
We now proceed by induction. Suppose that we have built a complex 𝑍𝑘 which has a cellular

embedding that extends 𝑓′ to the 𝑘-skeleton of 𝑋 for some 𝑘 < 𝑛 − 1 and where 𝑍 is a deforma-
tion retract of 𝑍𝑘. Moreover, assume 𝐺 acts cocompactly on the (𝑛 − 1)-skeleton of 𝑍𝑘. Since 𝑋

is a cocompact Cayley 𝑛-complex, there are finitely many orbits of (𝑘 + 1)-cells. Let 𝐷1,… , 𝐷𝑙 be
representatives of these orbits. Let 𝐿 be the maximum number of cells in the boundary of 𝐷𝑖 .
Let  be the collection of cellular maps 𝑆𝑘 → 𝑍𝑘 such that the image contains ⩽ 𝐿 𝑘-cells. Let

𝑍′
𝑘+1

be the complex obtained by attaching a𝑘 + 1-cell to each suchmap. Since𝐻 acts cocompactly
on the (𝑘 + 1)-skeleton of 𝑍𝑘, we only attach finitely many orbits of cells to obtain 𝑍′

𝑘+1
. Thus,𝐻

still acts cocompactly on the (𝑘 + 1)-skeleton of𝑍′
𝑘+1

, andmoreover, we have a cellular embedding
𝑋(𝑘+1) → 𝑍′

𝑘+1
.

Now for each (𝑘 + 1)-cell 𝑐 added to 𝑍𝑘, its boundary is null-homotopic in 𝑍𝑘. Therefore, it
bounds a (𝑘 + 1)-cell 𝑑 in 𝑍𝑘. We can now attach a (𝑘 + 2)-cell to 𝑍′

𝑘+1
with boundary which
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F IGURE 2 The 2-dimensional case from the proof of Proposition 2.8. We add an extra 2-cell for each disk
diagram with boundary 𝑤, where |𝑤| ⩽ 𝐿. We then fill the resulting sphere with a disk

consists of 𝑐 on the upper hemisphere and 𝑑 on the lower hemisphere. Let the complex obtained
this way be 𝑍𝑘+1.
See figure 2, for a depiction of the 2-dimensional case.
We will now show that 𝑍𝑘 is a deformation retract of 𝑍𝑘+1. Let 𝑇 = 𝑍𝑘+1∕𝑍𝑘 be the space

obtained by collapsing 𝑍𝑘 to a point. We can understand the space 𝑇 by building it as follows.
Let 𝑆 = 𝑍′

𝑘+1
∕𝑍𝑘. Then 𝑆 has the homotopy type of a wedge of 𝑘-spheres as we obtained 𝑍𝑘+1

from 𝑍 by attaching 𝑘-cells. For each sphere in 𝑆, we attached a (𝑘 + 1)-cell to 𝑍′
𝑘+1

. After collaps-
ing 𝑍𝑘, the attaching map is homotopic to the identity 𝑆𝑘 → 𝑆𝑘. Thus, we obtain 𝑇 by attaching
(𝑘 + 1)-cells to 𝑆 one for each sphere in 𝑆. Hence, 𝑇 has the homotopy type of a wedge of copies of
𝐷𝑘+1 which is contractible. Since 𝑍𝑘 is a cellular subcomplex of 𝑍𝑘+1 with contractible quotient,
we see that 𝑍𝑘 is a deformation retract of 𝑍𝑘+1. Thus, by induction 𝑍 is a deformation retract of
𝑍𝑘+1.
Now assume that we have a cellular embedding at the level of (𝑛 − 1)-skeleta. By assumption,

there are finitely many orbits of 𝑛-cells in 𝑋. Let 𝜇𝑖,ℎ ∶ 𝑆𝑛−1 → 𝑋 be the attaching map of the 𝑖th
𝑛-cell based at ℎ. The number of cells in the image of 𝜇𝑖,ℎ is uniformly bounded as 𝑆𝑛−1 is compact
and there are only finitely many orbits of 𝑛-cells. Let 𝐿 be the bound on the number of (𝑛 − 1)-
cells in 𝜇𝑖,ℎ(𝑆

