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1 | INTRODUCTION

A coarse embedding of one metric space into another generalizes the notion of a quasi-isometry.
It allows for the metric to be distorted by any functions that tend to infinity, rather than just linear
functions allowed in quasi-isometries.

Definition 1.1. We say that a map f: X — Y is a coarse embedding if there are functions
p_,p4: R— Rsuchthatlim _  po_(x) =1lim,_,  p,(x) = oo and where the following inequal-
ity holds:

p_(d(x,y)) < d(f(x), f(¥)) < p,(d(x,y)).

In geometric group theory, a coarse embedding is a geometric version of subgroup containment.
Indeed, if H is a finitely generated subgroup of G, then the inclusion map is a coarse embed-
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ding. Thus, there are questions about which results on subgroups remain true when passing to
coarse embeddings.

In general, coarse embedding are wilder than subgroups. For instance, every finitely generated,
infinite group admits a coarse embedding of Z, however, there are infinite finitely generated tor-
sion groups. Moreover, in the class of hyperbolic groups, there are coarse embeddings of Z2 into
hyperbolic groups while it certainly cannot be a subgroup.

For the statement of our theorems, we let Filllé(f ) be the k-dimensional homological Dehn
function for G, that is, the difficulty of filling (k — 1)-cycles with k-chains. Additionally, if
f>9: N — N are functions, we say that f < g if there is a constant C > 0 such that for all n we
have that f(n) < Cg(Cn + C) + Cn + C. We say that f ~ g when f < gand g < f. For a group G,
we denote K(G, 1) as a choice of an Eilenberg-Maclane space for G. We say a group G has geomet-
ric dimension 2 if the minimal dimension of a K(G, 1) is 2. Finally, we say that a group G is of type
F, if it admits a K(G, 1) with a compact n-skeleton.

In this paper, we study the preservation of homological filling functions under coarse embed-
dings. It is known that there are groups H C G for which the homological filling function vary
greatly. For instance, consider the inclusion GL;(Z) < GLs(Z), the former has exponential Dehn
function [4, Chapter 11] whereas the latter has quadratic Dehn function [17].

This type of example does not exist if G is assumed to have cohomological dimension 2. See the
remark after Theorem 4.6 of [5].

Theorem 1.2. Let G be a group a cohomological dimension 2, and let H be a finitely presented
subgroup. Then Fillé(f) < Fillé(f).

In this paper, we take a more geometric approach and prove a similar theorem for coarse embed-
dings. As we cannot use the algebra of cohomology, we must replace the cohomological dimension
assumption with the corresponding geometric dimension assumption. We prove the following.

Theorem 4.2. Let G be a finitely presented group of geometric dimension 2, and suppose that H is
a finitely presented group which admits a coarse embedding into G. Then Fillf{(f ) < Fillé(f ).

Due to [5, Theorem 5.2], we know that a finitely presented group G is word hyperbolic if and
only if Fillé(f) ~ ¢. Thus, the first consequence of the above theorem is a geometric generaliza-
tion of Gersten’s characterization of finitely presented subgroups of hyperbolic groups of geomet-
ric dimension 2. [5, Theorem 5.4].

Theorem 4.3. Let G be a hyperbolic group of geometric dimension 2, and suppose H is a finitely
presented group that admits a coarse embedding into G. Then H is a hyperbolic group.

For the next corollary, we collect a few observations. First note that if §;(¢) is the Dehn function
of G, then Fillé(f) < 64(7). Moreover, [12, Proposition 8] implies that if Fillé(f) grows strictly
slower than 72, then G is hyperbolic. Thus, we may use Theorem 4.3 to obtain a characterization
of subgroups of groups with quadratic Dehn function of geometric dimension 2.

Corollary 1.3. Let G be be a finitely presented group of geometric dimension 2 with quadratic Dehn
function. If H is a finitely presented group that admits a coarse embedding into G, then either H is
a hyperbolic group or H has quadratic Dehn function. In particular, all finitely presented subgroups
of G are either hyperbolic or have quadratic Dehn function.
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The next theorem generalizes [7, Theorem 1.1] to the context of coarse embeddings. It says
that under appropriate finiteness conditions the higher dimensional homological Dehn filling
functions are non-decreasing under coarse embeddings.

Theorem 4.4. Let k > 1. Suppose that G admits a finite (k + 1)-dimensional K(G, 1) and that H
is a finitely presented group of type F).,.. If H admits a coarse embedding into G, then Fill';l“(z,”) <
FillSH (2).

