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Abstract  

Recent work modeling the rheological behavior of human blood indicates that blood has 
all the hallmark features of a complex material, including shear-thinning, viscoelastic behavior, a 
yield stress and thixotropy. There is renewed interest in the modeling of human blood with thixo-
elasto-visco-plastic rheological models. Previous work [Armstrong and Tussing, Phys. Fluids 32, 
094111 (2020)] has led to the development of the enhanced thixotropic viscoelastic model for 
blood (ethixo-mHAWB; called here, after a minor modification, ETV) that incorporates 
viscoelasticity to a thixotropic model for the stress contributed by the rouleaux aggregates, in 
addition to describing using a nonlinear viscoelastic model the stress contributed by the individual 
red blood cells deforming under the action of the flow.  This model has shown superior 
performance in fitting human blood steady state and transient rheological data from a strain-
controlled rheometer [Horner et al., J. Rheol. 62, 577-591 (2018) & 63, 799-813 (2019)] as 
compared to other alternate models.  In the present work, we first develop another variant of the 
ETV model, the enhanced structural stress thixotropic-viscoelastic model (ESSTV), the 
modification patterned following an elastoviscoplastic model developed recently  [Varchanis et 
al., J. Rheol. 63, 609-639 (2019)]. We develop full tensorial stress formulations of the rouleaux 
stresses for both the above-mentioned models, resulting in the t-ETV and t-ESSTV models.  We 
use steady state and step-ups, and step-downs in shear rate data to independently fit the parameters 
of all before-mentioned models. We compare predictions against experimental data obtained on 
Small, Large, and Unidirectional Large Amplitude Oscillatory Shear (SAOS, LAOS and 
UDLAOS) conditions. We find that the full tensor stress formulations t-ETV and t-ESSTV 
significantly improved the predictive capability of the earlier ETV model. 
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I.  INTRODUCTION 

Within human blood’s aqueous plasma, we find suspended a variety of proteins and cells. The 

latter involve the three most vital components of blood: platelets, red blood cells (RBCs), and 

white blood cells. The suspended RBCs, when left at rest or under a low shear rate, form into 

structures resembling coin stacks, dubbed “rouleaux.” The formation of these rouleaux is generally 

dependent upon the stress and/or shear rate as well as on the concentration of various plasma 

proteins such as fibrinogen [1,2]. The destruction and formation of rouleaux are reversible, 

depending on the magnitude of shear rates [3]. 

As rouleaux form, they collectively act to increase the viscosity of blood, contributing a portion 

of its complex flow properties that include viscoplasticity, viscoelasticity, and thixotropy [4-7]. 

Viscoplasticity refers to the existence of a non-zero yield stress below which the material deforms 

elastically but above which it flows undergoing permanent, irreversible deformation. 

Viscoelasticity indicates the simultaneous presence of viscous and elastic characteristics, and 

thixotropy describes a fluid’s time-dependent decrease of viscosity under shear deformation tied 

to microstructure. Blood’s viscoplasticity and thixotropy are due to the formation and subsequent 

under flow destruction of the rouleaux aggregates.  As the intermolecular forces present in 

rouleaux are quite weak, blood’s yield stress is generally low, rarely exceeding a magnitude of 1 

– 4 mPa [8-10]. Given the high concentration of RBCs, the rouleaux combine into network 

structures that also provide part of the viscoelastic blood characteristics. An additional 

viscoelasticity exists contributed by the elastic deformation of individual RBCs suspended in 

plasma [8-9].  

The viscoelastic response, and other complex behaviors of blood from the rouleaux is primarily 

encountered at low shear rates, generally, below 10 s-1 [10]. In contrast, the viscoelasticity resulting 
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from the flow-induced deformation of individual RBCs corresponds to shorter relaxation times 

resulting at steady state to a viscosity that exhibits significant shear thinning at shear rates within 

10 – 1000 s-1 [8, 11-16]. This behavior necessitates the design of more sophisticated constitutive 

models combining thixotropy and at least two modes of viscoelasticity to effectively model in-

vivo blood flow.  

Due to the relevance of  hemorheology in enhancing current understanding of blood and 

pathology prevention, detection, and treatment, the development of the discipline has become of 

particular interest [17-20]. Yet, as useful as these applications of hemorheology may be, they all 

require robust methods by which to collect data and subsequently simulate the in-vivo phenomena 

accurately, including the more complex aspects of blood’s transient behaviors. The simulations 

provided by such models are vital in efforts to engineer more sophisticated medical equipment and 

treat debilitating conditions of the vasco-circulatory system [21]. Moreover, as one of the most 

evidently relevant thixotropic fluids, continued study of blood’s properties and behaviors within 

the body can be prosecuted using a few thixotropic models developed within the recent past.  

Blood rheology models have undergone several refining evolutions, beginning with simple, 

generalized Newtonian, models, such as the Casson, Carreau-Yasuda, and Herschel-Bulkley 

models [22, 23]. All these adequately represented most aspects of steady state flow behavior, 

including shear thinning and, depending on the specific model, yield stress. However, these models 

fail to predict correctly the transient rheological behavior of blood, due to thixotropy and the fact 

that human blood has two viscoelastic timescales: one viscoelastic timescale for the plasma and 

individual RBC; and the second viscoelastic timescale for the evolving rouleaux.  These are key 

features, as mentioned above, of blood rheology that in part arise from a history-dependent 

microstructure that also provides for yield stress and viscoelasticity of the rouleaux. Therefore, 
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modern models have come to include additional features that allow for a more faithful prediction 

of, and agreement with  the experimentally measured transient rheological response [8, 9].  

Viscoelasticity is typically modelled phenomenologically through modifications of the 

Maxwell, Giesekus and Oldroyd-8 constant frameworks [24-26], which are generally sufficient to 

model the transient behavior at high shear.  However, these models are unable to effectively 

replicate the transient behavior of blood at lower shear rates where blood proves far more dynamic 

[7-10].   The simple fact is some non-thixotropic models can sometimes capture some of the 

rheological behavior, for some experiments. However, to capture all the nuanced, and complicated 

rheological behavior of human blood for all the rheological experiments we show requires a model 

that has a thixotropic component that has three things: 1. A timescale of shear rouleaux breakage; 

2. A timescale of shear rouleaux reformation; and 3. A timescale of Brownian rouleaux 

reformation.  Our thixotropic framework has all three. To address this low shear behavior, a more 

rigorous thixotropic model is necessary. A component of a standard thixotropic model incorporates 

a kinetic rate equation that governs the time evolution of a nondimensional structure parameter 

varying between 0 and 1, with 0 indicating a complete lack of structure and 1 representing a full 

structure [27-30]. Yet, the viscoelastic nature of blood requires either the incorporation of 

microstructure-dependent elasticity through the addition of dual elastic and plastic stress terms or 

the integration of the structure parameter into a generalized viscoelastic model [31-32].   

The terms of elasticity and plasticity can be defined through the separation of total strain and 

its time derivative (total strain rate) into two components [28, 31, 33].  The plastic behavior can 

be modeled after the kinematic hardening theories of plasticity [33], further separating into 

isotropic hardening (IH) and kinematic hardening (KH) [34, 35]. More than just affecting 

plasticity, the IH of a material refers to how the internal dimensionless structural parameter is 
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related to its thixotropic properties whereas KH describes the deformation-dependent effective 

yield stress [33-35].  Also, Wei et al. developed the ML-IKH model to provide a spectrum of 

lambda values, with independent thixotropic time scales of evolution, combined with isotropic 

kinematic hardening [36].  Following a parallel approach, Varchanis et al. [37] developed the 

SPTT-IKH model, where the ‘S’ refers to the plasticity term, first introduced by Saramito [31], 

and the ‘PTT’  refers to the Phan-Thien Tanner model for viscoelastic fluids [38].  These models 

were all cast in tensorial form and contained from 11 – 15 parameters. IH and KH play a vital role 

in the dynamics of fluid systems, necessitating inclusion of representative equation parameters.  

KH phenomena can also act to induce lag between back stress evolution and shear stress [33-37].  

A simplified form of kinematic hardening has been introduced already into the earliest of the 

thixotropic models in our group [39].  It was clear from this work though that the limitation for 

testing the applicability of the model was the lack of sufficiently detailed transient experimental 

data.  That changed in the subsequent years with a slew of data, obtained under carefully controlled 

conditions and based on rigorous guidelines [40] under a variety of transient conditions that 

allowed for a substantial extension of the early thixotropic model [8].  The data covered in addition 

to steady state a systematic variation on both the amplitude and frequency in Unidirectional Large 

Amplitude Oscillatory Shear (UD-LAOS) generated from the superposition of a steady and 

oscillatory shear so that the lowest applied shear rate is zero, and never negative. Those data, along 

with  powerful model parameter estimation approach, based on a stochastic global optimization 

approach (parallel tempering) [41], allowed for a significant enhancement of the thixotropic model 

for blood.  A significant new contribution was the representation of the deformable RBC 

viscoelasticity using a generalized White-Metzner-Cross model, leading to a thixotropic 

viscoelastic model (TVM—which we called in the past as HAWB model) [8].  A further extension 
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of TVM was achieved shortly afterwards that led to a substantial better fit of the transient data by 

allowing for the introduction of a rouleaux viscoelastic response, the mHAWB model [9].  This 

last model has also appeared in recent publications (as ethixo-mHAWB) with small modifications 

of the kinetic equation to incorporate a shear aggregation term for the structural parameter.  It is 

also used here with one further small modification, calling it, better reflecting its physical nature, 

the enhanced thixotropic viscoelastic (ETV) model [9, 42]. 