𝑛−1). We have a cellular embedding at the level of (𝑛 − 1)-skeleta; thus, 𝜙◦𝜇𝑖,ℎ(𝑆
𝑛−1)

contains at most 𝐿 cells. Since 𝑍 is a Cayley 𝑛-complex, we have that 𝜙◦𝜇𝑖,ℎ bounds a copy of 𝐷𝑛.
Thus, we can extend the map 𝜙 to the cell 𝐷𝑖,ℎ attached via 𝜇𝑖,ℎ by sending the attached cell to
the copy of 𝐷𝑛 bounded by 𝜙◦𝜇𝑖,ℎ. The number of 𝑛-cells in the image of 𝐷𝑖,ℎ is bounded by 𝛿(𝐿)

where 𝛿 is the (𝑛 − 1)-st filling function of 𝑍. □

Remark 2.9. By subdividing the 𝑛-cells of 𝑋, we may obtain a combinatorial map 𝑋′ → 𝑌.

In the presence of a coarse embedding, we may quantify how badly injectivity fails at the level
of 𝑛-skeleta.

Lemma 2.10. Let 𝑋 be a cocompact Cayley 𝑛-complex for 𝐻. Let 𝑍 be a Cayley 𝑛-complex for 𝐺

with cocompact 𝑛 − 1 skeleton. Let 𝑌 and 𝜙∶ 𝑋 → 𝑌 be the complex and map as in Proposition 2.8.
Let 𝑋′ be the subdivision from Remark 2.9. Suppose further that 𝑓 is a coarse embedding.
Then there is a constant 𝐿 such that if 𝑥1, 𝑥2 ∈ 𝑋′ are such that𝑓(𝑥1) = 𝑓(𝑥2), then 𝑑(𝑥1, 𝑥2) < 𝐿.

Proof. Let 𝑥1, 𝑥2 be points of𝑋′ that are identified in 𝑌. Since 𝜙 is an injection on𝑋(𝑛−1) ⊂ 𝑋′, we
see that 𝑥1, 𝑥2 must belong to the interior of an 𝑛-cell. Let𝑁 be the constant from Proposition 2.8.
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F IGURE 3 The map 𝑛 ↦ (log2(|𝑛| + 1), 𝑛) is a coarse embedding which is not a quasi-isometry. However, it
is easy to see that the image of the induced map on Cayley graphs with the induced path metric is quasi-isometric
to ℝ

We can see that there are vertices 𝑣1, 𝑣2 of𝑋 such that 𝑑(𝑓(𝑣𝑖), 𝑓(𝑥𝑖)) ⩽ 𝑁. Thus, 𝑑(𝑓(𝑣1), 𝑓(𝑣2)) ⩽

2𝑁. Let 𝐿′ = sup{𝑡 ∈ ℝ ∣ 𝜌−(𝑡) ⩽ 2𝑁 + 1}. We can now see that 𝑑(𝑣1, 𝑣2) ⩽ 𝐿′ and 𝑑(𝑥1, 𝑥2) ⩽ 𝐿′ +

2𝑁 = 𝐿 □

In fact, the conclusions of this lemma do not require coarse embedding. See figure 4 for an
example where the conclusions of this lemma hold but the map is very far form a coarse embed-
ding.

Theorem 2.11. Let 𝑋,𝑌, 𝜙 be as in Proposition 2.8. Let𝑀 = 𝜙(𝑋) ⊂ 𝑌. Give𝑀(1) the graph metric
and extend this to𝑀. Then 𝑋 is quasi-isometric to𝑀.