Since the inclusion of a horosphere in hyperbolic (k + 1)-space gives a coarse embedding of ¥
into 7r; (M) when M is a closed (k + 1)-dimensional real hyperbolic manifold, the above theorem
cannot be improved. In contrast, the following application of Theorem 4.4 demonstrates that there
exists no coarse embedding of a torsion free, finitely generated nilpotent group whose integral
cohomological dimension is k + 1 into 7;(M). Thus, whenever a torsion free, finitely generated
nilpotent admits a coarse embedding into 7,(M), its integral cohomological dimension must be
strictly less than that of the integral cohomological dimension of M. This follows from the fact that
[10, Theorem 4] implies all homological filling functions for hyperbolic groups are linear and that
[15, IV 5.8 Theorem] and [6] together imply the top-dimensional homological filling functions for
torsion free, finitely generated nilpotent group are superlinear. Similarly, [9, Theorem 3.3] implies
that torsion free, finitely generated nilpotent groups of integral cohomological dimension k + 1
cannot coarsely embed into a nonamenable integral Poincaré duality group of dimension k + 1.

Corollary 1.4. Let G be either a hyperbolic group that admits a finite (k + 1)-dimensional K(G, 1)
or a nonamenable integral Poincaré duality group of dimension k + 1. Then a torsion-free, finitely
generated nilpotent group of integral cohomological dimension k + 1 cannot admit a coarse embed-
ding into G.

Our next application of Theorem 4.4 is to coarse embeddings between torsion free, finitely
generated nilpotent groups G and H with integral cohomological dimensions equal to n. Since
asymptotic dimension, integral cohomological dimension, and Hirsch length are all equal for tor-
sion free, finitely generated nilpotent groups, one must appeal to other invariants such as word
growth or the asymptotic cone to obstruct the existence of coarse embeddings between G and H.
For instance, when G and H equal polynomial degrees of word growth, [3, Theorem 1.2] implies
that there exist no coarse embeddings from either G to H or vice versa when G and H have
distinct asymptotic cones. When G and H have word growth of polynomial degrees d; and d,,
respectively, where d; < d,, monotonicity of word growth under coarse embeddings implies that

there are no coarse embeddings of H into G. Since [15, IV 5.8 Theorem] and [6] together imply
d dy

that Fill%,(¢) ~ ¢ ril and Fill},(£) ~ ¢ &-1, Theorem 4.4 implies that G does not admit a coarse
embedding into H. These facts together imply a nearly complete classification of what torsion free,
finitely generated nilpotent groups of the same integral cohomological dimension admit coarse
embeddings into each other.

Corollary 1.5. Let G and H be torsion free, finitely generated nilpotent groups of the same integral
cohomological dimension. If the asymptotic cones of G and H are not isomorphic as Lie groups, then
G and H cannot admit coarse embeddings into one another.

The only case that remains is when two torsion free, finitely generated nilpotent groups G
and H who have the same asymptotic cone. These are groups will share many properties such
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as growth rate and integral cohomological dimension. Moreover, by [15, IV 5.8 Theorem], we have
that Fill?,(¢) ~ Fill},(#) where n is the topological dimension of the asymptotic cone. In certain
cases, such as when G and H are cocompact lattices in the associated asymptotic cone, we have
that G and H are bi-Lipschitz. Hence, they naturally admit coarse embeddings into each other.
However, when either G or H is not a lattice in the asymptotic cone, then whether a coarse embed-
ding or even a Lipschitz embedding exists is open.

Finally, we apply the techniques of Theorem 4.2, to obtain characterizations of finitely pre-
sented subgroups of infinitely presented small cancelation groups.

Theorem 5.5. Let G be finitely generated group that admits an infinite C'(1/6)-small cancelation
presentation where no relator is a proper power. If H is finitely presented group that admits a coarse
embedding into G, then H is a hyperbolic group. In particular, all finitely presented subgroups of G
are hyperbolic.

Thus, small cancelation groups contain no finitely presented subgroup obstructions to hyper-
bolicity. However, there are many examples of small cancelation groups that cannot coarsely
embed into hyperbolic groups [8].

1.1 | Structure of the article

In Section 2, we introduce basic definitions and embedding results between CW complexes associ-
ated to Lipschitz embeddings between finitely generated groups. Using these embedding results,
Section 3 introduces homological filling functions and relates homological fillings of codimension
0 subcomplexes with fillings in the ambient complex. Sections 4 and 5 give the proofs of the main
results. Section 6 finishes with some questions.

2 | EMBEDDING LEMMAS

In this section, we will obtain various embedding results between classifying spaces.
Throughout we will be interested in CW complexes with G-actions. To make the article easier,
we will focus on a particular subset of CW complexes namely, combinatorial complexes.