More recent work attempted to investigate closer the role of different rheological model 

components.   More specifically, Armstrong and Tussing [10] and Armstrong and Pincot [43] 

investigated if there was any advantage to describe the deformed RBCs using a general Oldroyd-

8 model [24] or a Giesekus model [44], respectively, instead of the generalized White-Metzner-

Cross model as in the mHAWB model (there was not).  In contrast to this work, and ignoring the 

viscoelasticity of the deformable RBCs, Armstrong et al. [45], tried to develop better models for 

blood rheology by following the elastic modifications to a viscoplastic (Herschel-Bulkley) model 

proposed by Saramito [31] and using his ideas resulting in the ethixo elastoviscoplastic (ethixo 

EVP) models, on which they introduced thixotropy through a structural parameter obeying a 

kinetic equation, thus generating thixoelastoviscoplastic (TEVP) descriptions [45].  They 

developed several TEVP variants depending also on the starting EVP model and showed that the 

introduction of thixotropy helps fitting the transient experimental blood rheological data better.  

The opposite approach, i.e., the addition of viscoelasticity to a viscoplastic and thixotropic model, 

such as the model developed in [39], has also been tried and shown to lead to better fits to 

experimental transient blood rheology data [42, 47, 48].  Interestingly, Armstrong et al. [47] 

incorporated a viscoelastic timescale of evolution to the contribution to total stress from rouleaux 

to the original Modified Delaware Thixotropic Model (MDTM).  This enhancement was given the 
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moniker: VE-MDTM, viscoelastic enhanced MDTM.  This modification clearly demonstrated that 

there is in fact a unique viscoelastic timescale of the stress from the evolution of the rouleaux to 

the total stress.  A similar approach has been followed by Giannokostas et al. [48] modifying the 

Varchanis et al. model, which was the SPTT-Isotropic Kinematic Hardening [37] TEVP model, to 

better fit blood rheology.   

The involvement of separate timescales for thixotropic and viscoelastic fluid response, along 

with complementary shear structure breakage and structure build-up timescales, affords so far, the 

best capability to precisely model the rheological behavior of blood and its component rouleaux 

microstructures (ethixo-mHAWB model) [9, 42].  While the addition of more parameters to a 

model is not ideal as they entail additional complexity, the thixotropic and viscoelastic timescales 

offer additional insight into the gradual evolution of rouleaux within the bloodstream. Enhanced, 

accurate models then act to facilitate the use of CFD modeling for more efficient analysis of blood 

properties.  

While the ethixo-mHAWB model has proven more successful in fitting available steady 

state and especially transient rheological data for blood than other models and variants it has not 

been perfect [10, 43]. Thus, more effort is warranted in trying to further improve it.  We start here 

with a simplification to the ethixo-mHAWB model, by replacing the plastic component of the 

strain rate with the total strain rate in the equation describing the viscoelastic contribution of the 

Rouleaux stress, resulting in what we call here the Enhanced Thixotropic Viscoelastic (ETV) 

model.  This is a slight modification, introduced for facilitation of further changes to the ETV 

model, and hardly affects its predictive capabilities. Our basic contributions are two more 

substantial modifications.  First, we modify the ETV model by adopting a novel viscoelastic-elastic 

formulation to express both the elastic and viscoelastic stress contributions of blood rouleaux 
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microstructures, using recently published theories of plasticity [31, 37].  This modification, results 

in a model that we call Enhanced Structural Stress Thixotropic Viscoelastic (ESSTV). Second, we 

transform to a full stress tensor description the viscoelastic contribution and total stress 

contribution, from the rouleaux in both the ETV, and the new ESSTV models, resulting into the t-

ETV and t-ESSTV models, respectively.  All models are described in Section II.  Within Section 

III, for each model, the parameters are determined based on least squares fit against steady state 

and transient shear data, using an efficient stochastic global optimization approach based on 

parallel tempering developed in previous work [41].  For each model, a subset of the model 

parameters is determined through a fit to a set of existing steady state simple shear flow data.  The 

rest of the model parameters are then determined by a simultaneous fit of a series of three step-ups 

in shear rate, and three step-downs in shear rate experiments. Using these model parameters, in 

Section IV we compare the ability of the new models to accurately predict small amplitude 

oscillatory shear (SAOS), large amplitude oscillatory shear (LAOS) and unidirectional large 

amplitude oscillatory shear (UDLAOS). In Section V, the conclusions from this study are offered. 

 

II. MODEL BACKGROUND AND FRAMEWORK 

 Moving forward the Model and Background and Framework section is organized as 

follows: a description of the Enhanced Thixotropic Viscoelastic (ETV) model; and then a 

description of the Enhanced Structural Stress Thixotropic Viscoelastic  (ESSTV) model.  From 

here the tensorial descriptions are discussed with summary tables provided for full tensorial 

versions of the models.  The goal is to introduce the enhanced models, and describe the parameters, 

algebraic and differential equations of each. 
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II.1   ETV Model 

The ETV model arose from the original work of Horner and coworkers (as the HAWB [8] 

and then mHAWB [9] models) and it was further modified by Armstrong and Tussing [10] (as e-

thixo-mHAWB).  It is introduced here with a further simplification as ETV model. The 

simplification, as explained below, alters little to the predictive capabilities of the original e-thixo-

mHAWB model.  The model is described currently for a shear flow in a Cartesian system of 

reference x,y,z with x the flow direction, y the shear direction and z the neutral direction.  The 

central component of the ETV model is that the total shear stress, xy , arises as the superposition 

of three independent contributions: 1) a viscoelastic contribution due to red blood cells 

deformation suspended into plasma, ,C xy , 2) a viscoelastic contribution due to the red blood cell 

aggregation into rouleaux structures, ,V xy  and 3) an elastic contribution due to the rouleaux, ,E xy

: 

 , , ,xy C xy V xy E xy   = + + .  (1) 

The starting point for the description of the viscoelastic response of the individual 

deformable RBCs is a White-Metzner model [50] that incorporates the Cross model [51] for the 

shear viscosity Cη (γ)  as follows 

 
(γ)+ = (γ)

G
C

C C C
C






σ σ γ , and  (2) 

 0( )( )
(1 )

C C
C C

C

 
  

 




−
= +

+
. (3) 

 

where CG   is the elastic modulus, γ  is the rate of strain tensor, and Cτ is the Cross model time 

constant, and  and C0μ μC∞ are zero and infinite individual RBC viscosity, respectively.  In Eq. (2) 
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the superimposed inverse triangle, 


, denotes the upper-convected time derivative defined as 

follows [25] 

 T

t

 
 +  −  − 


σ σ v σ σ v v σ ,  (4) 

where v  is the fluid velocity and v  is the velocity gradient, 

( ) 1 2 3, , ,j
ij

i

v x x x y x zx


 = = = =


v  .  

To avoid potential instabilities [26] and following the work of Souvaliotis and Beris [52] 

extending the White-Metzner model, Horner and coworkers recast the previous equation using the 

first invariant of the stress tensor as the parameter to the viscosity function [8, 9].  Expressed in 

terms of the stress components in the xy and xx direction the full equations for shear flow are [8, 

9] (after correcting for a typo minus sign that appeared in [8]in front of the square root in the 

corresponding Eq. (7) ) 

 ,
,+ C xyC C,xx

C,xy C C xx
C

d( )
= ( )

G dt
 

   
 
 
 

, (5) 

 ,
,+ 2 0C xxC C,xx

C,xx C xy
C

d( )
=

G dt
 

 
  

−  
  

, (6) 

where 

 ,

2

C C xx
-b+ b - 4c( )

2
   . (7) 

with 

 ,C C xx
C C0

G
b -

2


  , and (8) 
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     ,C C xx
C C

G
c -

2


  .                           

(9) 

  
For the last two terms in Eq. (1), we need to incorporate a thixotropic model, with a scalar 

thixotropic parameter,  , to describe the amount of structure present at any time, spanning [0 1],  

whereby zero represents zero structure, no rouleaux, and one represents the fully structured, 

aggregated, blood.  We follow an identical approach as Horner and coworkers, and Armstrong and 

Tussing with respect to capturing the elastic and viscoelastic stress contributions from the rouleaux 

[7-10, 42, 43, 45]. The following equation describes the evolution of the structure as a function of 

the shear rate of blood 

 ( )1= - γ + (1- ) γ + (1- )
d

break p aggr p
D
Dt 


   


.  (10) 

 

Eq. (10) represents a reformulation of our previously developed structural equation [7-10, 42, 43, 

45, 47, 52] using the break  and aggr  as “material constantss” with units of time controlling the 

stress-induced rouleaux breakage and stress-induced rouleaux aggregation, respectively.   

As a result of the fact that both the break  and aggr  material parameters have time units, and 

that they both appear in Eq. (10) as a product with p  with units (s-1), they can be used to define 

dimensionless Weissenberg numbers that control the stress-induced breakage and stress-induced 

aggregation rates as follows: break break pWi  = ; and aggr aggr pWi  = . These Weissenberg numbers 

can then be used to define the effective times for stress-induced breakage and aggregation as: 

b̂reak breakWi =  ; and  ( )ˆ
d

aggr aggrWi = , effectively modifying the Brownian aggregation time 
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 .  Thus, the break  and aggr  material parameters can be physically interpreted as defining by 

their inverse the characteristic shear rates for which the corresponding effective times 

characterizing the shear-induced breakage and aggregation, respectively, become shorter to the 

characteristic time   characterizing Brownian aggregation.  Previous versions of the kinetic 

expression described in Eq. (10) used alternative forms for the kinetic parameters, most recently 

1rt  and 2rt  [49].  Those are related to the break  and aggr  material parameters as 1break rt =  and 

( )
1/

2
d

aggr rt = . We prefer to use instead the break  and aggr as they are more amenable to a physical 

interpretation (given above) and, given the fact that they both have time units, they can be directly 

compared, thus allowing for a comparison of the critical Weissenberg numbers governing both 

shear-induced effects (i.e. breakage and aggregation).             

