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Abstract15

Climate models project a distinct seasonality to future changes in daily extreme precip-16

itation. In particular, models project that over land in the extratropical Northern Hemi-17

sphere the summer response is substantially weaker than the winter response in percent-18

age terms. Here we decompose the projected response into thermodynamic and dynamic19

contributions and show that the seasonal contrast arises due to a negative dynamic con-20

tribution in northern summer, and a positive dynamic contribution and an anomalously21

strong thermodynamic contribution in northern winter. The negative dynamic contri-22

bution in northern summer is due to weakened ascent and is strongly correlated with de-23

creases in mean near-surface relative humidity. Finally, we show that the summer-winter24

contrast is also evident in observed trends of daily precipitation extremes in northern25

midlatitudes, which provides support for the contrast found in climate-model simulations.26

Plain Language Summary27

Extreme rainfall is a highly impactful aspect of the water cycle, and it is now well-28

established that global warming tends to increase the severity of extreme rainfall events.29

However, while this increase holds robustly on global scales, there is significant uncer-30

tainty associated with understanding the response of extreme rainfall to warming in dif-31

ferent regions of the world and in different seasons. Here we focus on understanding changes32

in extreme rainfall in summer and winter over Northern Hemisphere extratropical land.33

We find that global warming has a contrasting impact on extreme rainfall over this re-34

gion depending on the season considered. In winter, there are large increases in extreme35

rainfall with warming relative to the climatology, whereas in summer the changes are much36

weaker. We use a simple, physics-based approach to decompose these changes into con-37

tributions from changes in temperature and changes in ascent. Our results show that the38

contrasting seasonal response over this region is mostly due to decreases in extreme as-39

cent with warming in summer, and that the ‘summer-winter’ contrast is already present40

in observed changes of extreme rainfall since the mid-20th century.41

1 Introduction42

The impacts of extreme precipitation are felt acutely across the world with con-43

sequences ranging from floods and landslides (Kirschbaum et al., 2012) to changes in ecosys-44

tems (Knapp et al., 2008). Additionally, it is now well-understood that extreme precip-45

itation events intensify overall on a global scale in response to global warming (Wehner46

et al., 2020; Kharin et al., 2013; O’Gorman, 2015). On regional scales however, the re-47

sponse of precipitation extremes to warming is uncertain, with some regions projected48

to experience changes in precipitation extremes which are much higher or lower than the49

global-mean intensification (Pfahl et al., 2017). Put together, this makes regional changes50

in extreme precipitation potentially one of the most impactful consequences of global warm-51

ing. Thus, understanding historical and future changes in regional extreme precipitation52

important not only from a scientific perspective, but also for understanding the unequal53

impacts of climate change (Diffenbaugh & Burke, 2019). In addition, considering pre-54

cipitation extremes in different seasons helps to clarify physical drivers and can also be55

important for impacts.56

To understand projections of changes in precipitation extremes it is useful to de-57

compose the changes into contributions from different physical drivers. One such approach58

is to use the simple, physical scaling developed by O’Gorman and Schneider (2009a) which59

relates the intensity of precipitation extremes, Pe, to the pressure vertical velocity (ωe)60

and the vertical derivative of saturation specific humidity with respect to pressure as-61

suming a moist adiabatic lapse rate ( dqs

dp |θ∗),62
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Pe ∼ −
{
ωe

dqs
dp

∣∣∣∣
θ∗

}
, (1)

where {·} denotes a mass-weighted vertical integral over the troposphere, ωe is evalu-
ated on the day of the extreme event, and dqs

dp |θ∗ is evaluated using the temperature Te

on the day of the extreme event. Thus, when considering a change in precipitation ex-
tremes due to global warming, δPe, we can decompose the change into a thermodynamic
contribution associated with changes in Te and a dynamic contribution associated with
changes in extreme ascent ωe,

δPe ≈ δPthermodynamic + δPdynamic. (2)

Pfahl et al. (2017) recently showed that Eq. 1 successfully captures the present-63

day and future changes of precipitation extremes in simulations from the Coupled Model64