Definition 2.1. Combinatorial complexes and combinatorial maps between them are defined
recursively on dimension. Zero-dimensional CW complexes are defined to be combinatorial as
are arbitrary maps between them. In general, a continuous map between CW complexes is said
to be combinatorial if it the image of each open cell of the domain is an open cell of the target. A
combinatorial (k + 1)-complex is a CW complex whose k-skeleton is a combinatorial k complex
and whose attaching maps ¢, of (k + 1)-cells e are combinatorial maps for suitable combinatorial
structures on dD*1 = sk,

Every simplicial complex is a combinatorial complex. Since every CW complex is homotopy
equivalent to a simplicial complex, we see that, up to homotopy, the class of combinatorial com-
plexes is equivalent to the class of CW complexes.

When given a combinatorial complex X, we denote its k-skeleta as X(¥). We denote S¥ as the
k-sphere and D¥ as the k-disk.
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Definition 2.2. We say that a map f : H — G is a coarse embedding if there are nondecreasing
functionsp_, o, : R — Rsuchthatlim,_,  o_(x) =lim,_  0,(x) = co and where the following
inequality holds:

p_(d(x,y)) <d(f(x), f) < p(d(x,y)).

Throughout f : H — G will be a coarse embedding of groups. The following is useful in that
we can replace the upper bound by a linear function.

Proposition 2.3. Let f : H — G be a coarse embedding. Then f is p(1)-Lipschitz.

Proof. Let x,y be arbitrary elements of H. There is a sequence of elements x = z,,z;,...,z, =y
such that z; and z;,, are at distance 1 apart and ¢ = d(x,y). Since z; and z;,; are at distance
1, we have that d(f(z)), f(z;;1)) < p4+(1), and so, d(f(x), f(») < X, d(f (z), f(z;11)) < €p (D) =
p(Dd(x, y). O

Proposition 2.4. Let f : H — G be a coarse embedding. Then the preimage of each f~'(g) is uni-
formly bounded

Proof. Since p_ is nondecreasing and lim_, , p_(x) = oo, there is an I such that p_(x) > 0 for all
x > . Thus if f(hy) = f(h,), then d(h,, h,) < I. Thus the preimage of g is bounded by the size of
the ball of radius [ in H. O

Definition 2.5. A Cayley n-complex for a group G is an n-dimensional cell complex X equipped
with a free, cellular G-action such that 7;(X) = 1 for all i < n. We say that X is cocompact if there
are finitely many orbits of k-cells for each k.

A Cayley n-complex for G is exactly the n-skeleton of the universal cover of a K(G, 1). Indeed,
by adding cells of dimension greater than n, we can obtain a contractible complex with a free,
cellular G action. Thus, the quotient is a K(G, 1).

Remark 2.6. If a Cayley n-complex has one orbit of vertices, then the 1-skeleton is a Cayley graph
for the group. By collapsing a G invariant fores,t we can always arrange this situation.

The following lemma follows immediately from the definition of type F,,.
Lemma 2.7. A group G is of type F,, if and only if it admits a cocompact Cayley n-complex.

This next proposition demonstrates that under appropriate finiteness conditions we may extend
the coarse embedding f : H — G to an inclusion of cocompact Cayley n-complexes.

Proposition 2.8. Let H be a group of type F, for n > 1, and let X be a cocompact Cayley n-complex
for H with a single orbit of vertices.

Let G be a group of type F,_,, and let Z be Cayley n-complex for G with a cocompact (n — 1)-
skeleton and a single orbit of vertices.

Let f : H — G be a coarse embedding. Then there exists a Cayley n-complexY for G such that the
following hold.
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FIGURE 1 An extraedge is added between every pair of points z,, z, at distance < C. The resulting copy of
S! is then filled with a disk

* Y has cocompact (n — 1)-skeleton.

* Z is a deformation retract of Y.

* Thereisamap ¢ : X — Y extending f, which is injective on n — 1-skeleta.

* There exists N > 0 such that each n-cell of X is mapped to a collection of < N n-cellsin Y.

Proof. There is a one-to-one correspondence between the vertex set of X (respectively, Z) and the
group H (respectively, G). Thus, we can view f as a map of 0-skeleta.

Let P be the constant from Proposition 2.4. Let A be a maximal tree in the simplex with P
vertices. Let x be a base vertex of A. Let Z, be the space obtained from Z by taking a copy of
A denoted A, for each vertex w of Z and identifying x € A, with w. Since we have wedged a
contractible space at each vertex of Z, we can see that Z is a deformation retract of Z,. Also we
can extend the G action by insisting g - A, = A, Thus, Zj, is still a Cayley n-complex. Also Z,
still has cocompact (n — 1)-skeleton as we have only added finitely many orbits of vertices and
finitely many orbits of edges.