Proof. Let 𝑋′ be the complex obtained from Remark 2.9. Since 𝜙∶ 𝑋′ → 𝑌 is a cellular map, we
see that it is Lipschitz when restricted to 1-skeleta which gives us the upper bound in the quasi-
isometry.
To obtain the lower bound, let 𝑥1, 𝑥2 be two vertices in 𝑋′. Let 𝑦𝑖 = 𝜙(𝑥𝑖). Let 𝑑1, … , 𝑑𝜆 be a

minimal path from 𝑦1 to 𝑦2 in𝑀(1). Hence, we have 𝑑(𝑦1, 𝑦2) = 𝜆. Since 𝜙∶ 𝑋′ → 𝑀 is surjective
and cellular, we can find an edge 𝑒𝑖 in 𝑋′ such that 𝜙(𝑒𝑖) = 𝑑𝑖 .
By Lemma 2.10, wemust have that 𝑑(𝜏(𝑒𝑖), 𝜄(𝑒𝑖+1)) ⩽ 𝐿. Also, 𝑑(𝑥1, 𝜄(𝑒1)), 𝑑(𝜏(𝑒𝜆), 𝑥2) ⩽ 𝐿. Thus,

we can find a path in𝑋(1) from 𝑥1 to 𝑥2 with atmost 𝐿𝜆 + 𝜆 + 2𝐿 edges. That gives an upper bound
for 𝑑(𝑥1, 𝑥2), and thus, we obtain the following inequality:

𝑑(𝑥1, 𝑥2)

𝐿 + 1
−

2𝐿

𝐿 + 1
⩽ 𝑑(𝑦1, 𝑦2). □

The reader should have the following example inmind. Let𝑌 = ℍ3 and𝑋 = ℝ2. Let 𝜙∶ 𝑋 → 𝑌

be the inclusion of 𝑋 as a horosphere in 𝑌. Then 𝜙(𝑋) and 𝑀 are isometric. However, 𝜙 is not a
quasi-isometric embedding. Another example of a coarse embedding ℤ → ℤ2 is in figure 3.

3 HOMOLOGICAL FILLING FUNCTIONS

Throughout this section, we denote 𝐶𝑑(𝑋, ℤ) as the cellular 𝑑-dimensional chain group𝑋. Define
a norm on 𝐶𝑑(𝑋, ℤ) by |∑𝜎 𝑛𝜎𝜎| =

∑
𝜎 |𝑛𝜎|, where the sum runs over all 𝑑-cells of 𝑋. Note that
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this is well defined as these are finite sums. Finally, let 𝑍𝑑(𝑋, ℤ) be the ℤ-module of integral 𝑑-
cycles of 𝑋, and let 𝜕∶ 𝐶𝑑+1(𝑋, ℤ) → 𝑍𝑑(𝑋, ℤ) be the boundary map. Finally, we let 𝐻𝑑(𝑋, ℤ) =

ker(𝜕𝑑)∕Im(𝜕𝑑+1) be the 𝑑th integral homology group of 𝑋.

Definition 3.1. Let 𝑆 be a collection of (𝑛 − 1)-cycles in a space 𝑋. Suppose that each element of
𝑆 is the boundary of an 𝑛-chain. Define the filling volume of 𝑠 ∈ 𝑆 to be

FVol𝑋(𝑠) = min

{∑
𝑖

|𝛼𝑖||||||
∑

𝑖

𝛼𝑖𝜎𝑖 ∈ 𝐶𝑛(𝑋, ℤ) where 𝜕

(∑
𝑖

𝛼𝑖𝜎𝑖

)
= 𝑠

}
.

We define the 𝑆-restricted 𝑛th filling function of 𝑆 to be

Fill𝑛𝑋,𝑆(𝓁) = max {FVol𝑋(𝑠) ∣ |𝑠| ⩽ 𝓁, 𝑠 ∈ 𝑆}.

In the case that 𝑆 is the collection of all (𝑛 − 1)-cycles in 𝑋, we obtain the usual homological
filling function for 𝑋 which we denote as Fill𝑛𝑋(𝓁). Also, for any collection 𝑆 of (𝑛 − 1)-cycles, we
have that Fill𝑛𝑋,𝑆(𝓁) ≺ Fill𝑛𝑋(𝓁). In the case that 𝑋 has a group action that is cocompact on 𝑋(𝑛−1),
then Fill𝑛𝑋(𝓁) is well defined.
The following lemma follows from [1, 16] where the action of a group was not used to show

invariance under quasi-isometry. We produce it here for convenience.

