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1. Introduction

Let Γ be a finite, undirected graph. A basic problem in graph theory that has been 
studied in a dizzyingly vast body of literature (see [4] for instance) is determining when 
Γ admits a Hamiltonian path or a Hamiltonian cycle, which is to say either a path or 
a cycle that visits every vertex of Γ exactly once. One of the many reasons that the 
problem of determining whether Γ is Hamiltonian (i.e. admits such a path or cycle) is 
interesting is because it defies a straightforward characterization, and because it gives 
rise to the prototypical NP–complete decision problem [2,16,9]. In this paper, we develop 
an algebraic framework for characterizing Hamiltonicity of simplicial graphs via right-
angled groups, and in particular the cohomology of these groups.

To set up the discussion, let Γ be a finite simplicial graph (i.e. a graph that is also a 
simplicial complex) with vertex set V (Γ) and edge set E(Γ). We retain the terminology 
simplicial because it is standard in the theory of right-angled Artin groups. Sometimes 
such graphs are called simple graphs. We write

A(Γ) = 〈V (Γ) | [v, w] = 1, {v, w} ∈ E(Γ)〉

for the right-angled Artin group on Γ.
The isomorphism type of A(Γ) determines the isomorphism type of Γ, as is well-

known from the work of many authors [5,18,15,14]. Thus, the combinatorics of Γ should 
be reflected in the algebra of A(Γ).

1.1. Combinatorics versus group theory

It is frequently useful to consider an object or a property in a certain context, and to 
identify the correct analogue in a different category. The advantage of this approach is 
that there can be tools that may be available in the latter category but not in the former, 
and these can be used to attack problems that appear unsolvable from the original point 
of view. There are many examples where this strategy has been crucial in obtaining 
important results.

The present work fits in a series of papers (see references after Problem 1.4 below) 
where concepts and properties from graph theory are translated into group theory and 
homotopy theory. On the one hand, we have the graph Γ, which is a discrete, finitary 
object, amenable to investigation through combinatorics. On the other hand, we have 
the group A(Γ), which can be investigated not only through group theory, but also 
through the machinery of algebraic topology. More precisely, graph-theoretic properties 
are reflected in the cohomology of the group with coefficients in a field, a homotopical 
object which possesses rich structure (e.g. the structure of an algebra, an action of the 
Steenrod algebra when the field is finite, differential models if the field is Q, etc.) which 
in this way becomes suitable for applications to graph theory. In particular, translation 
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between combinatorics and group theory/topology provides a strategy for attacking the 
following problem, whose resolution occupies the bulk of this note:

Problem 1.1. Translate the property of Hamiltonicity from the category of graphs to the 
category of right-angled Artin groups.

To proceed with resolving Problem 1.1, let V and W be vector spaces over a field F
with V finite dimensional, and let q : V ×V → W be a (anti-)symmetric bilinear pairing 
on V . We say that (V, W, q) is Hamiltonian if whenever {w1, . . . , wn} is a basis for V then 
there is a permutation σ ∈ Sn such that for all 1 ≤ i < n, we have q(wσ(i), wσ(i+1)) �= 0.

The following two results are complete answers to Problem 1.1. The first intrinsi-
cally characterizes graphs admitting Hamiltonian paths via the cohomology ring of the 
corresponding right-angled Artin groups.

Theorem 1.2. Let Γ be a finite simplicial graph and let F be a field. We set

V = H1(A(Γ), F ), W = H2(A(Γ), F ),

and let q be the cup product pairing V × V → W . Then Γ admits a Hamiltonian path if 
and only if (V, W, q) is Hamiltonian.

We are able to prove an analogue of Theorem 1.2 for graphs admitting Hamiltonian 
cycles as well. We will say that (V, W, q) above is cyclic Hamiltonian if for every basis 
{w1, . . . , wn} of V , there is a permutation σ ∈ Sn such that for all 1 ≤ i < n, we have 
q(wσ(i), wσ(i+1)) �= 0, and also q(wσ(n), wσ(1)) �= 0.

Theorem 1.3. Let {Γ, F, V, W, q} be as in Theorem 1.2. Then Γ admits a Hamiltonian 
cycle if and only if (V, W, q) is cyclic Hamiltonian.

The reader will note that the property of the cohomology algebra of A(Γ) being 
Hamiltonian is truly intrinsic to A(Γ). The cohomology algebra of A(Γ) is canonically 
associated to the group. Moreover, since Hamiltonian vector spaces are defined with-
out reference to a particular basis, Hamiltonicity of a vector space is truly intrinsic to 
(V, W, q).

Throughout the paper, we will concentrate on the proof of Theorem 1.2. Relatively 
mild generalizations are needed to obtain Theorem 1.3, and these are spelled out in 
Section 3.

Theorems 1.2 and 1.3 fit into a broader circle of ideas. We start with the following 
general guiding problem, which generalizes Problem 1.1:

Problem 1.4. Let P be a property of finite simplicial graphs. Find a property Q of groups 
such that Γ has P if and only if A(Γ) has Q.
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We insist that Q be a property of the isomorphism type of the group, so that in 
particular, Q should be independent of any generating set. Some satisfactory answers to 
Problem 1.4 are known, for instance when P is the property of being a nontrivial join [19], 
being disconnected [3], containing a square [11,12], being a co-graph [12,13], being a finite 
tree or complete bipartite graph [10], admitting a nontrivial automorphism [7], being 
k–colorable [6], and fitting in a sequence of expanders [8]. Thus, Theorems 1.2 and 1.3
resolve Problem 1.4 when P is graph Hamiltonicity.