The right-hand-side of Eq. (10) has three terms to describe the evolution of thixotropy: 1. 

A shear breakdown term, proportional to shear rate and  , proportional to the amount of structure 

still present; 2. A shear-rate dependent shear buildup term, proportional to a power d of shear rate 

and 1( - ) ; and 3. A Brownian buildup term, proportional to 1( - ) [7-10].  We note here that we 

fix d =1/2 as done in the literature for blood [7-10, 45, 47].  This kinetic expression is used here 

since it has been shown in the literature to model the transient dynamics of human blood rheology, 

specifically the breakdown and buildup of rouleaux [7-10, 45, 47].  

Our thixotropic modeling incorporates kinematic hardening in the separating of strain and 

shear rate into elastic and plastic components following Dimitriou and coworkers [33-35] where 

e pγ = γ + γ  and e pγ = γ + γ , with the plastic strain rate described by 
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 max

max

,   0
2 -

=    
,   < 0

2 +

e

p

e

















  

  
  


 
 
 

, (11) 

 

where a subscript e represents the elastic component, and a subscript p represents the plastic 

component [8-10, 33, 39, 42, 43, 45].  The plastic components are involved with irreversible 

processes, and breakage of structure, while the elastic components are involved with reversible 

deformation of the rouleaux structures.  In the above equation, the maximum rouleaux strain, max

,  is given as  

 max 0,R=   , (12) 

where 0 is the rouleaux zero-shear-strain-rate limiting elastic strain.  The elastic strain rate is 

given as 

 e =

e max
p p

max

e e max max
p p

max max

D- ,                          0       
Dt

d D- + ,   < 0
dt Dt

 
 




   
 

 









  . (13) 

The steady state value of the structure parameter can then be readily calculated as   

 
( )

( )
aggr

break aggr

d

ss d

γ +1
λ =

γ + γ +1



 
. (14) 

 

The steady state value of the structure parameter must lie between zero and one, whereby a value of 

zero signifies no ‘bonds’ with nearest neighbor red blood cells, and a value of one represents maximum 
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number of structure formation with respect to rouleaux formation.  It is understood that the breakdown 

and buildup of microstructure (rouleaux of human blood) is analogous to a reversible chemical reaction 

that is in a state of dynamic equilibrium at constant pressure and temperature, where the equilibrium 

concentrations of reactive species are constant, however some reactant molecules are still reacting to 

form products, and some product molecules are reacting to form reactants.  The only stipulation at 

chemical equilibrium is that the concentrations are constant.  For human blood rouleaux the average 

amount of microstructure is constant at each constant shear rate.  However, like the reversible chemical 

reaction at equilibrium, some of the rouleaux are broken down (forward process), while some of the 

red blood cells are forming rouleaux (reverse process). The only requirement for our argument is the 

‘mean’ structure level at any given constant shearing strain-rate must stay constant, thereby making 

the overall time derivative of the structure zero. 

The elastic contribution from rouleaux to total shear stress is then calculated as   

 ,
,

y,0
E xy e

0 R

=


 


, (15) 

where y,0 is the yield-stress.  In turn, in the ETV model, the viscoelastic contribution to total shear 

stress from rouleaux is specified as obeying the following evolution equation 

 

,

, ,

V xym
R m

R
V,xy

V xy V xym
R m

R

G - ,                    0
D =
Dt

G - +m ,  < 0


  

 


 
   

  

  
  

  


 
 
 

,  (16) 

 

where D
Dt

 = . Note that in this equation we introduce the only difference between the ETV 

and the previous ethixo-mHAWB model by replacing the p  term with  .  
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II.2   ESSTV MODEL 

The Enhanced Structural Stress Thixotropic Viscoelastic (ESSTV) model was developed 

as a modification of the ETV model following a novel viscoelastic-elastic formulation using 

recently published theories of plasticity [31, 37] that allow to express both the elastic and 

viscoelastic stress contributions of blood rouleaux microstructures in one state of total 

elastoviscoplastic stress.  Therefore, in this model, the total shear stress, xy ,  involves only two 

contributions, the viscoelastic free cell contribution, ,C xy , and the new single elastoviscoplastic 

rouleaux contribution, ,R xy , thus, replacing Eq. (1) with 

 , ,xy C xy R xy  = + . (17) 
 

In the above equation the viscoelastic contribution of the deformed RBCs, C,xy , is defined exactly 

as in the ETV model, i.e., through Eqs. (5-7).  In addition, the time evolution governing the 

structural parameter   remains the same, Eq. (10) as well as the governing equations for the elastic 

component of the strain and strain rate, Eqs. (11-13) thereby resulting to the same expression for 

the steady state value of the structural parameter  , Eq. (14) .  

The proposed combined elastoviscoplastic rouleaux contribution (following the motivation 

from Saramito [31], Wei et al. [36], and Varchanis et al. [37]) from the rouleaux to the total stress 

for the ESSTV model is defined by   

 
( ),0

0,,

, ,
,

1 max 0,
y

RR xy e

R xy R xym
R R R xy

D
G Dt



 
  

   

 −
 + =
 
 
 

, (18) 
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where GR is the elastic modulus of the rouleaux, Rμ is the rouleaux structural viscosity, and m is a 

fitting parameter, here set to 3/2 [7-9, 10, 41, 43]. Again, the right-hand side of Eq. (18) is the total 

shear rate.  Eq. (18) is inspired by Varchanis et al. and Wei et al. [36, 37] designating the evolution 

of the total, elastic plus viscoelastic, contribution from the rouleaux to the stress.  An alternative, 

mathematically equivalent, reformulation of Eq. (18) that has advantages from a computational 

viewpoint is  

 
( ),0

0,,

, ,
1 max 0, sign( )

y

RR xy e

R xy R xym
R R

D
G Dt



 
  

  

 −
 + =
 
 
 

. (19) 

Note that the steady state value of the shear stress is the same for both ETV and ESSTV models 

 ( ) m
ss C R ss y,0 ss= + +         . (20) 

Table I below contains the complete set of equations for the two models communicated here, ETV 

and ESSTV. 

 
Table I.  Summary and comparison of the ETV and ESSTV models 
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Transient

Model ETV ESSTV

PAR.

SS

VE, plasma

VE, 
rouleaux

e max
p p

max
e

e e max max
p p

max max

γ dγγ - γ ,               0       
γ dt

γ =
γ γ dγ dγγ - γ + , < 0

γ γ dt dt









max 0,Rγ = γ 

e

max
p

e

max

γ ,   γ 0
γ2 -

γ
γ =    

γ ,   γ < 0
γ2 +

γ


  

  
  


 
 
 

( )
( )

d

aggr

ss d

break aggr

γ +1
=

γ + γ +1




 

m
ss ve,ss R ss y,0 ss= +μ +     

0
ve,ss

C

( )
(1 )




  −
 =  +  

+   

yx,vec xx,ve
yx,ve c xx,ve

c

dη ( )
+ = η ( )γ

G dt
 

  
 

c xx,ve xx,ve
xx,ve yx,ve

c

η ( ) d
+ - 2γ = 0

G dt
   

   
  

c xx,ve
c 0

G
b = τ -μ

2
 c xx,ve

,c c

G
c = -μ

2




2

c xx,ve
-b + b - 4cη ( ) =

2


y,0
yx,R,e e

0,R

=
γ


 

yx,r,vem
R m

Ryx,R,ve

yx,r,ve yx,R,vem
R m

R

dG γ - ,                     0
μ dtd

=
dt d dG γ - + m ,  < 0

μ dt dt

   
   

   


    
     

y0
yx,R,evp e

0,R
yx,R,evp yx,R,evpm

R R yx,R,evp

1 max 0,
G ( )

  
  −     

 +  =  
    

 
 

trans yx,ve yx,R,ve yx,R,e= + +    trans yx,ve yx,R,evp= +  

0 R c y0 break aggr 0,R c R, , , , , , , ,d,m,G ,G ,         

( )d

break p aggr p
D 1 (1 ) (1 )
Dt 


= −  + −   + −


 
 
II.3   t-ETV and t-ESSTV Models 

The tensorial version of both ETV and ESSTV models follow Wei et al, Varchanis et al. 

and Armstrong  et al., [36,37,45,47] by exchanging the material time derivative, ,V xy
D

Dt , in 

Eqs. (16) and (18) with their upper-convected time equivalents, ,V xy


 or ,R xy


.  This by necessity 

generates a coupling of the shear to the other components of the stress, most notably the normal 

ones.  The mathematical structure enters through the coupling of terms among various terms of the 

two tensors and their time derivatives.  The resulting equations for the xy, xx, yy, and zz components 
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are shown in Table II, below.  We acknowledge that one may choose to use different criteria for 

yielding in the numerator of the conditional.  As an example, the Von Mises yield criteria: 

xy xy3σ - λσ [36, 37, 43, 45, 50].  The tensorial models here are applicable to shear flow, and the 

shear rate,  is replaced as follows [25, 37. 47].  Here, we follow the work of Wei et al. [36], where 

D D

R R
σ :σ

σ=
2

, and D R
R R

tr(σ )
σ =σ - I

3
.  Where σ is the equivalent shear stress, “D” means deviatoric 

part of the tensor, I is the unit tensor, ‘:’ is the double dot product, and the trace is 

R,xx R,yy R,zzR
tr(σ )=(σ +σ +σ ) .  