Lemma 3.2. Let𝑋, 𝜙 be as in Proposition 2.8 and𝑀 = 𝜙(𝑋) as in Theorem 2.11. If 𝑆 be the set of all
(𝑛 − 1)-cycles in 𝑋, then

Fill𝑛𝑋(𝓁) = Fill𝑛𝑋,𝑆(𝓁) ∼ Fill𝑛𝑀,𝑆(𝓁).

Proof. Let𝑋′ be the complex fromRemark 2.9. Each𝑛-cell of𝑋 is subdivided into atmost𝑁 𝑛-cells
of 𝑋′ where 𝑁 is the constant from Proposition 2.8. Thus, we obtain Fill𝑛𝑋,𝑆(𝓁) ∼ Fill𝑛

𝑋′,𝑆
(𝓁).

Since we have a cellular map 𝑋′ → 𝑀, a filling in 𝑋′ maps to a filling in 𝑀, and thus,
FVol𝑋′(𝑠) ⩾ FVol𝑀(𝑠) for every 𝑠 ∈ 𝑆. As such, we obtain the upper bound Fill𝑛𝑀,𝑆(𝓁) ≺

Fill𝑛
𝑋′,𝑆

(𝓁).
To prove the other direction, we construct a quasi-inverse to𝜙, that is, a (𝐾, 𝐶)-quasi-isometry𝜓

such that 𝜓(𝜙(𝑥)) ⩽ 𝐶 for all 𝑥 ∈ 𝑋. Let g be the inverse of 𝜙|𝑋(𝑛−1) . By construction, 𝜙 is injective
on 𝑋(𝑛−1). Therefore, g is well defined. Now for each vertex of𝑀∖𝜙(𝑋(𝑛−1)) define 𝜓(𝑣) to be any
of the closest vertices of 𝜙(𝑋(𝑛−1)). Since𝑋 is (𝑛 − 1)-connected, we can extend this to higher cells
by sending a cell to a minimal filling of its boundary.
Let 𝛿𝑚 be the 𝑚th isoperimetric function for 𝑋. Since at each stage of the process of Proposi-

tion 2.8, we were only taking finitely many cells for our fillings, we see that there exists a 𝑘 such
that the boundary of each 𝓁-cell of𝑀 contains ⩽ 𝑘 (𝓁 − 1)-cells of𝑀. Thus, the boundary of each
𝑛-cell of 𝑀 is sent to at most 𝑘(𝛿𝑛−2(… 𝑘(𝛿0(𝐾 + 𝐶)… ) (𝑛 − 1)-cells of 𝑋. Hence, each 𝑛-cell is
sent to at most 𝛿𝑛−1(𝑘(𝛿𝑛−2(… 𝑘(𝛿0(𝐾 + 𝐶)… ) 𝑛-cells, and so, we see that fillings are changed by
at most a constant multiple. Therefore, the functions are equivalent. □

The above lemma allows us to study fillings in 𝑀 and obtain information about fillings in 𝑋.
However, we need relate this to fillings in 𝑌. In general, there will be more efficient fillings in 𝑌

that are not contained in 𝑀. For instance, in the previous example where 𝑀 is a horosphere in
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ℍ3, the fillings in 𝑀 are quadratic in the boundary length but there are linear fillings in ℍ3. The
next lemma shows that this issue vanishes for top-dimensional filling functions.

Lemma 3.3. Suppose that 𝑌 is an 𝑛-dimensional complex with𝐻𝑛(𝑌, ℤ) = 0. Let𝑀 be a subspace
and 𝑐 be an (𝑛 − 1)-cycle in𝑀. Suppose that 𝑐 is the boundary of an 𝑛-cycle 𝑑 =

∑
𝑖 𝛼𝑖𝜎𝑖 in𝑀. Then

FVol𝑀(𝑐) = FVol𝑌(𝑐).

