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Abstract

Recent work modeling the rheological behavior of human blood indicates that blood has
all the hallmark features of a complex material, including shear-thinning, viscoelastic behavior, a
yield stress and thixotropy. There is renewed interest in the modeling of human blood with thixo-
elasto-visco-plastic rtheological models. Previous work [Armstrong and Tussing, Phys. Fluids 32,
094111 (2020)] has led to the development of the enhanced thixotropic viscoelastic model for
blood (ethixo-mHAWB; called here, after a minor modification, ETV) that incorporates
viscoelasticity to a thixotropic model for the stress contributed by the rouleaux aggregates, in
addition to describing using a nonlinear viscoelastic model the stress contributed by the individual
red blood cells deforming under the action of the flow. This model has shown superior
performance in fitting human blood steady state and transient rheological data from a strain-
controlled rheometer [Horner et al., J. Rheol. 62, 577-591 (2018) & 63, 799-813 (2019)] as
compared to other alternate models. In the present work, we first develop another variant of the
ETV model, the enhanced structural stress thixotropic-viscoelastic model (ESSTV), the
modification patterned following an elastoviscoplastic model developed recently [Varchanis et
al., J. Rheol. 63, 609-639 (2019)]. We develop full tensorial stress formulations of the rouleaux
stresses for both the above-mentioned models, resulting in the t-ETV and t-ESSTV models. We
use steady state and step-ups, and step-downs in shear rate data to independently fit the parameters
of all before-mentioned models. We compare predictions against experimental data obtained on
Small, Large, and Unidirectional Large Amplitude Oscillatory Shear (SAOS, LAOS and
UDLAOS) conditions. We find that the full tensor stress formulations t-ETV and t-ESSTV
significantly improved the predictive capability of the earlier ETV model.
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I. INTRODUCTION

Within human blood’s aqueous plasma, we find suspended a variety of proteins and cells. The
latter involve the three most vital components of blood: platelets, red blood cells (RBCs), and
white blood cells. The suspended RBCs, when left at rest or under a low shear rate, form into
structures resembling coin stacks, dubbed “rouleaux.” The formation of these rouleaux is generally
dependent upon the stress and/or shear rate as well as on the concentration of various plasma
proteins such as fibrinogen [1,2]. The destruction and formation of rouleaux are reversible,
depending on the magnitude of shear rates [3].

As rouleaux form, they collectively act to increase the viscosity of blood, contributing a portion
of its complex flow properties that include viscoplasticity, viscoelasticity, and thixotropy [4-7].
Viscoplasticity refers to the existence of a non-zero yield stress below which the material deforms
elastically but above which it flows undergoing permanent, irreversible deformation.
Viscoelasticity indicates the simultaneous presence of viscous and elastic characteristics, and
thixotropy describes a fluid’s time-dependent decrease of viscosity under shear deformation tied
to microstructure. Blood’s viscoplasticity and thixotropy are due to the formation and subsequent
under flow destruction of the rouleaux aggregates. As the intermolecular forces present in
rouleaux are quite weak, blood’s yield stress is generally low, rarely exceeding a magnitude of 1
— 4 mPa [8-10]. Given the high concentration of RBCs, the rouleaux combine into network
structures that also provide part of the viscoelastic blood characteristics. An additional
viscoelasticity exists contributed by the elastic deformation of individual RBCs suspended in
plasma [8-9].

The viscoelastic response, and other complex behaviors of blood from the rouleaux is primarily

encountered at low shear rates, generally, below 10 57! [10]. In contrast, the viscoelasticity resulting



from the flow-induced deformation of individual RBCs corresponds to shorter relaxation times
resulting at steady state to a viscosity that exhibits significant shear thinning at shear rates within
10 — 1000 57! [8, 11-16]. This behavior necessitates the design of more sophisticated constitutive
models combining thixotropy and at least two modes of viscoelasticity to effectively model in-
vivo blood flow.

Due to the relevance of hemorheology in enhancing current understanding of blood and
pathology prevention, detection, and treatment, the development of the discipline has become of
particular interest [17-20]. Yet, as useful as these applications of hemorheology may be, they all
require robust methods by which to collect data and subsequently simulate the in-vivo phenomena
accurately, including the more complex aspects of blood’s transient behaviors. The simulations
provided by such models are vital in efforts to engineer more sophisticated medical equipment and
treat debilitating conditions of the vasco-circulatory system [21]. Moreover, as one of the most
evidently relevant thixotropic fluids, continued study of blood’s properties and behaviors within
the body can be prosecuted using a few thixotropic models developed within the recent past.

Blood rheology models have undergone several refining evolutions, beginning with simple,
generalized Newtonian, models, such as the Casson, Carreau-Yasuda, and Herschel-Bulkley
models [22, 23]. All these adequately represented most aspects of steady state flow behavior,
including shear thinning and, depending on the specific model, yield stress. However, these models
fail to predict correctly the transient rheological behavior of blood, due to thixotropy and the fact
that human blood has two viscoelastic timescales: one viscoelastic timescale for the plasma and
individual RBC; and the second viscoelastic timescale for the evolving rouleaux. These are key
features, as mentioned above, of blood rheology that in part arise from a history-dependent

microstructure that also provides for yield stress and viscoelasticity of the rouleaux. Therefore,



modern models have come to include additional features that allow for a more faithful prediction
of, and agreement with the experimentally measured transient rheological response [8, 9].

Viscoelasticity is typically modelled phenomenologically through modifications of the
Maxwell, Giesekus and Oldroyd-8 constant frameworks [24-26], which are generally sufficient to
model the transient behavior at high shear. However, these models are unable to effectively
replicate the transient behavior of blood at lower shear rates where blood proves far more dynamic
[7-10]. The simple fact is some non-thixotropic models can sometimes capture some of the
rheological behavior, for some experiments. However, to capture all the nuanced, and complicated
rheological behavior of human blood for all the rheological experiments we show requires a model
that has a thixotropic component that has three things: 1. A timescale of shear rouleaux breakage;
2. A timescale of shear rouleaux reformation; and 3. A timescale of Brownian rouleaux
reformation. Our thixotropic framework has all three. To address this low shear behavior, a more
rigorous thixotropic model is necessary. A component of a standard thixotropic model incorporates
a kinetic rate equation that governs the time evolution of a nondimensional structure parameter
varying between 0 and 1, with 0 indicating a complete lack of structure and 1 representing a full
structure [27-30]. Yet, the viscoelastic nature of blood requires either the incorporation of
microstructure-dependent elasticity through the addition of dual elastic and plastic stress terms or
the integration of the structure parameter into a generalized viscoelastic model [31-32].

The terms of elasticity and plasticity can be defined through the separation of total strain and
its time derivative (total strain rate) into two components [28, 31, 33]. The plastic behavior can
be modeled after the kinematic hardening theories of plasticity [33], further separating into
isotropic hardening (IH) and kinematic hardening (KH) [34, 35]. More than just affecting

plasticity, the IH of a material refers to how the internal dimensionless structural parameter is



related to its thixotropic properties whereas KH describes the deformation-dependent effective
yield stress [33-35]. Also, Wei et al. developed the ML-IKH model to provide a spectrum of
lambda values, with independent thixotropic time scales of evolution, combined with isotropic
kinematic hardening [36]. Following a parallel approach, Varchanis et al. [37] developed the
SPTT-IKH model, where the ‘S’ refers to the plasticity term, first introduced by Saramito [31],
and the ‘PTT’ refers to the Phan-Thien Tanner model for viscoelastic fluids [38]. These models
were all cast in tensorial form and contained from 11 — 15 parameters. IH and KH play a vital role
in the dynamics of fluid systems, necessitating inclusion of representative equation parameters.
KH phenomena can also act to induce lag between back stress evolution and shear stress [33-37].

A simplified form of kinematic hardening has been introduced already into the earliest of the
thixotropic models in our group [39]. It was clear from this work though that the limitation for
testing the applicability of the model was the lack of sufficiently detailed transient experimental
data. That changed in the subsequent years with a slew of data, obtained under carefully controlled
conditions and based on rigorous guidelines [40] under a variety of transient conditions that
allowed for a substantial extension of the early thixotropic model [8]. The data covered in addition
to steady state a systematic variation on both the amplitude and frequency in Unidirectional Large
Amplitude Oscillatory Shear (UD-LAOS) generated from the superposition of a steady and
oscillatory shear so that the lowest applied shear rate is zero, and never negative. Those data, along
with powerful model parameter estimation approach, based on a stochastic global optimization
approach (parallel tempering) [41], allowed for a significant enhancement of the thixotropic model
for blood. A significant new contribution was the representation of the deformable RBC
viscoelasticity using a generalized White-Metzner-Cross model, leading to a thixotropic

viscoelastic model (TVM—which we called in the past as HAWB model) [8]. A further extension



of TVM was achieved shortly afterwards that led to a substantial better fit of the transient data by
allowing for the introduction of a rouleaux viscoelastic response, the mHAWB model [9]. This
last model has also appeared in recent publications (as ethixo-mHAWB) with small modifications
of the kinetic equation to incorporate a shear aggregation term for the structural parameter. It is
also used here with one further small modification, calling it, better reflecting its physical nature,
the enhanced thixotropic viscoelastic (ETV) model [9, 42].