1.2. Linear algebra

The main innovation needed to prove Theorems 1.2 and 1.3 is a certain combinatorial 
object called the two–row graph associated to a matrix (see Subsection 2.3 below). The 
combinatorics of this graph appear to be difficult to understand in general. The crucial 
observation for us is that if a matrix is invertible, then its two–row graph contains a 
Hamiltonian path (Lemma 2.6). This result is in fact equivalent to the following purely 
linear algebraic fact. Here, we say that two rows of a square matrix A are null-connected
if all the consecutive 2 × 2 minors that they determine (i.e. minors in which the columns 
are consecutive in A) are singular; cf. Definition 2.7 and Lemma 2.6.

Proposition 1.5. Let A ∈ GLn(F ). Then there exists a reordering of the rows of the 
matrix A such that no consecutive rows are null-connected. In particular, the two–row 
graph of A always contains a Hamiltonian path.

From a linear algebraic perspective, Proposition 1.5 is the main result of this article, 
and in addition to its major role in the proof of Theorem 1.2 and Theorem 3.2, it 
is of independent interest. Establishing this fact is highly nontrivial, and requires the 
development of some linear algebraic tools which, to the knowledge of the authors, are 
entirely novel. These ideas, which can be found in Subsection 2.4, give a perspective on 
the determinant of a matrix which appears not to have been known before.

While we are partially inspired by classical approaches of expanding the determinant 
which rely on the computation of 2 × 2 minors such as Laplace expansion, the Dodg-
son condensation formula, and the Sylvester formula [1], our point of view is radically 
different.

The two–row graph can be defined for an arbitrary matrix (which need not even 
be square). Sometimes this graph is very sparse (and may in fact be disconnected), and 
sometimes it may have many edges. Its general behavior appears to be quite complicated. 
The consequences of our methods can be summarized as follows: the two–row graph is 
a new invariant of matrices, and among square matrices, the invertible ones have the 
property that the two–row graph is Hamiltonian.

2. Hamiltonian vector spaces and the two–row graph

In order to prove Theorem 1.2, we begin by gathering some preliminary facts.
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2.1. Cohomology of right-angled Artin groups

In this subsection, we recall some basic facts about the structure of the cohomology 
algebra of a right-angled Artin group A(Γ). The result recorded here is easy and well–
known, and follows from standard methods in geometric topology together with the fact 
that the Salvetti complex associated to Γ is a classifying space for A(Γ). Some details 
are spelled out in [8,14], for instance.

Let V (Γ) = {v1, . . . , vn} and E(Γ) = {e1, . . . , em} be the vertices and edges of Γ, and 
write � for the cup product pairing on H∗(A(Γ), F ), where here F denotes an arbitrary 
field.

Lemma 2.1. Let Γ be a finite simplicial graph. Then there are bases {v∗1 , . . . , v∗n} for 
H1(A(Γ), F ) and {e∗1, . . . , e∗m} for H2(A(Γ), F ) such that:

(1) We have v∗i � v∗j = 0 if and only if {vi, vj} /∈ E(Γ);
(2) We have v∗i � v∗j = ±e∗k whenever {vi, vj} = ek ∈ E(Γ).

2.2. The easy direction

One direction of Theorem 1.2 is straightforward.

Lemma 2.2. Let Γ be a finite simplicial graph, let V = H1(A(Γ), F ), let W =
H2(A(Γ), F ), and let q be the cup product pairing V ×V → W . If (V, W, q) is Hamiltonian 
then Γ admits a Hamiltonian path.

Proof. Let {v1, . . . , vn} be a list of the vertices in Γ, and write {v∗1 , . . . , v∗n} for the 
corresponding dual cohomology classes in H1(A(Γ), F ) as in Lemma 2.1. Since V is 
Hamiltonian, we may re-index {v∗1 , . . . , v∗n} so as to assume that q(v∗i , v∗i+1) �= 0 for 
1 ≤ i < n. But then {vi, vi+1} ∈ E(Γ) and hence {v1, . . . , vn} forms a Hamiltonian path 
in Γ. �

The proof of the converse of Lemma 2.2 will occupy the remainder of this section.

2.3. A linear algebraic reduction

Here and for the remainder of the paper, we will use the notation aji for entries in 
a matrix, where the subscript denotes the row and the superscript denotes the column. 
Rows of a matrix A will be denoted {r1, . . . , rn}, and the entry in the jth column of ri
will be denoted rji .

Let {w1, . . . , wn} be an arbitrary basis for V = H1(A(Γ), F ). We wish to show that 
there is a re-indexing the basis {w1, . . . , wn} such that after relabeling the basis vectors, 
we have q(wi, wi+1) �= 0 for 1 ≤ i < n. We write
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wi =
n∑

j=1
ajiv

∗
j

for suitable coefficients {aji}1≤i,j≤n ⊂ F , so that A = (aji )1≤i,j≤n is an invertible ma-
trix over F . Thus, we may view the rows of A as corresponding to the expression of 
{w1, . . . , wn} in terms of the basis {v∗1 , . . . , v∗n}, and a re-indexing of {w1, . . . , wn} is 
merely a permutation of the rows of A.