 ( )
T

ij yx
(1)

0 1 0
γ =γ = v+ v = 1 0 0 γ

0 0 0

 
 

   
 
 

. (21) 

 
 
 
 
 
 
 
 
Table II.  Summary and comparison of the t-ETV and t-ESSTV stress components of the rouleaux 
viscoelastic and elastoviscoplastic, respectively, contributions to total stress [36, 37, 43]. 
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Model t-ETV t-ESSTV

xx

yx

yy

zz

R,xxm
R m

RR,xx
R,yx

R,xx R,xxm
R

R

dG - ,                     0
μ dtd

- 2 γ =
dt d dG - + m ,  < 0

μ dt dt

   
   

   
 

    
     

R,yym
R m

RR,yy

R,yy R,yym
R m

R

dG - ,                     0
μ dtd

=
dt d dG - + m ,  < 0

μ dt dt

   
   

   


    
     

R,zzm
R m

RR,zz

R,zz R,zzm
R m

R

dG - ,                     0
μ dtd

=
dt d dG - + m ,  < 0

μ dt dt

   
   

   


    
     

R,yxm
R m

RR,yx
R,yy

R,yx R,yxm
R m

R

dG γ - ,                     0
μ dtd

- γ =
dt d dG γ - + m ,  < 0

μ dt dt

   
   

   
 

    
     

y0
e

0,RR,yx
R,yy R,yxm

R R

-
d1 - γ + max 0, = γ

G dt (λ )

  
         

    
     

 
 

y0
e

0,RR,xx
R,yx R,xxm

R R

-
d1 - 2 γ + max 0, = 0

G dt (λ )

  
         

   
     

 
 

y0
e

0,RR,yy
R,yym

R R

d1 + max 0, = 0
G dt (λ )

  
  −      

 
   

 
 

y0
e

0,RR,zz
R,zzm

R R

-
d1 + max 0, = 0

G dt (λ )

  
       

 
   

 
 

 
 
 

The t-ETV model is convenient to have, as straightforward manipulations show that the 

viscoelastic stress tensor contribution of the rouleaux structures, Vσ , can equivalently be 

represented in terms of a conformation tensor Vc  as  

 ( )m
V R VG = −σ c δ  , (22) 

with the conformation tensor Vc  obeying the following time evolution equation 

 ( )
2

m
R

V V
R

G m d d
dt dt

  

 

   
= − + + −  

  
c c δ  . (23) 

This is fully compatible to nonequilibrium thermodynamics, obeying all entropy related 

constraints, corresponding to a simple Hookean dumbbell with m
RG   as modulus, and a 

characteristic relaxation time R  dependent on both   and d
dt

  defined as 
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1

2

R m
R

R

G m d d
dt dt


  

 


  

+ +  
  

 . (24) 

Note that no matter what the sign of d
dt

  is, R  is always positive, thus ensuring that the proper 

thermodynamic constraints are satisfied [26]. 

 

 
III. EXPERIMENTAL METHODS 

A. Materials and sample preparation 

 The handling and rheological measurement protocol employed for the blood rheology in 

this work follow previous established guidelines for blood rheology, and directly follows the 

protocol described by Horner and coworkers here [7, 8, 9, 39].  A complete and detailed description 

of the blood draw procedure can be found here [8, 9, 39].  “For rheological experiments 6mL of 

blood was drawn into a vacutainer tube with 1.8 mg/mL of EDTA.  An additional 9 mL of blood 

was drawn and sent for a Complete Blood Count, Lipid Panel and Fibrinogen Activity test” 

[7,14,40].   Results are shown in Table III [8, 9, 39].     

 
 
 
 
 
 
 
 
Table III: Physiological parameter values of five donors [52-57]. 
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Hematocrit Fibrinogen Total Cholesterol Triglycerides HDL Cholesterol LDL Cholesterol
(%) (mg/dL) (mg/mL) (mg/mL) (mg/mL) (mg/mL)

1135 45.1 0.21 204 102 71

85

4 43.8 0.199 197 82 78 102

3 42.2 0.246 148 29 56

59 101

2 43.4 0.248 147 40 51 85

Donor

1 43.6 0.252 174 58

 
 
 

The rheological data were collected with an ARESG2 strain-controlled rheometer from TA 

Instruments using a double wall Couette [8, 9, 39].    The dimensions and measurable range can 

be found here [7,14,40]. All rheological tests were performed at 37oC, maintained by a Peltier 

temperature controller. The shear rate did not exceed 1000s-1 and a preshear of 300s-1 for 30s was 

incorporated before each rheological test to eliminate thixotropic, or memory effects [8, 9, 39].    

Experimental results will be shown for steady state, step up/down in shear rate tests, small 

amplitude oscillatory shear, SAOS, amplitude sweep at ω = 10(rad / s) , large amplitude oscillatory 

shear (LAOS) and uni-directional large amplitude oscillatory shear flow (UD-LAOS) [7, 8, 9, 48, 

49].  These experimental procedures and protocols follow exactly the work of Horner and 

coworkers [8, 9, 39], and all the rheological data for the five donors in Table III can be found on 

Mendeley Data [52-55]. The LAOS and UD-LAOS experiments presented in this work follow the 

same protocol as described by Horner and coworkers [8, 9, 48, 49] and Armstrong and coworkers 

[41, 43] where the shear strain and shear strain rates are defined as  

       0γ(t) = γ sin(ωt) , and             ( 25) 

                                                             0γ(t) = γ ωcos(ωt) ,                                                           (26) 

for the LAOS experiments and  
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 0 0γ(t) = γ sin(ωt) + tγ ω  , (27) 

 0 0γ(t) = γ ωcos(ωt) + γ   (28) 

for the UD-LAOS [8, 9, 41, 43, 51].    The UD-LAOS data and model fits are plotted using effective 

Lissajous-Bowditch elastic and viscous projections, where the measured stress is a function of the 

oscillatory component of the strain and shear rate as shown in Eqs. (25) and (26) respectively [8, 

9, 41, 43].    

 The small amplitude oscillatory shear (SAOS) follows the standard formalism 

 ( )
n

' "
yx 0 i i

i,odd
(t) G sin(n t) G cos(n t) =   +  . (29) 

Where n=1, for SAOS.  We note here that Eq. (29) is a function of time t, frequency ω, and 

strain amplitude γ0.  In addition, it is noted that for LAOS n is the running index (when not equal 

to one), and the upper limit of the summation goes to infinity. We use the ratio of third to first 

harmonic as a metric of success of our model predictions as  

 
' 2 " 2

3 3 3
' 2 "2

1 1 1

I (G G )
I (G G )

+
=

+
, (30) 

where the subscript 3 are the third harmonic values [8, 9, 41, 43].    Eq. (30) is the relative 

intensity of the third harmonic normalized by the first harmonic intensity and will be used as a 

metric of model efficacy, and shown on the SAOS predictions for each model in Figs. 2, 4, 6 and 

8 below [8, 9, 41, 43].     

 

 

B. Parameter optimization 
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 For the model fitting procedure, we follow the previous protocol as established by Horner 

and coworkers with the following modifications [7-9, 41, 43 ,46-48].  1. The steady state 

parameters are fit to steady state data by minimizing the normalized cost function, Fcost,ss, then held 

constant for a preliminary run, to obtain an initial guess.  The initial guess of the steady state 

parameters are found using a parallel tempering algorithm, and Eq. 31 shown below [8, 9, 41, 43] 

 
2N

i i
cost,ss

i=1 i

(y - f )1F =
N y

 
 
 

 , (31) 

where yi is the steady state stress data and fi is the model prediction; 2. The initial guesses from 

part one are incorporated as a starting point, and then all parameters are simultaneously fitted as 

part of the tempering algorithm (and non-dimensionalized as per Eq. 32). The transient three step-

ups in shear rate and three step-downs in shear rate are non-dimensionalized with the maximum 

stress values from each of the respective step change in shear rate experiments.  This normalization 

scheme was selected due to the relative equivalent order of magnitude of the maximum stress 

values over all the step-up/downs, to maintain an even, unbiased fitting of parameters with 

minimum bias towards any one of the step experiments.  The transient parameters to three sets of 

step-ups in shear rate and three sets of step-downs in shear rate experiments, again with parallel 

tempering, minimizing the following cost function 

 
( )

2 2
N M K

j j i i
cost,tot

j 1 k=1 i=1j K,max

(y f ) y - f1 1 1F =
N y M K y=

   −
+     

  
    (32) 

where N is the total number of steady state data points, M is the total number of transient step 

up/down in shear rate tests and K is the number of points per transient experiment [8, 9, 41, 43].   

The model is fit directly to rheology data using the Matlab ode23s function to integrate the 
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differential equations [8, 9, 41, 43].    When fitting all the parameters together, Fcost,tot must be non-

dimensionalized to provide a balanced fit. A Dell laptop with 8GB RAM was used for computation 

of the parameters using parallel tempering. Although ode45 is considered more accurate, it 

struggles with stiff odes.  Ode23s can solve stiff systems of odes, while simultaneously 

maintaining enough accuracy to provide robust fits with all the models tested here [8, 9, 41, 43].   

With the parameters fit, they are kept constant to predict a series of: SAOS (amplitude sweep), 17 

sets of LAOS at frequencies 0.5, 1, and 5 (rad/s), at strain amplitudes of 0.5, 1.0, 5.0, 10.0, 50.0 

and 100 (-); and six sets of UD-LAOS experiments at a frequency of 1 (rad/s) and strain amplitudes 

of 1.0, 5.0, 10 and 50 (-).  The predictions for each are shown in Figs. 9 and 10 below, with cost 

functions computed for each set of LAOS and UD-LAOS as   

 ( )
N

2
cost,LAOS i i

i=1

1F = y - f
N  . (33) 

The small amplitude oscillatory shear is predicted, and Fcost,SAOS computed as follows 

 ( )
n

' ' 2 " " 2
cost,SAOS i,data i,model i,data i,model

i=1
F = (G - G ) + (G - G ) / (2n) , (34) 

where n is the number of points.  Fcost,SAOS  is calculated for the amplitude sweep.  The fit model 

parameters are held constant, and used to predict a full period at alternance, and using the A=bx 

where A is an array consisting of two columns: ( )0γ sin ωt and ( )0γ cos ωt and b is the stress 

prediction over a period.  Using the x=A\b command in Matlab the first harmonic moduli (

 and ' "
1 1G G ) are calculated and compared to the data at each combination of strain amplitude and 

frequency in both sets of SAOS, amplitude and frequency sweeps.  In addition, the third 

harmonic moduli are calculated ( 3  and ' "
3G G )  to compare with the data, and shown in Fig. 2, 4, 6 

and 8 below [41, 43].  A summation of the cost functions of the step-ups/downs (fits), SAOS, 
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LAOS and UDLAOS predictions is then used to assess overall model efficacy (shown in Table 

VII).  This concludes our discussion of Fcost for the SAOS predictions. 