Proof. We show the stronger statement that homological fillings of (𝑛 − 1)-cycles in𝑌 are unique.
Since 𝑌 is 𝑛-dimensional and 𝐻𝑛(𝑌, ℤ) = 0, we see that ker(𝜕𝑛) = 0. Now suppose we had

another filling 𝑑′ for 𝑐. We then see that 𝑑 − 𝑑′ is an element of ker(𝜕𝑛) and hence is trivial. Thus,
𝑑 = 𝑑′, and the result follows. □

We can now use this to bound the homological filling function of𝑀 in terms of that of 𝑌.

Corollary 3.4. Let 𝑌,𝑀 be as in Lemma 3.3. Then Fill𝑛−1
𝑀 (𝓁) ≺ Fill𝑛−1

𝑌 (𝓁).

4 PROOF OFMAIN THEOREMS

In this section, we will prove Theorems 4.2, 4.3, and 4.4. We start with the definition of the 𝑛th
homological filling function for a group of type 𝐹𝑘.

Definition 4.1. Let 𝐺 be a group acting properly, cocompactly, and by cellular automorphisms
on a 𝑘-connected cell complex 𝑋. The 𝑘th homological Dehn filling function of 𝐺 is the function
Fill𝑘𝐺(𝓁)∶ ℕ → ℕ given by Fill𝑘𝐺(𝓁) = Fill𝑘𝑋(𝓁).

We remark that Young [16] proved that Fill𝑘𝐺(𝓁) is a well-defined invariant of a group mean-
ing that if 𝐺 acts properly, cocompactly, and by cellular automorphisms on two 𝑘-connected cell
complexes 𝑋 and 𝑌, then Fill𝑘𝑋(𝓁) ∼ Fill𝑘𝑌(𝓁).
We start with Theorem 4.2 whose statement we recall for the convenience of the reader.

Theorem 4.2. Let 𝐺 be a finitely presented group of geometric dimension 2, and suppose that 𝐻 is
a finitely presented group which admits a coarse embedding into 𝐺. Then Fill2𝐻(𝓁) ≺ Fill2𝐺(𝓁).

Proof. We split into two cases, first assuming that 𝐺 admits a compact𝐾(𝐺, 1) of dimension 2. Let
𝐾 be the universal cover of this𝐾(𝐺, 1), that is,𝐾 is a contractible 2-dimensional cell-complexwith
a free, proper, and cocompact action of 𝐺. Let 𝑓∶ 𝐻 → 𝐺 be the given coarse embedding, and let
𝑋 be the universal cover of the presentation complex of 𝐻 associated to some finite presentation
of 𝐻. By Proposition 2.3, we have that 𝑓 is 𝐶-Lipschitz for some constant 𝐶. By Proposition 2.8,
there exists a Cayley 2-complex 𝑌 for 𝐺 that contains 𝐾 as a subcomplex which has a cocompact
2-skeleton and a map 𝜙∶ 𝑋 → 𝑌 which extends 𝑓 and is an injection on 1-skeleta. Moreover,
we have that each 2-cell is mapped to a collection at most 𝑁 2-cells in 𝑌, and by subdividing if
necessary, we may assume that 𝜙 is a cellular map. Define 𝑀 = 𝜙(𝑋). Letting 𝑆 be the set of 1-
cycles of 𝑋 in 𝑌, Lemma 3.2 implies that Fill2𝑀,𝑆(𝓁) ∼ Fill2𝑋,𝑆(𝓁). Since Corollary 3.4 implies that
Fill2𝑀(𝓁) ≺ Fill2𝑌(𝓁), we have that Fill2𝑋(𝓁) ≺ Fill2𝑌(𝓁). Therefore, we have that Fill2𝐻(𝓁) ≺ Fill2𝐺(𝓁)

as desired.
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Now suppose that𝐺 does not admit a cocompact𝐾(𝐺, 1) of dimension 2. By contracting amaxi-
mal tree in𝐾(𝐺, 1)(1), wemay assume that there is a single vertex in𝐾(𝐺, 1). Thus, this classifying
space is the presentation 2-complex of an infinite aspherical presentation ⟨𝑆 ∣ 𝑅⟩. Let𝐾 be the uni-
versal cover of this presentation 2-complex.
Since𝐺 is finitely generated, there exists a finite subset of 𝑆 that generates𝐺. Let {𝑥1, … , 𝑥𝓁} = 𝐴