A matrix A ∈ Mn(F ) will be called square–traceable if for all 1 ≤ i < n there exists 
1 ≤ j < n such that the determinant of the minor

Aj
i =

(
aji aj+1

i

aji+1 aj+1
i+1

)

is nonzero.
The main technical fact we establish in this paper is the following purely linear alge-

braic statement:

Lemma 2.3. Let A ∈ GLn(F ). Then there is a permutation matrix σ ∈ GLn(F ) such 
that σA is square–traceable. That is, A is square–traceable, possibly after a permutation 
of the rows.

If A satisfies the conclusion of Lemma 2.3, then we shall say that A is permutation–
square–traceable. Assuming Lemma 2.3, we can complete the proof of Theorem 1.2, as 
follows from the next lemma.

Lemma 2.4. Suppose Γ is a finite simplicial graph that admits a Hamiltonian path, let 
V = H1(A(Γ), F ), let W = H2(A(Γ), F ), and let q be the cup product pairing V × V →
W . Then (V, W, q) is Hamiltonian.

Proof. Let {w1, . . . , wn} be a basis for H1(A(Γ), F ), and let {v∗1 , . . . , v∗n} be the standard 
basis for H1(A(Γ), F ) arising from the duals of the vertices of Γ as in Lemma 2.1. Assume 
that q(v∗i , v∗i+1) �= 0 for 1 ≤ i < n, which is possible since Γ contains a Hamiltonian path. 
Writing

wi =
n∑

j=1
ajiv

∗
j ,

we re-index the basis {w1, . . . , wn} so that the matrix A = (aji )1≤i,j≤n is square–
traceable, which is possible by Lemma 2.3.

A straightforward calculation shows that in expressing q(wi, wi+1) with respect to the 
vectors

{q(v∗j , v∗k) | 1 ≤ j < k ≤ n}
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(which span H2(A(Γ), F )), we have that the coefficient of the vector q(v∗j , v∗j+1) is exactly 
detAj

i . Since detAj
i �= 0 for some choice of j and since q(v∗j , v∗j+1) �= 0 for all j by 

assumption, we have q(wi, wi+1) �= 0. Thus, (V, W, q) is Hamiltonian. �
2.4. The two–row graph and square traceability

The permutation–square–traceability of a matrix A can be formulated in terms of the 
combinatorics of a certain graph constructed from A. Let A ∈ Mn(F ). We view the rows 
of A as n linearly independent vectors over F , which we label {r1, . . . , rn}. We record 
these vectors as ri = (r1

i , . . . , r
n
i ) for 1 ≤ i ≤ n. We construct an undirected graph 

G(A), called the 2–row graph of A, as follows. The vertices of G(A) are simply the rows 
{r1, . . . , rn} of A. Rows ri and rj of A are connected by an edge in G(A) if and only if 
for some 1 ≤ k < n, the minor

Ak
i,j =

(
rki rk+1

i

rkj rk+1
j

)

is invertible, which the reader may compare with the definition of square–traceability 
above. In other words, the rows ri and rj span an edge whenever

(Λ2A)(ek ∧ ek+1)

has a nonzero coefficient for ei ∧ ej , where here Λ2A denotes the alternating square 
of A and where {e1, . . . , en} denote standard basis vectors with respect to which A is 
expressed.

One may check that for the identity matrix Id, we have G(Id) is a path, and for a 
dense open set of matrices in GLn(C) or GLn(R), the 2–row graph is complete. To see 
this last claim, we may restrict to the dense and open subset of n ×n matrices where all 
entries are nonzero, and in the complement of the (closed subset with empty interior) 
where the determinant vanishes. For an invertible matrix A with all nonzero entries, two 
rows of A fail to be connected by an edge in G(A) if and only if they are scalar multiples 
of each other. It is then immediate that any two rows of A are connected in G(A).

The graph G(A) will usually be considered for invertible matrices, though certainly 
one may consider non-invertible and even non-square matrices, for which the definition 
of G(A) clearly still makes sense.

The usefulness of the 2–row graph comes from the following trivial observation:

Lemma 2.5. If G(A) contains a Hamiltonian path then A is permutation–square–traceable.

Proof. Choose a Hamiltonian path in G(A). Relabelling the vertices in this path by the 
order in which the path visits them, we obtain a permutation matrix σ such that σA is 
square–traceable. �
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Thus, to prove Lemma 2.3, it suffices to prove the following, which is the main inno-
vation in this paper:

Lemma 2.6. Let A ∈ GLn(F ). Then G(A) admits a Hamiltonian path.

At first, it may seem difficult to prove anything general about the 2–row graph of an 
invertible matrix. However, it is an enlightening exercise to show that G(A) is always 
connected. The reader will note that connectedness of G(A) is obtained as an immediate 
consequence of Lemma 2.6.

Observe that in general the converse of Lemma 2.6 is false, by considering for example 
the matrix

A =
(0 1 0

0 0 1
0 1 0

)
,

whose two–row graph admits a Hamiltonian path but which is manifestly non–invertible.
In order to establish Lemma 2.6, we will need to develop some more linear algebraic 

tools. Henceforth, a minor of a matrix A is a square submatrix of A obtained by deleting 
rows and columns.

Definition 2.7. Let ri and rj be rows of A, and let Ai,j be the 2 × n submatrix of A
spanned by these two rows. We will say that rows ri and rj of A are null–connected if 
all 2 × 2 minors of Ai,j spanned by consecutive columns are singular.