More recent work attempted to investigate closer the role of different rheological model
components. More specifically, Armstrong and Tussing [10] and Armstrong and Pincot [43]
investigated if there was any advantage to describe the deformed RBCs using a general Oldroyd-
8 model [24] or a Giesekus model [44], respectively, instead of the generalized White-Metzner-
Cross model as in the mHAWB model (there was not). In contrast to this work, and ignoring the
viscoelasticity of the deformable RBCs, Armstrong et al. [45], tried to develop better models for
blood rheology by following the elastic modifications to a viscoplastic (Herschel-Bulkley) model
proposed by Saramito [31] and using his ideas resulting in the ethixo elastoviscoplastic (ethixo
EVP) models, on which they introduced thixotropy through a structural parameter obeying a
kinetic equation, thus generating thixoelastoviscoplastic (TEVP) descriptions [45]. They
developed several TEVP variants depending also on the starting EVP model and showed that the
introduction of thixotropy helps fitting the transient experimental blood rheological data better.
The opposite approach, i.e., the addition of viscoelasticity to a viscoplastic and thixotropic model,
such as the model developed in [39], has also been tried and shown to lead to better fits to
experimental transient blood rheology data [42, 47, 48]. Interestingly, Armstrong et al. [47]
incorporated a viscoelastic timescale of evolution to the contribution to total stress from rouleaux

to the original Modified Delaware Thixotropic Model (MDTM). This enhancement was given the



moniker: VE-MDTM, viscoelastic enhanced MDTM. This modification clearly demonstrated that
there is in fact a unique viscoelastic timescale of the stress from the evolution of the rouleaux to
the total stress. A similar approach has been followed by Giannokostas et al. [48] modifying the
Varchanis et al. model, which was the SPTT-Isotropic Kinematic Hardening [37] TEVP model, to
better fit blood rheology.

The involvement of separate timescales for thixotropic and viscoelastic fluid response, along
with complementary shear structure breakage and structure build-up timescales, affords so far, the
best capability to precisely model the rheological behavior of blood and its component rouleaux
microstructures (ethixo-mHAWB model) [9, 42]. While the addition of more parameters to a
model is not ideal as they entail additional complexity, the thixotropic and viscoelastic timescales
offer additional insight into the gradual evolution of rouleaux within the bloodstream. Enhanced,
accurate models then act to facilitate the use of CFD modeling for more efficient analysis of blood
properties.

While the ethixo-mHAWB model has proven more successful in fitting available steady
state and especially transient rheological data for blood than other models and variants it has not
been perfect [10, 43]. Thus, more effort is warranted in trying to further improve it. We start here
with a simplification to the ethixo-mHAWB model, by replacing the plastic component of the
strain rate with the total strain rate in the equation describing the viscoelastic contribution of the
Rouleaux stress, resulting in what we call here the Enhanced Thixotropic Viscoelastic (ETV)
model. This is a slight modification, introduced for facilitation of further changes to the ETV
model, and hardly affects its predictive capabilities. Our basic contributions are two more
substantial modifications. First, we modify the ETV model by adopting a novel viscoelastic-elastic

formulation to express both the elastic and viscoelastic stress contributions of blood rouleaux



microstructures, using recently published theories of plasticity [31, 37]. This modification, results
in a model that we call Enhanced Structural Stress Thixotropic Viscoelastic (ESSTV). Second, we
transform to a full stress tensor description the viscoelastic contribution and total stress
contribution, from the rouleaux in both the ETV, and the new ESSTV models, resulting into the t-
ETV and t-ESSTV models, respectively. All models are described in Section II. Within Section
II1, for each model, the parameters are determined based on least squares fit against steady state
and transient shear data, using an efficient stochastic global optimization approach based on
parallel tempering developed in previous work [41]. For each model, a subset of the model
parameters is determined through a fit to a set of existing steady state simple shear flow data. The
rest of the model parameters are then determined by a simultaneous fit of a series of three step-ups
in shear rate, and three step-downs in shear rate experiments. Using these model parameters, in
Section IV we compare the ability of the new models to accurately predict small amplitude
oscillatory shear (SAOS), large amplitude oscillatory shear (LAOS) and unidirectional large

amplitude oscillatory shear (UDLAOS). In Section V, the conclusions from this study are offered.

Il. MODEL BACKGROUND AND FRAMEWORK

Moving forward the Model and Background and Framework section is organized as
follows: a description of the Enhanced Thixotropic Viscoelastic (ETV) model; and then a
description of the Enhanced Structural Stress Thixotropic Viscoelastic (ESSTV) model. From
here the tensorial descriptions are discussed with summary tables provided for full tensorial
versions of the models. The goal is to introduce the enhanced models, and describe the parameters,

algebraic and differential equations of each.



1.1 ETV Model

The ETV model arose from the original work of Horner and coworkers (as the HAWB [8]
and then mHAWB [9] models) and it was further modified by Armstrong and Tussing [10] (as e-
thixo-mHAWB). It is introduced here with a further simplification as ETV model. The
simplification, as explained below, alters little to the predictive capabilities of the original e-thixo-
mHAWB model. The model is described currently for a shear flow in a Cartesian system of
reference x,y,z with x the flow direction, y the shear direction and z the neutral direction. The

central component of the ETV model is that the total shear stress, o,

arises as the superposition

of three independent contributions: 1) a viscoelastic contribution due to red blood cells

deformation suspended into plasma, o, 2) a viscoelastic contribution due to the red blood cell

aggregation into rouleaux structures, o, , and 3) an elastic contribution due to the rouleaux, o,

O_xy = O-C,xy + O_V,xy + O_E,xy . (l)

The starting point for the description of the viscoelastic response of the individual
deformable RBCs is a White-Metzner model [50] that incorporates the Cross model [51] for the

shear viscosity 7.(3) as follows

6.+ 1D —p )y, and @)
GC
N (/Uco _/"coo)
Ne(¥) = fe, + Ttrg) o) (3)

where G, is the elastic modulus, y is the rate of strain tensor, and 7. is the Cross model time

constant, and ., and ., are zero and infinite individual RBC viscosity, respectively. In Eq. (2)



v
the superimposed inverse triangle, , denotes the upper-convected time derivative defined as

follows [25]

v
GE§G+V-V6—G-VV—VVT'G, “4)

where v is the fluild wvelocity and Vv is the wvelocity gradient,

(Vv)ij:a%‘,xl:x,xzzy,)%:z .

To avoid potential instabilities [26] and following the work of Souvaliotis and Beris [52]
extending the White-Metzner model, Horner and coworkers recast the previous equation using the
first invariant of the stress tensor as the parameter to the viscosity function [8, 9]. Expressed in
terms of the stress components in the xy and xx direction the full equations for shear flow are [8,
9] (after correcting for a typo minus sign that appeared in [8]in front of the square root in the

corresponding Eq. (7))

%{” L0e) |9 (o ©)
o {” (g) J(dj;” —27'ac,xyj =0, (6)

where
ﬂc(oc,ﬁ)E@. ™)

with
b=z, %-ua),and )
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For the last two terms in Eq. (1), we need to incorporate a thixotropic model, with a scalar
thixotropic parameter, A, to describe the amount of structure present at any time, spanning [0 1],
whereby zero represents zero structure, no rouleaux, and one represents the fully structured,
aggregated, blood. We follow an identical approach as Horner and coworkers, and Armstrong and
Tussing with respect to capturing the elastic and viscoelastic stress contributions from the rouleaux
[7-10, 42, 43, 45]. The following equation describes the evolution of the structure as a function of
the shear rate of blood

DA 1
= (_ﬂ“ Tbreak
Dt 7,

7,[+ -4

ft, [ +(-2)). (10)

Eq. (10) represents a reformulation of our previously developed structural equation [7-10, 42, 43,

45, 47, 52] using the 7, , and 7, as “material constantss” with units of time controlling the

aggr
stress-induced rouleaux breakage and stress-induced rouleaux aggregation, respectively.

As aresult of the fact that both the 7, , and 7, material parameters have time units, and

aggr

that they both appear in Eq. (10) as a product with 7, with units (s, they can be used to define

dimensionless Weissenberg numbers that control the stress-induced breakage and stress-induced

aggregation rates as follows: Wi, =7,..7,;and Wi, =7,.7,. These Weissenberg numbers
can then be used to define the effective times for stress-induced breakage and aggregation as:

~ . ~ o d . . . . . .
Tyrout = T1/Wipow > and 7, cor =01 / (Wza ggr) , effectively modifying the Brownian aggregation time

11



7,. Thus, the 7, , and 7, material parameters can be physically interpreted as defining by

aggr
their inverse the characteristic shear rates for which the corresponding effective times
characterizing the shear-induced breakage and aggregation, respectively, become shorter to the

characteristic time 7, characterizing Brownian aggregation. Previous versions of the kinetic

expression described in Eq. (10) used alternative forms for the kinetic parameters, most recently

t, and ¢, [49]. Those are related to the z, , and 7, material parameters as 7, , =¢, and

aggr rl

/ . .
Toger = (t,2 )] ‘ We prefer to use instead the z, ,, and 7, as they are more amenable to a physical

ager
interpretation (given above) and, given the fact that they both have time units, they can be directly
compared, thus allowing for a comparison of the critical Weissenberg numbers governing both
shear-induced effects (i.e. breakage and aggregation).

