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ABSTRACT. We address the problem of computing the critical regularity of
groups of homeomorphisms of the interval. Our main result is that if H and K
are two non-solvable groups then a faithful CLT action of H x K on a compact
interval I is not overlapping for all T > 0, which by definition means that there
must be non-trivial 7 € H and k € K with disjoint support. As a corollary we
prove that the right-angled Artin group (F» X F») = Z has critical regularity
one, which is to say that it admits a faithful C! action on I, but no faithful
CLT action. This is the first explicit example of a group of exponential growth
which is without nonabelian subexponential growth subgroups, whose critical
regularity is finite, achieved, and known exactly. Another corollary we get is
that Thompson’s group F does not admit a faithful C! overlapping action on
I, so that F = Z is a new example of a locally indicable group admitting no
faithful C' action on I.

1. INTRODUCTION

Let I denote a compact unit interval. This paper is concerned with determin-
ing the optimal regularity with which a group G can act faithfully on the interval,
and computes that regularity in many cases.

For a continuous map f: I — R and 7 € [0,1), we denote the 7-Hélder norm

of f as
[f ()~ f)
[f]r:= sup 7
xtyel  |X—Y|
In the case when [ f]; < o0, we say [ is T-Hdlder-continuous. We let Diff]fr’r(l)

denote the group of orientation-preserving C*-diffeomorphisms of I whose k™
derivatives are 7-Hdélder-continuous.
Let G be a group. We define the critical regularity of G to be

. -eck,
CritReg(G) = sup{k + 7| G < Diff " (I)}.

Here, the supremum is taken over all abstract realizations of G in Diff’fr'f(l )- G
is countable and G < Homeo_ (I) then G is topologically conjugate to a group
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of bi-Lipschitz homeomorphisms [8], so that, by convention, if G < Homeo ()
then CritReg(G) > 1. If G is not a subgroup of Homeo (I) then we define
CritReg(G) = —o0. We are particularly interested in groups with finite critical
regularity.

The main theme of this paper is that non-overlapping actions of a group G
provide obstructions to smooth actions of G Z. Here, a group action on a set
X is overlapping if for all pairs of nontrivial elements g, h € G, there is a point
x e X such that g.x # x and h.x # x.

PRINCIPLE (See Lemma 2.2). Suppose that G acts by C!-diffeomorphisms on
the interval I = [0,1] in a non-overlapping manner. Then there is no C' -diffeo-
morphism t such that (G, t) = G« Z. Thus, if the algebraic structure of G forces
all actions of G on I by C!-diffeomorphisms to be non-overlapping, then G+ Z
admits no C! action on I.

This principle will inform most of the results in this paper, with the technical
driver behind it being the abt-Lemma below (see Lemma 2.1).

1.1. Main results. Let G be a group. We write G(*) = G and G(F) = [G(k=1), G(k—1)]
for the derived series of G. We say G is not solvable of degree at most k if G¥) is
nontrivial. The main result of this paper is the following.

THEOREM 1.1. Let G and H be groups.

1. If G and H are not solvable of degree at most k, where k > 3 and 1 satisfies
7(1+1)¥=2 > 1, then there does not exist an embedding

(G x H) *Z — Diff"* (I).
2. If G and H are non-solvable groups, then there does not exist an embedding

(Gx H)«Z— | | Diff}" (1).
>0
Let F, denote the free group of rank two, and recall that Thompson’s group
F is defined to be the group of piecewise linear homeomorphisms of I whose

breakpoints are dyadic rational numbers and all slopes are powers of two. It is
known that F embeds in Diff% (1) [11]. We have the following.

COROLLARY 1.2. The groups (F» x F,) #Z and F = Z have critical regularity one.

REMARK 1.3. The compactness of the interval I is essential here. For instance,
the above two groups embed into Diff>’(R); see [1] and [17, Proposition 6.1].

The group F *Z embeds in Homeo (I) by general facts, and it follows from
[17] that CritReg(F = Z) < 2. The group F is highly self-similar and contains a
copy of F x F. Since F is not solvable, Theorem 1.1 immediately implies the
statement for F in the above corollary.

Strictly speaking, Corollary 1.2 only implies that F = Z is not a subgroup of
Diffi‘r(l ) for any 7 > 0. However, we have the following:
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THEOREM 1.4 (cf. Question 1.6 in [17]). Suppose that for an action
¢: F+ Z — Diff} (I),

we have that for each embedding: ] — ] and for each component J of supp ¢i(F),
the restriction ¢i(F) ! is either non-faithful or semi-conjugate to the standard
piecewise linear action of F. Then ¢ is non-faithful.

REMARK 1.5. According to a recent result of the third author with J. Brum,
N. Matte Bon, and M. Triestino [5], every faithful C! action of F on I is semicon-
jugate to the standard piecewise linear action. Therefore, assuming their result
one can simply conclude that there are no faithful C! actions of F*Z on I. As a
consequence of these considerations, F furnishes another example of a finitely
generated group G which acts faithfully by C* diffeomorphisms on I, but such
that G = Z has no faithful action by C!-diffeomorphisms on I. The only such
example in the literature was the direct product of Z with a Baumslag—Solitar
group; this was proved in [18, Corollary 1.7], based on work in [4].

