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Abstract
We show that if G1 and G2 are non-solvable groups, then no C1,τ action of (G1 ×
G2) ∗ Z on S1 is faithful for τ > 0. As a corollary, if S is an orientable surface
of complexity at least three then the critical regularity of an arbitrary finite index
subgroup of the mapping class group Mod(S) with respect to the circle is at most
one, thus strengthening a result of the first two authors with Baik.
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1 Introduction

Let G be a group, and let M be a smooth manifold. For k ∈ N and τ ∈ [0, 1], we
denote by Diffk,τ (M)0 the group of Ck diffeomorphisms of M whose kth derivatives
are τ–Hölder continuous and are isotopic to the identity.
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The critical regularity of G with respect to M is defined to be

CritRegM(G) = sup{k + τ | k ∈ N, τ ∈ [0, 1] and G injects into Diffk,τ (M)0}.
By convention, Homeo(M)0 = Diff0(M)0, and if G admits no injective homomor-
phism into Homeo(M)0 then CritRegM(G) = −∞.

1.1 Main Results

In this article, we concentrate on computing the critical regularity of certain groups
in the case M = S1, and we will suppress M from the notation; therefore, we write

CritReg(G) := CritRegS1(G).

Note that Homeo(S1)0 = Homeo+(S1), where the right hand side denotes the group
of orientation preserving homeomorphisms of S1. Our main result is as follows.

Theorem 1.1 If G1 and G2 are non-solvable groups, then

CritReg((G1 × G2) ∗ Z) ≤ 1.

Every countable subgroupG of Homeo+(S1) is topologically conjugate to a group
of bi–Lipschitz homeomorphisms of S1 by [6]. Moreover, the group G ∗Z admits an
embedding into Homeo+(S1) by [3].

It follows that
CritReg(G) = CritReg(G ∗ Z) ≥ 1.

The following is now an immediate corollary of the main theorem.

Corollary 1.2 We have

CritReg((F2 × F2) ∗ Z) = 1.

We note that the group (F2×F2)∗Z admits a faithfulC1–action on S1 and on I :=
[0, 1], as does every finitely generated residually torsion–free nilpotent group [8, 11,
24], and so Corollary 1.2 is optimal.

Corollary 1.2 allows us to compute the critical regularity of many mapping class
groups of surfaces. Recall that if S is an orientable surface of genus g and with n

punctures, boundary components, and marked points, we write Mod(S) for the group
of isotopy classes of homeomorphisms of S that preserve the punctures, boundary
components, and marked points (pointwise). We use ξ(S) for the complexity of S,
which is defined by

ξ(S) = 3g − 3 + n.

If g ≥ 2 and n = 1 then Mod(S) acts faithfully on S1, and if S has a boundary
component then Mod(S) acts faithfully on I [4, 10, 23]. It was shown in [9] that
the critical regularity of Mod(S) is at most two, provided that g ≥ 3. This was
strengthened in [18, 25], where it was shown that the critical regularity of Mod(S) is
at most one. These latter results in fact showed that any C1 action of the full mapping
class group on S1 factors through a finite group.
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For finite index subgroups H < Mod(S), the critical regularity question is more
complicated because finite index subgroups of mapping class groups are poorly
understood. The first two authors and Baik [2] proved that if ξ(S) ≥ 2, then every
finite index subgroup H of Mod(S) satisfies CritReg(H) ≤ 2, answering a question
of Farb in [7]. In [25], it is shown that if every finite index subgroup of the mapping
class group has finite abelianization when g ≥ 3 (i.e. if the Ivanov Conjecture holds),
then CritReg(H) ≤ 1 for H < Mod(S) of finite index and S of genus at least 6 (and
in fact no faithful C1 action exists).

Whereas Corollary 1.2 does not rule out the existence of a faithful C1 action of
a finite index subgroup of the mapping class group, it does show that the critical
regularity of a finite index subgroup of Mod(S) is bounded above by one.

