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ABSTRACT: Electric fields underlie all reactions and impact
reactivity by interacting with the dipoles and net charges of
transition states, products, and reactants to modify the free energy Enzymes
landscape. However, they are rarely given deliberate consideration ,

in synthetic design to rationally control reactivity. This Perspective
discusses the commonalities of electric field effects across multiple
platforms, from enzymes to molecular catalysts, and identifies
practical challenges to applying them in synthetic molecular
systems to mediate reactivity.
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lectric fields are believed to be key factors in the superior
reactivity and selectivity of enzymatic active sites' ™ and
some zeolites.”~"' More broadly, electrostatic interactions have
been used to rationalize wide ranging reactivity—from
enzymatic preorganization and ion-pairing in organocatalysis,
to rate enhancement or selectivity control at transition metal
complexes. Electric fields in this context stem from either
positioned charges, dipoles, or induced dipoles. Modeling
these types of interactions are not new. However, renewed
interest in using electric fields as “smart reagents” in
chemistry'” highlights the few experimental examples where
electric fields are deliberately used as a tool to control
reactivity. Electrostatic catalysis places a reacting molecule in
an environment that stabilizes the transition state’s dipole
moment or net charge.3
The electric field is defined as the interaction experienced at
a given point in space due to the summation of charges,
dipoles, and induced dipoles of all other atoms in the system.
In most frameworks for modeling, the electric fields
experienced by a molecule encompasses the intermolecular
field created by other atoms or molecules, but the field created
by its own atoms is excluded. Electrostatic interactions are
defined as interactions between molecules due to their
permanent charges and dipoles.” Intrinsic electric fields (such
as those in enzymes and zeolites) or applied electric fields
(such as those at surfaces, using external applied fields, or STM
tips) can be described similarly, with the magnitude of the field
dependent on where the field is sampled."’
An oriented electrostatic field of appropriate magnitude can
direct chemical interactions, reactivity, and catalysis by
manipulating activation energies as a function of molecular
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orientation. Quantum mechanical studies indicate electric
fields between 1 and 10 V/nm can adjust activation barriers in
the gas phase by several kcal/mol, modifying reaction rates by
several orders of magnitude at room temperature.'”” The
electric field alters the energy landscape by (1) stabilizing/
destabilizing intermediates/transition states which can result in
accelerating or prohibiting a reaction pathway and (2) tuning
thermodynamic parameters (redox potential, pK, bond
energy, ground state stabilization or destabilization, etc.).
Judicious orientation of an electric field in relation to reacting
partners can result in rate enhancement/inhibition,'*~"
changes in mechanism,'®™*° and improved regio- or stereo-
selectivity.”** Figure 1 illustrates an example of rate
acceleration through stabilization of a transition state by
comparing the relative free energies for a reaction in the
absence (black trace) and presence (blue trace) of an electric
field. For a reaction with a dipolar transition state and a
nonpolar reactant, application of an oriented electrostatic field
lowers the free energy of the transition state and product
relative to the reactants.

Computational modeling and theoretical investigations have
been used to understand the principles governing electric field
effects on catalysis."”***° These computational studies, as
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Figure 1. Potential impact of electrostatics on reaction energetics.

well as experimental examé)les, have been discussed in a
recently published book™ and reviews.”'>*>*”** Most
experimental studies of controlled electric fields on reactivity
have focused on using applied biases’ such as charged
surfaces’”?" or STM tips>>™*° to generate fields with
magnitudes ranging from 3 to 50 V/ nm.'>*”*® These elegant
studies quantify the impact electric fields can have on reaction
energies and product selectivity. However, the scalability of

these techniques is limited; the reactivity enabled through
applied biases is confined to single molecules or electrode
surfaces. The magnitude of the electric field also diminishes
rapidly with the distance from the external source because of
ion and/or solvent screening. Applied biases are also
susceptible to dielectric breakdown at high magnitudes,
resulting in electron transfer. Additionally, the orientation of
the reacting components in relation to the direction of the
electric field must be precisely controlled, even when adsorbed
on a surface. Exact control of field orientation and magnitude
with respect to the reactants is a general challenge with
external flelds. These factors complicate drawing direct
parallels to enzymatic systems or use as a large-scale synthetic
tool. Because of these challenges, molecular systems may
provide an opportunity to control field orientation with respect
to reacting partners due to binding at the reactive center prior
to catalysis.