Recall that Thurston’s Stability Theorem [28] implies the group Diff* (1) is
locally indicable. Here, a group is locally indicable if every finitely generated
subgroup admits a surjective homomorphism to Z. Thus, failure of local in-
dicability is an obstruction to admitting a faithful C'-smooth action on I. Ex-
amples of groups which are locally indicable but not C!-smooth were given by
Calegari [6] and Navas [22]. A solvable group with this property appears in [4].
Theorem 1.4 furnishes a new example of a group that highlights the distinction
between local indicability and C'-smoothability, conditionally on the work in
progress mentioned in Remark 1.5. Indeed, an easy application of the Kurosh
Subgroup Theorem [27] implies that F = Z is locally indicable. Thus, we have:

COROLLARY 1.6. Suppose the conditions of Remark 1.5 hold. Then the group
F % Z is locally indicable but does not embed into Diff*, (I).

1.2. Remarks. This paper arose from our investigations of the following ques-
tion:

QUESTION 1.7. Let I be a finite graph. How does the critical regularity of the
right-angled Artin group A(T') depend on the combinatorics of T'?

Recall that the right-angled Artin group A(T') is the group presentation
(VT |[a,b] =1 for each {a, b} € ET),

where VI and ET denote the vertex set and the edge set of I', respectively.
One of the main results of [17] (cf. [2]) is that CritReg(A(T')) < oo if and only
if A(T') does not contain a subgroup isomorphic to (F, x Z) * Z. This implies
that CritReg(A(T')) = oo if and only if A(T') decomposes as a direct product of
free products of free abelian groups.

Right-angled Artin groups are residually torsion-free nilpotent [9], which
means that every nontrivial element of A(T") survives in a torsion-free nilpo-
tent quotient of A(T'). This implies A(T') < Difft (M) for M € {1,S'} [10, 13].
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Theorem 1.1 implies that many right-angled Artin groups have critical regu-
larity exactly one. Indeed, a right-angled Artin group A(T') contains a copy of
F>, x F, if and only if I' contains a square as a full subgraph [15, 16], and will
contain a copy of (F» x F,) *Z if, additionally, the complement of I' is also con-
nected [16, Lemma 3.5]. Theorem 1.1 exhibits the first examples of right-angled
Artin groups whose critical regularities are both finite and known exactly. A
tantalizing open question remains:

QUESTION 1.8. What is the critical regularity of (F» X Z) «Z?

Question 1.8 is also interesting for other graphs such as the pentagon and the
path of length three. The right-angled Artin groups on these two latter graphs
contain copies of (F, x Z) = Z; to see this claim, it suffices to establish it for the
path P, of length three, since it is a full subgraph of the pentagon graph. That
A(Py4) contains a copy of (F» x Z) = Z follows from the fact that it contains a
copy of F» x Z and the fact that the extension graph of P4 has infinite diameter;
see [16, 17].

In general it is not easy to compute the exact critical regularity of groups of
diffeomorphisms, even when it is known that its critical regularity is finite. Pre-
viously known examples of at least C!-regularity were groups of subexponential
growth. The critical regularity of the universal class-(d — 1) nilpotent group
N, which consists of d x d unipotent integral matrices, was shown to be 2 for
d =3 [7] and 1.5 for d = 4 [14]. Moreover, Navas [21] proved that groups of
intermediate growth (such as the one produced by Grigorchuk and Machi [12])
have critical regularity at most 1.

In [18], the first two authors proved the existence of groups of prescribed crit-
ical regularity r € [1,00), though most of these groups are not finitely presented
(or even computably presented) and hence are not truly explicit from an alge-
braic point of view. We note that Corollary 1.2 gives the first example of finitely
presented groups of exponential growth (more precisely, without nonabelian
subexponential growth subgroups) whose critical regularity is simultaneously
finite, known, and achieved.

In the last section, we discuss some of the key difficulties in determining the
critical regularity of (F, x Z) = Z, and we illustrate this difficulty more explicitly
in a certain topological smoothing problem for the “nested” action of (Z:Z) = Z.
It seems that deciding the critical regularity of an overlapping action of F, x Z
is at least as difficult as determining the optimal regularity that can be achieved
by a topological conjugacy for this nested action.

2. BACKGROUND ON DIFFERENTIABLE GROUP ACTIONS AND CONRADIAN
ORDERINGS

Throughout this article, we will use the symbols < and < to denote “less
than” and “less than or equal to” in an ordered structure and also to denote the
subgroup relation.
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Suppose a group G acts on a set X. For each ge G, we let

supp g := X\ Fixg.
This set will generally be called the support of g (often called the open support
of g in the literature). We also set suppG = geGSUPP 8.
The following is one of the key ingredients for our proof of Theorem 1.1.

LEMMA 2.1 ([17, abt-Lemma]). Let M be a compact connected one-manifold,
and let a, b, t € Difﬂr (M) be such that

suppansuppb=o.
Then{a,b,t) % 7*+7.

An action of a group G on a set X is called overlapping if for all pairs of
nontrivial elements g, h € G, we have (suppg) N (supp h) # &. An immediate
reformulation of the abt-Lemma is as follows.

LEMMA 2.2. If G is a group such that G Z < Diff' (I), then the action of G is
overlapping.