be such a subset. We have an inclusion 𝜓 of the Cayley graph Γ of 𝐺 with respect to 𝐴 to the
complex 𝐾. We can find a finite presentation of the form ⟨𝐴 ∣ 𝑤1, … ,𝑤𝑚⟩. Let 𝑍 be the universal
cover of the presentation complex associated to this presentation.
We can extend𝜓 to amap 𝜙∶ 𝑍 → 𝐾 as follows. Each relation𝑤𝑖 is trivial in𝐻 and thus bounds

a disk in𝐻. This disk is spanned by the relators in 𝑅. We can nowmap the disk with boundary𝑤𝑖

to the image of a disk diagram for 𝑤𝑖 in 𝐾. We now extend this equivariantly to all of 𝑍.
Let 𝑀 = 𝜙(𝑍). Since 𝜙 is 𝐺-equivariant, we see that the action of 𝐺 on 𝑍 gives an action of 𝐺

on 𝑀. Since every point of 𝑀 is at bounded distance from a point in the image of Γ, we see that
this action is proper and cocompact. Thus, 𝑍 is quasi-isometric to𝑀. By Lemma 3.2, we have that
Fill2𝑍(𝓁) ∼ Fill2𝑀(𝓁).
Using Proposition 2.8, we can obtain a map 𝑋 → 𝑍 where 𝑋 is the universal cover of a pre-

sentation complex for 𝐻. We can compose with the map 𝑍 → 𝑀. Let 𝐿 be the image of 𝑋 in 𝑀.
Lemma 2.10 shows that 𝐿 and 𝑋 are quasi-isometric and so Fill2𝑋(𝓁) ∼ Fill2𝐿(𝓁).
Since 𝐾 is contractible, we have that 𝐻2(𝐾, ℤ) = 0. Since there are no 3-cells in 𝐾, we see that

𝜕∶ 𝐶2(𝐾, ℤ) → 𝐶1(𝐾, ℤ) is injective. Thus, if we restrict to 𝐶2(𝐿, ℤ), we also obtain an injection.
Therefore,𝐻2(𝐿, ℤ) = 0.
Now, by Lemma 3.3, we see that Fill2𝐿(𝓁) ≺ Fill2𝑀(𝓁). Thus, Fill2𝐻(𝓁) ≺ Fill2𝐺(𝓁). □

Theorem 4.3 is a direct consequence of Theorem 4.2. However, we felt that Theorem 4.3 is
interesting in its own right and demonstrates that hyperbolicity of groups of geometric dimension
2 passes to finitely presented groups which admit a coarse embedding to the given hyperbolic
group. This is contrast to higher geometric dimensions where there exist hyperbolic groups which
admit coarse embeddings of ℤ2.

Theorem 4.3. Let 𝐺 be a hyperbolic group of geometric dimension 2, and suppose 𝐻 is a finitely
presented group that admits a coarse embedding into𝐻. Then𝐻 is a hyperbolic group.

Proof. Due to [5, Theorem 5.2], we know that a finitely presented group𝐺 is word hyperbolic if and
only if Fill2𝐻(𝓁) ∼ 𝓁. Theorem 4.2 implies that Fill2𝐻(𝓁) ≺ Fill2𝐺(𝓁) ∼ 𝓁. Therefore, Fill2𝐻(𝓁) ∼ 𝓁
which implies that𝐻 is hyperbolic as desired. □

The proof of Theorem 4.4 is very similar to the proof of Theorem 4.2 in the case where 𝐺 has a
compact 𝐾(𝐺, 1) of dimension 2. However, we include its proof for completeness.

Theorem 4.4. Let 𝑘 ⩾ 1 Suppose that 𝐺 admits a finite (𝑘 + 1)-dimensional 𝐾(𝐻, 1) and that 𝐻
is a finitely presented group of type 𝐹𝑘+1. If 𝐻 admits a coarse embedding into 𝐺, then Fill𝑘+1

𝐻
(𝓁) ≺

Fill𝑘+1
𝐺

(𝓁).