Corollary 1.3 Let S be a surface with ξ(S) ≥ 3, and let τ > 0. If H is a finite index
subgroup ofMod(S) then it admits no faithfulC1,τ–action on the circle; in particular
CritReg(H) ≤ 1.

To see how Corollary 1.2 implies Corollary 1.3, note that under the hypotheses
on S, there are two subsurfaces S1 and S2 of S which are homeomorphic to tori
with a single boundary component. The mapping class groups of both S1 and S2
contain copies of the group F2, and the corresponding copies of F2 commute with
each other. Adjoining a pseudo-Anosov mapping class ψ of S gives a 5–generated
group, which after passing to powers of the generators if necessary, furnishes a copy
of (F2 × F2) ∗ Z in Mod(S) (by the main result of [17], for instance). Corollary 1.3
then follows immediately.

Note that Corollary 1.2 also implies an analogous version of Corollary 1.3 for the
groups Aut(Fn) and Out(Fn), since whenever n ≥ 4, these groups contain copies
of mapping class groups that fall under the purview of Corollary 1.3. We will not
comment on these points any further, since unlike mapping class groups of surfaces,
automorphism groups of free groups are not known to have any natural actions on
the circle.

We emphasize that Corollary 1.3 does not rule out the possibility that such a sub-
group H may admit a faithful action on S1 by C1 diffeomorphisms. Whether or
not such an action exists appears to be beyond the reach of current technology. The
reader may consult section 8.3.5 of [16], for instance. For certain restricted classes of
finite index subgroups, it is known that H cannot act faithfully by diffeomorphisms;
see [26].

It is currently an open question for which surface S a finite index subgroup of
Mod(S) admits a faithful C0–action on S1. In the case when H is such a finite index
subgroup we have from the above corollary that CritReg(H) = 1. We note that it is
usually quite difficult to compute the critical regularity of a particular group whose
critical regularity is known to be finite. For a survey of results, the reader is directed
to [5, 12, 14, 19, 20].

Corollary 1.3 follows immediately from Corollary 1.2 after observing that under
the assumption that ξ(S) ≥ 3, the group Mod(S) and all of its finite index subgroups
contain copies of (F2 × F2) ∗ Z (cf. [2, 15, 17]).
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In the case where ξ(S) ≤ 1, the mapping class group of S is virtually free, so that
CritReg(H) = ∞ for a suitable finite index subgroup H of Mod(S). The only case
that is left out from Corollary 1.3 is exactly when ξ(S) = 2:

Question 1.4 Let S be a twice–punctured torus or a five–times punctured sphere.
Does some finite index subgroup of Mod(S) admit a faithful C1,τ action on S1 with
τ > 0?

1.2 A Dynamical Perspective on theMain Result

For the remainder of this section, we frame the discussion of this article in a more
precise manner, and while doing so introduce some relevant concepts. Let G be a
group acting on a space X, and define the (open) support of g ∈ G by

supp g := X \ Fixg.

The support of G is the set

suppG :=
⋃

g∈G

supp g.

We call each point in

FixG :=
⋂

g∈G

F ixg

a global fixed point of G.
Let us say G admits a disjointly supported pair (or, G is non–overlapping) if there

exist nontrivial elements g, h ∈ G satisfying

supp g ∩ supph = ∅.

In [15], the authors proved the following result, which was partially based on the
methods in [20]:

Theorem 1.5 ([15], Theorem 1.1) If G1 and G2 are non-solvable groups, and if
τ > 0, then there is no faithful C1,τ action of (G1 × G2) ∗ Z on a compact interval.

In that paper, the main technical result was the following.

Theorem 1.6 ([15, Section 4.1]) Let τ > 0 be a real number, and let k ≥ 3 be an
integer such that τ(1 + τ)k−2 ≥ 1. If G1 and G2 are groups that are not solvable of
degree at most k, and if

G := G1 × G2 −→ Diff1,τ+ ([0, 1])
is an embedding, then G contains a disjointly supported pair.