Each of the LAOS and UD-LAOS predictions accumulate Fcost,LAOS over three periods of 

data, with the Lissajous-Bowditch elastic and viscous projections showing the last period data and 

predictions.  The full set of best fit parameters for Donors 1-5 are shown in Tables IV-VII below)  

There is a modified procedure for fitting the full tensorial version of both the ETV and ESSTV 

models.  The modification is as follows: 1. The initial parameter guess is provided from the best 

fit values of the non-tensorial versions respectively; and 2. The steady state and transient 

parameters are fit simultaneously with the steady state cost function accumulated without 

normalization with the stress measurement at each point. 

 

IV.RESULTS AND DISCUSSION  

A. ETV model 

The ETV has a total of ten parameters that are simultaneously fit to steady state, and the 

transient step up/down in shear rate experiments, after a preliminary run with the steady state to 

obtain an initial guess.  Ten parameters (color coded yellow in Table IV) of the  parameters  are 

fit to steady state and step-up/downs; with three fixed as follows: 0,Rγ set to one, as recommended 

as best fit value from literature [7-9, 41, 43]; with m set to 3/2; and d set to ½.  For a total of 13 

parameters (including the three fixed parameters, seven preliminarily fit to steady state data, and 

all parameters fit to steady state and transient data together).    Table IV provides a synopsis of all 

the model parameters for convenience [9, 10]. 

Table IV: Model parameter description and units of the ETV, ESSTV, t-ETV and t-ESSTV 
models [9,10] 
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Parameter Units Description
μ0,c Pa s zero sher viscosity of plasma and suspended RBCs
μ∞,c Pa s infinite shear viscosity of plasma and suepended RBCs
τC s RBC deformation time constant (Cross constant)
τbreak s material constant for stress-induced breakdown
τaggr s material constant for stress-induced aggregation 
μR Pa s rouleaux viscosity
σy0 Pa yield stress
γ0 (-) rouleaux zero shear rate limiting elastic strain
d (-) power law of shear buildup from shear
m (-) rouleaux power law constant
τλ s overal rouleaux rebuild time constant
GR Pa rouleaux elastic modulus
GC Pa RBCs elastic modulus  

 

Fig. 1(a) shows the steady state fit, and Fig. 1(b) and (d) show the fit to the three step-

downs and three step-ups in shear rate, respectively.   Recall that a good initial guess is first 

obtained for the steady state parameters, then using these values as a starting point, all the 

parameters are then fit simultaneously to the steady state data and the set of six step ups/downs in 

shear rate transient experiments. Fig. 1(c) and (e) are showing the corresponding evolution of the 

structure parameter during the step down and step up in shear rate experiments.  From Fig. 1(b) it 

is apparent that the model can capture the changing stress during the step-up and step-down 

experiments.  Table V shows the best fit model parameters from the steady state and transient data 

fit, and the value of Fcost for the steady state and step up/downs for Donor 3.  Additionally, the 

dimensional Fcost of the SAOS prediction is shown in Table V.  (Donor 1-5 best fit parameter 

values are shown in Table V; the Fcost for SAOS, LAOS and UDLAOS predictions is shown for 

Donor 3 in Table IX).  We again note here that the steady state Fcost,tot is dimensionless because 

the difference between the model and data was normalized with the value of each data point for 
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steady state, and the maximum stress value from the data over each respective transient for the 

step up/downs.   Fig. 2 shows the model predictions to the SAOS amplitude sweep.   

 

FIG. 1 ETV model fit for (a) steady state human blood data; (b) set of 3 step-up in shear rate from 
&  of 0.1s-1 to 5, 10, and 20s-1; (c) corresponding structure parameter curves (colors of structure 
parameter curves match respective colors from stress evolution curves); (d)  step-down in shear 
rate to & of 0.1s-1 from  5, 10, and 20s-1 ; and (e) corresponding structure parameter curves (Donor3) 
(dataset3) [55]. 
 

 

FIG. 2 Small amplitude oscillatory shear, amplitude sweep performed at ω = 12.6(rad / s) , data 
discrete  point, and predictions, dashed lines of ETV(Donor3) (dataset3) [55]. 
 
Table V: Best fit parameter values of ETV model for Donors 1-5 [52-57] (Fcost steady state and 
step-up/downs dimensionless; Fcost,SAOS has units of (Pa) ). 
 

Par. Donor1 Donor2 Donor3 Donor4 Donor5 Ave. Stdev
μ0,c (Pa s) 0.0081 0.0080 0.0079 0.0074 0.0101 0.0083 0.0010
μ∞,c (Pa s) 0.0033 0.0033 0.0032 0.0035 0.0037 0.0034 0.0002

τC (s) 0.049 0.050 0.030 0.043 0.065 0.0474 0.0127
τbreak (s) 0.874 0.872 1.146 1.087 0.966 0.9888 0.1243
τaggr (s) 6.36E-04 6.41E-04 4.24E-02 1.61E-02 1.51E-05 1.20E-02 1.83E-02

μR (Pa s) 0.033 0.033 0.032 0.047 0.045 0.0381 0.0072
σy0 (Pa) 0.0021 0.0025 0.0039 0.0022 0.0022 0.0026 0.0007

γ0 (-) 1 1 1 1 1 - -
d (-) 1/2 1/2 1/2 1/2 1/2 - -
m (-) 3/2 3/2 3/2 3/2 3/2 - -

Fcost (SS)* 0.0077 0.0117 0.0102 0.0056 0.0091 0.0088 0.0023

τλ (s) 1.8051 1.7645 1.9106 2.7877 2.1465 2.0829 0.4210
GR(Pa) 0.1494 0.1532 0.2671 0.1593 0.1446 0.1747 0.0519
Gc (Pa) 0.3526 0.3421 0.4703 0.3281 0.6197 0.4226 0.1239

Fcost (trans)* 0.0187 0.0220 0.0204 0.0187 0.0208 0.02012 0.0014
Fcost (SAOS) 0.0022 0.0024 0.0034 0.0016 0.0019 0.00231 0.0007

ETV (Non-tensorial)

SS

 trans,  
ETV

 
 
B. ESSTV 

The enhanced structural stress-ETV or ESSTV, has the same number of parameters as the 

ETV, with a total of seven parameters fit to steady state, to obtain an initial guess, and then all ten 
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parameters are fit simultaneously to the steady state and three more fit to the transient step up/down 

in shear rate experiments.  Ten parameters (color coded green in Table V) of the  parameters  are 

fit to steady state and transient ; with three fixed as follows: 0,Rγ set to one, as recommended as 

best fit value from literature [7-9, 41, 43]; with m set to 3/2; and d set to ½. For a total of 13 

parameters (including the three fixed parameters, seven fit to steady state data first to obtain a good 

to obtain an initial guess, and then all ten are fit to steady state and transient simultaneously).  Fig. 

3(a) shows the steady state fit, and Fig. 3(b) and (d) show the fit to the three step-down and three 

step-ups in shear rate, respectively.   Recall that the steady state parameters are fit first to the steady 

state to obtain an initial guess, and then all the parameters fit to steady state and the set of six step 

up/down in shear rate transient experiments. Fig. 3(c) and (e) are showing the corresponding 

evolution of the structure parameter during the step down and step up in shear rate experiments.  

From Fig. 3(b) it is apparent that the model can capture the changing stress during the step-down 

experiments.  Table VI shows the best fit model parameters from the steady state and transient 

data fit, and the value of Fcost for the steady state, step up/downs and dimensional Fcost for the 

SAOS predictions for Donor 1-5. (Donor 1-5 best fit parameter values are shown in Table VI; the 

Fcost for all predictions together, with aggregated best values: SAOS; LAOS; and UDLAOS; is 

shown for Donor 3 in Table IX; and all Donors 1-5 average comparisons in Table X).   We again 

note here that the steady state and the transient Fcost  is dimensionless because the difference 

between the model and data was normalized with the value of each data point for steady state, and 

maximum transient stress value for the step up/down in shear rate tests.   Fig. 4 shows the model 

predictions to the SAOS amplitude sweep.  LAOS and UDLAOS predictions are shown below in 

the model comparison section. Comparison of Figs. 1(b) and (d) to Figs. 3(b) and (d) show that 

both versions of the model have approximately the same value for Fcost,transient, with ESSTV 
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showing a slight advantage in predicting the amplitude sweep accurately for Donor 3.  Similar 

average trends are observed in Table X.  

 

FIG. 3 ESSTV model fit for (a) steady state human blood data; (b) set of 3 step-up in shear rate 
from & of  0.1s-1 to 5, 10, and 20s-1; (c) corresponding structure parameter curves (colors of 
structure parameter curves match respective colors from stress evolution curves); (d)  step-down 
in shear rate to & of  0.1s-1 from  5, 10, and 20s-1 ; and (e) corresponding structure parameter curves 
(Donor3) (dataset3) [55].  
 