We say a pair of open intervals {J,J2} in R is a 2-chain [19] if J; n J» is a
proper nonempty subinterval of /; and J». The following is elementary.

LEMMA 2.3. If g and h are commuting elements in Homeo . (R), then the collec-
tion of intervals o supp g U o supp h does not contain a two-chain.

In Lemma 2.3 and throughout the rest of this article, for g € Homeo (R), we
use the notation g supp g to denote the set of components of the support of g.

Much of the discussion in the remainder of this section is closely related to
the work of Navas [23], and we direct the reader there for more background
on the relevant relationship between dynamics and orderings. For an ordered
space (£, <), let us denote by Sym_, (Q2) the group of order preserving bijections.
In this paper, we will mostly focus on the case when Q = I or Q is the support
of a homeomorphism on I.

DEFINITION 2.4 (cf. [26]). Let (€, <) be an ordered space, and let G < Sym__(Q).
We say that f, g € G are crossed if there exist points u < w < v in Q such that

1. g (u)<w< f"(v) forall ne Z.

2. There is N € Z such that gV (v) < w < fN(u).

We say that the G-action is Conradian (or simply, the group G is Conradian
when the implied action is clear) if it has no crossed elements.

The following “two-chain criterion” for non-Conradian actions will be later
employed.

LEMMA 2.5. Let G < Homeo (R) be a group, and let U < R be a G-invariant set.
Then G|y is non-Conradian if and only if there exists a two-chain {J, J»} whose
union intersects U such that each J; is a connected component of the support of
some g; € G.
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Proof. Suppose there exists such a two-chain {Ji, J,}. We may assume infJ; <
inf J,. Using the G-invariance of U, we can find we J; n J, n U. See Figure 1.
Then there exist powers g;"" and g, of g; and g such that

inf/; <u:=g"(w)<infJo <w <supJ; <v:=g,*(w) <sup .

It is routine to check that the conditions in Definition 2.4 are satisfied for suit-
able powers of g1 and g».

Conversely, suppose that G is non-Conradian, and pick (f, g, u, v, w,N) as
in Definition 2.4. Since u < w < fN(u), there uniquely exists a J; € 71 supp f
that contains {u, w}. We also find a unique J, € mosupp g that contains {w, v}.
Note that sup J; < v; for otherwise, we have that {w, v} < J; and that f"(v) < w
for some n. In particular, we see that sup J; < sup /.. We similarly see that
infJ; < infJ,. This shows that {J;, J»} is a two-chain containing w € U, as de-
sired. O

81— 82—

h >< J2

u=g"(w) w v:gZ’Z(W)

FIGURE 1. The two-chain criterion.

For actions on the real line, we have several equivalent formulations.

LEMMA 2.6. For a group G <Homeo (R), the following are equivalent.
1. G has crossed elements.
2. G has a pair of elements { f, g}, called a crossed pair, which have the prop-
erty that for some J € mosupp f, one has g(0]) N ] # &.
3. G has a pair of elements (f, g), called a positive ping-pong pair (or simply
a ping pair), such that for some a < b in R one has

fla)=a<f(b)<g(a)<g(b)=Db.

4. Some elements g, he G and some interval ] € mosupp g satisfy both h] # ]
and hjn J # <.

For a group G acting on a set, we let Fix G denote the set of global fixed points.
The following fact is well-known.

LEMMA 2.7 ([24]). For a Conradian group action G < Homeo (R) such that
FixG = @, the following hold.

1. If g € G fixes at least one point, then every connected component of supp g
is a finite interval.
2. Forall g,he G and for all ] € mysupp g, K € mosupp h, either

JnK=g,0orJ=K,orKc].
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3. If there exists an element c € G such that Fixc = &, then there exists a non-
trivial G-invariant Radon measure u on R and a character (i.e., homomor-
phism) t: G — R defined by

1(g) = sign(g(x) —x) u[x,g(x)),
which is independent of the choice of x. Moreover, the following statements
hold in this case:
e 771(0,00) = {ge G| g(x) > x for all xe R}.
e G <kert = {ge G|Fixg # o}.
4. If G is finitely generated, then there exists c € G such that Fixc = &.

We can classify each interval in mysupp G as follows, as will be essential for
us in the proof of the main theorem.

DEFINITION 2.8. Let G be a subgroup of Homeo (R). We consider a partition
of supp G into the crossed support crs G and the nested support nstG, whose
connected components are given as follows:

mocrs G :=mosupp G\ U Tosupp §,
geG

monstG:=mosuppGn <U nosuppg> .
geG

We can rephrase the above definition as follows.

mocrsG = {Jemysupp G| J # supp g for all ge G},
monstG = {J e mosupp G | ] = supp g for some g € G}.

LEMMA 2.9. If G < Homeo, (R) is finitely generated, then each point in crsG
belongs to the union of a two-chain {J1, J»} such that

N, € U Tosupp §.
geG

In particular, if U € R is a G-invariant set such that G|y is Conradian, then U
is disjoint from crsG.