Proof. Let 𝑓∶ 𝐻 → 𝐺 be the given coarse embedding, and let 𝑋 be the universal cover of a
𝐾(𝐻, 1)which a compact (𝑘 + 1)-skeleta. By definition, we have that 𝑓 is an injective 𝐶-Lipschitz
map for some constant 𝐶 > 0. By Lemma 2.8, there exists a Cayley 𝑘-complex 𝑌 for 𝐺 with
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cocompact 𝑘-skeleton and a map 𝜙∶ 𝑋 → 𝑌 which extends 𝑓 and is an injection on 𝑘-skeleta.
Moreover, we have that each (𝑘 + 1)-cell is mapped to a collection at most 𝑁 (𝑘 + 1)-cells in 𝑌,
and by subdividing if necessary, wemay assume that 𝜙 is a cellularmap. Define𝑀 = 𝜙(𝑋). Letting
𝑆 be the set of 𝑘-cycles of 𝑋 in 𝑌, Lemma 3.2 implies that Fill𝑘+1

𝑀,𝑆
(𝓁) ∼ Fill𝑘+1

𝑋,𝑆
(𝓁). Since Corol-

lary 3.4 implies that Fill𝑘+1
𝑀

(𝓁) ≺ Fill𝑘+1
𝑌

(𝓁), we have that Fill𝑘+1
𝑋

(𝓁) ≺ Fill𝑘+1
𝑌

(𝓁). Therefore, we
have Fill𝑘+1

𝐻
(𝓁) ≺ Fill𝑘+1

𝐺
(𝓁) as desired. □

5 SMALL CANCELATION GROUPS

In this section, we prove Theorem 5.5. For the following, we let 𝐹(𝐴) be the free group on the set
𝐴.

Definition 5.1. Let 𝐴 be a finite set. Let 𝑅 be a subset of 𝐹(𝐴). We say that 𝑝 ∈ 𝐹(𝐴) is a piece in
𝑅 if there exists cyclic permutations 𝑠𝑖 ≠ 𝑠𝑗 of relators 𝑟𝑖, 𝑟𝑗 ∈ 𝑅 such that 𝑠𝑖 = 𝑝𝑢 and 𝑠𝑗 = 𝑝𝑣.
We say that a presentation ⟨𝐴 ∣ 𝑅⟩ satisfies the small cancelation condition 𝐶′(𝜆) if given a piece

𝑝 in a relator 𝑟, we have that |𝑝| < 𝜆|𝑟|.
We refer the reader to [11, Section V] for a full treatment of small cancelation theory. The fol-

lowing will be key to our theorem.

Theorem 5.2. If 𝐺 = ⟨𝐴 ∣ 𝑅⟩ satisfies 𝐶′( 1

6
) and no relator is a proper power, then:

∙ the presentation 2-complex of 𝐺 is aspherical;
∙ 𝐺 has geometric dimension 2;
∙ If 𝑅 is finite, then 𝐺 is hyperbolic.

The first two points follow from [2, 13]. The latter follows from the following theorem which
shows that 𝐺 has linear Dehn function.

Theorem 5.3 [11, Theorem V.4.5]. Let 𝐺 = ⟨𝐴 ∣ 𝑅⟩ be a small cancelation group. Let 𝑤 be a word
in 𝐴 which represents the trivial element in 𝐺. Then 𝑤 contains a sub-word which is more than half
a relator.

This allows us to understand the filling function of the universal cover of the presentation com-
plex.

Corollary 5.4. Let ⟨𝐴 ∣ 𝑅⟩ be a 𝐶′( 1

6
) small cancelation group. Let 𝑍 be the universal cover of the

presentation complex. Then Fill2𝑍(𝓁) ∼ 𝓁.

We are now ready to prove our theorem.