FIG. 4 Small amplitude oscillatory shear, amplitude sweep performed at ω = 12.6(rad / s) , data 
discrete  point, and predictions, dashed lines of ESSTV (Donor3) (dataset3) [55]. 
  
Table VI: Best fit parameter values of ESSTV model for Donors 1-5 [52-57] (Fcost steady state 
and step-up/downs dimensionless; Fcost,SAOS has units of (Pa) ). 

Par. Donor1 Donor2 Donor3 Donor4 Donor5 Ave. Stdev
μ0,c (Pa s) 0.0080 0.0066 0.0079 0.0079 0.0099 0.0081 0.001199
μ∞,c (Pa s) 0.0033 0.0032 0.0032 0.0035 0.0038 0.0034 0.0002

τC (s) 0.050 0.029 0.030 0.044 0.066 0.0436 0.0151
τbreak (s) 0.872 1.141 1.148 1.083 0.972 1.0433 0.1189
τaggr (s) 6.14E-04 4.26E-02 4.35E-02 1.63E-02 1.79E-05 2.06E-02 2.15E-02

μR (Pa s) 0.034 0.036 0.033 0.033 0.044 0.0360 0.0047
σy0 (Pa) 0.002 0.003 0.003 0.002 0.003 0.0026 0.0005
γ0,R (-) 1 1 1 1 1 - -
d (-) 1/2 1/2 1/2 1/2 1/2 - -
m (-) 3/2 3/2 3/2 3/2 3/2 - -

Fcost (SS)* 0.0081 0.0062 0.0135 0.0072 0.0069 0.0084 0.002941

τλ (s) 0.9188 1.1358 1.3735 1.1159 1.1980 1.1484 0.1636
GR(Pa) 0.1053 0.1248 0.1364 0.1147 0.1023 0.1167 0.0141
Gc (Pa) 0.5338 0.4702 0.5787 0.6272 0.6021 0.5624 0.0620

Fcost (trans)* 0.0155 0.0180 0.0214 0.0113 0.0122 0.0157 0.0042
Fcost (SAOS) 0.0016 0.0016 0.0018 0.0013 0.0016 0.0016 0.0002

ESSTV (Non-tensorial)

SS

 trans,  
ESSTV

 
 
 
 
C. t-ETV 

The t-ETV full tensor has the same number of parameters as the ETV, with a total of 

thirteen parameters fit simultaneously to steady state and six steps up/down in shear rate 
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experiments. As before three of the thirteen parameters are then fixed: 0,Rγ set to one, as a 

recommended value from literature [7-9, 36, 37, 42, 43]; while d and m remain 1/2 and 3/2 

respectively.  Fig. 5(a) shows the steady state fit, and Fig. 5(b) and (d) show the fit to the three 

step-down and three step-ups in shear rate, respectively.   Fig. 5(c) and (e) are showing the 

corresponding evolution of the structure parameter during the step down and step up in shear rate 

experiments.  Table VII shows the best fit model parameters from the simultaneous steady state 

and transient data fit using the t-ETV model, and the value of Fcost,ss for the steady state, step 

up/downs for Donor 3 (Donor 1-5 parameter values are shown in Table VII; the Fcost for SAOS, 

LAOS and UDLAOS predictions is shown for Donor 3 in Table IX). It is important to mention 

that due to the tensorial format of the equations, there is no longer a trivial steady state, algebraic 

solution, and therefore the steady state and transient parameters are fit simultaneously to one set 

of steady state data, and six sets of steps up/down in shear rate data. (We note here that the values 

reported in Table VII, are analogous to those previously reported for the sake of comparison, with 

respect to order of magnitude, units, etc.).   Fig. 6 shows the model predictions to the SAOS 

amplitude sweep.  LAOS and UDLAOS predictions are shown below in the model comparison 

section.  We note that t-ETV N1 predictions are shown in Appendix B, along with all contributions 

to total stress from plasma and RBCs and the buildup and breakdown of the rouleaux. 

 

FIG. 5 t-ETV model fit for (a) steady state human blood data; (b) set of 3 step-up in shear rate 
from & of 0.1s-1 to 5, 10, and 20s-1; (c) corresponding structure parameter curves (colors of structure 
parameter curves match respective colors from stress evolution curves); (d)  step-down in shear 
rate to & of  0.1s -1 from  5, 10, and 20s-1 ; and (e) corresponding structure parameter curves 
(Donor3) (dataset3) [55]. 
 

 

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.11

22
/8.

00
00

34
6



31 
 

 

 

FIG. 6 Small amplitude oscillatory shear, amplitude sweep performed at ω = 12.6 (rad / s) , data 
discrete  point, and predictions, dashed lines of t-ETV (Donor3) (dataset3) [55]. 
 
Table VII: Best fit parameter values of t-ETV model for Donors 1-5 [52-57] (Fcost steady state 
and step-up/downs dimensionless; Fcost,SAOS has units of (Pa) ). 

Par. Donor1 Donor2 Donor3 Donor4 Donor5 Ave. Stdev
μ0,c (Pa s) 0.0079 0.0079 0.0078 0.0074 0.0101 0.0082 0.00107
μ∞,c (Pa s) 0.0032 0.0033 0.0033 0.0035 0.0037 0.0034 0.00021

τC (s) 0.049 0.049 0.029 0.043 0.065 0.0474 0.01278
τbreak (s) 0.859 0.871 1.147 1.086 0.966 0.9860 0.12808
τaggr (s) 5.85E-04 6.49E-04 4.12E-02 1.60E-02 1.53E-05 1.17E-02 1.78E-02

μR (Pa s) 0.038 0.033 0.032 0.047 0.045 0.0390 0.00703
σy0 (Pa) 0.0012 0.0023 0.0036 0.0022 0.0027 0.0024 0.00085
γ0,R (-) 1 1 1 1 1 - -
d (-) 1/2 1/2 1/2 1/2 1/2 - -
m (-) 3/2 3/2 3/2 3/2 3/2 - -

Fcost (SS)* 0.0123 0.0115 0.0123 0.0078 0.0075 0.0103 0.00241

τλ (s) 1.3521 1.8571 1.7941 2.7851 2.1211 1.9819 0.5272
GR(Pa) 0.1599 0.1480 0.2117 0.1166 0.1397 0.1552 0.0354
Gc (Pa) 0.4620 0.4058 0.8329 0.3801 0.6547 0.5471 0.1926

Fcost (trans)* 0.0190 0.0197 0.0176 0.0173 0.0130 0.01732 0.0026
Fcost (SAOS) 0.0023 0.0021 0.0023 0.0012 0.0018 0.00194 0.0005

t-ETV (Tensorial)

SS

trans,            
t-ETV

 
 
 
 
D. t-ESSTV 

The t-ESSTV full tensor has the same number of parameters as the t-ETV, with a total of 

thirteen parameters fit simultaneously to steady state and six steps up/down in shear rate 

experiments. As before three of the thirteen parameters are fixed: 0,Rγ set to one, as in previous 

sections [7-9, 36, 37, 42, 43]; with the same values as previously mentioned for d and m.  Fig. 7(a) 

shows the steady state fit, and Fig. 7(b) and (d) show the fit to the three step-down and three step-
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ups in shear rate, respectively.   Fig. 7(c) and (e) are showing the corresponding evolution of the 

structure parameter during the step down and step up in shear rate experiments.  Table VIII shows 

the best fit model parameters from the steady state and transient data fit, and the value of Fcost,ss 

for the steady state, step up/downs and dimensional Fcost of SAOS for Donor 3 (Donor 1-5 average 

Fcost values for SAOS, LAOS and UDLAOS predictions are shown in Table X).  (We note here 

that the values reported in Table VIII, are analogous to those reported in the other tables for the 

sake of comparison).   Fig. 8 shows the model predictions to the SAOS amplitude sweep.  LAOS 

and UDLAOS predictions are shown below in the model comparison section.  We note that t-

ESSTV N1 predictions are shown in Appendix B, Fig. B1, along with all contributions to total 

stress from plasma and RBCs and the buildup and breakdown of the rouleaux  in Fig. B2.   

 

 

FIG. 7 t-ESSTV tensor model fit for (a) steady state human blood data; (b) set of 3 step up in shear 
rate from & of  0.1s-1 to 5, 10, and 20s-1; (c) corresponding structure parameter curves (colors of 
structure parameter curves match respective colors from stress evolution curves); (d)  step down 
in shear rate to & of  0.1s-1 from  5, 10, and 20s-1 ; and (e) corresponding structure parameter curves 
(Donor3) (dataset3) [55]. 
 

 

 
FIG. 8 Small amplitude oscillatory shear, amplitude sweep performed at ω = 12.6(rad / s) , data 
discrete point, and predictions, dashed lines of t-ESSTV (tensor) (Donor3) (dataset3) [55]. 
 