Proof. Let x € ]y € mocrsG. We fix a finite generating set S = {sy,...,s,} of G.
We denote by % the set of maximal intervals (with respect to inclusion) in the
collection of intervals

Uno supp s.

ses§
There exists some J; € % such that x € J; € J. Without loss of generality, we
may assume J; € mosupps;. By the definition of crossed supports, we know
that J; # Jo. Since % covers Jy, one of the endpoints of J; must belong to
some J, € %/. By maximality, we see that (J;,J2) is a two-chain. The second
conclusion is now immediate from Lemma 2.5. O
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We will apply the above lemma to the case when G < Dif’f}r (I); here, G is nat-
urally regarded as a subgroup of Homeo, (R) using an extension by the identity.
In fact, after conjugating G by a suitable C**-homeomorphism we may assume
that g'(0I) =1 for all g € G. This conjugation is sometimes called as the Miiller-
Tsuboi trick [20, 29]; see [18, Theorem A.3] for a proof of the case in the inter-
mediate regularity C''. This let us regard G < Diff*. (R) with suppG < I = [0,1].

3. INTERVAL ACTIONS WITH (k, t)-NESTING

This section develops the remaining technical tools needed to establish the
main results of the paper. We are particularly intellectually indebted to [21] for
many of the ideas in this section.

DEFINITION 3.1. Let k > 2 be an integer, and let u € (0,1]. We say a finite set
S < Homeo. (1) is a (k, u)-nesting if there exists a collection of nonempty open
intervals
h2L2-2Jk

such that the following two conditions hold for some infinite sequence a =
(s1,82,...) in S and for {wy, := sp$p—1-- 81} n>0:

(i) ano ’anl‘u < 00;

(ii) for each i =2,...,k and for each n > 0 there exists some s € S satisfying

that sw,J; nw,J; = @ and that sw,J;_1 = w,Ji—1.

We say that an element g of a group G centralizes a set S € G if g commutes
with every element of S.

EXAMPLE 3.2. Suppose that a group G < Homeo. (I) is centralized by some
c € Homeo, (I) such that Fixc = ¢1. Assume there exist open intervals

=22k

for some k > 2 such that the closure of J; is contained in the interior of I. As-
sume there exist g»,...,8x € Gsuchthat g;J;nJ; = @ and such that g; J;_1 = J;—1
for each i =2,..., k. Then we can find N >» 0 such that J; n chl = . By setting
w,, = cN" we see that

{CN,gz,...,gk_l,gk}
is a (k,1)-nesting in the group (G, c).

In general, we allow the choice of s in part (ii) of Definition 3.1 to possibly
depend on i and n. Before exhibiting our use of (k, u)-nestings, let us first recall
a simple estimate of C!’-displacements.

LEMMA 3.3 ([21, Lemma 2.7]; cf. [18, Lemma 2.13]). If f € Difff[u, b] and x €
(a,b), then
|f(x) = x| <[Df];-|x—al'*".
The following lemma is a common generalization of key analytic ingredients
in [21, Proposition 2.8 and Section 2.4.3] and also in [7, Proposition 2.1].
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LEMMA 3.4 ((k, u)-Nesting Lemma). If7(1+1)K"2 > u, then Difff([) does not
contain a (k, u)-nesting.

Proof. Assume for contradiction that Difff([ ) contains a (k, u)-nesting S. Con-
sider a sequence (s,),>1 and open intervals {/;};<;<k as in Definition 3.1. For
i=1,2,...,kand n >0, we denote

(al',b}):=J!" = wy];.
We let N := 1+ max{[s']; + [logs']; | s€ S} and N:= N2k722n|wn]1|”.
CLAIM. For each n >0, we have that
Tl < N

To see the claim, let us assume i = 2,...,k—1 and n > 0. By hypothesis,
there exists some s € S such that sJ' | = J!' | and such that sJ]'n J!' = &. By
Lemma 3.3, we have that

I} < max(|s(aj’) — af'|, [ s(b}) — b}'[) < NIJ [

We inductively see that
1+ 1+2 1+71)? 1424224 2k=3 147)k2
R SNE LM< NP2 <N e
This completes the proof of the claim.
Since S is finite, there exists some ¢ € S satisfying part (ii) of Definition 3.1 for
i = k and for infinitely many n. Let us set

AT ={n=0|gJ} =J} ;and tJ}>J}},
A i={n=0]tJ} =7  and tJ} <J}}.
Without loss of generality, we assume that </ is infinite, for the other case can

be treated similarly using .
For each ne &, there exist x,, € ],’C’_l, Un € Ji, Un € Jr—1 such that

/ o t(alrcl) - t(alrcl—l) o t(aZ) - aZ |]]rcl| . w;(un) |]k‘
(xn)=———— =1+ 21+ = =1+ ——- :
A — 4 k%1 Tl wy(vn) |[Jr—1|

a

Using the above claim, we see that

/
’10 wh(un) Ji,

|r
w;z(yn)

n—1 n—1
< Z |logs; ;o w;(un) —logs;, ;o w;(v,)| < Z N
i=0 i=0

gk—2_1 n-l T(1+47)%2 ok—2 ol _
gN.NT( )Z ]i <N Z']” = N.
i=0 i=0

In the last inequality, we used that 7(147)2 > u.
For all (hence, infinitely many) n € o/ * we now see that

?(x0) =1+ e N Tl /-
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On the other hand, we have that ¢’ = 1 at some point in each of J 11 the length
of which converges to 0 as n goes to infinity. This implies that
lim (x,) =1,
n—oo,nesf + ( n)

which is a contradiction. O

REMARK 3.5. One can slightly weaken the condition of a (k, u)-nesting for the
purpose of the above lemma. That is, one may drop the condition that S is finite
and instead assume

sup|s']; <o,
seS

and, moreover, assume some f € S satisfies part (ii) of Definition 3.1 for i = k
and for infinitely many 7. In this case, we only need to assume that ¢ is C!, not
even CL7.