Intercomparison Project Phase 5, CMIP5, (Taylor et al., 2012) and thus is a good proxy65

for understanding and decomposing these future changes (Fig. S1). Pfahl et al. (2017)66

used Eq. 1 to decompose future regional changes in annual and seasonal maximum daily67

precipitation (hereafter, Rx1day) in the CMIP5 simulations into thermodynamic and dy-68

namic contributions. The thermodynamic contribution is positive and relatively spatially69

uniform, whereas the dynamic contribution varies strongly between regions and seasons70

and can either locally amplify or counteract the increases from the thermodynamic con-71

tribution.72

The results of Pfahl et al. (2017) show a pronounced ‘summer-winter’ contrast in73

the response of seasonal Rx1day. The fraction of Northern Hemisphere (NH) extratrop-74

ical land experiencing robust increases is relatively small in June-July-August (JJA), due75

to a negative dynamic contribution over land, particularly over Europe and North Amer-76

ica. Similar results were found by Tandon et al. (2018) for the CanESM2 large ensem-77

ble. By contrast, Pfahl et al. (2017) found a strong response of precipitation extremes78

in the NH extratropics for December-January-February (DJF), and climate change was79

found to induce a shift in precipitation extremes towards the cold season in this region.80

Marelle et al. (2018) also found a shift towards the cold season for many regions in both81

CMIP5 models and regional models from the Coordinated Regional Downscaling Exper-82

iment (CORDEX). Furthermore, although climate models exhibit regional biases in pre-83

cipitation extremes (Pfahl et al., 2017), Marelle et al. (2018) found that the CMIP5 and84

CORDEX models reproduce most aspects of the seasonality of precipitation extremes85

in the current climate when compared to gridded observations, which increases confidence86

in their future projections for changes in seasonality.87

High-resolution, regional models have also shown a weaker response of precipita-88

tion extremes to climate change in JJA than DJF in Europe (Wood & Ludwig, 2020).89

This summer-winter contrast was also found in convection-permitting simulations of the90

Mediterranean (Pichelli et al., 2021) and the Contiguous United States (Prein et al., 2017),91

which is notable since convection-permitting simulations are better able to represent short-92

duration precipitation extremes (Prein et al., 2015). Precipitation extremes in JJA are93

known to be sensitive to how convection is represented (Chan et al., 2014; Prein et al.,94

2015; Ban et al., 2015; Kooperman et al., 2014), and caution is needed for projections95

in regions and seasons with significant mesoscale convective activity, particularly for sub-96

daily extremes. This emphasizes the importance of seeking observational evidence and97

robust physical mechanisms that may support projected seasonal changes in precipita-98

tion extremes.99

Here, we focus on the summer-winter contrast in the fractional response of daily100

precipitation extremes to climate warming in the NH in CMIP5 models and gridded ob-101

servations. We begin by describing the model output and observational data and the meth-102

ods of analysis (Section 2). We then show that the JJA-DJF contrast is primarily due103
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to differences in the dynamic contribution between JJA and DJF, but that differences104

in the thermodynamic contribution also play a role, particularly at high latitudes (Sec-105

tion 3). We further show that the negative dynamic contribution in JJA is strongly cor-106

related in terms of model scatter and spatial pattern to decreases in mean near-surface107

relative humidity over land and explore possible physical mechanisms for this negative108

dynamic contribution (Section 4). Finally, we demonstrate that the summer-winter con-109

trast is also evident in gridded observational datasets and CMIP5 simulations over the110

historical period (Section 5), before giving our conclusions (Section 6).111

2 Methods112

We analyse changes over 1950–2100 under the historical and RCP8.5 scenarios for113