Table VIII: Best fit parameter values of t-ESSTV model for Donors 1-5 [52-57] (Fcost 
dimensionless). 
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Par. Donor1 Donor2 Donor3 Donor4 Donor5 Ave. Stdev
μ0,c (Pa s) 0.0079 0.0067 0.0074 0.0076 0.0095 0.0078 0.00104
μ∞,c (Pa s) 0.0033 0.0032 0.0034 0.0035 0.0038 0.0035 0.000216

τC (s) 0.048 0.029 0.030 0.044 0.065 0.0431 0.01492

 τbreak (s) 0.869 1.143 1.157 1.084 0.970 1.0446 0.122671
τaggr (s) 5.72E-04 4.29E-02 4.32E-02 1.64E-02 1.62E-03 2.09E-02 2.11E-02

μR (Pa s) 0.035 0.036 0.033 0.045 0.044 0.0384 0.005393
σy0 (Pa) 0.002 0.003 0.004 0.002 0.003 0.0029 0.000794
γ0,R (-) 1 1 1 1 1 - -
d (-) 1/2 1/2 1/2 1/2 1/2 - -
m (-) 3/2 3/2 3/2 3/2 3/2 - -

Fcost (SS)* 0.0074 0.0061 0.0103 0.0057 0.0059 0.0071 0.001944

τλ (s) 0.9966 1.1598 1.3052 1.3086 1.1766 1.1893 0.1283
GR(Pa) 0.0782 0.1056 0.1181 0.0985 0.1001 0.1001 0.0144
Gc (Pa) 0.6437 0.5674 1.0052 0.5952 0.6888 0.7001 0.1768

Fcost (trans)* 0.0150 0.0172 0.0143 0.0118 0.0120 0.01404 0.0022
Fcost (SAOS) 0.0005 0.0014 0.0008 0.0010 0.0013 0.00100 0.0004

t-ESSTV (Tensorial)

SS

trans,            
t-

ESSTV

 
 
Table IX: Fcost for fits, and predictions of all models for Donor3 [52-57] (Fcost for step up/down 
shown with dimensions of stress, as it is developed for stress predictions, and in a dimensionless 
scaled form (indicated by *) for comparison) 
 

SS* 0.0135 0.0103 0.0102 0.0123
Step Up/Down* 0.0214 0.0143 0.0204 0.0176

Step Up/Down 0.000836 0.000580 0.000811 0.000677
SAOS 0.00183 0.00081 0.00341 0.00228
LAOS 0.00190 0.00189 0.00190 0.00156
UDLAOS 0.00132 0.00098 0.00132 0.00121

SUM 0.00590 0.00426 0.00745 0.00572

Donor3

Fcost (Pa) ESSTV t-ESSTV ETV t-ETV

 
 
 

We note that according to the Fcost value comparison from Table V to Table VIII there is a 

modest improvement in predictive capability with respect to the step up/down in shear rate 

accuracy, for both the ETV and ESSTV, in applying the full tensor approach.  While there is more 

significant accuracy improvement with the SAOS predictions, as shown in Table IX.  With the 
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ability to fit steady state slightly worse with the respective tensorial versions of the ETV.  The 

LAOS and UDLAOS predictions using the tensorial form of the respective models also shows 

improvement for Donor3.   Similar trends are shown below with respect to the relative accuracy 

for the average SAOS, LAOS and UDLAOS predictions of Donors 1-5 shown in Table X.   Table 

IX, and Table X demonstrate that by moving to the tensor form of the model we can increase 

predictive capability of the ETV and ESSTV rheological models. Without the addition of more 

parameters. 

 
E. Comparison 
 

Table VIII above offers a comparison of the cost functions of the steady state and transient 

fits for Donor3, while Table IX below shows a comparison for the SAOS, LAOS and UD-LAOS 

predictions for all models together, over all Donors.  Fig. 9 shows the elastic and viscous 

projections for the LAOS and UDLAOS predictions with the non-tensorial versions of the models, 

while Fig. 10 shows the elastic and viscous projections for the LAOS and UDLAOS predictions 

with the tensorial versions.  Table IX below has the Fcost, LAOS and Fcost, UDLAOS for each of the 

predictions for comparison between experiments, with average values for each shown at the 

bottom of Table IX.  From Table IX two things are clear: 1. The ETV and ESSTV have similar 

accuracy demonstrated for each of the rheological experiments fit or predicted here; and 2. There 

is significant gains in accuracy shown by upgrading to the full tensor version for both models, with 

no additional cost in parameters.   

With respect to I3/I1 data and model predictions shown in Figs. 2, 4, 6, and 8, due to the 

work of Horner et al. we believe we can rule out the skin effect from drying/clotting blood at the 

outer edge of the rheometer due to the extremely small ratio of surface area in contact with the 

surrounding air to surface area of the double wall Couette with the blood inside the cup and double 
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wall Couette geometry [40].  Furthermore, a cover is incorporated to minimize evaporation effects.  

We therefore support the hypothesis that it is the small values of elastic moduli relative to the 

values of the viscous moduli.  We believe that due to the complicated nature of human blood 

physiology that the materials are intrinsically non-linear.  Accordingly, the human blood has at 

least three different, yet overlapping time scales: 1. The viscoelastic time scale associated with the 

plasma and individual red blood cells; 2. The viscoelastic time scale associated with the 

contribution to total stress from rouleaux; and 3. The ‘overall’ timescale that governs rouleaux 

build-up and break-down.  This last one can be further analyzed as resulting from the combination 

of three characteristic time scales, ,  and break aggr   , the first one corresponding to the Brownian 

aggregation time scale and the last two used to define the dimensionless Weissenberg numbers 

that modify this time scale to define the shear-induced breakage and aggregation events.  Yet to 

be considered is also the possibility that there is yet another independent time scale for the 

contribution to the total stress from the ‘solid-like’ stretching, elastic stress from the rouleaux 

before they undergo break-down.  There are strong arguments in favor of the intrinsic non-linearity 

of human blood for these reasons [40]. 

With respect to the elastic and viscous projections all the models can capture qualitatively 

the LAOS and UDLAOS behavior.  We note here that at the higher frequency and strain amplitudes 

for both LAOS and UDLAOS the human blood is almost entirely a viscous signature but does 

show signs of more elasticity present at the lower values of strain amplitude.  In general, we also 

note that all four of the models shown here can quantitatively predict the stress signatures at the 

higher values of frequency and strain amplitude, in places where the blood is almost completely 

liquified, and the rouleaux are not able to form and stay together in large numbers, aka. the 

structure is almost completely broken down.  According to Table IX we see that the ESSTV, and 
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t-ESSTV slightly outperform their counterparts ETV and t-ETV.  This is seen quantitatively in the 

fits and predictions, as well as shown qualitatively in Figs. 9-10. 

Lastly, it is useful to point out here that from a comparison of the break and aggr   parameter 

values, shown in Tables V-VIII, one can see that for all donors the corresponding breakWi  is always 

2- 4 orders of magnitude greater to aggrWi .  This observation, in addition to the fact that the effect 

of the latter is further diminished having to take its square root in the kinetic equation for  , Eq. 

(10), is consistent to the experimental observation that shear-induced aggregation is the lesser of 

the three effects modeled, giving further credibility to the models utilized in this work.  

 

 

 
 
 
Fig. 9 (a-b) Elastic and viscous LAOS projections of ETV (blue lines);  (c) elastic and viscous uni-
directional LAOS ETV projections (blue lines); (e-f) elastic and viscous LAOS projections of 
ESSTV (maroon lines); (g) elastic and viscous uni-directional LAOS ESSTV projections (maroon 
lines 
 
  
 
Fig. 10 (a-b) Elastic and viscous LAOS projections of t-ETV(black lines);  (c) elastic and viscous 
uni-directional LAOS t-ETV projections (black lines); (e-f) elastic and viscous LAOS projections 
of t-ESSTV(green lines); (g) elastic and viscous uni-directional LAOS tensorial t-ESSTV(green 
lines);  Red points are data; x-axis is frequency (rad/s), y-axis is strain amplitude (-) (Donor 3) 
[55]. All solid lines are model predictions. 
 
  

Table IX below shows significant improvements to LAOS and UDLAOS predictive 

capability with respect to both tensorial versions of the ETV and ESSTV models, respectively.  

This is shown for Donor 3 predictions in Figs. 9-10, and Table IX shows that this trend is 

maintained over Donors 1-5.  Table IX shows the average of all categories of Fcost for each of the 

γ0 (-)
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five Donors, with an average sum of all the dimensional Fcost values accumulated and shown at the 

bottom of the table.  

 
TABLE X. Comparison of average Fcost, for all models over fits (steady state and step up/down in 
shear rate) and predictions (SAOS, LAOS and UDLAOS) (average of five Donors).  Note: the 
tensor model ΣFcost were averaged and summed over 3 donors. (*The steady state Fcost values 
shown here are nondimensional, normalized by stress values at each respective shear rate of the 
flow curve). 
 

Fcost (Pa) ESSTV t-ESSTV ETV t-ETV
SS* 0.00839 0.00707 0.00883 0.01029
Step Up/Down* 0.01569 0.0145 0.02012 0.01732

Step Up/Down 0.00061 0.00054 0.00081 0.00064
SAOS 0.00157 0.00087 0.00231 0.00194
LAOS 0.00214 0.00193 0.00191 0.00212
UDLAOS 0.00252 0.00211 0.00238 0.00264

SUM 0.00685 0.00545 0.00741 0.00734

Donors1-5 (Average)

 
 
 
 

 

 

V. CONCLUSIONS 

  We have demonstrated a new paradigm for TEVP modeling using the original ethixo 

mHAWB as a starting point.  We removed the plastic shear rate, pγ from the constitutive equation 

for viscoelastic stress from rouleaux and replaced this with γ  total shear rate.   We then used for 

the elastoviscoplastic contribution to total stress from the rouleaux an equation inspired by recent 

work by Varchanis et al. [36], Wei et al. [37], and Armstrong et al. [43].  Both proposed tensorial 

frameworks allowed for a seamless transition to a full tensorial approach in modeling with the 

ETV and ESSTV, thus achieving improvements in the predictive capability for LAOS and 
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UDLAOS to that of the original ethixo mHAWB.  The improvement in predictive capability by 

transitioning to the full tensorial version of both models was significant, and the key finding of 

this effort.  It is noteworthy that the t-ETV construct lends itself to a full casting into a 

thermodynamically consistent model moving forward [26]. 