REMARK 3.6. It is plausible that the bound 7(1+7)¥~2 < u could be improved.
In the case when u =1, let us consider the integer function

k(t):=min{k>2| Difff([) does not contain a (k, 1)-nesting}.
In [8], it is shown that Difff([ ) admits a (k,1)-nesting whenever k <1+ 1/7;

in other words, k(7) > 1+ 1/7. Under a certain stronger hypothesis instead of
(k,1)-nesting (which involves a “k-level structure”

{J,|vezky
of lexicographically ordered intervals) the condition k < 1+ 1/7 is necessary;

see [21, Proposition 2.8 and Remark 2.9] for details.

LEMMA 3.7 (cf. [7, Proposition 2.1]). Suppose we have an interval ] < I, a finite
set S < Homeo (1), a real number T € (0,1), and an infinite sequence {s,} in S
such that

Z |sp---s1J|" < o0.

n=0
If ce Homeo, (I) nontrivially acts on J and centralizes S, then the set S U {c} is
a (2,7)-nesting. In particular, we have S U {c} & Difff([).

By Remark 3.5 one can strengthen the above lemma and say that either
c ¢ Diff' (I) or S & Diff"" ().

Proof of Lemma 3.7. One can find another nonempty open interval J» < J such
that ¢J» N J» = &. From the centrality of ¢, the two conditions of Definition 3.1
easily follow after setting

k:=2, 1:=], u:=r1, t:=c.
The second conclusion follows from Lemma 3.4. O
For an infinite sequence w = (s1, $,...), let us denote
Wn = (81,82,..,8n)-
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LEMMA 3.8 ([8]). LetdeN, and let ey,..., e, denote the standard basis vectors of
Z%. Suppose a: 7% — Ry is a function such that

2 a(v) <oo.
vezd

Then for each 7 € (1/d,1) and for almost all = (sy,$2,...) with respect to the
uniform distribution measure in the space of random walks Q := {ey,...,eq}N
we have that
Z a(31+52+---+sn)7<oo.
n=1
Deroin, Kleptsyn, and Navas established the above lemma by an averaging
argument [8]. We will employ the following variation of the lemma.

LEMMA 3.9. Let Qo :=[],-,{1,2,...,d}", the space of all nonempty finite se-
quences on d letters. If a is a probability measure on Qg and if T > 0, then we

have that
Z a(w,)t <o

n=1
for almost all w with respect to the uniform distribution measure in the space of
random walks Q = {1,2,...,d}N.

Proof. We see from the Holder inequality that

E[Y aton) | = YEa@)T=Y— 3 a@)
[Satonr|=3 i

n ve{1,2,...,.d}"

<Zn:%< Z a(v)) (dn)l_ngn:diT < 0.

ve{1,2,...d}"

In particular, almost all w € Q satisfies the desired inequality. O

We will later repeatedly use the following lemma in order to reduce the main
theorem to the case of Conradian actions.

LEMMA 3.10 (Centralizer-Conradian Lemma). Lett > 0. If ¢ belongs to the center
of a group G < Difff([ ), then the restriction of G onto supp c is Conradian.

Proof. This lemma is well-known for the case when Fixc = 0I; this case coin-
cides with [24, Proposition 4.2.2.25], where the result is attributed to an unpub-
lished work of Bonatti—Crovisier—Wilkinson. In this special case, it suffices to
assume c is C° and G is C'. Alternatively, this case can be recovered by apply-
ing the Two-jumps Lemma [2] to the c-translates of an interval that contains a
hypothetical two-chain.

Let us set U := suppc. We may now consider the case that U is a proper
subset of I\01. It suffices for us to prove that the restriction of G to J n U must
be Conradian for each J € mysupp G. In other words, we can assume FixG = 01.

Assume for contradiction that Gl is not Conradian. By Lemma 2.5, we can
find a two-chain {J;, J»} intersecting U such that J; € mosupp g; for some g; € G.
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We may pick w € J; n Jo n U as in Figure 1. Let Uy be the component of U
containing w. The open interval Uy cannot contain J; U J,, again by the above
remark. This implies by Lemma 2.3 that Uy S J; n J». Possibly after replacing
gi’s by their powers, we may assume

inf]; <inf], < goUy < Uy < g1Up < sup J; < sup Jo.

We claim that for all distinct pair of positive words (w, w’) in {g;, g»} the inter-
vals wUy and w'Uy are disjoint; this claim can be seen as an example of the
ping-lemma in the literature. To prove the claim, assume first the special case
that

my _mp M3
W=§g 8 8 "
and
/ ny _np _ns
Ww=8 88 "

for some nonnegative m; and n; such that m;n; # 0. Then we see that
infJ, < w'Uy < Uy < wUy <sup J.