The right-hand-side of Eq. (10) has three terms to describe the evolution of thixotropy: 1.
A shear breakdown term, proportional to shear rate and A, proportional to the amount of structure
still present; 2. A shear-rate dependent shear buildup term, proportional to a power d of shear rate
and (1-4); and 3. A Brownian buildup term, proportional to (1- 4)[7-10]. We note here that we
fix d =1/2 as done in the literature for blood [7-10, 45, 47]. This kinetic expression is used here
since it has been shown in the literature to model the transient dynamics of human blood rheology,
specifically the breakdown and buildup of rouleaux [7-10, 45, 47].

Our thixotropic modeling incorporates kinematic hardening in the separating of strain and
shear rate into elastic and plastic components following Dimitriou and coworkers [33-35] where

y=7,ty, and y=7y, +y , with the plastic strain rate described by
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L >0
[2-7/ej
. ymax
7p: . 9 (11)
L, }/<0
(2+7/6J
}/max

where a subscript e represents the elastic component, and a subscript p represents the plastic
component [8-10, 33, 39, 42, 43, 45]. The plastic components are involved with irreversible
processes, and breakage of structure, while the elastic components are involved with reversible

deformation of the rouleaux structures. In the above equation, the maximum rouleaux strain, y,
, 1s given as

Vax = Yor?s (12)
where y,is the rouleaux zero-shear-strain-rate limiting elastic strain. The elastic strain rate is

given as

% - 7/6 Y ymax > 0
Y yp ymax ]/p , Dt B
Ve = , L dy ) . (13)
7}p__e7}p‘+ . — < ()
}/ max }/ max dt D t

The steady state value of the structure parameter can then be readily calculated as

()

o T\ (14)
(Tbreak + 1)

Taggry

y| + Taggra}

The steady state value of the structure parameter must lie between zero and one, whereby a value of

zero signifies no ‘bonds’ with nearest neighbor red blood cells, and a value of one represents maximum
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number of structure formation with respect to rouleaux formation. It is understood that the breakdown
and buildup of microstructure (rouleaux of human blood) is analogous to a reversible chemical reaction
that is in a state of dynamic equilibrium at constant pressure and temperature, where the equilibrium
concentrations of reactive species are constant, however some reactant molecules are still reacting to
form products, and some product molecules are reacting to form reactants. The only stipulation at
chemical equilibrium is that the concentrations are constant. For human blood rouleaux the average
amount of microstructure is constant at each constant shear rate. However, like the reversible chemical
reaction at equilibrium, some of the rouleaux are broken down (forward process), while some of the
red blood cells are forming rouleaux (reverse process). The only requirement for our argument is the
‘mean’ structure level at any given constant shearing strain-rate must stay constant, thereby making
the overall time derivative of the structure zero.

The elastic contribution from rouleaux to total shear stress is then calculated as

o
Orn =7, (15)

0,R
where o ,is the yield-stress. In turn, in the ETV model, the viscoelastic contribution to total shear

stress from rouleaux is specified as obeying the following evolution equation

(o2 .
GR/flm(y_fo;J, A>0
D Hph
D, , (16)
Dt : . O-VA O-Vx ] y
G A" | 7 -——= |+m——=1, 1 <0
Hph A

where A = D’%) ’ Note that in this equation we introduce the only difference between the ETV

and the previous ethixo-mHAWB model by replacing the y, term with y .
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1.2 ESSTV MODEL

The Enhanced Structural Stress Thixotropic Viscoelastic (ESSTV) model was developed
as a modification of the ETV model following a novel viscoelastic-elastic formulation using
recently published theories of plasticity [31, 37] that allow to express both the elastic and
viscoelastic stress contributions of blood rouleaux microstructures in one state of total

elastoviscoplastic stress. Therefore, in this model, the total shear stress, o, involves only two

xy 2

contributions, the viscoelastic free cell contribution, o ., and the new single elastoviscoplastic
rouleaux contribution, o, thus, replacing Eq. (1) with

o= Oy + 0. (17)

In the above equation the viscoelastic contribution of the deformed RBCs, o, , is defined exactly

as in the ETV model, i.e., through Egs. (5-7). In addition, the time evolution governing the
structural parameter A remains the same, Eq. (10) as well as the governing equations for the elastic
component of the strain and strain rate, Egs. (11-13) thereby resulting to the same expression for

the steady state value of the structural parameter A4, Eq. (14) .

The proposed combined elastoviscoplastic rouleaux contribution (following the motivation
from Saramito [31], Wei et al. [36], and Varchanis et al. [37]) from the rouleaux to the total stress

for the ESSTV model is defined by

o-y.O
O_R,xy_ Y0.R 7/6
m
/JRA ‘O-R,xy

L D
G/ Dt

O, tmax| 0, Opy = v, (18)
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where Gr is the elastic modulus of the rouleaux, w, is the rouleaux structural viscosity, and m is a

fitting parameter, here set to 3/2 [7-9, 10, 41, 43]. Again, the right-hand side of Eq. (18) is the total
shear rate. Eq. (18) is inspired by Varchanis et al. and Wei et al. [36, 37] designating the evolution
of the total, elastic plus viscoelastic, contribution from the rouleaux to the stress. An alternative,
mathematically equivalent, reformulation of Eq. (18) that has advantages from a computational

viewpoint is

Gy,()
GR»X)’ Yo.R 7

1 D e
I

——— 0y, +tmax| 0,

G A Dt

sign(07,,,) =7 (19)

Note that the steady state value of the shear stress is the same for both ETV and ESSTV models
O-ss = 77C (7/)7/ +luR2’s’:l7/ +O—y,02’ss : (20)

Table I below contains the complete set of equations for the two models communicated here, ETV

and ESSTV.

Table I. Summary and comparison of the ETV and ESSTV models
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Model ETV ESSTV
PAR. “’07uoo’HRJrcﬁsyOJ‘cbreak’raggr”YO,R9d7 m’ Gc’GR’Tk
Og = Oyess +HR)\’$’Y +Gy,0;\‘ss ( Taggr'y ¢ + l)
S (Mo — 1) . s a
cTvc,ss = [Mm +(1+—chy) y (Tbreak |Y| + ’caggr’y + ])
T 4s0 Twteh  DA_1( |+ - e
[2- " j, 720 0R Dt = . K‘Cbreak yp +(1 7\,) TaggrYp +(1 7\,)
’Y _ ’YlTlilX
b . . Y . dy
Y . _ e ) max 2 0
) [ o (L. 7, dt
2+ ¢ 'YE - d d
VE, plasma Ve 7, - | |+ Yo TV TV <
p Ymax p YInaX dt dt
nc(cxx,\c) ny.w .
e =N ()Y
Gc dt b G O Gccxxve
— T‘( C XX, Ve _ MO c= -H'oc,crc —_—
N0 doue o ), 2 ?
o = [
XX, Ve GC d Y yX,ve __b_l_ b2_4c
Ne(Oe) =
2
o
GRA" [y __yxm,l\: ], % >0
dex,R,ve _ “’RQ\’ dt o _( Gy() J'Y
—_— = x,R,evp e
dt 1. ’ Yo,
VE, G A" }',_GL»"I‘: +mM@, %< 0 | = Oprep T MaX 0, - oR wRewp =¥
rouleaux 1Y) Aoodtdt MGy * lLtR)|6yx,R,cvp
c
Cpre = —27,
ol Yor
Transient | Gy, 0= ny,ve + ny,R,ve u ny,R,e Girans — GyX,ve T G)'X,R,evp

1.3 t-ETV and t-ESSTV Models

The tensorial version of both ETV and ESSTV models follow Wei et al, Varchanis et al.

and Armstrong et al., [36,37,45,47] by exchanging the material time derivative, % Oy in

v v

Egs. (16) and (18) with their upper-convected time equivalents, o, , or o, . This by necessity

generates a coupling of the shear to the other components of the stress, most notably the normal

ones. The mathematical structure enters through the coupling of terms among various terms of the

two tensors and their time derivatives. The resulting equations for the xy, xx, yy, and zz components
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are shown in Table II, below. We acknowledge that one may choose to use different criteria for

yielding in the numerator of the conditional. As an example, the Von Mises yield criteria:

5,

- 4o, [36, 37, 43, 45, 50]. The tensorial models here are applicable to shear flow, and the

shear rate, y is replaced as follows [25, 37. 47]. Here, we follow the work of Wei et al. [36], where

~ %Sk D tr(gR)
=R =R

I. Where 61s the equivalent shear stress, “D” means deviatoric

part of the tensor, lis the unit tensor, °:" is the double dot product, and the trace is
tr(gR ):(GR,XX +GR,yy +GR,ZZ ) °
0