For each w € G - v, there is an injection f~!(w) to the vertices of A,,. Thus, we obtain an injec-
tion f” from the O-skeleton of X to the 0-skeleton of Z,. Moreover, if d(f(h,), f(h,)) < D, then
d(f'(hy), f'(hy)) < D + 2.

Since f is p, (1)-Lipschitz, the end points of each edge of X are mapped by f’ to points at
distance at most C = p (1) + 2 apart. Let Z{ be the space obtained from Z, by adding an edge
between every pair of points z;, z, such that d(z;, z,) < C. Since Z; has a cocompact 1-skeleton,
we only add finitely many orbits of edges in this process. For each orbit of edges [e] added to Z,,
let ¥, be a minimal length path in Z, between the endpoints of e. Now attach a 2-cell to Z{ with
boundary y,é. Let Z; be the complex obtained by adding these disks equivariantly. Since we only
added finitely many orbits of edges to Z,, to obtain Z{, we only add finitely many orbits of 2-cells

to Z{ to obtain Z,. We can now extend f’ to an injective cellular map XV — Zil). See figure 1 for
a depiction of this procedure.

We now proceed by induction. Suppose that we have built a complex Z, which has a cellular
embedding that extends f” to the k-skeleton of X for some k < n — 1 and where Z is a deforma-
tion retract of Z,. Moreover, assume G acts cocompactly on the (n — 1)-skeleton of Z; . Since X
is a cocompact Cayley n-complex, there are finitely many orbits of (k + 1)-cells. Let D, ..., D; be
representatives of these orbits. Let L be the maximum number of cells in the boundary of D,.

Let S be the collection of cellular maps S¥ — Z, such that the image contains < L k-cells. Let
V4 ,’( 1 be the complex obtained by attaching a k + 1-cell to each such map. Since H acts cocompactly
on the (k + 1)-skeleton of Z;, we only attach finitely many orbits of cells to obtain Z,’(H. Thus, H
still acts cocompactly on the (k + 1)-skeleton of Z l’{ T and moreover, we have a cellular embedding
X(k+l) - Z],{+1 .

Now for each (k + 1)-cell ¢ added to Z;, its boundary is null-homotopic in Z;. Therefore, it
bounds a (k + 1)-cell d in Z;. We can now attach a (k + 2)-cell to ZI’( +1 with boundary which
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FIGURE 2 The 2-dimensional case from the proof of Proposition 2.8. We add an extra 2-cell for each disk
diagram with boundary w, where |w| < L. We then fill the resulting sphere with a disk

consists of ¢ on the upper hemisphere and d on the lower hemisphere. Let the complex obtained
this way be Z ;.

See figure 2, for a depiction of the 2-dimensional case.

We will now show that Z, is a deformation retract of Z; ;. Let T = Z,,/Z, be the space
obtained by collapsing Z, to a point. We can understand the space T by building it as follows.
LetS=2Z2 ,’(H /Z,. Then S has the homotopy type of a wedge of k-spheres as we obtained Z;
from Z by attaching k-cells. For each sphere in S, we attached a (k + 1)-cell to Z 1,<+1‘ After collaps-
ing Z,,, the attaching map is homotopic to the identity S* — S¥. Thus, we obtain T by attaching
(k + 1)-cells to S one for each sphere in S. Hence, T has the homotopy type of a wedge of copies of
D**1 which is contractible. Since Z; is a cellular subcomplex of Z,,; with contractible quotient,
we see that Z, is a deformation retract of Z; . Thus, by induction Z is a deformation retract of
Ziet1-

Now assume that we have a cellular embedding at the level of (n — 1)-skeleta. By assumption,
there are finitely many orbits of n-cells in X. Let y; , : S"=1 — X be the attaching map of the ith
n-cell based at h. The number of cells in the image of y; , is uniformly bounded as S"~! is compact
and there are only finitely many orbits of n-cells. Let L be the bound on the number of (n — 1)-
cells in ,ui,h(S”_l). We have a cellular embedding at the level of (n — 1)-skeleta; thus, ¢o; ,(S n-ly
contains at most L cells. Since Z is a Cayley n-complex, we have that ¢ou; , bounds a copy of D".
Thus, we can extend the map ¢ to the cell D, ;, attached via y; , by sending the attached cell to
the copy of D" bounded by ¢oy; ;. The number of n-cells in the image of D; , is bounded by §(L)
where § is the (n — 1)-st filling function of Z. O

Remark 2.9. By subdividing the n-cells of X, we may obtain a combinatorial map X’ — Y.