 It is now clear that to effectively model the rheological flow of human blood, three 

components are required, each with a requisite number of parameters to capture the appropriate 

physics: 1. viscoelastic contribution to total stress from individual cell deformation within the 

plasma, here modeled with the White-Metzner utilizing the Cross model to describe the viscosity 

as a function of the shear rate (four fit parameters); 2. viscoelastic contribution to total stress from 

rouleaux modeled here in two distinct strategies using either the Saramito/Wei et al./ Varchanis et 

al. theory of plasticity inspired term or the Horner et al. framework (three fit parameters) [9, 10, ]; 

and 3. the shear breakage, shear aggregation and Brownian aggregation of the rouleaux (three fit 

parameters) [31, 35, 36, 37]. 

With respect to recent advancements in thixo-elasto-visco-plastic modeling efforts we have 

demonstrated here a unique way to achieve gains in fitting and predictive capability without the 

addition of more, or new parameters [7-9, 41, 43].   This upgrade in accuracy was demonstrated 

for two modified versions of the contemporary mHAWB model by Horner et al. [8, 9].  There was 

a slight modification in the physics, etc. shown here, or parameters tied to physics, or fitting 

parameters.  By upgrading to a full tensorial approach modeling blood rheology has evolved 

further with respect to accuracy without the addition of new parameters.  Moving forward it will 

be highly desirable to use the TEVP models for more than a scalar representation of current levels 

of microstructure, and we aim to evolve the modeling shown here to a conformation tensor basis.  

In addition, more experimental results under conditions under which the thixotropic properties of 
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blood are most prevalent (like in stress relaxation) are highly desirable. The scalar structure 

parameter will still need to be incorporated in future models.  Any parameters incorporated will 

have more value if they are directly tied to actual physics of microstructure evolution, and/or 

viscoelastic properties such as viscosity, elastic modulus, and yield stress. 

 

APPENDIX A: TEVP MODEL ACRONYMS AND BRIEF DESCRIPTIONS 

 Acronym Title Brief Description
IH isotropic hardening internal dimensionless structure parameter [33]
KH kinematic hardening deformation dependent yield stress [34, 35]
HAWB Horner Armstrong Wagner Beris White-Metzner-Cross for plasma + contribution from yield stress and rouleaux
mHAWB modified Horner Armstrong Wagner Beris White-Metzner-Cross for plasma + contribution from yield stress + VE contribution from rouleaux
ethixo mHAWBenhanced thixotropy term + mHAWB (same has mHAWB) + thixotropic evolution with shear aggregation term
ETV enhanced thixoviscoelastic White-Metzner-Cross for plasma+e. thixotropy & removal of plastic shear rate from VE-rouleaux
ESSTV enhanced structural stress thixoviscoelastic White-Metzner-Cross for plasma+enhanced thixotropy & theories of plasticity
ML-IKH Multimode-lambda + isotropic/ kinematic hardening Multimode lambda evolution + theories of plasticity
SPTT-IKH Saramito-Phan-Thien-Tanner + isotropic/ kinematic hardening Saramito and Phan-Thien-Tanner description + theories of plasticity  

 

 
 

 

APPENDIX B: STEADY STATE N1 PREDICTIONS OF t-ETV AND t-ESSTV 

Fig. B1 shows the N1 prediction of the steady state data with the tensorial versions of the 

ESSTV and the ETV models.  From this figure there is a considerable difference between the two 

models at low shear rates.  We believe that this difference arises because of the viscoplastic Th
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framework of the t-ESSTV model that incorporates 0

0,

y
e

R


 



 
−  
 

, a term involving the total 

(elastic plus viscoelastic) rouleaux stresses, in the numerator of the conditional for the stress.  This 

contributes to the unique shape of the N1 prediction curve.  The t-ETV has a different formulation 

for the viscoelastic rouleaux contribution, which does not involve the elastic contribution to the 

total stress, as shown in Tables I and II.  . 

 

FIG. B1 N1 predictions for steady state of t-ESSTV and t-ETV for Donor3 (dataset3) [55]. 

  
 
 

Fig. B2 Below shows the individual contributions to total stress using t-ETV and t-ESSTV 

models respectively from a step-up ( -1 -1
i fγ =0.1s γ =20s→ ) , and a step-down (

-1 -1
i fγ =20s γ =0.1s→  ) in shear rate test.  Fig. B2a,b shows the data, total stress, and the 

viscoelastic contribution to total stress from the plasma and individual RBCs, the rouleaux and the 

elastic contributions to total stress from rouleaux of the t-ETV model.  Fig. B2c,d show the data, 

total stress, and the viscoelastic contribution to total stress from the plasma and individual RBCs, 

and the rouleaux of the t-ESSTV model.  Note that the t-ESSTV lacks a prediction for the elastic 

contribution from the rouleaux.  For reference the N1 predictions are shown for both models. 

 
 

 
FIG. B2 (a,b) Contribution to total stress from plasma and RBCs (green dash-dot line), 
contribution to total stress from rouleaux (red solid line), contribution to total stress from elastic 
stress of rouleaux (blue solid line), total stress (wine dash line) and N1 predictions (black solid 
line) of  t-ETV; and (c,d)  Contribution to total stress from plasma and RBCs (red dash-dot line), 
contribution to total stress from rouleaux (green dash-dot line), total stress (aqua line) and N1 
predictions of t-ESSTV.  (a,c) step up in shear rate from 0.1s-1 to 20s-1; (b,d) step down in shear 
rate from 20s-1  to 0.1s-1.  (Data is maroon squares.) Donor3 (dataset3) [55] 
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APPENDIX C: Hysteresis Loops of Donor 3 

Fig. B3a shows a hysteresis loop of Donor 3 for a combination of α and tmax, where in Eqn. 

35 below, t is time, tmax is maximum time of experiment, and α is the non-dimensional acceleration 

constant.  The triangle ramp, or hysteresis experiment, started at time t=0 (s) from rest, 

continuously increases in shear rate until a maximum is reached at maxtt=
2

, followed by a 

decreasing shear rate back to 0 s-1.  Whereby the thixotropic timescale of rouleaux breakdown, is 

demonstrated to be different than the characteristic timescale of rouleaux buildup   

 

( )

max

max
max

tαt               t
2γ(t) =

tα t - t    t >
2








. (35) 

 

 Fig. C1a,b  shows the characteristic hysteresis loop, and compares the ETV, ESSTV and 

a viscoelastic model that does not have a thixotropic term, Stickel et al. elasto-visco-plastic 

model highlighted here [47, 58].  The Stickel et al. EVP model consists of 4 model parameters, 

and the following two equations 

 n
y0σ = σ + kγ , (36) 

and  

 

1/n

y0
n

σ - σ1 σ + max 0, σ = γ
G k σ

 
 
 
 

. (37) 

 

Where k is the consistency parameter, n is the power law, and 0y  is the yield stress. We again 

fit the parameters in Eqn. (36) to steady state data, and G, the elastic modulus from Eqn. (37) is 

fit to six sets of step-up/down in shear rate data for a fair comparison.  The results of the 
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parameter fitting are shown in Fig. C2. The comparison in Fig. C1 is shown with the non-

tensorial versions ETV, and ESSTV for a fair comparison to the Stickel et al. EVP model [47, 

58]. Fig. C1a, and C2 both show significant loss in predictive capabilities without thixotropy 

term.  Clearly if we try to use a viscoelastic only model, like that of Stickel et al. [58], the time 

constants resulting from best fit of the steady state and step-up/down in shear rate (transient data) 

are too small to predict hysteresis as seen in Fig. C1.  On the other hand, if you only have 

thixotropy (like the Apostolidis et al. [39]) we cannot do a good job predicting the nonlinear 

LAOS, and UDLAOS data.  The only way to capture both the hysteresis and the nonlinear 

features of LAOS is to have both thixotropy and viscoelasticity in the model, both important for 

blood, as we shown with the ETV, ESSTV and their tensorial counterparts. 

 

FIG. C1 Hysteresis loop for Donor 3 maxα=0.0357, t =35(s) ; data points as follows: t<tmax/2 
maroon triangles, t   tmax/2 red circles; (a) Green line Stickel et al. [58] EVP model; and (b) Blue 
line ESSTV model; and black line ETV model. (Dashed lines represent t < tmax/2; solid lines 
represent t   tmax/2) (Numerals 1 – 4 are the stages of evolution of the hysteresis loop) (dataset3) 
[55], (Best fit parameter values: y0σ =0.0058 (Pa); k=0.013; n=0.77; and G=1.64 (Pa)  ). 
 

 
 

 
FIG. C2 Stickel et al. [58] EVP model fit (lines) for (a) steady state human blood data; (b) set of 
3 step-up in shear rate from &  of 0.1s-1 to 5, 10, and 20s-1; and (c) step-down in shear rate to & of 
0.1s-1 from  5, 10, and 20s-1 for Donor 3, (dataset3) experimental data [55],  (Best fit parameter 
values: y0σ =0.0058 (Pa); k=0.013; n=0.77; and G=1.64 (Pa)  ). 
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NOMENCLATURE 

ω frequency of oscillation
γ0 strain amplitude
t time
λ structure parameter
μst rouleaux contribution to viscosity
μ0 zero shear viscosity of plasma and RBC
μꝏ infinite shear viscosity
G' storage modulus
G" loss modulus
GR elastic modulus of rouleaux
GC elastic modulus of plasma and RBC
σy0 yield stress

τbreak material constant for stress-induced breakage
τaggr material constant for stress-induced aggregation
τλ thixotropic time constant of evolution
τC Cross constant
σ stress

shear rate (subscript p  is plastic shear rate)
d power law of shear aggregation
yi data value
fi model value

Fcost cost function
rate of strain tensor

m power law of rouleaux viscosity

Nomenclature



(1)γ
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Supplementary Material 

ETV and ESSTV model fits of steady state and six step up/down in shear rate tests, with 

SAOS predictions of Donor1.  Additional ETV LAOS and UDLAOS predictions with Donor1. 
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