We let Gopp(A) denote the graph spanned by the rows of A, with null–connectedness 
as the edge relation. Note that G(A) and Gopp(A) are complementary graphs in the 
complete graph on the rows of A.

Definition 2.8. Let M be a submatrix of A. We will call M a 1–block if the following 
conditions hold.

(1) All entries of M are nonzero.
(2) M has at least two rows and two columns, and all columns are consecutive in A.
(3) The subgraph of Gopp(A) spanned by the rows occurring in M (viewed as rows of 

A) is connected.
(4) M is maximal with respect to these conditions. That is, there is no submatrix N

of A containing M as a proper submatrix, and which satisfies the previous three 
conditions.

The following observation about 1–blocks is elementary but useful, and justifies the 
terminology.

Lemma 2.9. Let M be a 1–block in A. Then the row space of M is one–dimensional.
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Proof. If M has just two columns then the claim is clear. Let r1 = (a1, · · · , an) and 
r2 = (b1, · · · , bn) be two rows of M . If these rows are null–connected in A, we have that 
(a1, a2) is proportional to (b1, b2) by a nonzero constant, say λ. Similarly, (a2, a3) and 
(b2, b3) are proportional by a nonzero constant, which must therefore be equal to λ. By 
induction on n, we have that r1 and r2 are proportional by λ. The fact that the row 
space of M one–dimensional now follows easily from the connectedness of the subgraph 
of Gopp(A) spanned by the rows of M . �

Let I ⊂ {1, . . . , n} and let 1 ≤ s < t ≤ n. We will write Ms,t
I for the submatrix 

(not necessarily a 1–block) spanned by rows in the index set I and columns with indices 
between s and t (inclusively). If M1 = Ms,t

I and M2 = Mp,q
J are such matrices, we will 

write M1 � M2 if p = t + 1.
The following lemma shows that the structure of 1–blocks is highly constrained.

Lemma 2.10. Let M1 = Ms,t
I and M2 = Mp,q

J be 1–blocks. If M1 �= M2 then M1 and M2
are disjoint as submatrices of A.

Proof. Without loss of generality, s ≤ p. Suppose that the (i, k)–entry of A belongs to 
both blocks. This means that i ∈ I ∩ J and p ≤ k ≤ t. We claim that I = J in this case, 
which is easily seen to be sufficient to establish the lemma (cf. Lemma 2.9).

Let R ⊆ I \ {i} denote the set of indices such that each row indexed by R is null–
connected to the row ri. Since M1 is a 1–block, we have that R �= ∅. Let � ∈ R. Let us 
then consider the submatrix N of A spanned by ri and r�, which must have the following 
shape:

N =
(
· · · ai bi ci di · · ·
· · · a� b� c� d� · · ·

)
,

where here the entries ci and c� lie in the column indexed by p.
Now, since M1 and M2 are 1–blocks, we must have that 0 /∈ {bi, ci, di, b�}. Since ri

and r� are null–connected, this forces c� and d� to be nonzero as well, and so the vectors 
(ci, di) and (c�, d�) are nonzero multiples of each other. It is clear that this forces all 
entries in r� to be nonzero for columns indexed between p and q.

The vector (rki , rk+1
i ) is proportional to the vector (rk� , r

k+1
� ) for p ≤ k < q by the 

null–connectedness of ri and r� (where here rki denotes the kth column entry in the row 
ri). It follows that these pairs of vectors

{(rki , rk+1
i ), (rk� , rk+1

� )}p≤k<q

are all proportional with the same nonzero constant of proportionality (cf. the proof of 
Lemma 2.9). We then conclude that the �–row (rp� , . . . , r

q
� ) of M2 is proportional to the 

i–row (rpi , . . . , r
q
i ) of M2 by a nonzero constant of proportionality, whence the maximality 

part of the definition of a 1–block implies that � ∈ J . Since the rows indexed by I span 



R. Flores et al. / Linear Algebra and its Applications 631 (2021) 94–110 103
a connected subgraph of Gopp(A), an easy induction shows that I ⊆ J . Evidently, the 
reverse inclusion holds by the same argument. �

We remark that it is not difficult to modify this argument and show that if Mp,q
I and 

Mq+1,s
J are 1–blocks then I∩J = ∅. Lemma 2.10 also has the following easy consequence, 

which follows from the maximality in the definition of a 1–block:

Corollary 2.11. A matrix A admits a unique partition into submatrices of the following 
three types:

(1) 1–blocks;
(2) 1 × 1 nonzero matrices which do not belong to any 1–block;
(3) 1 × 1 zero matrices.

Example 2.12. To illustrate the foregoing concepts, consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 1
0 1 0 1 0 0 1
1 1 1 0 1 0 1
0 1 0 0 1 0 1
1 1 1 0 0 1 0
1 0 1 0 0 0 1
1 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Some tedious but straightforward calculations show that A is invertible. The graph G(A)
is highly connected; in fact, the only missing edges are between rows 1 and 3, and between 
rows 6 and 7, and therefore these are the only pairs of rows in A that are null–connected. 
Setting I = {1, 3}, the submatrix M1,3

I forms the unique 1–block in A.

Definition 2.13. Let M be a minor in A with at least two rows. We say that M is a 
1–minor if M is contained in a 1–block, and if the columns of M are consecutive in A.