In the presence of a coarse embedding, we may quantify how badly injectivity fails at the level
of n-skeleta.

Lemma 2.10. Let X be a cocompact Cayley n-complex for H. Let Z be a Cayley n-complex for G
with cocompact n — 1 skeleton. Let Y and ¢ : X — Y be the complex and map as in Proposition 2.8.
Let X' be the subdivision from Remark 2.9. Suppose further that f is a coarse embedding.

Then there is a constant L such that if x,, x, € X' aresuch that f(x;) = f(x,), thend(x;,x,) < L.

Proof. Let x, x, be points of X’ that are identified in Y. Since ¢ is an injection on X"~V c X', we
see that x;, X, must belong to the interior of an n-cell. Let N be the constant from Proposition 2.8.
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FIGURE 3 Themapn — (log,(|n| + 1), n) is a coarse embedding which is not a quasi-isometry. However, it
is easy to see that the image of the induced map on Cayley graphs with the induced path metric is quasi-isometric
toR

We can see that there are vertices vy, v, of X such that d(f(v;), f(x;)) < N.Thus, d(f(v;), f(v,)) <
2N.LetL' = sup{t € R | p_(t) < 2N + 1}. We can now see that d(v;,v,) < L' and d(x;,x,) < L' +
2N =1L U

In fact, the conclusions of this lemma do not require coarse embedding. See figure 4 for an
example where the conclusions of this lemma hold but the map is very far form a coarse embed-
ding.

Theorem 2.11. Let X, Y, ¢ be as in Proposition 2.8. Let M = $(X) C Y. Give M) the graph metric
and extend this to M. Then X is quasi-isometric to M.

Proof. Let X’ be the complex obtained from Remark 2.9. Since ¢ : X’ — Y is a cellular map, we
see that it is Lipschitz when restricted to 1-skeleta which gives us the upper bound in the quasi-
isometry.

To obtain the lower bound, let x,, x, be two vertices in X’. Let y; = ¢(x;). Let dy,...,d; be a
minimal path from y, to y, in M(!), Hence, we have d(y,,y,) = 4. Since ¢ : X’ — M is surjective
and cellular, we can find an edge e; in X’ such that ¢(e;) = d;.

By Lemma 2.10, we must have that d(z(e;), t(e;,)) < L. Also, d(x,, t(e;)), d(z(ey), x,) < L. Thus,
we can find a path in X! from x; to x, with at most L1 + A + 2L edges. That gives an upper bound
for d(x,, x,), and thus, we obtain the following inequality:

d(x, %) 2L
L+1 L+1

<d(yy, ¥2). 0
The reader should have the following example in mind. LetY = H® and X = R%. Let¢: X - Y

be the inclusion of X as a horosphere in Y. Then ¢(X) and M are isometric. However, ¢ is not a
quasi-isometric embedding. Another example of a coarse embedding Z — 7?2 is in figure 3.

3 | HOMOLOGICAL FILLING FUNCTIONS

Throughout this section, we denote C;(X, Z) as the cellular d-dimensional chain group X. Define
anorm on Cy4(X,Z) by | Y., n,o| = Y, |n,|, where the sum runs over all d-cells of X. Note that
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this is well defined as these are finite sums. Finally, let Z;(X, Z) be the Z-module of integral d-
cyclesof X, and let 0 : Cy,(X,Z) - Z4(X, Z) be the boundary map. Finally, we let H;(X,Z) =
ker(d,)/Im(d,,,) be the dth integral homology group of X.

Definition 3.1. Let S be a collection of (n — 1)-cycles in a space X. Suppose that each element of
S is the boundary of an n-chain. Define the filling volume of s € S to be

FVoly(s) = min { Z lo; | Z a;0; € C,(X, Z) where 6(2 ocioi> = s}.
i i i

We define the S-restricted nth filling function of S to be

Fill;}’s(f) = max {FVolx(s) | |s| < ¢,s € S}.

In the case that S is the collection of all (n — 1)-cycles in X, we obtain the usual homological
filling function for X which we denote as Fill{,(¢). Also, for any collection S of (n — 1)-cycles, we
have that Fill;’(’ () < Fill{.(¢). In the case that X has a group action that is cocompact on X (n-1),
then Fill}(¢) is well defined.

The following lemma follows from [1, 16] where the action of a group was not used to show
invariance under quasi-isometry. We produce it here for convenience.

Lemma 3.2. Let X, ¢ be as in Proposition 2.8 and M = ¢(X) as in Theorem 2.11. If S be the set of all
(n — 1)-cycles in X, then

Fill} (¢) = Fill}, () ~ Fill}, (£).