1
0 0|y, 21)
0

0
I(I)=yij=Vv+(vV)T =1
B 00 0

Table II. Summary and comparison of the t-ETV and t-ESSTV stress components of the rouleaux
viscoelastic and elastoviscoplastic, respectively, contributions to total stress [36, 37, 43].
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Model t-ETV t-ESSTV
G xm GR,xx d;\’ >0 ~ cTyO
- s - o-| —
dGR « . ! “ka dt 1 dog .. . Yor Te
XX — - Royx = — |- 2GR yx’Y + max 0’ m ~ R,xx =
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The t-ETV model is convenient to have, as straightforward manipulations show that the

viscoelastic stress tensor contribution of the rouleaux structures, ¢,, can equivalently be

represented in terms of a conformation tensor ¢, as
6, =GA" (¢, -9d), (22)

with the conformation tensor ¢, obeying the following time evolution equation

c =—(GR”” +ﬂ(dﬂ+ D(cy—a) . 23)

g M, 24 dt
This is fully compatible to nonequilibrium thermodynamics, obeying all entropy related

da
dt

constraints, corresponding to a simple Hookean dumbbell with G,A" as modulus, and a

characteristic relaxation time 7, dependent on both A4 and d%t defined as
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. 1
M, 24\ dt

T (24)

dr

Note that no matter what the sign of d % y 1s, 7, 1s always positive, thus ensuring that the proper

thermodynamic constraints are satisfied [26].

lll. EXPERIMENTAL METHODS

A. Materials and sample preparation

The handling and rheological measurement protocol employed for the blood rheology in
this work follow previous established guidelines for blood rheology, and directly follows the
protocol described by Horner and coworkers here [7, 8,9, 39]. A complete and detailed description
of the blood draw procedure can be found here [8, 9, 39]. “For rheological experiments 6mL of
blood was drawn into a vacutainer tube with 1.8 mg/mL of EDTA. An additional 9 mL of blood
was drawn and sent for a Complete Blood Count, Lipid Panel and Fibrinogen Activity test”

[7,14,40]. Results are shown in Table III [8, 9, 39].

Table III: Physiological parameter values of five donors [52-57].
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Donor Hematocrit|Fibrinogen|Total Cholesterol | Triglycerides| HDL Cholesterol | LDL Cholesterol
(%) (mg/dL) (mg/mL) (mg/mL) (mg/mL) (mg/mL)
1 43.6 0.252 174 58 59 101
2 43.4 0.248 147 40 51 85
3 42.2 0.246 148 29 56 85
4 43.8 0.199 197 82 78 102
5 45.1 0.21 204 102 71 113

The rheological data were collected with an ARESG?2 strain-controlled rheometer from TA
Instruments using a double wall Couette [8, 9, 39]. The dimensions and measurable range can
be found here [7,14,40]. All rheological tests were performed at 37°C, maintained by a Peltier
temperature controller. The shear rate did not exceed 1000s™! and a preshear of 300s™! for 30s was
incorporated before each rheological test to eliminate thixotropic, or memory effects [8, 9, 39].
Experimental results will be shown for steady state, step up/down in shear rate tests, small
amplitude oscillatory shear, SAOS, amplitude sweep at ® =10(rad /s), large amplitude oscillatory
shear (LAOS) and uni-directional large amplitude oscillatory shear flow (UD-LAQOS) [7, 8, 9, 48,
49]. These experimental procedures and protocols follow exactly the work of Horner and
coworkers [8, 9, 39], and all the rheological data for the five donors in Table III can be found on
Mendeley Data [52-55]. The LAOS and UD-LAOS experiments presented in this work follow the
same protocol as described by Horner and coworkers [8, 9, 48, 49] and Armstrong and coworkers
[41, 43] where the shear strain and shear strain rates are defined as

y(t) =7vy,sin(ot), and (25)
Y(t) = y,mcos(mt), (26)

for the LAOS experiments and
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() = y,sin(ot) +ty,o , (27)
Y(t) = y,0c08(0t) +v,0 (28)

for the UD-LAOS [8,9,41,43,51]. The UD-LAOS data and model fits are plotted using effective
Lissajous-Bowditch elastic and viscous projections, where the measured stress is a function of the
oscillatory component of the strain and shear rate as shown in Egs. (25) and (26) respectively [8,
9,41, 43].

The small amplitude oscillatory shear (SAOS) follows the standard formalism

T, (D=7, Zn: (Gl sin(not) + G, cos(na)t)) : (29)

i,0dd
Where n=1, for SAOS. We note here that Eq. (29) is a function of time ¢, frequency w, and
strain amplitude yo. In addition, it is noted that for LAOS 7 is the running index (when not equal
to one), and the upper limit of the summation goes to infinity. We use the ratio of third to first

harmonic as a metric of success of our model predictions as

(30)

where the subscript 3 are the third harmonic values [8, 9, 41, 43].  Eq. (30) is the relative
intensity of the third harmonic normalized by the first harmonic intensity and will be used as a
metric of model efficacy, and shown on the SAOS predictions for each model in Figs. 2, 4, 6 and

8 below [8, 9, 41, 43].

B. Parameter optimization
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For the model fitting procedure, we follow the previous protocol as established by Horner
and coworkers with the following modifications [7-9, 41, 43 ,46-48]. 1. The steady state
parameters are fit to steady state data by minimizing the normalized cost function, Feost,ss, then held
constant for a preliminary run, to obtain an initial guess. The initial guess of the steady state

parameters are found using a parallel tempering algorithm, and Eq. 31 shown below [8, 9, 41, 43]

1
Fcost,ss ﬁ (3 1 )

where y: is the steady state stress data and f;is the model prediction; 2. The initial guesses from
part one are incorporated as a starting point, and then all parameters are simultaneously fitted as
part of the tempering algorithm (and non-dimensionalized as per Eq. 32). The transient three step-
ups in shear rate and three step-downs in shear rate are non-dimensionalized with the maximum
stress values from each of the respective step change in shear rate experiments. This normalization
scheme was selected due to the relative equivalent order of magnitude of the maximum stress
values over all the step-up/downs, to maintain an even, unbiased fitting of parameters with
minimum bias towards any one of the step experiments. The transient parameters to three sets of
step-ups in shear rate and three sets of step-downs in shear rate experiments, again with parallel

tempering, minimizing the following cost function

(32)

F —
cost, tot
N

where N is the total number of steady state data points, M is the total number of transient step
up/down in shear rate tests and K is the number of points per transient experiment [8, 9, 41, 43].

The model is fit directly to rheology data using the Matlab ode23s function to integrate the
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differential equations [8, 9,41, 43]. When fitting all the parameters together, Fcost,tot must be non-
dimensionalized to provide a balanced fit. A Dell laptop with 8GB RAM was used for computation
of the parameters using parallel tempering. Although ode45 is considered more accurate, it
struggles with stiff odes. 0Ode23s can solve stiff systems of odes, while simultaneously
maintaining enough accuracy to provide robust fits with all the models tested here [8, 9, 41, 43].
With the parameters fit, they are kept constant to predict a series of: SAOS (amplitude sweep), 17
sets of LAOS at frequencies 0.5, 1, and 5 (rad/s), at strain amplitudes of 0.5, 1.0, 5.0, 10.0, 50.0
and 100 (-); and six sets of UD-LAOS experiments at a frequency of 1 (rad/s) and strain amplitudes
of 1.0, 5.0, 10 and 50 (-). The predictions for each are shown in Figs. 9 and 10 below, with cost

functions computed for each set of LAOS and UD-LAOS as

1 N
E sira0s = ﬁ Z(Yi 'fi)z . (33)

The small amplitude oscillatory shear is predicted, and Fecostsaos computed as follows

Fcost,SAOS = z (\/(Gli,data - C};,model)2 + \/(G:,data - C}Yi',model)2 )/ (2n) 5 (34)
i=1

where 7 is the number of points. Feosts40s 1s calculated for the amplitude sweep. The fit model
parameters are held constant, and used to predict a full period at alternance, and using the A=bx
where A is an array consisting of two columns: y,sin(wt)and y,cos(wt)and b is the stress
prediction over a period. Using the x=A\b command in Matlab the first harmonic moduli (

G, and G, ) are calculated and compared to the data at each combination of strain amplitude and
frequency in both sets of SAOS, amplitude and frequency sweeps. In addition, the third
harmonic moduli are calculated (G, and G,) to compare with the data, and shown in Fig. 2, 4, 6

and 8 below [41, 43]. A summation of the cost functions of the step-ups/downs (fits), SAOS,
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LAOS and UDLAOS predictions is then used to assess overall model efficacy (shown in Table

VII). This concludes our discussion of Feost for the SAOS predictions.

Each of the LAOS and UD-LAOS predictions accumulate Feos,L40s over three periods of
data, with the Lissajous-Bowditch elastic and viscous projections showing the last period data and
predictions. The full set of best fit parameters for Donors 1-5 are shown in Tables IV-VII below)
There is a modified procedure for fitting the full tensorial version of both the ETV and ESSTV
models. The modification is as follows: 1. The initial parameter guess is provided from the best
fit values of the non-tensorial versions respectively; and 2. The steady state and transient
parameters are fit simultaneously with the steady state cost function accumulated without

normalization with the stress measurement at each point.