The goal of this Perspective is to highlight specific examples
of electric field effects in enzymes, organic reactions, and
transition-metal-catalyzed systems. By using select examples
and drawing common themes between different catalytic
platforms, we aim to show how these commonalities can be
used to design platforms with specific electrostatic interactions
to achieve reaction control.

B ELECTRIC FIELD EFFECTS IN ENZYMES

The efficiency of enzymatic catalysis has long served as a
source of inspiration for synthetic chemists. Elucidating the
different factors that govern the catalytic power of enzymes is a
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Figure 2. A. Proton shuttle mechanism for HDACS. B. Depiction of the active site of HDACS from a computational study. The system consists of
the central Zn*" ion (gray sphere), substrate (orange), K* ion (purple sphere), and local residues. Reproduced with permission from ref 39.
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key step in designing synthetic catalysts that rival the activity of
enzymes, from selective C—H activation’® to energy-efficient
CO, reduction.””*® The overall protein architecture forms
microenvironments which exploit a variety of electrostatic
interactions and preorganization to aid in catalysis.' " These
interactions include hydrogen-bonding networks, proximal
Lewis acidic metals or charged functionalities, and the
hydrophobicity or hydrophilicity of local active site resi-
dues.”™*

Warshel pioneered the term electrostatic preorganization as
a way to describe the enzymatic environment that favors the
transition state rather than the reactants, thus lowering the free
energy barrier.** Experimental evidence for this electrostatic
environment in an enzyme was confirmed by Boxer using
vibrational Stark spectroscopy” on ketosteroid isomerase
(KSI).*® Specifically, an inhibitor containing a vibrational
probe (carbonyl group) was placed in the active site. KSI
strongly activates the C=O stretch, where the carbonyl
stretching frequency is used as a probe for the electric field.
The electric field induced by the protein scaffold on the active
site was then found to linearly correlate with the activation free
energy of the reaction, providing direct experimental evidence
for electrostatic rate enhancement.*’

In a computational example on the enzyme histone
deacetylase 8 (HDACS), evidence to support the underlying
importance of electrostatic preorganization was investigated
through the electron charge density.”® Zinc-dependent
HDACS catalyzes the deacetylation of a histone lysine and
plays a vital role in post-translational modification during the
biosynthesis of proteins.”” Deacetylation proceeds through
formation of an oxyanion intermediate bound to zinc (Figure
2A).">*3% Crystallographic studies of the HDACS active site
also revealed a K' ion buried into the interior of the protein
(Figure 2B), approximately 7 A from the zinc; however, the
role of potassium is not understood.’"** Computational
studies of the zinc-dependent HDACS8 suggest that K* plays
arole in increasing substrate binding at the central zinc ion and
that absence of the K" ion causes deactivation of the enzyme.
Therefore, the distal K* may serve to enhance the electrostatic
preorganization at the active site.

In addition to nonredox active metal cations, the electro-
static environment at active sites can also be modulated by
charged residues. The active site of chorismite mutase, a
metabolic enzyme that catalyzes the rearrangement of
chorismite to prephenate, includes a cationic arginine.
Replacement of the arginine with neutral citrulline maintains
the precise substrate orientation and geometry of the wildtype
enzyme but incurs a penalty in catalytic activity.”’ Another
example is the formate dehydrogenase (FDH) enzyme. The
active site of all known FDHs contain an arginine residue in
the secondary coordination sphere.”* This arginine has been
proposed to interact with the negatively charged formate
substrate to facilitate C—H bond cleavage.”

These three examples serve to highlight the multidimen-
sional roles that electrostatic interactions serve in enzymes.
However, there is significant difficulty in strategically
pinpointing which individual effects are essential to enzymatic
activity, and would thus be critical to emulate within synthetic
systems.