CMIP5. All models are used that provide the required data (listed in Text S1). The scal-114

ing and decomposition based on Eq. 1 is taken from Pfahl et al. (2017), and further de-115

tails can be found there, but we repeat the key points of the calculation here. We chose116

not to repeat their calculations with CMIP6 output because there is little improvement117

in the simulation of daily precipitation extremes between CMIP5 and CMIP6 (Wehner118

et al., 2020).119

Daily surface precipitation was used to calculate the maximum daily precipitation120

amount (Rx1day) for JJA and DJF in each year. Daily-mean temperature and vertical121

pressure velocity on all available pressure levels at the location and day of each daily-122

maximum precipitation event (Te and ωe, respectively) were then used to calculate the123

full extreme precipitation scaling following Eq. 1 by performing a vertical integral over124

all tropospheric levels with ascent (ωe < 0). To calculate the thermodynamic contri-125

bution, this analysis is repeated but with ωe replaced with its average over all years from126

1950-2100.127

To calculate the sensitivity to climate change, we first normalize Rx1day and the128

full and thermodynamic scalings by dividing by their average over the historical period129

(1950-2000). We then calculate the dynamic contribution as the difference between the130

full and thermodynamic scaling. This approach to calculating the dynamic contribution131

differs slightly from Pfahl et al. (2017), but yields similar results (e.g., compare our Fig.132

1c with their Fig. S8d). We then regress these normalized time series against global- and133

annual-mean surface temperature anomalies over 1950-2000 using the Theil-Sen estima-134

tor to produce sensitivities in units of (% K−1). The Theil-Sen estimator is a non-parametric135

estimator which operates by choosing the median of the slopes of all lines through pairs136

of points and is less sensitive to outliers than ordinary least-squares regression. This re-137

gression approach has been shown to provide more robust results compared to taking138

differences in multi-decadal means (Fischer et al., 2014). When presenting results for the139

seasonal contrast (JJA-DJF), the sensitivities are calculated by differencing the normal-140

ized JJA and DJF time series in each grid box, before regressing this ‘difference’ time141

series against global-mean surface temperature anomalies for each model. Using a nor-142

malization over a reference period can sometimes produce statistical biases for changes143

in precipitation extremes (Donat et al., 2016; Sippel et al., 2017), but our results remain144

largely unchanged when using the full 1950-2100 period for normalization (Fig. S2).145

All analysis is performed on each model’s native grid, and then the sensitivities are146

re-gridded to a uniform 1◦x1◦ grid before calculating multi-model statistics and zonal147

means. Pfahl et al. (2017) noted previously that some models produce very low seasonal148

Rx1day at some grid points in the subtropics, which creates anomalously large extreme149

precipitation sensitivities. Thus, when calculating multi-model or zonal means we ex-150

clude grid boxes from models where the average seasonal Rx1day over the historical pe-151

riod is less than 0.5 mm day−1. Additionally, we found that the CMCC-CMS model pro-152

duced unrealistically large changes in the thermodynamic contribution over Pakistan and153
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Afghanistan, and so for this model we exclude the region from 29.5◦ to 32.5◦ latitude154

and 60◦ to 68◦ longitude.155

We also analyse changes in seasonal Rx1day over the historical period over land156

in observations and compare them to the same period in the CMIP5 simulations (com-157

bining the historical and RCP8.5 simulations). We analyse the ‘extended’ NH summer158

(MJJAS) and winter (NDJFM) seasons (as opposed to JJA and DJF) to improve the159

signal-to-noise ratio and use data from 1950-2017, with the time-period chosen for max-160

imum overlap with the CMIP5 data. For Rx1day observations, we focus on the HadEX3161

gridded dataset (Dunn et al., 2020) which has a spatial resolution of 1.25◦ x 1.875◦, but162

we also show results for the GHCNDEX observational dataset over 1952-2018 (Donat163

et al., 2013) which has a resolution of 2.5◦ x 2.5◦ in the supplement as a point of com-164

parison. To calculate annual- and global-mean surface temperatures (including land and165

ocean) from observations, we use the NOAA Merged Land-Ocean Surface Temperature166

Analysis (Vose et al., 2012).167

Sensitivities in % K−1 for the observations are calculated at each gridbox as de-168

scribed earlier but requiring at least 45 years of data at that grid box and normalizing169

by an average over all the years used. When analysing the summer-winter contrast (here,170