Proof. Let X’ be the complex from Remark 2.9. Each n-cell of X is subdivided into at most N n-cells
of X’ where N is the constant from Proposition 2.8. Thus, we obtain Fill;s(f) ~ Fill;,’s(f).

Since we have a cellular map X’ — M, a filling in X’ maps to a filling in M, and thus,
FVoly/(s) = FVoly(s) for every s € S. As such, we obtain the upper bound Filll’\’,l,s(f) <
Fill;‘(,, S(©).

To prove the other direction, we construct a quasi-inverse to ¢, that is, a (K, C)-quasi-isometry 1
such that {(¢(x)) < C for all x € X. Let ¢ be the inverse of ¢|»-1). By construction, ¢ is injective
on X("~1), Therefore, g is well defined. Now for each vertex of M\¢(X ")) define 1(v) to be any
of the closest vertices of ¢(X*~1)). Since X is (n — 1)-connected, we can extend this to higher cells
by sending a cell to a minimal filling of its boundary.

Let 5™ be the mth isoperimetric function for X. Since at each stage of the process of Proposi-
tion 2.8, we were only taking finitely many cells for our fillings, we see that there exists a k such
that the boundary of each Z-cell of M contains < k (£ — 1)-cells of M. Thus, the boundary of each
n-cell of M is sent to at most k(5" 2(... k(§°(K + C)...) (n — 1)-cells of X. Hence, each n-cell is
sent to at most §" 1 (k(6"2(... k(§°(K + C)...) n-cells, and so, we see that fillings are changed by
at most a constant multiple. Therefore, the functions are equivalent. O

The above lemma allows us to study fillings in M and obtain information about fillings in X.
However, we need relate this to fillings in Y. In general, there will be more efficient fillings in Y
that are not contained in M. For instance, in the previous example where M is a horosphere in
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H3, the fillings in M are quadratic in the boundary length but there are linear fillings in H3. The
next lemma shows that this issue vanishes for top-dimensional filling functions.

Lemma 3.3. Suppose thatY is an n-dimensional complex with H,,(Y, Z) = 0. Let M be a subspace
and c be an (n — 1)-cycle in M. Suppose that c is the boundary of an n-cycled = Y ; a;0; in M. Then
FVol,(c) = FVoly(c).

Proof. We show the stronger statement that homological fillings of (n — 1)-cycles in Y are unique.

Since Y is n-dimensional and H,(Y,Z) = 0, we see that ker(d,,) = 0. Now suppose we had
another filling d’ for c. We then see that d — d’ is an element of ker(d,,) and hence is trivial. Thus,
d = d’, and the result follows. O

We can now use this to bound the homological filling function of M in terms of that of Y.

Corollary 3.4. Let Y, M be as in Lemma 3.3. Then Fill;;l(f ) < Fillgﬁl(f).

4 | PROOF OF MAIN THEOREMS

In this section, we will prove Theorems 4.2, 4.3, and 4.4. We start with the definition of the nth
homological filling function for a group of type F.

Definition 4.1. Let G be a group acting properly, cocompactly, and by cellular automorphisms
on a k-connected cell complex X. The kth homological Dehn filling function of G is the function
Fillk(¢) : N — N given by Fill’,(¢) = Fillk(£).

We remark that Young [16] proved that Filllé(f) is a well-defined invariant of a group mean-
ing that if G acts properly, cocompactly, and by cellular automorphisms on two k-connected cell
complexes X and Y, then Fill';((f) ~ Fill’;(f).

We start with Theorem 4.2 whose statement we recall for the convenience of the reader.

Theorem 4.2. Let G be a finitely presented group of geometric dimension 2, and suppose that H is
a finitely presented group which admits a coarse embedding into G. Then Fillil(z,”) < Fillé(f).

Proof. We split into two cases, first assuming that G admits a compact K(G, 1) of dimension 2. Let
K be the universal cover of this K(G, 1), that is, K is a contractible 2-dimensional cell-complex with
a free, proper, and cocompact action of G. Let f : H — G be the given coarse embedding, and let
X be the universal cover of the presentation complex of H associated to some finite presentation
of H. By Proposition 2.3, we have that f is C-Lipschitz for some constant C. By Proposition 2.8,
there exists a Cayley 2-complex Y for G that contains K as a subcomplex which has a cocompact
2-skeleton and a map ¢ : X — Y which extends f and is an injection on 1-skeleta. Moreover,
we have that each 2-cell is mapped to a collection at most N 2-cells in Y, and by subdividing if
necessary, we may assume that ¢ is a cellular map. Define M = ¢(X). Letting S be the set of 1-
cycles of X in Y, Lemma 3.2 implies that Filllzw,s(f) ~ Fillff’s(f ). Since Corollary 3.4 implies that
Fill3 (¢) < Fill5(¢), we have that Fill;(#) < Fill; (¢). Therefore, we have that Fill?,(¢) < Fill},(¢)
as desired.
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Now suppose that G does not admit a cocompact K(G, 1) of dimension 2. By contracting a maxi-
mal tree in K(G, 1)), we may assume that there is a single vertex in K(G, 1). Thus, this classifying
space is the presentation 2-complex of an infinite aspherical presentation (S | R). Let K be the uni-
versal cover of this presentation 2-complex.