Definition 2.14. Let A be an n × n matrix and let

M1 � M2 � · · · � Mr

be a sequence of minors in A of the form Mi = Msi,ti
Ji

. We say that this sequence is a 
1–track if the following conditions hold:

(1) For each i, the matrix is a nonzero 1 × 1 matrix or a 1–minor.
(2) For 1 ≤ i < r, it is not the case that Mi and Mi+1 belong to a common 1–block.

We will say that a 1–track T is complete if the total number of columns in T is n. We say 
that two 1–tracks {Mi}1≤i≤r and {Nj}1≤j≤s are different if they are distinct sequences 
of matrices. For σ ∈ Sn, we say that a string
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a =
(
a1
σ(1), . . . , a

n
σ(n)

)
of entries of A belongs to the (complete) 1–track T if every entry in a belongs to some 
minor in T .

The following is a crucial fact about 1–tracks.

Lemma 2.15. Let a = (a1
σ(1), . . . , a

n
σ(n)) be a string consisting of nonzero entries of A. 

Then a belongs to exactly one complete 1–track.

Proof. We will construct a 1–track T to which a belongs, in a canonical way. If a1
σ(1)

does not belong to a 1–block, then we set M1 = a1
σ(1). If for all 1 ≤ i ≤ n we have aiσ(i)

belong to the same 1–block then we may set A = M1. Otherwise, there is a k so that 
ajσ(j) belongs to a single 1–block B for j ≤ k, but ak+1

σ(k+1) does not. We then let M1
be the 1–minor spanned by rows indexed by {σ(1), . . . , σ(k)} and columns indexed by 
1 ≤ j ≤ k.

To construct M2, we restart the construction of the previous paragraph at ak+1
σ(k+1), and 

thus inductively construct the 1–track T to which the string a belongs. It is immediate 
that the resulting 1–track is complete. Note that this construction is canonical and hence 
the resulting 1–track is unique (cf. Remark 2.16 below). �
Remark 2.16. In order to obtain uniqueness of the 1–track in the proof of Lemma 2.15, 
we are using the uniqueness of 1–blocks from Lemma 2.10 in an essential way. If M ′ were 
a 1–minor containing both aiσ(i) and ai+1

σ(i+1) that meets the 1–minor Mk ∈ T , then M ′ is 
a submatrix of Mk. This follows, as Lemma 2.10 implies that Mk and M ′ lie in a single 
1–block, so that M ′ will be subsumed as a submatrix of Mk in the construction of T .

Let T be a complete 1–track in a matrix A, and let ΣT ⊂ Sn be the collection of 
permutations σ ∈ Sn such that aσ = (a1

σ(1), . . . , a
n
σ(n)) belongs to T . The next lemma 

shows that every “cluster” of nonzero entries coming from a 1–minor in a matrix A
contributes nothing to the determinant of A.

Lemma 2.17. Let T = {Mi}1≤i≤r be a complete 1–track in A that contains at least one 
1–minor. Then

∑
σ∈ΣT

sgn(σ)
n∏

i=1
aiσ(i) = 0.

Proof. Without loss of generality, we will assume that M1 is a 1–minor, which has k > 1
rows. Since M1 is contained in a 1–block, its rows are all proportional to each other. It 
follows by an easy calculation that

k∏
aiσ(i)
i=1
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is constant for σ ∈ ΣT .
We identify Sk with the permutations of the k rows of A corresponding to the rows 

of M1, and which fix the remaining rows of A. Let aσ = (a1
σ(1), . . . , a

n
σ(n)) belong to T . 

Then for all τ ∈ Sk, we have(
a1
τσ(1), . . . , a

k
τσ(k), a

k+1
σ(k+1), . . . , a

n
σ(n)

)
also belongs to T . It is not difficult to see then that for such a fixed σ, we have

∑
τ∈Sk

sgn(τ)
(
a1
τσ(1) · · · akτσ(k) · ak+1

σ(k+1) · · · a
n
σ(n)

)
= 0.

Indeed, this follows simply from the fact that half of the permutations in Sk have sign 1
and half have sign −1, and the previous observation that the product a1

τσ(1) · · · akτσ(k) is 
independent of τ ∈ Sk.

Finally, consider the sum

∑
σ∈ΣT

sgn(σ)
n∏

i=1
aiσ(i).

The previous considerations show that the total contribution from strings aσ whose tail 
is of the form (ak+1

σ(k+1), . . . , a
n
σ(n)) is zero. It follows that the total sum vanishes, as 

claimed. �
We can now finish the proof of the main result.

Proof of Lemma 2.6. It suffices to show that if A ∈ GLn(F ) then there is a reordering 
of the rows of A so that no pair of consecutive rows is null–connected. So, suppose the 
contrary, and we shall show that det(A) = 0.

Let aσ = (a1
σ(1), . . . , a

n
σ(n)) be a string consisting of nonzero entries of A. Observe 

that there must be a 1–minor containing two consecutive entries of aσ. Indeed, otherwise 
there would be a reordering of the rows of A such that no pair of consecutive rows is 
null–connected.

Let ΣN ⊂ Sn denote the set of permutations σ for which the string

aσ =
(
a1
σ(1), . . . , a

n
σ(n)

)
consists of nonzero entries of A. By definition, we have

det(A) =
∑

σ∈ΣN

sgn(σ)
n∏

i=1
aiσ(i).