MJJAS-NDJFM) we require each grid box to have 45 years of data for both seasons in171

each year, and we normalize each time series separately before differencing and then per-172

forming the regression. CMIP5 data are subsampled to the observations in both space173

and time. To reduce the influence of unforced variability and outliers, we then aggregate174

the sensitivities into 5◦ latitude bands and calculate the median sensitivity across each175

latitude band. We use bootstrapping to estimate the uncertainty due to inter-annual vari-176

ability and the non-uniform spatial coverage of the observations. To do this we calcu-177

late 10,000 bootstrap samples per latitude band, where each sample involves a random178

choice of both the years used for each grid box to calculate the regression, and a ran-179

dom choice of the grid boxes used to calculate the median sensitivity across the latitude180

band. We then calculate the median sensitivity for each bootstrap sample, and then the181

90% confidence interval across samples for each latitude band. Our conclusions are largely182

insensitive to the size of the latitude bands and the number of bootstrap samples used,183

except in the tropics where larger latitude bands can obscure seasonal migrations of the184

ITCZ.185

3 Summer-Winter contrast in CMIP5186

Figure 1 shows the multi-model mean patterns of seasonal Rx1day sensitivity based187

on the scaling Eq. 1 and its decomposition into thermodynamic and dynamic contribu-188

tions for JJA, DJF and JJA-DJF. As found in previous studies, the thermodynamic con-189

tribution is relatively uniform with robust agreement on the sign and the magnitude in190

both seasons. In stark contrast, the dynamic contribution exhibits strong regional and191

seasonal variations.192

The NH extratropics show a strongly negative JJA-DJF contrast especially over193

land (Fig. 1g). Over this region, the DJF response (Fig. 1d) is amplified by a positive194

contribution from the dynamics (Fig. 1f) and a relatively strong thermodynamic con-195

tribution particularly at high latitudes (Fig. 1e). On the other hand, the response dur-196

ing JJA is ‘muted’, with much less multi-model agreement and with some regions (par-197

ticularly Europe and the continental United States) exhibiting close to no change or even198

negative responses of extreme precipitation to warming (Fig. 1a). This weak JJA response199

arises predominantly due to the strongly negative dynamic contribution (Fig. 1c) which200

cancels out the robust, positive increase due to the thermodynamic contribution (Fig.201

1b). The negative dynamic contribution in JJA is particularly strong over land and parts202

of the subtropical Atlantic. A land-ocean contrast in the dynamic contribution in JJA203

is apparent when examining anomalies from the zonal-mean (Fig. S3), which show that204
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Figure 1. Multi-model mean Rx1day sensitivity over 1950-2100 according to the scaling Eq. 1

(a,d,g) and decomposition into (b,e,h) thermodynamic and (c,f,i) dynamic contributions for (a-c)

JJA, (d-f) DJF and (e-i) JJA minus DJF, the summer-winter contrast. Stippling indicates where

at least 90% of the models agree on the sign of the change.

the negative dynamic contribution extends further poleward over NH land as compared205

to ocean. The combination of the very weak response in JJA and the amplified response206

in DJF leads to the strong JJA-DJF difference in the response, particularly over NH mid-207

latitude land. The dynamic contribution is responsible for most of the JJA-DJF differ-208

ence, as illustrated by the similarity between Fig. 1g and i, but seasonal differences in209

the thermodynamic contribution also play a role (Fig. 1h).210

We next examine zonal-mean changes in the scaling decomposition over both land211

and ocean and over land only (Fig. 2). The thermodynamic contribution is larger at higher212

latitudes (e.g., Fig. 2b,e) and is partly responsible for the JJA-DJF contrast at NH mid-213

dle and high latitudes (Fig. 2c,f), implying a stronger thermodynamic contribution in214

DJF than JJA. A stronger thermodynamic contribution is expected for the lower tem-215

peratures in winter and at higher latitudes because percentage increases in dqs
dp |θ∗ with216

increasing temperature are larger at lower temperatures (O’Gorman & Schneider, 2009a).217