Since G is finitely generated, there exists a finite subset of S that generates G. Let{x,, ..., x,} = A
be such a subset. We have an inclusion ¢ of the Cayley graph I of G with respect to A to the
complex K. We can find a finite presentation of the form (A | wy, ..., w,,). Let Z be the universal
cover of the presentation complex associated to this presentation.

We can extend ) toamap ¢ : Z — K asfollows. Each relation wj is trivial in H and thus bounds
adisk in H. This disk is spanned by the relators in R. We can now map the disk with boundary w;
to the image of a disk diagram for w; in K. We now extend this equivariantly to all of Z.

Let M = ¢(Z). Since ¢ is G-equivariant, we see that the action of G on Z gives an action of G
on M. Since every point of M is at bounded distance from a point in the image of I', we see that
this action is proper and cocompact. Thus, Z is quasi-isometric to M. By Lemma 3.2, we have that
Fill2(¢) ~ Fill3 (£).

Using Proposition 2.8, we can obtain a map X — Z where X is the universal cover of a pre-
sentation complex for H. We can compose with the map Z — M. Let L be the image of X in M.
Lemma 2.10 shows that L and X are quasi-isometric and so Fill)zf(f )~ Filli(f).

Since K is contractible, we have that H,(K, Z) = 0. Since there are no 3-cells in K, we see that
0: Cy(K,Z) — C,(K, Z) is injective. Thus, if we restrict to C,(L, Z), we also obtain an injection.
Therefore, H,(L, Z) = 0.

Now, by Lemma 3.3, we see that Fill?(#) < Fill},(¢). Thus, Fill?,(¢) < Fill},(©). O

Theorem 4.3 is a direct consequence of Theorem 4.2. However, we felt that Theorem 4.3 is
interesting in its own right and demonstrates that hyperbolicity of groups of geometric dimension
2 passes to finitely presented groups which admit a coarse embedding to the given hyperbolic
group. This is contrast to higher geometric dimensions where there exist hyperbolic groups which
admit coarse embeddings of Z2.

Theorem 4.3. Let G be a hyperbolic group of geometric dimension 2, and suppose H is a finitely
presented group that admits a coarse embedding into H. Then H is a hyperbolic group.

Proof. Dueto [5, Theorem 5.2], we know that a finitely presented group G is word hyperbolic if and
only if Fill,(¢) ~ ¢. Theorem 4.2 implies that Fill7,(¢#) < Fill,(¢) ~ ¢. Therefore, Fill7,(¢) ~ ¢
which implies that H is hyperbolic as desired. O

The proof of Theorem 4.4 is very similar to the proof of Theorem 4.2 in the case where G has a
compact K(G, 1) of dimension 2. However, we include its proof for completeness.

Theorem 4.4. Let k > 1 Suppose that G admits a finite (k + 1)-dimensional K(H, 1) and that H
is a finitely presented group of type F..,. If H admits a coarse embedding into G, then Fillﬁ“(f) <
FillsH(2).

Proof. Let f: H — G be the given coarse embedding, and let X be the universal cover of a
K(H, 1) which a compact (k + 1)-skeleta. By definition, we have that f is an injective C-Lipschitz
map for some constant C > 0. By Lemma 2.8, there exists a Cayley k-complex Y for G with
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cocompact k-skeleton and a map ¢ : X — Y which extends f and is an injection on k-skeleta.
Moreover, we have that each (k + 1)-cell is mapped to a collection at most N (k + 1)-cells in Y,
and by subdividing if necessary, we may assume that ¢ is a cellular map. Define M = ¢(X). Letting

S be the set of k-cycles of X in Y, Lemma 3.2 implies that Fill5; 1(¢) ~ Fills*](#). Since Corol-

lary 3.4 implies that Fills(¢) < Fills*!(#), we have that Fills*(¢) < FillS*!(¢#). Therefore, we
have Filll;(¢) < Fill5™ (£) as desired. O

5 | SMALL CANCELATION GROUPS

In this section, we prove Theorem 5.5. For the following, we let F(A) be the free group on the set
A.