The general case easily follows by induction on the lengths of w and w’. We
also note that g; and g» generate a rank-two free semigroup.
Applying Lemma 3.9 (possibly after a rescaling) to

p(si,...,sn) :=Isp---s1(Uo)l,

we can find an infinite sequence w = (s1, $,...) in the set {g;, g»} so that

Z |sn--s1())]" < o0.

n

Lemma 3.7 implies that G is not C'""-smooth, which is a contradiction. O

REMARK 3.11. It was remarked to the authors by M. Triestino that in the C!
setting, a non-Conradian group action G < Diffﬁr(l ) admits an element g€ G
with a hyperbolic fixed point [8, 3]. Such an element g cannot be centralized by
a fixed-point free C! diffeomorphism.

REMARK 3.12. By Remark 3.5, it actually suffices to assume that c € Diff’ ()
centralizes G < Difff([ ). This can be rephrased as follows. If ¢ € Diff}, (I)

centralizes {g1, 82} € Difff([ ) and if J; € mosupp g1 and J, € mpsupp g2 form
a two-chain then J; U J; is disjoint from suppc.

The following lemma relates a (k,1)-nesting with the non-solvability of a
group, in essentially the same fashion as [21, Section 2.4.3]. We will apply the
lemma after R is replaced by a finite open interval.

LEMMA 3.13. Suppose that a nontrivial element ¢ € Homeo™ (R) centralizes a
Conradian group G < Homeo™ (R). If ¢ has no fixed points and if G is not solv-
able of degree at most k > 2, then there exists a (k,1)-nesting in the group {G, c).
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Proof. We follow the argument in [21, Section 2.4.3] closely. Let u be a G-
invariant measure on R, and let 7, be its associated character as in Lemma 2.7.
Pick a nontrivial element g, € G®). Since 7,(gk) = 0, we can also pick a fi-
nite open interval Ji_; € mosupp gk Since Fix gy N Jx_; is empty, we can find a
proper open interval Ji < Ji_; such that giJx N J = .

The interval Ji_; is not G*~D.invariant; for otherwise, one can apply
Lemma 2.7 (3) to the Conradian group Gk=1)} 7., and see that g fixes a point
in Jx_;, a contradiction. Let us choose gy_; € G*=1 such that gk—1Jk—1 N
Jk—1=4. Since gr_; € G < kert,, we can find another finite open interval
Jk—2 € mosupp gkx_1 such that Jx_1 & Ji_».

Continuing this way, we have a properly nested sequence of finite open inter-
vals

h2L22Jk
and homeomorphisms g; € G for i =2,..., k as in Example 3.2. We thus obtain
a (k,1)-nesting. O

4. PROOFS OF THE MAIN RESULTS

4.1. Non-overlapping actions of products of non-solvable groups. We will now
prove Theorem 1.1, for which it suffices to establish the following fact.

THEOREM 4.1. Let G and H be finitely generated groups that are not solvable of
degree at most k > 3. Suppose 7 € (0,1) satisfy 1(1+1)¥=2 > 1. Then there does
not exist an embedding

(G x H)*Z — Diff"" (I).

The proof will occupy the remainder of this section. By the abt-Lemma
(Lemma 2.1), it suffices for us to show that there does not exist a faithful over-
lapping C''* action of G x H on I.

Assume for a contradiction that G x H < Difff([ ) is overlapping. Pick non-

trivial gy € G® and hye H®. Since supp g and supp hy are nontrivially inter-
secting, we can find Jy € mysupp G such that

(supp gk N Jo) Nsupp hy # @.

We saw in the Centralizer-Conradian Lemma (Lemma 3.10) that the restriction
of G on supp hy is Conradian. By Lemma 2.9, we see that Jy € monstG; in partic-
ular, we can find some gy € G such that Jy = supp go.

We claim that every element h € H fixes some point in Jy. For otherwise,
there exists some J; € mgsupp h such that Jy  J;. By the Centralizer-Conradian
Lemma again, we see that the restriction of G x (h) on J; is Conradian. Since
the restriction of g on J; is nontrivial, Lemma 3.13 implies that (G, h) admits
a finite (k,1)-nesting. By Lemma 3.4, this contradicts 7(1 + 7)¥~2 > 1. Thus the
claim is proved, and we may see furthermore that H(Jy) = Jp.

To complete the proof, we write

go=28ln H=HIy,
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for compactness of notation. We have an action of (g, H) on Jy, where g
acts without fixed points. Yet another application of the Centralizer-Conradian
Lemma shows that this action is Conradian. The assumption Jy » supp hy #
@ implies that H®) is nontrivial. This again contradicts the bound on 7, by
Lemma 3.4 and Lemma 3.13. This completes the proof of Theorem 4.1.

4.2. No smooth action of F = Z. In this section, we establish Theorem 1.4, which
says (conditionally) that F * Z cannot be realized as a subgroup of Diff’ (I). We
remark that to establish its unconditional validity, we would require the follow-
ing result of the third author with Brum, Matte Bon, and Triestino [5]:

THEOREM 4.2. Let : F — Diff! (I) be a faithful action. Then ¢ is semiconjugate
to the standard piecewise linear action of F.

Here, a semiconjugacy is a monotone, surjective, continuous function I — I
that intertwines two actions.