It could also be argued that Arctic amplification of surface warming also plays a role,218

and indeed the JJA-DJF contrast in the NH thermodynamic contribution is negligible219

when we regress against zonal-mean temperature (Fig. S4). However, the stronger ther-220

modynamic contribution at higher (and colder) latitudes is also found to occur even when221

a globally uniform surface warming is imposed (O’Gorman et al., 2021) suggesting that222

it is not tied to Arctic amplification. Additionally, previous studies have found there is223

less warming of Te than mean temperature at middle and high latitudes (e.g., Fig. S5224

of O’Gorman and Schneider (2009a) or Fig. 8c of O’Gorman and Schneider (2009b)) which225

suggests that normalizing by the local changes in zonal-mean temperature gives too much226

emphasis to Arctic amplification.227
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Figure 2. Zonal-mean of the Rx1day sensitivity over 1950-2100 according to the scaling and

its decomposition into thermodynamic and dynamic contributions for (a) JJA, (b) DJF and (c)

JJA-DJF. Lines indicate multi-model means and shading shows the 90% model range. Panels

(d,e,f) show the same results but for over land only.

In the tropics, the zonal-mean results in Fig. 2 are consistent with amplification228

of precipitation extremes along the ITCZ region, which moves seasonally. This leads to229

a southward shift in precipitation extremes when considering the summer-winter con-230

trast (Fig. 2c,f) because the ITCZ occurs further south in DJF than in JJA. These shifts231

are driven by the dynamic contribution as demonstrated by the similarity between the232

changes in the full scaling and the dynamic contribution in the tropics (gray and orange233

lines in Fig. 2c,f).234

We have presented results in terms of percentage changes in (% K−1) as opposed235

to absolute changes (mm day−1 K−1) because it is useful to consider the change in each236

season relative to what is expected for that season and because previous studies have also237

focused on percentage changes which are easier to relate to physical processes. Absolute238

changes also show a seasonal contrast for much of NH midlatitude land but not for some239

parts of Asia (Fig. S5g) or for zonal-mean quantities (Fig. S6f), because the thermody-240

namic contribution offsets the dynamic contribution when considering absolute changes.241

Thus, one additional advantage of considering percentage changes is that it provides a242

strong zonal-mean signal to look for in the observational record (Section 5).243

4 Physical mechanisms of the negative dynamic contribution in JJA244

Dynamic weakening of precipitation extremes during JJA is a large contributor to245

the JJA-DJF contrast in the extratropical NH, particularly over land (Figs. 1c and 2d).246

Physically then, what mechanisms could be responsible for this dynamic weakening? Tandon247

et al. (2018) tackled this question using a three-term approximation of the QG-ω equa-248

tion and found the weakening of extreme ascent was related to increases in the horizon-249

tal length scale of extreme ascent. However, Li and O’Gorman (2020) numerically in-250

verted the QG-ω equation in extreme precipitation events and found that changes in eddy251

length were less important when all terms were retained in the QG-ω equation, although252
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they did not separately analyse extremes in JJA. Changes in moist static stability, σm,253

have also been found to be important in previous studies (Li & O’Gorman, 2020; Tan-254

don et al., 2018), with an increase in σm associated with a weakening of ascent. Here,255

we calculate changes in moist static stability on the days of the extreme events follow-256

ing previous work (Text S2) and find that the changes in moist static stability are mostly257

consistent with the spatial pattern of the JJA dynamic contribution (Fig. S7), but they258

fail to capture the inter-model spread in projections over NH land (Fig. S8).259

The fact that precipitation extremes in JJA over NH extratropical land are con-260

vective in nature motivates us to investigate an mechanism for the dynamic contribu-261

tion in terms of changes in low-level relative humidity which would affect the environ-262

ment for convection and the associated convective heating that amplifies large-scale as-263

cent. Decreases in near-surface relative humidity (RH2m) over land are expected with264

global-warming because of the land-ocean warming contrast (Byrne & O’Gorman, 2016,265

2018) and decreases in stomatal conductance (Cao et al., 2010; Berg et al., 2016). Fur-266

thermore, previous work has shown that decreases in relative humidity cause an increase267

in convective inhibition (CIN) that is particularly large over NH land in JJA (Chen et268

al., 2020).269

Figure 3. Sensitivity for JJA over 1950-2100 of (a) seasonal-mean near-surface relative hu-

midity and (b) the dynamic contribution to changes in precipitation extremes. Results are shown

for the 12 models that archived RH2m and for which the dynamic contribution was calculated.