B ELECTROSTATIC VERSUS LEWIS ACIDITY EFFECTS

While charged metal ions such as alkali and alkaline earth
metals leave an electrostatic footprint, they can also serve as

Lewis acids. The difference is that in the former case, they are
modifying the energy landscape through a noncovalent
interaction, and in the latter with a through-bond orbital-
overlap interaction. Cation replacement studies are useful for
evaluating the relevant electrostatic versus Lewis acidic
contributions. For example, the oxygen-evolving complex
(OEC) of the photosystem II enzyme (PSII) features a
Mn,CaOg core in the active site.’® Studies aimed at
understanding the role of the Ca** ion in PSII found that
displacement with all dicationic alkaline earth metals led to
significantly diminished activity with the exception of Sr*',
which has similar Lewis acidity to the Ca®* ion.”” These studies
indicate the Ca** ion primarily functions as a Lewis acid; if it
were mostly providing an electrostatic effect, replacement with
any dication would result in similar activity. However, it is
worth noting that in cation replacement studies, different ionic
radii of alkali and alkaline earth metals may also result in
electrostatic perturbations based on changes in distance or
geometry to the active site.

Likewise, synthetic catalytic systems often exhibit accel-
erated rates with Lewis acidic metal cation additives or
cocatalysts.sg_67 The Lewis acidic and electrostatic contribu-
tions can be decoupled by comparing the relative activity with
other additives that are either charged or Lewis acidic, but not
both. For example, additives such as noncationic borates can
be used to isolate the effect of Lewis acidity. Additionally,
quaternary ammonium salts (such as tetraethylammonium)
can be used to introduce a local cationic charge that lacks
Lewis acidity.*>**

B SYNTHETIC SYSTEMS

Various synthetic constructs have been used to generate
oriented fields of specific magnitudes across homogeneous
active sites. These synthetic systems have the potential to
mimic the electrostatic character found in enzymatic active
sites.

For example, supramolecular hosts can mimic electrostatic
aspects of enzymatic active site cavities (Figure 3A). Multiple
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Figure 3. Types of electrostatic interactions at transition metal
complexes: A. Supramolecular host, B. Ion-pair interaction, C. Bound
cation, D. Charged functional group. M = transition metal; L = ligand;
D = jon-pair donor; A = ion-pair acceptor; R* = R’;N* R’;B~, or M™
= nonredox active metal.

https://doi.org/10.1021/acscatal.1c02084
ACS Catal. 2021, 11, 10923-10932


https://pubs.acs.org/doi/10.1021/acscatal.1c02084?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c02084?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c02084?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c02084?fig=fig3&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.1c02084?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Catalysis

pubs.acs.org/acscatalysis

parameters, including overall charge, cavity size, and the degree
of solvent exclusion can be controlled through synthetic
design.®® Prominent examples of charged supramolecular
hosts and catalysts that invoke electrostatic effects for their
reactivity include Ward and co-workers’ CogL,,'®* cube,”” and
Fujita and co-workers’ Pd¢L,'>" octahedron.”" Electrostatic
effects in a variety of su}z)ramolecular complexes have been
examined experimentally’ "7* and with computational stud-
fes.7H7S

Electrostatic interactions have been used extensively to elicit
reactivity control in organocatalysis.76_82 For reactions with
proposed transition state structures that are more dipolar than
their starting materials or products, it rationally follows that use
of electrostatic stabilization would enhance catalysis. Electro-
static interactions have been employed in asymmetric
catalysis®* ™" and for site-selective catalysis.”>”

Ion pair formation (Figure 3B, the interaction of positively
and negatively charged species) occurs to lower the Gibbs free
energy (as opposed to ion solvation). Promoting ion-pairing
interactions requires that ion—solvent interactions are
minimized. In fact, use of highly polar solvents can incur a
large energetic penalty to ion-pairing due to solvent
reorganization. To minimize this energetic penalty, solvents
of relatively low dielectric constant are often used, which can
present solubility challenges when cationic/anionic charges are
used to generate the electric field. In the early 1990s, Wilcox
and co-workers demonstrated the electrostatic acceleration of
chemical reactions in nonpolar solvents using intramolecular
salt effects.”*™* Ton-pairing in transition metal complexes’
has been used to achieve regioselectivity either through
directed substrate—ligand interactions,'”™'% steric adjust-
ment,'®* or energetic differentiation of transition states., 047106
Cation-7 interactions have also been utilized to increase the
acidity of select C—H bonds; however, this is more of an
inductive effect, allowing for site-selective bond activa-
tion,107/108

Transition metal complexes that incorporate crown ethers to
bind cations or have ammonium or sulfonate functionalities in
the ligand have emerged as a powerful strategy for accessing
tunable electrostatic interactions. These platforms have the
potential to provide a predictable, directional, and consistent
electric field at each reactive site (Figure 3C,D). However, as
discussed below, the accessible magnitudes may be limited
depending on solvation.