IV.RESULTS AND DISCUSSION

A. ETV model

The ETV has a total of ten parameters that are simultaneously fit to steady state, and the
transient step up/down in shear rate experiments, after a preliminary run with the steady state to
obtain an initial guess. Ten parameters (color coded yellow in Table IV) of the parameters are

fit to steady state and step-up/downs; with three fixed as follows: y, , set to one, as recommended

as best fit value from literature [7-9, 41, 43]; with m set to 3/2; and d set to 4. For a total of 13
parameters (including the three fixed parameters, seven preliminarily fit to steady state data, and
all parameters fit to steady state and transient data together). Table IV provides a synopsis of all
the model parameters for convenience [9, 10].

Table IV: Model parameter description and units of the ETV, ESSTV, t-ETV and t-ESSTV
models [9,10]
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Parameter | Units Description

Ho.c Pas zero sher viscosity of plasma and suspended RBCs
[T Pas infinite shear viscosity of plasma and suepended RBCs
Tc S RBC deformation time constant (Cross constant)
Threak S material constant for stress-induced breakdown
Tager S material constant for stress-induced aggregation
UR Pas rouleaux viscosity

Gy Pa yield stress

Yo (-) rouleaux zero shear rate limiting elastic strain

d (-) power law of shear buildup from shear

m (-) rouleaux power law constant

T S overal rouleaux rebuild time constant

Gr Pa rouleaux elastic modulus

Gc Pa RBC:s elastic modulus

Fig. 1(a) shows the steady state fit, and Fig. 1(b) and (d) show the fit to the three step-
downs and three step-ups in shear rate, respectively. Recall that a good initial guess is first
obtained for the steady state parameters, then using these values as a starting point, all the
parameters are then fit simultaneously to the steady state data and the set of six step ups/downs in
shear rate transient experiments. Fig. 1(c) and (e) are showing the corresponding evolution of the
structure parameter during the step down and step up in shear rate experiments. From Fig. 1(b) it
is apparent that the model can capture the changing stress during the step-up and step-down
experiments. Table V shows the best fit model parameters from the steady state and transient data
fit, and the value of Feosr for the steady state and step up/downs for Donor 3. Additionally, the
dimensional Fcost of the SAOS prediction is shown in Table V. (Donor 1-5 best fit parameter
values are shown in Table V; the Feosr for SAOS, LAOS and UDLAOS predictions is shown for
Donor 3 in Table IX). We again note here that the steady state Feosiror is dimensionless because

the difference between the model and data was normalized with the value of each data point for
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steady state, and the maximum stress value from the data over each respective transient for the

step up/downs. Fig. 2 shows the model predictions to the SAOS amplitude sweep.

FIG. 1 ETV model fit for (a) steady state human blood data; (b) set of 3 step-up in shear rate from
& of 0.1s! to 5, 10, and 20s™!; (c) corresponding structure parameter curves (colors of structure

parameter curves match respective colors from stress evolution curves); (d) step-down in shear
rate to %of 0.1s™! from 5, 10, and 20s™' ; and (e) corresponding structure parameter curves (Donor3)

(dataset3) [55].

FIG. 2 Small amplitude oscillatory shear, amplitude sweep performed at » =12.6(rad/s), data
discrete point, and predictions, dashed lines of ETV(Donor3) (dataset3) [55].

Table V: Best fit parameter values of ETV model for Donors 1-5 [52-57] (Feost steady state and
step-up/downs dimensionless; Feost,s40s has units of (Pa) ).

ETV (Non-tensorial)
Par. Donorl | Donor2 | Donor3 Donor4 | Donor5 Ave. Stdev

mo.(Pas) | 0.0081 | 0.0080 | 0.0079 | 0.0074 | 0.0101 | 0.0083 | 0.0010
n..(Pas) | 0.0033 | 0.0033 | 0.0032 | 0.0035 | 0.0037 | 0.0034 | 0.0002
T (s) 0.049 | 0.050 0.030 0.043 0.065 | 0.0474 | 0.0127
Torear (5) 0874 | 0872 1.146 1.087 0.966 | 0.9888 | 0.1243
Tager(S) | 6.36E-04 | 6.41E-04 | 424E-02 | 1.61E-02 | 1.51E-05 |1.20E-02|1.83E-02

SS pr (Pa s) 0.033 | 0.033 0.032 0.047 0.045 | 0.0381 | 0.0072
6y (Pa) 0.0021 | 0.0025 | 0.0039 | 0.0022 | 0.0022 | 0.0026 | 0.0007
Yo () 1 1 1 1 1 - -
d(-) 12 12 12 12 12 - -
m (-) 32 3/2 3/2 3/2 3/2 - -
Feost (SS)* | 0.0077 | 0.0117 | 0.0102 | 0.0056 | 0.0091 | 0.0088 | 0.0023
7,.(5) 1.8051 | 1.7645 | 19106 | 2.7877 | 2.1465 | 2.0829 | 0.4210
Gr(Pa) 0.1494 | 0.1532 | 02671 | 0.1593 | 0.1446 | 0.1747 | 0.0519
tﬁ'{f G.(Pa) 03526 | 03421 | 04703 | 03281 | 0.6197 | 0.4226 | 0.1239

F o5t (trans)* [ 0.0187 0.0220 0.0204 0.0187 0.0208 | 0.02012 | 0.0014
Fcost (SAOS)| 0.0022 0.0024 0.0034 0.0016 0.0019 | 0.00231 | 0.0007

B. ESSTV

The enhanced structural stress-ETV or ESSTV, has the same number of parameters as the

ETV, with a total of seven parameters fit to steady state, to obtain an initial guess, and then all ten
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parameters are fit simultaneously to the steady state and three more fit to the transient step up/down
in shear rate experiments. Ten parameters (color coded green in Table V) of the parameters are

fit to steady state and transient ; with three fixed as follows: y, , set to one, as recommended as

best fit value from literature [7-9, 41, 43]; with m set to 3/2; and d set to %. For a total of 13
parameters (including the three fixed parameters, seven fit to steady state data first to obtain a good
to obtain an initial guess, and then all ten are fit to steady state and transient simultaneously). Fig.
3(a) shows the steady state fit, and Fig. 3(b) and (d) show the fit to the three step-down and three
step-ups in shear rate, respectively. Recall that the steady state parameters are fit first to the steady
state to obtain an initial guess, and then all the parameters fit to steady state and the set of six step
up/down in shear rate transient experiments. Fig. 3(c) and (e) are showing the corresponding
evolution of the structure parameter during the step down and step up in shear rate experiments.
From Fig. 3(b) it is apparent that the model can capture the changing stress during the step-down
experiments. Table VI shows the best fit model parameters from the steady state and transient
data fit, and the value of Feos for the steady state, step up/downs and dimensional Feos: for the
SAOS predictions for Donor 1-5. (Donor 1-5 best fit parameter values are shown in Table VI; the
Feost for all predictions together, with aggregated best values: SAOS; LAOS; and UDLAOS; is
shown for Donor 3 in Table IX; and all Donors 1-5 average comparisons in Table X). We again
note here that the steady state and the transient Feosr is dimensionless because the difference
between the model and data was normalized with the value of each data point for steady state, and
maximum transient stress value for the step up/down in shear rate tests. Fig. 4 shows the model
predictions to the SAOS amplitude sweep. LAOS and UDLAOS predictions are shown below in
the model comparison section. Comparison of Figs. 1(b) and (d) to Figs. 3(b) and (d) show that

both versions of the model have approximately the same value for Feost,wransienr, With ESSTV
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showing a slight advantage in predicting the amplitude sweep accurately for Donor 3. Similar

average trends are observed in Table X.

FIG. 3 ESSTV model fit for (a) steady state human blood data; (b) set of 3 step-up in shear rate
from ®of 0.1s! to 5, 10, and 20s™!; (c) corresponding structure parameter curves (colors of

structure parameter curves match respective colors from stress evolution curves); (d) step-down
in shear rate to ®of 0.1s! from 5, 10, and 20s! ; and (e) corresponding structure parameter curves

(Donor3) (dataset3) [55].

FIG. 4 Small amplitude oscillatory shear, amplitude sweep performed at ® =12.6(rad/s), data
discrete point, and predictions, dashed lines of ESSTV (Donor3) (dataset3) [55].

Table VI: Best fit parameter values of ESSTV model for Donors 1-5 [52-57] (Fcost steady state
and step-up/downs dimensionless; Feos,s40s has units of (Pa) ).