Theorem 5.5. Let 𝐺 = ⟨𝐴 ∣ 𝑅⟩ be a 𝐶′( 1

6
) presentation where no relator is a proper power. If𝐻 is a

finitely presented group that admits a coarse embedding into 𝐺, then 𝐻 is hyperbolic. In particular,
all finitely presented subgroups of 𝐺 are hyperbolic.
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F IGURE 4 An example of a Lipschitz injection ℤ → ℤ2. In this example for any 𝐷 there are points in ℤ of
distance ⩾ 𝐷 such that there images have distance 1. However, the induced path metric on the subcomplex is
quasi-isometric to ℤ

Proof. Let 𝐻 be a finitely presented group with a coarse embedding 𝑓∶ 𝐻 → 𝐺. Let 𝑍 be the
universal cover of the presentation complex for 𝐺. Let 𝑋 be the universal cover of a presentation
complex for 𝐻. By Proposition 2.8, we have a cellular map 𝜙∶ 𝑋 → 𝑌 where 𝑌 is a Cayley 2-
complex for𝐻 containing 𝑍 as a deformation retract. Thus, 𝑌 is contractible.
Let𝑀 = 𝜙(𝑋). Then Theorem 2.11 shows that𝑋 and𝑀 are quasi-isometric, and by Lemma 3.2,

they have equivalent filling functions.
Since 𝑌 is aspherical, we see by Lemma 3.3 that Fill2𝑀(𝓁) ≺ Fill2𝑌(𝓁). The latter is equivalent

to a linear function by Corollary 5.4. Thus, 𝑋 satisfies a linear filling function, and hence, 𝐻 is a
hyperbolic group by [5, Theorem 3.1]. □

6 FUTURE QUESTIONS

We finish with some discussion of questions of interest to the authors. Throughout this article, we
considered coarse embeddings. However, one could weaken this condition by considering Lips-
chitz embeddings which are not coarse embeddings. In many cases, our theorems still hold. For
example, in figure 4, we show an example where 𝑓 is a Lipschitz embedding which is not a coarse
embedding but the subcomplex is quasi-isometric to the group. This gives evidence to a possi-
ble strengthening of Theorem 4.2 and 4.4 where Lipschitz embeddings take the place of coarse
embeddings. We do not know of a counterexample at this time. Therefore, we have the following
questions.

Question 6.1. Suppose that 𝐻 is a group of type 𝐹𝑘+1. Suppose that 𝐺 admits a finite (𝑘 + 1)-
dimensional 𝐾(𝐺, 1). If 𝐻 admits a Lipschitz embedding into 𝐺, does there exist an inequality of
(𝑘 + 1)-th dimensional homological Dehn functions?
If not, can one find an example of groups𝐺 and𝐻 as abovewhere there exist a Lipschitz embed-

ding of 𝐻 into 𝐺 where 𝐻 has strictly higher (𝑘 + 1)-th dimensional homological Dehn function
than 𝐺?

Through Theorem 4.3, we generalize [5, Theorem 5.4] to coarse embeddings. However, onemay
ask if the same holds for a general Lipschitz embedding.
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Question 6.2. Let 𝐺 be a hyperbolic group of geometric dimension 2. If 𝐻 admits a Lipschitz
embedding into 𝐺, is𝐻 necessarily hyperbolic?

Another finiteness question that we are interested in involves cohomological and homological
dimension over a ring 𝑅. As originally proved by Sauer [14], if we are given a coarse embedding
of𝐻 into 𝐺 where both 𝐺 and𝐻 have finite cohomological (homological) dimension over 𝑅, then
the cohomological (homological) dimension of 𝐻 is bounded by that of 𝐺. We may ask a similar
question for Lipschitz embeddings.

Question 6.3. Suppose that𝐻 admits a Lipschitz embedding into 𝐺 and that 𝐺 and𝐻 both have
finite cohomological (homological) dimension over a commutative ring𝑅. Is the𝑅-cohomological
(𝑅-homological) dimension of𝐻 bounded above by that of 𝐺?
If not, can one find an example of a Lipschitz embedding of groups𝐺 and𝐻where𝐻 has strictly

greater 𝑅-cohomological dimension than that of 𝐺?
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