By Lemma 2.15, every such string aσ belongs to a unique complete 1–track, and con-
versely for each complete 1–track T and each aσ belonging to T we have that σ ∈ ΣN .
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It follows that there is a collection of distinct complete 1–tracks {T1, . . . , Tm} such that 
the collection of strings belonging to these 1–tracks partitions {aσ}σ∈ΣN

. Lemma 2.17
implies that det(A) = 0, as claimed. �
Remark 2.18. As stated in the introduction (see Proposition 1.4), Lemma 2.6 admits a 
purely algebraic formulation, which might be of independent interest in linear algebra. 
The equivalence between the two statements is immediate.

3. From Hamiltonian paths to Hamiltonian cycles

In this section, we extend the definition of the two–row graph G(A) to allow for cyclic 
permutations of the columns of A. To that end, we define the cyclic two–row graph Gc(A)
as follows. The vertices of Gc(A) are the rows of A. Two rows ri and rj are adjacent if 
they are adjacent in G(A), or if the minor

Rn
i,j =

(
rni r1

i

rnj r1
j

)

is invertible. Note that, for example, Gc(Id) is a cycle. We establish a variation on 
Lemma 2.6 by proving the following result:

Proposition 3.1. Let A ∈ GLn(F ). Then Gc(A) contains a Hamiltonian cycle.

Recall that with the same notation as above, we consider a triple (V, W, q) and say 
that it is cyclic Hamiltonian if for every basis {v1, . . . , vn} of V , there is a permutation 
σ such that q(vσ(i), vσ(i+1)) �= 0 for 1 ≤ i ≤ n, and where the indices are considered 
cyclically. The following is a restatement of Theorem 1.3.

Theorem 3.2. Let Γ be a finite simplicial graph and let F be a field. We set

V = H1(A(Γ), F ), W = H2(A(Γ), F ),

and let q be the cup product pairing V × V → W . Then Γ admits a Hamiltonian cycle if 
and only if (V, W, q) is cyclic Hamiltonian.

As with Theorem 1.2, there is an easier and a harder direction. The proof of the easier 
direction is analogous to the proof of Lemma 2.2 above, and the harder direction follows 
from Proposition 3.1 by a proof that is analogous to that of Theorem 1.2.

3.1. Proving Proposition 3.1

Many of the concepts from Subsection 2.4 generalize verbatim or nearly verbatim to 
the cyclic two–row graph, after some obvious modifications. For one, null–connectedness 
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is now a stronger condition, as it is the complement of the adjacency relation in Gc(A). 
The definition of a cyclic 1–block is identical to the definition of a 1–block in Defini-
tion 2.8, except that columns are arranged in a cyclic order and the relation of being 
consecutive is correspondingly weakened. The superscripts in the notation Ms,t

I are taken 
cyclically. So, if A ∈ M6(F ) for example and if I = {1, 2, 5}, then the submatrix M4,1

I

is spanned by the rows indexed by I, and by columns {4, 5, 6, 1}. The sixth and first 
columns are thus viewed as consecutive. For the purposes of our analyses, it is concep-
tually useful to imagine the matrix A written on a torus, so that the top and bottom 
rows are consecutive, and the leftmost and rightmost columns are consecutive.

With the modified notion of consecutiveness, the proofs of Lemma 2.9 and Lemma 2.10
for cyclic 1–blocks are the same. Similarly, the definition of a cyclic 1–minor transfers 
to cyclic 1–blocks easily. Slight care should be taken when defining a cyclic 1–track: if 
{Mi}1≤i≤r is a cyclic 1–track in A, then writing M1 = Ms1,t1

J1
and Mr = Msr,tr

Jr
, we 

require that tr ≤ s1 in the cyclic order on the columns of A. We obtain immediately the 
notion of a string a belonging to a cyclic 1–track, and now the string is considered up to 
a cyclic permutation. It is straightforward to generalize Lemma 2.15 to cyclic 1–tracks. 
Lemma 2.17 then generalizes to cyclic 1–tracks containing at least one cyclic 1–minor, 
simply by cyclically permuting the columns of A so that a cyclic 1–minor appears as the 
first minor in a 1–track.

Proof of Proposition 3.1. The proof is a reprise of the proof of Lemma 2.6: indeed, 
suppose the contrary. Then, for any permutation σ ∈ Sn, at least one pair of rows 
{rσ(i), rσ(i+1)} is null–connected, for 1 ≤ i ≤ n. Let

aσ = (a1
σ(1), . . . , a

n
σ(n))

be a string consisting of nonzero entries of A, and let T be the unique cyclic 1–track 
to which aσ belongs. It must be the case that two consecutive entries in aσ belong to 
a 1–minor, since otherwise we would violate our initial null–connectedness assumption, 
and therefore we must have that T contains at least one 1–minor. The total sum of 
contributions to det(A) from T is zero. It follows that det(A) = 0, a contradiction. �
Remark 3.3. Proposition 3.1 also admits an algebraic formulation analogous to Proposi-
tion 1.5, by adopting the less restrictive notion of consecutiveness defined in this section.

Example 3.4. Let us briefly revisit Example 2.12 above, in the context of the cyclic 
concepts. If one allows for wraparounds in the columns, then there is one more 1–block 
in A. Indeed, set J = {6, 7}. Then the submatrix M7,1

J is also a 1–block. The remaining 
entries in A are accounted for according to Corollary 2.11. The graphs G(A) and Gc(A)
are isomorphic to each other.
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4. Some questions

The discussion in this paper naturally leads to some further questions. There are of 
course those that arise from the interest in graph Hamiltonicity from the point of view 
of complexity theory. These questions are thoroughly discussed in the literature; see for 
instance [2,16,9,17], and as such we will not comment on them in detail.