ESSTV (Non-tensorial)
Par. Donor1 | Donor2 | Donor3 | Donor4 | Donor5 | Ave. Stdev

Mo (Pas) 0.0080 [ 0.0066 | 0.0079 | 0.0079 | 0.0099 | 0.0081 | 0.001199
Mo (Pas) [ 0.0033 [ 0.0032 | 0.0032 | 0.0035 | 0.0038 [ 0.0034 | 0.0002
Tc(s) 0.050 0.029 0.030 0.044 0.066 | 0.0436 | 0.0151
Threak (S) 0.872 1.141 1.148 1.083 0.972 | 1.0433 | 0.1189

Tager (8) 6.14E-04]|4.26E-02| 4.35E-02 | 1.63E-02 [1.79E-05|2.06E-02| 2.15E-02
SS g (Pas) 0.034 0.036 0.033 0.033 0.044 | 0.0360 | 0.0047
6y (Pa) 0.002 0.003 0.003 0.002 0.003 | 0.0026 | 0.0005

Yor (-) 1 1 1 1 1 - -

d(-) 12 12 12 12 12 - ]
m (-) 3/2 3/2 3/2 32 3/2 - -
Feose (SS)* | 0.0081 | 0.0062 | 0.0135 | 0.0072 | 0.0069 | 0.0084 | 0.002941
7,(5) 0.9188 | 1.1358 | 1.3735 | 1.1159 | 1.1980 | 1.1484 | 0.1636
rans Gr(Pa) | 0.1053 | 0.1248 | 0.1364 | 0.1147 | 0.1023 | 0.1167 | 0.0141
pssTv | Ge(Pa) | 05338 | 04702 | 05787 | 0.6272 | 0.6021 | 0.5624 | 0.0620

F o5t (trans)* | 0.0155 | 0.0180 | 0.0214 | 0.0113 | 0.0122 | 0.0157 | 0.0042
Fcost (SAOS)| 0.0016 | 0.0016 | 0.0018 | 0.0013 | 0.0016 | 0.0016 | 0.0002

C. t-ETV
The t-ETV full tensor has the same number of parameters as the ETV, with a total of

thirteen parameters fit simultaneously to steady state and six steps up/down in shear rate
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experiments. As before three of the thirteen parameters are then fixed: y,,set to one, as a

recommended value from literature [7-9, 36, 37, 42, 43]; while d and m remain 1/2 and 3/2
respectively. Fig. 5(a) shows the steady state fit, and Fig. 5(b) and (d) show the fit to the three
step-down and three step-ups in shear rate, respectively. Fig. 5(c) and (e) are showing the
corresponding evolution of the structure parameter during the step down and step up in shear rate
experiments. Table VII shows the best fit model parameters from the simultaneous steady state
and transient data fit using the t-ETV model, and the value of Feos.ss for the steady state, step
up/downs for Donor 3 (Donor 1-5 parameter values are shown in Table VII; the Feos: for SAOS,
LAOS and UDLAOS predictions is shown for Donor 3 in Table IX). It is important to mention
that due to the tensorial format of the equations, there is no longer a trivial steady state, algebraic
solution, and therefore the steady state and transient parameters are fit simultaneously to one set
of steady state data, and six sets of steps up/down in shear rate data. (We note here that the values
reported in Table VII, are analogous to those previously reported for the sake of comparison, with
respect to order of magnitude, units, etc.). Fig. 6 shows the model predictions to the SAOS
amplitude sweep. LAOS and UDLAOS predictions are shown below in the model comparison
section. We note that t-ETV N1 predictions are shown in Appendix B, along with all contributions

to total stress from plasma and RBCs and the buildup and breakdown of the rouleaux.

FIG. 5 t-ETV model fit for (a) steady state human blood data; (b) set of 3 step-up in shear rate
from %of0.1s! to 5, 10, and 20s!; (c) corresponding structure parameter curves (colors of structure

parameter curves match respective colors from stress evolution curves); (d) step-down in shear
rate to &of 0.1s ! from 5, 10, and 20s™! ; and (e) corresponding structure parameter curves

(Donor3) (dataset3) [55].
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FIG. 6 Small amplitude oscillatory shear, amplitude sweep performed at ® =12.6 (rad/s), data
discrete point, and predictions, dashed lines of t-ETV (Donor3) (dataset3) [55].

Table VII: Best fit parameter values of t-ETV model for Donors 1-5 [52-57] (Feost steady state
and step-up/downs dimensionless; Feos;s40s has units of (Pa) ).

t-ETV (Tensorial)
Par. Donorl| Donor2| Donor3| Donor4| Donor5| Ave. Stdev

Woc (Pas) 0.0079 | 0.0079 | 0.0078 | 0.0074 | 0.0101 | 0.0082 | 0.00107
Mo (Pas) | 0.0032 | 0.0033 | 0.0033 [ 0.0035 | 0.0037 | 0.0034 | 0.00021
Tc(S) 0.049 0.049 0.029 0.043 0.065 | 0.0474 | 0.01278
Threak (S) 0.859 0.871 1.147 1.086 0.966 | 0.9860 | 0.12808
Tager () 5.85E-04|6.49E-04|4.12E-02(1.60E-02|1.53E-05(1.17E-02|1.78E-02

SS pr(Pas) | 0038 | 0.033 | 0.032 | 0.047 | 0.045 | 0.0390 |0.00703
oy (Pa) | 0.0012 | 0.0023 | 0.0036 | 0.0022 | 0.0027 | 0.0024 | 0.00085

Yor () 1 1 1 1 1 : :

d(-) 12 12 1/2 12 12 ] _

m (-) 3/2 3/2 32 32 3/2 ] _
Feou (SS)* | 0.0123 | 0.0115 | 0.0123 | 0.0078 | 0.0075 | 0.0103 | 0.00241
7,.(5) 1.3521 | 1.8571 | 1.7941 | 2.7851 | 2.1211 | 1.9819 | 0.5272
Gr(Pa) | 0.1599 | 0.1480 | 0.2117 | 0.1166 | 0.1397 | 0.1552 | 0.0354
ttr];';i, G.(Pa) | 0.4620 | 0.4058 | 0.8329 | 0.3801 | 0.6547 | 0.5471 | 0.1926
Feoq (trans)* | 0.0190 | 0.0197 | 0.0176 | 0.0173 | 0.0130 | 0.01732 | 0.0026
Feost (SAOS)| 0.0023 | 0.0021 | 0.0023 | 0.0012 | 0.0018 | 0.00194 | 0.0005

D. t-ESSTV

The t-ESSTV full tensor has the same number of parameters as the t-ETV, with a total of
thirteen parameters fit simultaneously to steady state and six steps up/down in shear rate
experiments. As before three of the thirteen parameters are fixed: y,, set to one, as in previous
sections [7-9, 36, 37, 42, 43]; with the same values as previously mentioned for d and m. Fig. 7(a)

shows the steady state fit, and Fig. 7(b) and (d) show the fit to the three step-down and three step-
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ups in shear rate, respectively. Fig. 7(c) and (e) are showing the corresponding evolution of the
structure parameter during the step down and step up in shear rate experiments. Table VIII shows
the best fit model parameters from the steady state and transient data fit, and the value of Feost,ss
for the steady state, step up/downs and dimensional Feos: of SAOS for Donor 3 (Donor 1-5 average
Feost values for SAOS, LAOS and UDLAOS predictions are shown in Table X). (We note here
that the values reported in Table VIII, are analogous to those reported in the other tables for the
sake of comparison). Fig. 8 shows the model predictions to the SAOS amplitude sweep. LAOS
and UDLAOS predictions are shown below in the model comparison section. We note that t-
ESSTV NI predictions are shown in Appendix B, Fig. B1, along with all contributions to total

stress from plasma and RBCs and the buildup and breakdown of the rouleaux in Fig. B2.

FIG. 7 t-ESSTV tensor model fit for (a) steady state human blood data; (b) set of 3 step up in shear
rate from &of 0.1s™! to 5, 10, and 20s™'; (c) corresponding structure parameter curves (colors of

structure parameter curves match respective colors from stress evolution curves); (d) step down
in shear rate to &of 0.1s™! from 5, 10, and 20s™" ; and (e) corresponding structure parameter curves

(Donor3) (dataset3) [55].

FIG. 8 Small amplitude oscillatory shear, amplitude sweep performed at ® =12.6(rad/s), data
discrete point, and predictions, dashed lines of t-ESSTV (tensor) (Donor3) (dataset3) [55].

Table VIII: Best fit parameter values of t-ESSTV model for Donors 1-5 [52-57] (Fecost
dimensionless).
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t-ESSTV (Tensorial)

Par. Donor1l | Donor2| Donor3| Donor4| Donor5| Ave. Stdev
Mo (Pas) 0.0079 | 0.0067 [ 0.0074 | 0.0076 [ 0.0095 | 0.0078 | 0.00104
N (Pas) 0.0033 | 0.0032 | 0.0034 | 0.0035 [ 0.0038 | 0.0035 | 0.000216
1c(8) 0.048 0.029 0.030 0.044 0.065 0.0431 | 0.01492
Threak (5) 0.869 1.143 1.157 1.084 0.970 1.0446 | 0.122671
Taggr () 5.72E-0414.29E-02(4.32E-02|1.64E-02(1.62E-03| 2.09E-02 | 2.11E-02
SS pr (Pas) 0.035 0.036 0.033 0.045 0.044 0.0384 | 0.005393
Gy (Pa) 0.002 0.003 0.004 0.002 0.003 0.0029 | 0.000794
Yor () 1 1 1 1 1 - -
d() 1/2 1/2 1/2 1/2 1/2 - -
m (-) 3/2 3/2 3/2 3/2 3/2 - -
Feost (SS)* 0.0074 | 0.0061 | 0.0103 | 0.0057 [ 0.0059 | 0.0071 | 0.001944
T).(8) 0.9966 | 1.1598 [ 1.3052 | 1.3086 | 1.1766 | 1.1893 0.1283
trans, Ggr(Pa) 0.0782 | 0.1056 | 0.1181 | 0.0985 | 0.1001 | 0.1001 0.0144
t- G, (Pa) 0.6437 | 0.5674 | 1.0052 | 0.5952 | 0.6888 | 0.7001 0.1768
ESSTV Fost (trans)* | 0.0150 | 0.0172 | 0.0143 | 0.0118 | 0.0120 | 0.01404 | 0.0022
Fcost (SAOS)( 0.0005 | 0.0014 | 0.0008 | 0.0010 | 0.0013 | 0.00100 | 0.0004