Theorem 1.5 follows from Theorem 1.6 by an application of the abt–Lemma
from [13]:
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Proposition 1.7 (The abt–Lemma) Let M ∈ {I, S1} and let a, b ∈ Diff1+(M) be
such that

supp a ∩ supp b = ∅.

Then if t ∈ Diff1+(M) is arbitrary, the group 〈a, b, t〉 is not isomorphic to Z2 ∗ Z.

Proposition 1.7 implies that if a group G always has elements with disjoint sup-
ports whenever acting on I or S1 by diffeomorphisms of some regularity, then G ∗Z
never acts faithfully by diffeomorphisms on I or S1 of that regularity. Thus, to prove
Theorem 1.1, it will suffice for us to establish the following:

Proposition 1.8 Let τ > 0, and let G1 and G2 be non-solvable groups. If φ is a
C1,τ–action of G1 × G2 on S1, then G admits a disjointly supported pair.

We will argue Proposition 1.8 by showing directly that the commutator subgroup
of G1 × G2 admits a global fixed point, thus reducing to Theorem 1.5.

2 Preliminaries

For a direct product of groups

G = G1 × G2,

we identify G1 with G1 ×{1} and G2 with {1}×G2, so that Gi is a normal subgroup
of G for i ∈ {1, 2}; moreover, we have G = 〈G1, G2〉.

Now, suppose a subgroup G ≤ Homeo+(S1) is given. A Borel probability mea-
sure μ on S1 is said to be G–invariant if for all g ∈ G and for all measurable A ⊂ S1,
we have μ(A) = μ(g−1A). The support of μ, denoted as suppμ, means the largest
closed subset X ⊂ S1 such that every open subset of X has positive measure.

Recall that the rotation number

rot : Homeo+(S1) −→ R/Z

is defined as follows. Let f ∈ Homeo+(S1), and lift f to F ∈ Homeo+(R). Note
that such a lift is always periodic, and that any two such lifts differ by an integer
translation. One chooses an arbitrary x ∈ R and writes

rot(f ) = lim
n→∞

Fn(x)

n
(mod Z).

It is not difficult to check that the definition is independent of all the choices made.
A standard fact is that an orientation preserving homeomorphism of S1 has

nonzero rotation number if and only if it has no fixed points [1, 21]. We will appeal
to the following basic fact relating rotation numbers and invariant measures; note that
the second part of the proposition is an immediate consequence of the first.

Proposition 2.1 (see [21], Theorem 2.2.10) If G ≤ Homeo+(S1) admits an
invariant measure μ, then the restriction

rot �G : G → R/Z
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is a group homomorphism satisfying

rot(g) = μ[x, g(x))

for all g ∈ G and x ∈ S1. Moreover, the kernel of this homomorphism fixes every
point in suppμ.

We now recall some ideas from [15] that will be crucial in the proof of our main
result. Following [22], we say that two elements f, g ∈ Homeo+(R) are crossed if
there exist point u < w < v in R such that:

(1) gn(u) < w < f n(v) for all n ∈ Z;
(2) There is an N ∈ Z such that gN(v) < w < f N(u).

A group action of G on R by orientation preserving homeomorphisms is called
Conradian if it admits no crossed elements.

Lemma 2.2 ([15], Lemma 3.10 (Centralizer–Conradian Lemma)) Let τ > 0, and let
G ≤ Diff1,τ+ ([0, 1]). If c is a central element of G, then the restriction of G to supp c

is Conradian.

The relationship between C1,τ actions and Conradian actions is elucidated by the
following technical fact.

Lemma 2.3 ([15], Lemmas 3.4) If τ, u > 0 are real numbers, and if k ≥ 2 is an
integer satisfying τ(1 + τ)k−2 ≥ u, then Diff1,τ+ ([0, 1]) does not contain a (k, u)–
nesting.