Because the main new ideas in this article come from linear algebra and in particular 
the two–row graph, we close with some problems that arise from that perspective.

Let q be a power of a prime and let Fq denote the field with q elements. Consider 
the uniform measure on the finite group GLn(Fq), thus producing a model for random 
matrices:

Question 4.1. Let A ∈ GLn(Fq) be random. What is the probability that G(A) is com-
plete, as a function of n? How does this probability depend on q?

A random matrix in GLn(Fq) will have the property that G(A) is Hamiltonian, and 
so we obtain a model for a random Hamiltonian graph.

In the non-random context, the realization problem is interesting and is likely quite 
difficult for large n:

Question 4.2. Let Γ be a fixed graph Hamiltonian graph. Is Γ ∼= G(A) for an invertible 
matrix A? What further restrictions besides Hamiltonicity does the invertibility of A
impose?

The realization problem is much easier if one does not require invertibility of A and 
if one drops the requirement that A be square. For a non-square matrix A, we adopt the 
obvious generalization of G(A).

Proposition 4.3. Let Γ be an arbitrary finite simplicial graph. Then there is a matrix A
such that Γ ∼= G(A).

Proof sketch. Let Γ have n vertices, labeled {v1, . . . , vn}. We build the matrix A, one 
vertex of Γ at a time, padding with zeros appropriately. Let A1 be a 1 × 1 matrix with 
a single 1 entry. We set A2 to be a 2 × 2 matrix, which is the identity if v1 and v2 span 
an edge, and otherwise is the matrix

(
1 0
0 0

)
.

Now suppose that Aj is constructed. We construct Aj+1 as follows.

(1) Add a row of zeros at the bottom of Aj to get a matrix B1,j , and set the counter 
i = 1.



R. Flores et al. / Linear Algebra and its Applications 631 (2021) 94–110 109
(2) Add a column of zeros on the right of B1,j to get a matrix B2,j . If the counter i is 
equal to j + 1 then stop and set Aj+1 = B2,j .

(3) If vi and vj+1 span an edge in Γ, add two columns to B2,j which are zero everywhere 
except in rows i and j + 1, wherein the entries are (1, 0) and (0, 1) respectively. 
Otherwise, do nothing to the matrix, increase the counter i by one, and return to 
step 2.

(4) Rename the resulting matrix B1,j, increase the counter i by one, and return to step 
2.

We set A = An with an extra column of zeros on the right. It is straightforward to 
check that two rows of A will be null–connected if and only if the corresponding vertices 
of Γ do not span an edge. �

One can also consider the problem of determining the permutation–square–traceability 
of a matrix A, or equivalently the Hamiltonicity of the graph G(A). Observe that to 
check by brute force that a matrix is permutation–square–traceable requires checking all 
possible permutations of the rows and examining the edge relation between consecutive 
rows.

Question 4.4. Let A ∈ Mn(F2). What is the complexity of the problem to decide whether 
or not A is permutation–square–traceable?

Note that Question 4.4 is only interesting for non-invertible matrices, by the main 
results of this paper. Observe that a Hamiltonian path in G(A) is a certificate of the 
permutation–square–traceability of a matrix, so that the problem in Question 4.4 is 
clearly in NP. We suspect that it should be NP–complete.

Declaration of competing interest

There are no competing interests.

Acknowledgements

We thank F. Abeles, R. Brualdi, A. de Camargo, T. Markham and J.M. Peña for 
helpful comments, and the referee for his/her careful report. Ramón Flores is supported 
by FEDER-MEC grant MTM2016-76453-C2-1-P and FEDER grant US-1263032 from 
the Andalusian Government. Thomas Koberda is partially supported by an Alfred P. 
Sloan Foundation Research Fellowship, by NSF Grant DMS-1711488, and by NSF Grant 
DMS-2002596. Delaram Kahrobaei is supported in part by a Canada’s New Frontiers in 
Research Fund, under the Exploration grant entitled “Algebraic Techniques for Quantum 
Security”. We thank the University of York for hospitality while part of this research was 
conducted.



110 R. Flores et al. / Linear Algebra and its Applications 631 (2021) 94–110
References

[1] Francine F. Abeles, Chiò’s and Dodgson’s determinantal identities, Linear Algebra Appl. 454 (2014) 
130–137. MR 3208413.

[2] Sanjeev Arora, Boaz Barak, Computational Complexity: A Modern Approach, Cambridge Univer-
sity Press, Cambridge, 2009. MR 2500087.

[3] Noel Brady, John Meier, Connectivity at infinity for right angled Artin groups, Trans. Am. Math. 
Soc. 353 (1) (2001) 117–132. MR 1675166.

[4] Reinhard Diestel, Graph Theory, fifth ed., Graduate Texts in Mathematics, vol. 173, Springer, 
Berlin, 2017. MR 3644391.

[5] Carl Droms, Isomorphisms of graph groups, Proc. Am. Math. Soc. 100 (3) (1987) 407–408. MR 
891135.

[6] Ramón Flores, Delaram Kahrobaei, Thomas Koberda, An algebraic characterization of 
k–colorability, Proc. Am. Math. Soc. 149 (5) (2021) 2249–2255. MR 4232214.

[7] Ramón Flores, Delaram Kahrobaei, Thomas Koberda, Algorithmic problems in right-angled Artin 
groups: complexity and applications, J. Algebra 519 (2019) 111–129. MR 3874519.