Most efforts toward ligand-based cation encapsulation in
transition metal complexes have focused on applications
toward phase transfer and ion sensing'” or switchable
catalysis."'" There are fewer studies specifically investigating
cation encapsulation for electrostatic effects. In order for a
cation to impart an electric field at a local reaction site, the
cation must be located in close proximity."''~""? Otherwise,
solvent or other ions in solution will reorient to mitigate the
field. Further, solvent reorganization must be minimized in
order for the electric field exerted by the cation to affect any
transition state stabilization.

We and others have synthesized transition metal complexes
with a macrocyclic N,O, Schiff base ligand and an
incorporated crown ether (Figure 4)."*°7'*® The electric
field experienced at the redox active metal site by cation M™
manifests itself through significant shifts in the redox potential
of up to 600 mV, which corresponds to static electric fields
greater than 1 V/nm at the transition metal.'*”'** The sizable
shift in redox potential is notable because the measurements

S = CH3CN ¢

with cation -1 Wos

Figure 4. Electrostatic potential maps of Fe(II) in a salen framework
without (top) or with (bottom) a proximal K" cation. S = CH;CN.
Reproduced with permission from ref 123. Copyright 2019 The Royal
Society of Chemistry.

are made in solutions containing ~100 fold excess of
electrolyte. The rigid positioning of the cation and molecular
architecture results in an electric field that is not significantly
quenched by solvation or the presence of ions in high
concentrations. The Schiff base ligand also contains two imine
bonds (—C=N-), which are convenient reporters of the field
using vibrational spectroscopy, as evidenced by the Stark shift
observed in the complexes."”” The changes in reduction
potential are largely due to the electrostatic contributions that
lower the overall energy of the molecular orbitals, which
contrasts with modifying reduction potentials using ligand
inductive effects.'® As a result, the addition of the cation leads
to unusual reactivity—from disrupting the redox-dependent
activity of an aerobic C—H oxidation reaction,"”" to an inverse
free energy relationship for an N—N bond formation reaction
(vide infra).'”” These changes in reactivity would not be
accessible if the reduction potential were tuned using electron-
withdrawing and -donating functionalities. Inductive ligand
effects alter the ligand field at the metal, modifying the d-
orbital splitting. In contrast, the electrostatic potential from the
cations shifts the metal-based orbitals relatively uniformly,
resulting in unique redox-based reactivity.'**

Figure S illustrates examples of different synthetic transition
metal complexes incorporating electrostatic interactions.
Agapie and co-workers reported modifications in reduction
potential for Mn,O, clusters that incorporate nonredox active
Lewis acidic heterometal cations. In these systems, the changes
in reduction potential correlate with both charge and
heterometal Lewis acidity, indicating both electrostatic and
inductive effects are involved.'>>"'*

Flexible crown-encapsulated cations can influence or tune
reactivity, even if they impart a smaller electrostatic effect at
the metal. Gilbertson and co-workers found that an iron
pyridinediimine complex with a tethered Na*-encapsulated-
crown led to accelerated reduction of nitrite to nitric oxide.'”’
In this complex, the cation does not significantly shift the
ligand-based reduction potential of the iron complex; instead
of directly impacting the iron center, the cation preferentially
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Figure S. Reported homogeneous transition metal complexes with charged functionalities that contribute to changes in electronic structure or
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134), McCrory (ref 136); Right, top-to-bottom: Tomson (ref 140), Savéant (ref 128), Warren (ref 129), Tolman (ref 135), Wiedner (ref 137).

engages in an electrostatic interaction with the substrate,
NO,", for reduction to NO.