Stippling indicates where 10 out the 12 models agree on the sign of the sensitivity. Panel (c)

shows a scatter plot of the median sensitivities across land grid boxes in the latitude band 40-

70◦N for each model.

In Fig. 3 we compare the sensitivities of seasonal-mean RH2m and the dynamic con-270

tribution to precipitation extremes during JJA for climate change over 1950-2100. The271

sensitivity of RH2m is defined using regression analogously to the sensitivity of precip-272

itation extremes and normalized by the 1950-2000 mean. There is strong agreement be-273

tween the spatial pattern of the change in RH2m and the dynamic contribution (Fig. 3a,b),274

with the models agreeing robustly on strong decreases in relative humidity and a neg-275

ative dynamic contribution over similar regions of the globe. Furthermore, Fig. 3c shows276
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that models with a stronger decrease in JJA RH2m also tend to have a stronger nega-277

tive dynamic contribution when averaged over NH midlatitude land. The link between278

the dynamic contribution and RH2m is not as strong in individual model runs (Fig. S9279

and S10), potentially due to unforced variability in precipitation extremes and other mech-280

anisms which act to change ωe in precipitation extremes but are not robust across mod-281

els. Changes in RH2m on the day of the event are weaker but are nonetheless strongly282

correlated with the dynamic contribution (Fig. S11).283

The details of the mechanism by which decreases in relative humidity inhibit con-284

vective heating in extreme precipitation events requires further study, ideally with a cloud-285

resolving model. One possibility is through increases in convective inhibition (CIN), and286

we find that seasonal-mean CIN increases are correlated with the dynamic contribution287

for both the spatial pattern and inter-model scatter (Text S3, Fig. S12). However, while288

CIN on the day of the extreme precipitation event (CINe) also increases, these changes289

are not strongly correlated with the dynamic contribution in terms of inter-model scat-290

ter (see Figs. S13-14 and discussion in Text S3). Thus, low-level relative humidity de-291

creases may be inhibiting convection, but CIN on the day of the event is not clearly cap-292

turing this effect. Relative humidity higher up in the troposphere on the day of the event293

also decrease over land, but these changes are not as well correlated with the dynamic294

contribution and may be caused by the changes in vertical velocity (Fig. S15, S16).295

The relationship between changes in mean relative humidity and the negative dy-296

namic contribution to changes in extreme precipitation in JJA (Fig. 3) is notable in that297

it links changes in a mean quantity to changes in an extreme statistic. Such a link is po-298

tentially very useful since mean quantities can be easier to observationally constrain than299

extremes. The decrease in relative humidity occurs only over land, and factors such as300

the changes in moist static stability discussed earlier (Li & O’Gorman, 2020; Tandon et301

al., 2018), a general weakening of the extratropical storm track in NH JJA (O’Gorman,302

2010; Gertler & O’Gorman, 2019), or the poleward expansion of the Hadley cells in the303

subtropics (Pfahl et al., 2017; Norris et al., 2020) may also influence the dynamic con-304

tribution over land and ocean.305

In NH DJF, there is not a connection between changes in RH2m and the dynamic306

contribution (Fig. S17), which we hypothesize is because daily precipitation extremes307

in DJF are controlled to a greater extent by large-scale dynamics as compared to the strongly308

convective extremes in JJA.309

Interestingly, there is also a negative dynamic contribution over the Southern Hemi-310

sphere over both land and ocean in JJA (Fig. 1c). This negative dynamic contribution311

does not show as clear a land-ocean contrast and primarily occurs at lower latitudes as312

compared to the negative dynamic contribution in the NH, and thus we hypothesize it313

may be more strongly influenced by factors such as Hadley cell expansion (Pfahl et al.,314

