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In the Article “Flux-Based Modeling of Heat and Mass Transfer in Multicomponent Systems” by
AN. Beris, S. Jariwala and N.J. Wagner, that was published in Physics of Fluids, 34, 033113
(2022)1, there was an erratum in the second integral of Eq. (14) due to an erroneous application of
Eq. (A3) of the appendix A of that paper. The correct Eq. (14) should read as follows
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where s, is the partial entropy density per unit of mass of component i. Note that this is

, evaluated from
p,T,Nj,j#

S= ;NiSi =>s5= % = Z; N% S, = z; nS, = z; s, through s, =Sn =S, p, where

i

connected to the most often used partial molar entropy, S, Ea%N

i

N, n,, p, are the number of moles, the mole number density and mass density of component i.

Note that only when this error is corrected, the (correct) equation for the time evolution for the

entropy density, Eq. (29) of paper!, can be derived.

However, due to this erratum, the following additional term should appear in the right-
hand-side of: Second equation in Egs. (31), (32), (34), and (37) and in Eq. (35):
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This term first appears in Eq. (31) as a result of the application of the procedure that generates the
governing equations following the bracket formalism indicated before, in the beginning of section
I, around Egs. (1) and (2) of the manuscript! (for the general case) and then repeated again around
Egs. (19) and (20) of the manuscript for the particular flux transport application discussed in this
work. More specifically, the new term emerges from a comparison of a suitably trasformed Eq.
(1) through differentiation by parts, (considering that fully integrated terms leave no
contributions as all fields are assumed in the model derivation to decay to zero at infinity) so that
it only involves Volterra derivatives of the functional F outside any derivative operations (to
allow for a direct comparison against Eq. (20) of the manuscript') as
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The extra term indicated in Eq. (2) is then obtained as the weight of g %ﬁ(f) in Eq. (3), where an
exchange of the dummy indices involved in the double summation, k <>, has been performed.

Correction of the above error requires consideration of a more general expression for the

gradient of the chemical potential Vu; (obtained from a general Equilibrium Thermodynamics

reference, such as refs.2?), also allowing for temperature variations and replacing the old Eq. (43),

as
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where S is the partial molar entropy for component ;j, leading to the following corrected Eq.

(44) that replaces the old Eq. (44) as
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Using the new Eq. (44), Eq. (5), and the known value for the parameter «,,as provided by the old
Eq. (39), we get a new Eq. (45) as
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If we then use the first line in old Eq. (37), that we have shown above to be equivalent to Eq. (38)
derived from the kinetic theory (Eq. (7.6-12) from ref*) to eliminate the dependence on the first
temperature gradient in Eq. (6) it yields a new Eq. (46):
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or, using old Eq. (39) to eliminate A and after multiplying both sides by cR;T we find as new
Eq. (47):

(8)

Finally, this can be written explicitly in terms of velocity differences by using the condition given
by old Eq. (16) as new Eq. (48):
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All other equations and statements in the paper! remain unchanged.

References

Beris, A. N., Jariwala, S. and Wagner, N.J., “Flux-Based Modeling of Heat and Mass Transfer in
Multicomponent Systems,” Physics of Fluids 34, 033113 (2022).

2Kestin, J., “A Course in Thermodynamics,” Vols 1, 2, Revised Printing, Hemisphere Publishing
Co., New York: 1979

3Kondepudi, D. and Prigogine, 1., “Modern Thermodynamics,” Wiley, Chichester: 1998.

*Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B., “Molecular Theory of Gases and Liquids,”
Corrected Printing with Notes Added, John Wiley & Sons, New York: 1964.