Let us now resume the proof of Theorem 1.4. As is standard, we realize F as a
group of piecewise linear homeomorphisms of [0,1]. We let F— be the elements
of F supported in [0,1/2], and let F; be the elements supported in [1/2,1]. The
conclusion would be immediate from Lemma 2.1 if we showed that ¢(F) were
non-overlapping. We will prove the following stronger result:

LEMMA 4.3. Under the hypothesis of Theorem 1.4, we have that

supp¢p[F-,F_] nsupp¢p[Fy,Fi] = 2.
Proof. Let us first consider the special case that ¢ is faithful and does not have
global fixed points other than dI. Assume for contradiction that f € [F_, F_]
and f, € [F4,F] have intersecting supports under ¢. We have some J; €
mosupp¢( f;) satisfying J; n Jo # @.

By our hypotheses, there exists a semiconjugacy h: I — I from ¢ to the stan-
dard action ¢gq of F. Generally, ¢(F) f(0,1) either is minimal, has a discrete orbit
or admits a wandering interval [24]. Using the assumption that f; and f, have
disjoint supports under the minimal action ¢gq, and that ¢ has no global fixed
point other than 01, we see the first two alternatives do not occur here. More-
over, J; or J» maps to a singleton, say y, under h. Let J be a maximal wandering
interval, defined as the interior of h~1(y).

By symmetry, we may assume y > 1/2. The standard action of F_ fixes y, and
so, ¢(F-_) preserves J; in particular, J; < J. Since ¢(f1) ;€ ¢[F—,F_]!; is non-
trivial, we see that ¢(F_)|; is nonabelian. This implies that F_ acts faithfully
on J under ¢p. We will deduce a contradiction in this case.

Again by our hypotheses, there exists a semiconjugacy from J to I that inter-
twines ¢(F_)|; with the standard action

Fo =2 pr(n).

From this, we can find in J a two-chain {Uj, U,} such that U; € mosupp¢(g;)
for some g; € F_. We may further require that the closure of

supp ¢sid(g1) U supp Psia(g2)
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is properly contained in (0,1/2). There exists some g € F centralizing (g1, g2)
such that supp ¢sq(g) contains y. Here, g is not necessarily contained in F,,
especially when y = 1/2. Then a component of supp¢(g) contains J. By apply-
ing Remark 3.12 to the action of ¢»({g, g1, 82)) on supp g, we obtain a contradic-
tion.

We now consider the general case where ¢ is allowed to have global fixed
points and is possibly non-faithful. We can write

I\Fix¢(F) =] [ J:
i1
for some open intervals J;. We set ¢; := ¢! j,. If ¢;(F) is abelian then clearly
supp ¢;[F, F] = @. If not, then ¢; must be faithful and our consideration of the
special case above implies that the supports of ¢;[F_,F_] and ¢;[F,F,] are
disjoint. Since the support of g € F under the action ¢ is the union of supp ¢;(g)
for i > 1, the conclusion follows. O

5. FURTHER DISCUSSION: LAMPLIGHTER GROUPS

The simplest right-angled Artin group with unknown critical regularity is
(F, x Z) = Z. Recall from [17] that such a critical regularity is at most 2. We
have the following slightly refined version of Question 1.8, which we state for
the convenience of the reader.

QUESTION 5.1. Does the group (F, x Z) * Z admit a faithful C*" action on [0,1]
for somet >0?

If the answer to Question 5.1 is negative, then one would have a dichotomy
that the critical regularity of a right-angled Artin group is either 1 or the infinity.
Note that the adjective “orientation-preserving” is not needed in the question
as every finite index subgroup of (F, x Z) = Z contains a copy of itself.

Let us write F» xZ ={a, byx{t). If one tries to employ a technique used in the
proof of Theorem 1.1, one encounters the following problematic configuration:
there exist supporting intervals Jy, J1, /2 of a, b, t respectively so that

J2Sh, J1So.

A particularly simple case when a similar difficulty would arise can be described
as follows. We define a nested action of (2:1Z) x Z = ({a){b)) x{t) on an interval
I as a faithful topological action such that for some open intervals /; and J, we
have that

mosuppts o< o < Jy =supphb < J; < suppa = I\01.

QUESTION 5.2. What is the supremum 1 € (0,1) such that a nested action of
(212) x Z is topologically conjugate to a C>" action?

Let us denote the above supremum as 711, where LL stands for Lamp-Lighter.
The supremum 71 will be at least 1/2. Indeed, one can start with the C1*+1/2—¢
action of Z® = {a, by, t) in [30] such that certain supporting intervals of a, by
and ¢ are nested (in the decreasing order). One then replaces by by b:= by |,
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the restriction of by on some supporting interval J of by. This gives a nested
C'*1/2=¢ action of (Z1Z) x Z for a small € > 0.
One actually has a better lower bound of 7y;.

PROPOSITION 5.3. For each v < (—1++/5)/2 there exists a nested C" action of

(2:12) x Z.
Recall that the golden ratio is defined as
1445
-—

The proposition asserts that 7y, > ¢ — 1. We remark that the appearance of
the golden ratio in critical regularity questions is perhaps surprising but not
completely unexpected. Indeed, the golden ratio appears in [25] in the context
of smoothing of group actions and codimension one foliations.