Table IX: Feos for fits, and predictions of all models for Donor3 [52-57] (Feos: for step up/down
shown with dimensions of stress, as it is developed for stress predictions, and in a dimensionless

scaled form (indicated by *) for comparison)

Donor3

Fost (Pa) ESSTV [t-ESSTV| ETV t-ETV
SS* 0.0135 | 0.0103 | 0.0102 | 0.0123
Step Up/Down*| 0.0214 | 0.0143 | 0.0204 | 0.0176
Step Up/Down |0.000836|0.000580(0.000811|0.000677
SAOS 0.00183 | 0.00081 | 0.00341 | 0.00228
LAOS 0.00190 | 0.00189 | 0.00190 | 0.00156
UDLAOS 0.00132 | 0.00098 | 0.00132 | 0.00121
SUM| 0.00590 | 0.00426 | 0.00745 | 0.00572

We note that according to the Feost value comparison from Table V to Table VIII there is a
modest improvement in predictive capability with respect to the step up/down in shear rate
accuracy, for both the ETV and ESSTV, in applying the full tensor approach. While there is more

significant accuracy improvement with the SAOS predictions, as shown in Table IX. With the
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ability to fit steady state slightly worse with the respective tensorial versions of the ETV. The
LAOS and UDLAOS predictions using the tensorial form of the respective models also shows
improvement for Donor3. Similar trends are shown below with respect to the relative accuracy
for the average SAOS, LAOS and UDLAOS predictions of Donors 1-5 shown in Table X. Table
IX, and Table X demonstrate that by moving to the tensor form of the model we can increase
predictive capability of the ETV and ESSTV rheological models. Without the addition of more

parameters.

E. Comparison

Table VIII above offers a comparison of the cost functions of the steady state and transient
fits for Donor3, while Table IX below shows a comparison for the SAOS, LAOS and UD-LAOS
predictions for all models together, over all Donors. Fig. 9 shows the elastic and viscous
projections for the LAOS and UDLAOS predictions with the non-tensorial versions of the models,
while Fig. 10 shows the elastic and viscous projections for the LAOS and UDLAOS predictions
with the tensorial versions. Table IX below has the Feos:, Laos and Feosr, unLaos for each of the
predictions for comparison between experiments, with average values for each shown at the
bottom of Table IX. From Table IX two things are clear: 1. The ETV and ESSTV have similar
accuracy demonstrated for each of the rheological experiments fit or predicted here; and 2. There
is significant gains in accuracy shown by upgrading to the full tensor version for both models, with
no additional cost in parameters.

With respect to I3/I1 data and model predictions shown in Figs. 2, 4, 6, and 8, due to the
work of Horner et al. we believe we can rule out the skin effect from drying/clotting blood at the
outer edge of the rheometer due to the extremely small ratio of surface area in contact with the

surrounding air to surface area of the double wall Couette with the blood inside the cup and double
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wall Couette geometry [40]. Furthermore, a cover is incorporated to minimize evaporation effects.
We therefore support the hypothesis that it is the small values of elastic moduli relative to the
values of the viscous moduli. We believe that due to the complicated nature of human blood
physiology that the materials are intrinsically non-linear. Accordingly, the human blood has at
least three different, yet overlapping time scales: 1. The viscoelastic time scale associated with the
plasma and individual red blood cells; 2. The viscoelastic time scale associated with the
contribution to total stress from rouleaux; and 3. The ‘overall’ timescale that governs rouleaux
build-up and break-down. This last one can be further analyzed as resulting from the combination

of three characteristic time scales, 7,,7,,,, and 7,

the first one corresponding to the Brownian
aggregation time scale and the last two used to define the dimensionless Weissenberg numbers
that modify this time scale to define the shear-induced breakage and aggregation events. Yet to
be considered is also the possibility that there is yet another independent time scale for the
contribution to the total stress from the ‘solid-like’ stretching, elastic stress from the rouleaux
before they undergo break-down. There are strong arguments in favor of the intrinsic non-linearity
of human blood for these reasons [40].

With respect to the elastic and viscous projections all the models can capture qualitatively
the LAOS and UDLAOS behavior. We note here that at the higher frequency and strain amplitudes
for both LAOS and UDLAOS the human blood is almost entirely a viscous signature but does
show signs of more elasticity present at the lower values of strain amplitude. In general, we also
note that all four of the models shown here can quantitatively predict the stress signatures at the
higher values of frequency and strain amplitude, in places where the blood is almost completely

liquified, and the rouleaux are not able to form and stay together in large numbers, aka. the

structure is almost completely broken down. According to Table IX we see that the ESSTV, and
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t-ESSTV slightly outperform their counterparts ETV and t-ETV. This is seen quantitatively in the
fits and predictions, as well as shown qualitatively in Figs. 9-10.

Lastly, it is useful to point out here that from a comparison of the 7, and 7, parameter

values, shown in Tables V-VIII, one can see that for all donors the corresponding Wi, . is always

2- 4 orders of magnitude greater to Wi, . This observation, in addition to the fact that the effect

of the latter is further diminished having to take its square root in the kinetic equation for 1, Eq.
(10), is consistent to the experimental observation that shear-induced aggregation is the lesser of

the three effects modeled, giving further credibility to the models utilized in this work.

Fig. 9 (a-b) Elastic and viscous LAOS projections of ETV (blue lines); (c) elastic and viscous uni-
directional LAOS ETV projections (blue lines); (e-f) elas “) riscous LAOS projections of
ESSTV (maroon lines); (g) elastic and viscous uni-directior vo » ESSTV projections (maroon
lines

Fig. 10 (a-b) Elastic and viscous LAOS projections of t-ETV(black lines); (c) elastic and viscous
uni-directional LAOS t-ETV projections (black lines); (e-f) elastic and viscous LAOS projections
of t-ESSTV(green lines); (g) elastic and viscous uni-directional LAOS tensorial t-ESSTV(green
lines); Red points are data; x-axis is frequency (rad/s), y-axis is strain amplitude (-) (Donor 3)
[55]. All solid lines are model predictions.

Table IX below shows significant improvements to LAOS and UDLAOS predictive
capability with respect to both tensorial versions of the ETV and ESSTV models, respectively.
This is shown for Donor 3 predictions in Figs. 9-10, and Table IX shows that this trend is

maintained over Donors 1-5. Table IX shows the average of all categories of Feosr for each of the

36



five Donors, with an average sum of all the dimensional Feost values accumulated and shown at the

bottom of the table.

TABLE X. Comparison of average Feos, for all models over fits (steady state and step up/down in
shear rate) and predictions (SAOS, LAOS and UDLAOS) (average of five Donors). Note: the
tensor model ZFcost were averaged and summed over 3 donors. (*The steady state Feost values
shown here are nondimensional, normalized by stress values at each respective shear rate of the
flow curve).

Donors1-5 (Average)
Fcost (Pa) ESSTV [t-ESSTV| ETV | t-ETV
SS* 0.00839 | 0.00707 | 0.00883 | 0.01029
Step Up/Down*| 0.01569 | 0.0145 | 0.02012 | 0.01732

Step Up/Down | 0.00061 | 0.00054 | 0.00081 | 0.00064

SAOS 0.00157 1 0.00087 | 0.00231 | 0.00194
LAOS 0.00214 | 0.00193 | 0.00191 | 0.00212
UDLAOS 0.00252 1 0.00211 | 0.00238 | 0.00264

SUM]| 0.00685 | 0.00545 | 0.00741 | 0.00734

V. CONCLUSIONS

We have demonstrated a new paradigm for TEVP modeling using the original ethixo
mHAWRB as a starting point. We removed the plastic shear rate, 7 , from the constitutive equation
for viscoelastic stress from rouleaux and replaced this with y total shear rate. We then used for

the elastoviscoplastic contribution to total stress from the rouleaux an equation inspired by recent
work by Varchanis et al. [36], Wei et al. [37], and Armstrong et al. [43]. Both proposed tensorial
frameworks allowed for a seamless transition to a full tensorial approach in modeling with the

ETV and ESSTV, thus achieving improvements in the predictive capability for LAOS and
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UDLAOS to that of the original ethixo mHAWB. The improvement in predictive capability by
transitioning to the full tensorial version of both models was significant, and the key finding of
this effort. It is noteworthy that the t-ETV construct lends itself to a full casting into a

thermodynamically consistent model moving forward [26].

It is now clear that to effectively model the rheological flow of human blood, three
components are required, each with a requisite number of parameters to capture the appropriate
physics: 1. viscoelastic contribution to total stress from individual cell deformation within the
plasma, here modeled with the White-Metzner utilizing the Cross model to describe the viscosity
as a function of the shear rate (four fit parameters); 2. viscoelastic contribution to total stress from
rouleaux modeled here in two distinct strategies using either the Saramito/Wei et al./ Varchanis et
al. theory of plasticity inspired term or the Horner et al. framework (three fit parameters) [9, 10, |;
and 3. the shear breakage, shear aggregation and Brownian aggregation of the rouleaux (three fit

parameters) [31, 35, 36, 37].