Briefly speaking, a (k, u)–nesting is a finite set S ⊆ Homeo+([0, 1]) such that
for some infinite sequence (s1, s2, . . .) of elements from S, for some nested open
intervals

J1 � J2 � · · · � Jk,

and for some choices
{tn,i | 2 ≤ i ≤ k, n ≥ 0} ⊆ S,

one has ∑

n≥0

|sn · · · s2s1J1|u < ∞,

together with
tn,iwnJi ∩ wnJi = ∅, tn,iwnJi−1 = wnJi−1,

where here wn = sn · · · s1. A (k, u)–nesting is a feature of an action that is weaker
than the classical notion of a “k–level structure” [20].

Lemma 2.4 ([15], Lemma 3.13) Let G ≤ Homeo+([0, 1]) be a Conradian group
such that G(k) 
= 1 for some k ≥ 2. If c is a central element of G fixing no points in
(0, 1), then G contains a (k, 1)–nesting.

One may take the (k, u)–nesting as a black box for the purpose of this paper, and
only note the following immediate consequence of the three preceding lemmas.
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Lemma 2.5 Let τ > 0 be a real number and k ≥ 3 be an integer such that τ(1 +
τ)k−2 ≥ 1. If c is a central element of G ≤ Diff1,τ+ ([0, 1]) fixing no points in (0, 1),
then G(k) = 1.

A fixed point a of g ∈ Diff1+(S1) is called a hyperbolic fixed point if g′(a) 
= 1.
The following deep theorem of Deroin–Kleptsyn–Navas (which is a generalization
of a result due to Sacksteder) will be an important ingredient for us.

Theorem 2.6 ([6]) If a subgroup G of Diff1+(S1) preserves no probability measure
on S1, then G contains an element g such that Fixg is nonempty, finite, and consists
entirely of hyperbolic fixed points.

Remark 2.7 For a group G ≤ Homeo+(S1) that does not admit a finite orbit, there
uniquely exists a smallest, nonempty, closed G–invariant set �G, called the limit set
of G; see Theorem 2.1.1 in [21], for instance. The limit set is either S1 or a Cantor
set, the latter of which is called the exceptional minimal set of G. In Theorem 2.6, we
can find a point x ∈ �G\Fixg, since the limit set�G is necessarily infinite. Consider
now the component J of suppg containing x. The G–invariance of �G implies that

∂J = g±∞(x) ⊆ Fixg ∩ �G.

In other words, we can always find a hyperbolic fixed point of g in �G.

3 Establishing theMain Result

A group G is said to be solvable of degree at most k if the subgroup G(k), the k–
th term in the derived series, is trivial. As noted in the introduction Theorem 1.1
will follow from Proposition 1.8, which in turn is an immediate consequence of the
stronger result given below.

Theorem 3.1 Let k ≥ 3 be an integer, and let τ > 0 be a real number satisfying
τ(1 + τ)k−2 ≥ 1. If G1 and G2 are groups that are not solvable of degree at most
(k+1), then every faithfulC1,τ–action ofG1×G2 on S1 admits a disjointly supported
pair. In particular, we have that

CritReg ((G1 × G2) ∗ Z) ≤ 1 + τ .

Note that the second part of the theorem follows from the first along with the abt–
Lemma (Proposition 1.7). The lemma below is a key step in the proof of the first
part.

Lemma 3.2 Let k and τ be as in Theorem 3.1. If a group H ≤ Diff1,τ+ (S1) can be
written as a direct product H = H1 × H2, and if H1 does not preserve a probability
measure on S1, then H2 is solvable of degree at most (k + 1).
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Proof From Theorem 2.6 and Remark 2.7, we can find some c ∈ H1 and a ∈ �H1 ∩
Fixc such that c fixes finitely many points and such that c′(a) 
= 1. For all h ∈ H2,
the point h(a) is also a hyperbolic fixed point of c with the derivative c′(a) since

c′ ◦ h(a) = (c ◦ h)′(a)/h′(a) = h′(c(a)) · c′(a)/h′(a) = c′(a).