Proof of Proposition 5.3. Let T € (0,¢p— 1). We put

e;1 =(1,0,0), e2=(0,1,0), e3=(0,0,1).
Let us consider a collection of compact intervals {I, } ,czs in R that form a “three-
level structure” as follows.

e For u,ve 7 satisfying u < v in the lexicographical order, we have I,, < I,.
e The closure of |3 I, is the given compact interval I.

It will be convenient for us to write
Ii,j ::UIi,j,k» Ii::UIi,j
k J

for each i, j.
Let us pick parameters p, q,q’,r € (1,20), whose values will be determined
later depending on the choice of 7. We assign the length

B {1/(ip+jq+k’) if i #0,

I ,
B =0 ey iti=o

Following Tsuboi’s construction [30], we have maps a, b, t € Homeo ., (R) sat-
isfying the following properties for each v e Z3.

e amaps I, to I,1,, by a C*-diffeomorphism such that
d(suply) = [Ipse /|1l @ (inf1y) = [To—eyter |/ Toes -
e ¢ maps I, to I, 4, by a C*-diffeomorphism such that
t'(suply) = [Toie,l/|To], £ (inf1y) = 1]/ Ty—e; -

e For v= (0,1, j), the map b maps I, to I,+,, by a C*-diffeomorphism such
that

V(suply) = |lysel/| o], V'(infly) = [Iv—e;se,|/|Toes -
e D is the identity outside Iy.
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e Let ge{a,b,t}. For some universal constant M > 0, if g maps I,, onto I,
for some u, ve 73, then

M| L/
Ll 1 Tue5]/ [ To—es

Here, [-]; denotes the Lipschitz norm. It is easy to see that a, b, ¢ are C!-diffeo-
morphisms supported in I. It suffices for us to prove the following claim.

[logDg 1|1 < 1.

CLAIM. If7T < ¢ — 1, then there exists a tuple (p,q,q’,r) € R so that the action
of{a,b, t) described above is C7.

We will only sketch the proof, as the details involve tedious computations.
Briefly speaking, the following three conditions imply that a, b and ¢ are C1'*-
diffeomorphisms on I, for each ue 73:

A rt<q'/g<1;
B) 1/p+1/q+1/r<1;
© 1/qg'+1/r<1.
Then the two extra conditions below guarantee that a, b, t are globally C"7:

D) 7p(1—7) <L
1
E) 7q' (1-1) <1
We omit the details; similar computations can be found in [30] and [7].
We eliminate ¢’ and r from the above five inequalities and are left with the
following single condition:

(l—rz)q—r>_

q .
- 1_ _1,
< — < min <( 7)q 5

1—7

We can pick a sufficiently large g > 1 so that the leftmost term is smaller than
the rightmost term; here, we used 7 < ¢ — 1 as we have

(l—rz)q—r_1—72> T
-  12q+1 T2 1-7°

It is now easy to pick p,q’ and r so that the conditions (A) through (E) are all
satisfied. O

To the authors’ knowledge, it is still unknown if 7y = ¢ —1. We make a
relevant observation below, which deals with an action of Z> whose optimal
regularity is less than C1#~1,

PROPOSITION 5.4. Suppose the group 7% = {a, t) faithfully acts on I by orien-
tation-preserving C'*-diffeomorphisms such that Fixa = 0I and Fixt 2 01. If
some y € Fixt and z € I\ Fix t satisfy

| i, i |T

E a'y az| <o,
i=0

then we have that t < ¢ — 1.
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To provide some context for the statement of this proposition, we remark that
in [30], Tsuboi also exploited a connection between the regularity of an abelian
group action and a bounded 7-variation condition similar to the inequality ap-
pearing in Proposition 5.4. In the same paper, he also constructed a faithful
Conradian C?~€ action of Z2 on I, for all € > 0.

Proof of Proposition 5.4. The proof uses a similar idea to [21] and to Lemma 3.4.
Let us set [ = [0, 1] POSSlbly after replacing a and ¢ by their inverses and reduc-
ing the lengths , we may assume that

y=ty<z<tz<ay.
Assume for contradiction that 7 > ¢ — 1. For each i > 0, we set
L;:= alz— aiy, M; = ta'z—a'z.
Since a'y € Fixt, Lemma 3.3 implies that
. 1+71
M; <[Dt]L;™".
From 7 > ¢ — 1, we note 7(1+ 1) > 1. Hence,
n—1 -
> M Dt;Z <[Dt]; Y. L;<[D1]}.
j=0 j=0 j=0
The rest of the proof proceeds similarly to Lemma 3.4. We set
K:= Z ]aiy—aiz‘T.
i=0
For each n > 0 there exists u, € (y,z) and v, € (z, tz) such that
Mn . Da”(vn)MO
L, Da"(uy)Ly’
We have that

" _
log% [Dlogal, ]Z;)|af vn) —al (uy) !
1
<[Dlogal, ”Z: (’ (Z)|T+|af(z)—af(tZ) r>

< [Dlogal, (K+ [Dt]7) =1 A< 0.
We note that {M,/L,} is bounded away from zero since
M, /L, =e % My/Ly.
On the other hand, the inequality M, < [Dt],L,"" implies that
n—oo
We have a contradiction, so we conclude that 7 < ¢ —1. O
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