With respect to recent advancements in thixo-elasto-visco-plastic modeling efforts we have
demonstrated here a unique way to achieve gains in fitting and predictive capability without the
addition of more, or new parameters [7-9, 41, 43]. This upgrade in accuracy was demonstrated
for two modified versions of the contemporary mHAWB model by Horner et al. [8, 9]. There was
a slight modification in the physics, etc. shown here, or parameters tied to physics, or fitting
parameters. By upgrading to a full tensorial approach modeling blood rheology has evolved
further with respect to accuracy without the addition of new parameters. Moving forward it will
be highly desirable to use the TEVP models for more than a scalar representation of current levels
of microstructure, and we aim to evolve the modeling shown here to a conformation tensor basis.

In addition, more experimental results under conditions under which the thixotropic properties of

38



blood are most prevalent (like in stress relaxation) are highly desirable. The scalar structure

parameter will still need to be incorporated in future models. Any parameters incorporated will

have more value if they are directly tied to actual physics of microstructure evolution, and/or

viscoelastic properties such as viscosity, elastic modulus, and yield stress.

APPENDIX A: TEVP MODEL ACRONYMS AND BRIEF DESCRIPTIONS

Acronym Title Brief Description
IH isotropic hardening internal dimensionless structure parameter [33]
KH kinematic hardening deformation dependent yield stress [34, 35]
HAWB Horner Armstrong Wagner Beris White-Metzner-Cross for plasma + contribution from yield stress and rouleaux
mHAWB  |modified Horner Armstrong Wagner Beris White-Metzner-Cross for plasma + contribution from yield stress + VE contribution from rouleaux
ethixo mHA\enhanced thixotropy term + mHAWB (same has mHAWB) + thixotropic evolution with shear aggregation term
ETV enhanced thixoviscoelastic White-Metzner-Cross for plasma+te. thixotropy & removal of plastic shear rate from VE-rouleaux
ESSTV enhanced structural stress thixoviscoelastic White-Metzner-Cross for plasma-+enhanced thixotropy & theories of plasticity
ML-IKH  [Multimode-lambda + isotropic/ kinematic hardening Multimode lambda evolution + theories of plasticity
SPTT-IKH  |Saramito-Phan-Thien-Tanner + isotropic/ kinematic hardening |Saramito and Phan-Thien-Tanner description + theories of plasticity

APPENDIX B: STEADY STATE N1 PREDICTIONS OF t-ETV AND t-ESSTV

Fig. B1 shows the N1 prediction of the steady state data with the tensorial versions of the

ESSTV and the ETV models. From this figure there is a considerable difference between the two

models at low shear rates. We believe that this difference arises because of the viscoplastic
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framework of the t-ESSTV model that incorporates , a term involving the total

5_(ﬂj|n
Yo.r

(elastic plus viscoelastic) rouleaux stresses, in the numerator of the conditional for the stress. This

contributes to the unique shape of the N1 prediction curve. The t-ETV has a different formulation
for the viscoelastic rouleaux contribution, which does not involve the elastic contribution to the

total stress, as shown in Tables I and II. .

FIG. B1 N1 predictions for steady state of t-ESSTV and t-ETV for Donor3 (dataset3) [55].

Fig. B2 Below shows the individual contributions to total stress using t-ETV and t-ESSTV

models respectively from a step-up (7,=0.1s" —7,=20s") , and a step-down (

q'(i=2Os'1 —>i(f=0.ls'1 ) in shear rate test. Fig. B2a,b shows the data, total stress, and the

viscoelastic contribution to total stress from the plasma and individual RBCs, the rouleaux and the
elastic contributions to total stress from rouleaux of the t-ETV model. Fig. B2c,d show the data,
total stress, and the viscoelastic contribution to total stress from the plasma and individual RBCs,
and the rouleaux of the t-ESSTV model. Note that the t-ESSTV lacks a prediction for the elastic

contribution from the rouleaux. For reference the N1 predictions are shown for both models.

FIG. B2 (a,b) Contribution to total stress from plasma and RBCs (green dash-dot line),
contribution to total stress from rouleaux (red solid line), contribution to total stress from elastic
stress of rouleaux (blue solid line), total stress (wine dash line) and N1 predictions (black solid
line) of t-ETV; and (c,d) Contribution to total stress from plasma and RBCs (red dash-dot line),
contribution to total stress from rouleaux (green dash-dot line), total stress (aqua line) and N1
predictions of t-ESSTV. (a,c) step up in shear rate from 0.1s™! to 20s™!; (b,d) step down in shear
rate from 20s' to 0.1s™!. (Data is maroon squares.) Donor3 (dataset3) [55]
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APPENDIX C: Hysteresis Loops of Donor 3

Fig. B3a shows a hysteresis loop of Donor 3 for a combination of a and #nax, where in Eqn.
35 below, ¢ is time, fmax 1s maximum time of experiment, and « is the non-dimensional acceleration

constant. The triangle ramp, or hysteresis experiment, started at time t=0 (s) from rest,

. . . . . . t
continuously increases in shear rate until a maximum is reached at tZ%, followed by a

decreasing shear rate back to 0 s”!. Whereby the thixotropic timescale of rouleaux breakdown, is

demonstrated to be different than the characteristic timescale of rouleaux buildup

ot t< tm?
y(t) = C (35)
oft -t) t>-1%
( max ) 2

Fig. Cla,b shows the characteristic hysteresis loop, and compares the ETV, ESSTV and
a viscoelastic model that does not have a thixotropic term, Stickel et al. elasto-visco-plastic
model highlighted here [47, 58]. The Stickel et al. EVP model consists of 4 model parameters,

and the following two equations

o=0,+ki", (36)
and
1/n
O(-0
L 6+ max o,||—ny° c=7. (37)
G k|c5

Where £ is the consistency parameter, 7 is the power law, and o, is the yield stress. We again

fit the parameters in Eqn. (36) to steady state data, and G, the elastic modulus from Eqn. (37) is

fit to six sets of step-up/down in shear rate data for a fair comparison. The results of the

41



parameter fitting are shown in Fig. C2. The comparison in Fig. C1 is shown with the non-
tensorial versions ETV, and ESSTV for a fair comparison to the Stickel et al. EVP model [47,
58]. Fig. Cla, and C2 both show significant loss in predictive capabilities without thixotropy
term. Clearly if we try to use a viscoelastic only model, like that of Stickel et al. [58], the time
constants resulting from best fit of the steady state and step-up/down in shear rate (transient data)
are too small to predict hysteresis as seen in Fig. C1. On the other hand, if you only have
thixotropy (like the Apostolidis et al. [39]) we cannot do a good job predicting the nonlinear
LAOS, and UDLAOS data. The only way to capture both the hysteresis and the nonlinear
features of LAOS is to have both thixotropy and viscoelasticity in the model, both important for

blood, as we shown with the ETV, ESSTV and their tensorial counterparts.

FIG. C1 Hysteresis loop for Donor 3 0=0.0357,t__=35(s); data points as follows: t<tmax/2

maroon triangles, t > tmax/2 red circles; (a) Green line Stickel et al. [S8] EVP model; and (b) Blue
line ESSTV model; and black line ETV model. (Dashed lines represent t < tmax/2; solid lines
represent t> tmax/2) (Numerals 1 — 4 are the stages of evolution of the hysteresis loop) (dataset3)
[55], (Best fit parameter values: ¢,,=0.0058 (Pa); k=0.013; n=0.77; and G=1.64 (Pa) ).

FIG. C2 Stickel et al. [58] EVP model fit (lines) for (a) steady state human blood data; (b) set of
3 step-up in shear rate from & of 0.1s™! to 5, 10, and 20s™'; and (c) step-down in shear rate to &of

0.1s! from 5, 10, and 20s™! for Donor 3, (dataset3) experimental data [55], (Best fit parameter
values: 6,,=0.0058 (Pa); k=0.013; n=0.77; and G=1.64 (Pa) ).
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NOMENCLATURE

Nomenclature
o |frequency of oscillation
Yo |[strain amplitude
t |time
A |structure parameter
W |rouleaux contribution to viscosity
Mo |zero shear viscosity of plasma and RBC
He |infinite shear viscosity
G' |storage modulus
G" |loss modulus
Gr |elastic modulus of rouleaux
Gc |elastic modulus of plasma and RBC
Gy |yield stress
Treak |Material constant for stress-induced breakage
Taeer |Material constant for stress-induced aggregation
T, [thixotropic time constant of evolution
Tc |Cross constant
G [stress
Y |shear rate (subscript p is plastic shear rate)
d |power law of shear aggregation
y; |data value
f; |model value
F..« |cost function
Y |rate of strain tensor
m |power law of rouleaux viscosity
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Supplementary Material

ETV and ESSTV model fits of steady state and six step up/down in shear rate tests, with

SAOS predictions of Donorl. Additional ETV LAOS and UDLAOS predictions with Donorl.
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