It follows that H2(a) does not have an accumulation point, and in particular is finite.
As H2 admits an invariant probability measure (with atoms at points of H2(a)), we
see from Proposition 2.1 that K := [H2, H2] fixes the point a.

Let U1 and U2 be the two components of supp c containing a on their boundaries.
The group K preserves each Ui , since K permutes the components of supp c and

fixes the point a. Applying Lemma 2.5 to the restriction

(〈c〉 × K) �Ui
,

we see that K(k) acts trivially on Ui for i = 1, 2.
Suppose V is a component of the support of K , not intersecting U1 ∪ U2. Since a

lies in the limit set of H1, we can find some h1 ∈ H1 such that

h1(V ) ⊆ U1 ∪ U2.

Let g ∈ K(k) and v ∈ V be arbitrary. Since g acts trivially on h1(v), we have that

g(v) = h−1
1 ◦ g ◦ h1(v) = h−1

1 ◦ h1(v) = v.

Combined with the preceding paragraph, this proves that

H
(k+1)
2 = K(k) = 1.

We note the following general observation regarding topological actions. The first
part of the lemma is well-known. Presumably, the second part is also known to
experts, but the authors could not find a written reference for it.

Lemma 3.3 Let H = H1 × H2 be a subgroup of Homeo+(S1).

(1) If each Hi admits a global fixed point, then so does H .
(2) If each Hi preserves a Borel probability measure on S1, then so does H .

Proof (3.3) Suppose not. Since FixH1 ∩ FixH2 = ∅, we can find some b ∈
FixH1 ∩ suppH2. Let J be the component of suppH2 containing b. There exists a
sequence {hn} in H2 such that

b′ := lim
n→∞ hn(b) ∈ ∂J .

Then b′ ∈ FixH1 ∩ FixH2, which is a contradiction.
(3.3) Let μi be a probability measure preserved by Hi . By Proposition 2.1, the

restriction of rot to each Hi is a homomorphism.
Suppose first that rot(H1) ∪ rot(H2) is a discrete subset of R/Z. This means that

Ki , the kernel of the map rot : Hi −→ Q/Z, has finite index in Hi (i = 1, 2). Since
each Ki admits a global fixed point, so does K1 × K2. This latter group has finite
index in H , and so H has a finite orbit and preserves a probability measure.
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We now assume that rot(H1) ∪ rot(H2) is indiscrete in R/Z. Without loss of gen-
erality, rot(H1) is a dense subgroup ofR/Z. By a result of Plante (see Proposition 2.2
of [27]), it follows that H1 preserves a unique Borel probability measure μ1. Finally,
if h2 ∈ H2 and h1 ∈ H1, then

h∗
1h

∗
2μ1 = h∗

2h
∗
1μ1 = h∗

2μ1.

The uniqueness of μ1 implies that h∗
2μ1 = μ1. In other words we have shown that

μ1 is also H2–invariant, and so also H–invariant.

Proof of Theorem 3.1 We may assume that the given group G := G1 × G2 is a
subgroup of Diff1,τ+ (S1).

If some Gi does not admit an invariant probability measure, we apply Lemma 3.2
to obtain a contradiction. So, we will assume that each Gi preserves a probability
measure. Lemma 3.3 implies that G also preserves a probability measure μ.

By Proposition 2.1 the rotation number is trivial on the group

H := [G, G] = [G1, G1] × [G2, G2].
Moreover, the support of μ is contained in the global fixed point set of H , which is
therefore nonempty. So, the inclusion H ↪→ Diff1,τ+ (S1) factors through an injection

H ↪→ Diff1,τ+ ([0, 1]). By Theorem 1.6, it follows that H admits a disjointly sup-
ported pair. Along with the abt–Lemma (Proposition 1.7), this completes the proof.
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