Definition 5.1. Let A be a finite set. Let R be a subset of F(A). We say that p € F(A) is a piece in
R if there exists cyclic permutations s; # s; of relators r;, r; € R such thats; = pu and s; = pv.

We say that a presentation (A | R) satisfies the small cancelation condition C'(1) if given a piece
p in a relator r, we have that |p| < 1|r|.

We refer the reader to [11, Section V] for a full treatment of small cancelation theory. The fol-
lowing will be key to our theorem.

Theorem 5.2. IfG = (A | R) satisfies C’ (%) and no relator is a proper power, then:

* the presentation 2-complex of G is aspherical;
* G has geometric dimension 2;
* IfR s finite, then G is hyperbolic.

The first two points follow from [2, 13]. The latter follows from the following theorem which
shows that G has linear Dehn function.

Theorem 5.3 [11, Theorem V.4.5]. Let G = (A | R) be a small cancelation group. Let w be a word
in A which represents the trivial element in G. Then w contains a sub-word which is more than half
a relator.

This allows us to understand the filling function of the universal cover of the presentation com-
plex.

Corollary 5.4. Let (A|R) bea C' (%) small cancelation group. Let Z be the universal cover of the
presentation complex. Then Fillé(z,”) ~.

‘We are now ready to prove our theorem.
Theorem 5.5. Let G = (A | R) bea C’ (%) presentation where no relator is a proper power. If H is a

finitely presented group that admits a coarse embedding into G, then H is hyperbolic. In particular,
all finitely presented subgroups of G are hyperbolic.
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FIGURE 4 Anexample of a Lipschitz injection Z — Z2. In this example for any D there are points in Z of
distance > D such that there images have distance 1. However, the induced path metric on the subcomplex is
quasi-isometric to Z

Proof. Let H be a finitely presented group with a coarse embedding f : H — G. Let Z be the
universal cover of the presentation complex for G. Let X be the universal cover of a presentation
complex for H. By Proposition 2.8, we have a cellular map ¢ : X — Y where Y is a Cayley 2-
complex for H containing Z as a deformation retract. Thus, Y is contractible.

Let M = ¢(X). Then Theorem 2.11 shows that X and M are quasi-isometric, and by Lemma 3.2,
they have equivalent filling functions.

Since Y is aspherical, we see by Lemma 3.3 that Filli/,(f ) < Fillf,(f ). The latter is equivalent
to a linear function by Corollary 5.4. Thus, X satisfies a linear filling function, and hence, H is a
hyperbolic group by [5, Theorem 3.1]. O

6 | FUTURE QUESTIONS

We finish with some discussion of questions of interest to the authors. Throughout this article, we
considered coarse embeddings. However, one could weaken this condition by considering Lips-
chitz embeddings which are not coarse embeddings. In many cases, our theorems still hold. For
example, in figure 4, we show an example where f is a Lipschitz embedding which is not a coarse
embedding but the subcomplex is quasi-isometric to the group. This gives evidence to a possi-
ble strengthening of Theorem 4.2 and 4.4 where Lipschitz embeddings take the place of coarse
embeddings. We do not know of a counterexample at this time. Therefore, we have the following
questions.

Question 6.1. Suppose that H is a group of type F ;. Suppose that G admits a finite (k + 1)-
dimensional K(G, 1). If H admits a Lipschitz embedding into G, does there exist an inequality of
(k + 1)-th dimensional homological Dehn functions?

If not, can one find an example of groups G and H as above where there exist a Lipschitz embed-
ding of H into G where H has strictly higher (k + 1)-th dimensional homological Dehn function
than G?

Through Theorem 4.3, we generalize [5, Theorem 5.4] to coarse embeddings. However, one may
ask if the same holds for a general Lipschitz embedding.
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Question 6.2. Let G be a hyperbolic group of geometric dimension 2. If H admits a Lipschitz
embedding into G, is H necessarily hyperbolic?

Another finiteness question that we are interested in involves cohomological and homological
dimension over a ring R. As originally proved by Sauer [14], if we are given a coarse embedding
of H into G where both G and H have finite cohomological (homological) dimension over R, then
the cohomological (homological) dimension of H is bounded by that of G. We may ask a similar
question for Lipschitz embeddings.

Question 6.3. Suppose that H admits a Lipschitz embedding into G and that G and H both have
finite cohomological (homological) dimension over a commutative ring R. Is the R-cohomological
(R-homological) dimension of H bounded above by that of G?

Ifnot, can one find an example of a Lipschitz embedding of groups G and H where H has strictly
greater R-cohomological dimension than that of G?
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