Installation of charged functionalities is another synthetic
modification to introduce electric fields at active sites. For
example, ammonium functionalities on the periphery of iron
porphyrin complexes results in accelerated electrocatalytic CO,
reduction activity due to electrostatic stabilization of a
carboxylate intermediate.'”® Proximal ammonium function-
alities have also been used to accelerate electrocatalytic oxygen
reduction in cobalt and iron porphyrins. For the former,
computational studies indicate the cationic functionalities
stabilize anionic intermediates.'”” In the latter example, the
proximal cations play a complex role in pre-equilibria substrate

10927

binding due to through-space electrostatic and inductive
contributions.”*”"*' Additionally, Groves and co-workers
reported Fe porphyrin complexes with cationic porphyrins
that were exceptionally active for C—H activation.””"** A
subsequent computational study by Shaik and co-workers
indicated that the electric field generated by the cationic
functionalities selectively destabilized the reactants more than
the transition states, leading to the accelerated rate."**
Ligand-based electrostatic effects are also expected to impact
thermodynamic properties related to hydrogen atom transfer
reactions. Tolman and co-workers have explored the effect of
cationic (ammonium) and anionic (sulfonate) ligand function-
alities on copper hydroxide species. Although the charged

https://doi.org/10.1021/acscatal.1c02084
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functionalities impact the reduction potentials and pK,, the
bond dissociation energies remained relatively constant.
However, the kinetic reactivity toward hydrogen atom transfer
varies, with cation pairing to the sulfonate functionality,
complicating direct attribution to electrostatic effects.'*®

McCrory and co-workers recently demonstrated the use of
an N-methylpyridinium functionality on a cobalt pyridyldii-
mine complex to tune the reduction potential of CO,
reduction catalysis."*® Incorporation of the charged pyridinium
group resulted in higher catalyst activity and a lower
overpotential. In another example, Wiedner and co-workers
demonstrated enhanced rates and selectivity for MeOH
production from CO, using a Ru(triphos) hydrogenation
catalyst that incorporates a cationic tetraalkylammonium in the
ligand backbone."”” In this example, it is unclear whether the
cationic group imparts an inducive effect on the electronic
structure of the proposed intermediate dihydrogen complex,
lowering its energy, or whether there is through-space
stabilization from an internal electric field. The above examples
all use cationic functionalities to mediate reactivity by
selectively stabilizing reactants or intermediates. However,
anionic trifluoroborate groups used in Ni complexes by
Anderson and co-workers have also demonstrated accelerated
C—F oxidation activity."*®

Other studies have investigated how electrostatic effects
specifically imgact the electronic structure of transition metal
compounds.'*” Tomson and co-workers investigated a series of
tetradentate tris(phosphinimine) Cu(I) complexes that in-
corporated cationic charges within the secondary coordination
sphere.'*” The electrostatic field from the cationic charges
results in a modified d-orbital manifold at the metal and
significant changes to the Cu(Il/I) reduction potential.

Electrostatic effects can also inhibit undesired reaction
pathways, such as catalyst deactivation. Catalyst deactivation
by bimolecular processes or formation of clusters is a common
phenomenon in various catalytic systems.'*' To counter these
unproductive pathways, catalysts often use increased steric
bulk or site-isolation techniques.141 However, electrostatic
effects can be used to prevent dimerization or oligomerization
without the necessity of any support material. Manganese(VI)
nitrido complexes supported by Schiff base ligands can
bimolecularly couple upon oxidation to generate N,.'*
Incorporation of cationic charges into the salen framework
results in anodic shifts in the Mn(VI/V) reduction potential.
Despite an increase in oxidation potential, the rate of
bimolecular N—N bond formation slowed with increasin§
charge, resulting in an inverse linear free energy relationship.'”
These results illustrate the significant effect charge can play in
inhibiting bimolecular reactivity.

B OUTLOOK AND CONCLUSIONS

Harnessing the catalytic power of enzymes has enormous
potential in developing more robust and efficient synthetic
catalysts. As reaction chemists have not yet been able to
replicate enzymatic activity or specificity for most reactions, a
better understanding for controlling the electric field in
reaction microenvironments is necessary. We discuss various
synthetic strategies for using oriented electrostatic fields at
scalable, homogeneous reaction sites. Microenvironments can
be emulated through the construction of supramolecular pores.
Precise substrate positioning can be achieved through ion-pair
interactions. Local, directional electric fields can be generated
through incorporation of cationic metals or charged functional

groups. Direct application of these noncovalent interactions
and their impact on reactivity and molecular properties will in-
turn lead to better quantitative descriptions of each approach.
We hope that a more deliberate approach toward using electric
fields will lead to a more comprehensive understanding of how
they facilitate the formation and cleavage of chemical bonds, as
well as electron transfer by manipulating activation barriers and
intermediate energies.
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