[8] Ramón Flores, Delaram Kahrobaei, Thomas Koberda, Expanders and right-angled Artin groups, 
Preprint, 2020.

[9] Michael R. Garey, David S. Johnson, Computers and Intractability: A Guide to the Theory of 
NP-Completeness, Series of Books in the Mathematical Sciences, W. H. Freeman and Co., San 
Francisco, Calif, 1979. MR 519066.

[10] Susan Hermiller, Zoran Šunić, Poly-free constructions for right-angled Artin groups, J. Group The-
ory 10 (2007) 117–138. MR 2288463.

[11] Mark Kambites, On commuting elements and embeddings of graph groups and monoids, Proc. 
Edinb. Math. Soc. (2) 52 (1) (2009) 155–170. MR 2475886.

[12] Sang-hyun Kim, Thomas Koberda, Embedability between right-angled Artin groups, Geom. Topol. 
17 (1) (2013) 493–530. MR 3039768.

[13] Sang-Hyun Kim, Thomas Koberda, Free products and the algebraic structure of diffeomorphism 
groups, J. Topol. 11 (4) (2018) 1054–1076. MR 3989437.

[14] Thomas Koberda, Geometry and combinatorics via right-angled Artin groups, preprint, arXiv :2103 .
09342.

[15] Thomas Koberda, Right-angled Artin groups and a generalized isomorphism problem for finitely 
generated subgroups of mapping class groups, Geom. Funct. Anal. 22 (6) (2012) 1541–1590. MR 
3000498.

[16] Marvin L. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall Series in Automatic 
Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0356580.

[17] Alon Rosen, Concurrent Zero-Knowledge, Information Security and Cryptography, Springer-Verlag, 
Berlin, 2006, With additional background and a foreword by Oded Goldreich. MR 2279343.

[18] Lucas Sabalka, On rigidity and the isomorphism problem for tree braid groups, Groups Geom. Dyn. 
3 (3) (2009) 469–523. MR 2516176.

[19] H. Servatius, Automorphisms of graph groups, J. Algebra 126 (1) (1989) 34–60. MR 1023285 
(90m:20043).

http://refhub.elsevier.com/S0024-3795(21)00316-5/bibF6390CE05DAFD21568BB5EB860F099D6s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibF6390CE05DAFD21568BB5EB860F099D6s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib65D9592A4133F0704CAE5ED205ABB2ABs1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib65D9592A4133F0704CAE5ED205ABB2ABs1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibE1306E93C4234DAD5855AC3234788A2Bs1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibE1306E93C4234DAD5855AC3234788A2Bs1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibCFE0233F23CC34AD2815B47A05DFFAD9s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibCFE0233F23CC34AD2815B47A05DFFAD9s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibDA0FE191E2B2B9850B8EEB3F145E3FB9s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibDA0FE191E2B2B9850B8EEB3F145E3FB9s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib48F9BFF9850593B9394F9902C80E580Es1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib48F9BFF9850593B9394F9902C80E580Es1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib55B5231D36A9E1A620877CAA0324E1EFs1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib55B5231D36A9E1A620877CAA0324E1EFs1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib9EEBB733B8C2612855AB11953F1D2ED1s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib9EEBB733B8C2612855AB11953F1D2ED1s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib9EEBB733B8C2612855AB11953F1D2ED1s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib207318859E3E2E773EDC789FC3E103F9s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib207318859E3E2E773EDC789FC3E103F9s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibB81CD4A33254ABDC7835217CA25E19D4s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibB81CD4A33254ABDC7835217CA25E19D4s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibD00BCAFC721EBF8BB0456998BDAB6205s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibD00BCAFC721EBF8BB0456998BDAB6205s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibD8CE71A3BD022ED5C901FE28D636EE47s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibD8CE71A3BD022ED5C901FE28D636EE47s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib9F6916070AAE556726F702F48E4707C2s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib9F6916070AAE556726F702F48E4707C2s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib4A7837D2D1885029D0CC2D991EB205B8s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib4A7837D2D1885029D0CC2D991EB205B8s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib4A7837D2D1885029D0CC2D991EB205B8s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibA638302E2930E9B44B168A2A06012BDBs1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibA638302E2930E9B44B168A2A06012BDBs1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibA81E783C1C8211FCB8B5A698E966788Fs1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibA81E783C1C8211FCB8B5A698E966788Fs1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib3E3EFF1F06F5E43C5DD9DD8FC9A7C453s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bib3E3EFF1F06F5E43C5DD9DD8FC9A7C453s1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibFD9CF7B12706A5FA7AF72F569E6C480Fs1
http://refhub.elsevier.com/S0024-3795(21)00316-5/bibFD9CF7B12706A5FA7AF72F569E6C480Fs1

	Hamiltonicity via cohomology of right-angled Artin groups
	1 Introduction
	1.1 Combinatorics versus group theory
	1.2 Linear algebra

	2 Hamiltonian vector spaces and the two--row graph
	2.1 Cohomology of right-angled Artin groups
	2.2 The easy direction
	2.3 A linear algebraic reduction
	2.4 The two--row graph and square traceability

	3 From Hamiltonian paths to Hamiltonian cycles
	3.1 Proving Proposition 3.1

	4 Some questions
	Declaration of competing interest
	Acknowledgements
	References