2017; Norris et al., 2020).315

5 Observed and modelled trends over the historical period316

Given the difficulty in correctly representing convection in models, we next turn317

our attention to gridded observations of precipitation extremes. Figure 4 shows the sen-318

sitivity of daily precipitation extremes from HadEX3 observations and CMIP5 models319

to warming over 1950-2017 for boreal summer (MJJAS) and extended winter (NDJFM),320

and the seasonal contrast (MJJAS-NDJFM). The results are expressed as medians for321

each 5◦ latitude bands (see Section 2). For the NH extratropics, the observed sensitiv-322

ities are positive in both MJJAS and NDJFM, and there is a clear summer-winter con-323

trast with lower sensitivities in MJJAS than NDJFM (Fig.4a,b,c). The seasonal contrast324

is also evident when looking at maps of the sensitivities, but as expected there is con-325

siderable noise when considering sensitivities for a period of this length in individual grid-326
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Figure 4. The sensitivity of Rx1day to warming over 1950-2017 in MJJAS (a,d), NDJFM

(b,e) and MJJAS-NDJFM (c,f) for the HadEX3 dataset (a,b,c) and CMIP5 simulations subsam-

pled to the HadEX3 dataset (d,e,f). Solid lines show the median sensitivity across the 5◦ latitude

band. Dashed lines show the 90% confidence interval for HadEX3 and 90% of the model spread

for CMIP5. The total number of samples included in each latitude band is also shown (g,h,i)

which is the same for both the observations and the simulations.

boxes (Fig.S18 a,b,c). The NH extratropical summer-winter contrast is also present in327

the CMIP5 models over the same historical period (Fig.4 d,e,f).328

We next quantify the NH midlatitude response by averaging the sensitivities over329

land between 30-70◦N with area-weighting. For the observations, the mean NH sensi-330

tivity is 5.6 % K−1 for MJJAS, 11.6 % K−1 for NDJFM, and -7.2 % K−1 for MJJAS-331

NDJFM. For the CMIP5 models over the same period, the multimodel-mean sensitiv-332

ity and full model range are 4.4% K−1 (2.1 to 9.1 % K−1) for MJJAS, 7.0 % K−1 (4.7333

to 10.8 % K−1) for NDJFM, and -2.4 % K−1 (0.6 to -8.4 % K−1) for MJJAS-NDJFM.334

Thus, while the models and observations show similar sensitivities during MJJAS, none335

of the models capture the very strong observed sensitivity for NDJFM. As a result, while336

the observed MJJAS-NDJFM contrast lies within the model range, the multi model-mean337

value is smaller in magnitude than the value in observations. The smaller magnitude of338

the sensitivity in the multimodel mean than in observations may be related to unforced339

internal variability, which is reduced by considering the multimodel mean but is likely340

to be still important in observations. Despite this, most but not all models (15/18) give341

a negative MJJAS-NDJFM contrast for this period, consistent with the observations.342

GHCNDEX has a coarser spatial resolution and fewer grid boxes with data com-343

pared to HadEX3, particularly in the tropics, but we find similar changes in seasonal Rx1day344
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over the Northern Hemisphere (Figs. S18 and S19), which strengthens our confidence345

in the results. Similar results are also found when the CMIP5 data are not subsampled346

to the observations (Figure S20), which suggests that missing grid points in the obser-347

vations are not affecting our conclusions. The robust presence of the MJJAS-NDJFM348

contrast in observed trends over the historical period supports the contrast found in ear-349

lier sections.350

6 Conclusions351

In this study we have demonstrated that CMIP5 models project a robust summer-352

winter contrast in the response of precipitation extremes to warming over Northern Hemi-353

sphere midlatitude land, with considerably weaker percentage changes in JJA than DJF.354

We have also shown that this summer-winter contrast is evident in gridded observations355

over the historical period, which strengthens our confidence in the future projections.356

CMIP5 simulations over the historical period also show a summer-winter contrast that357

occurs in 15/18 models, and the model range includes the observed value of this contrast.358

Furthermore, we have used a simple, physical scaling to help explain the cause of359

the summer-winter contrast in changes in precipitation extremes. The contrast is pri-360

marily caused by the dynamic contribution (related to changes in extreme ascent) with361

strongly negative dynamic contribution in JJA and a weakly positive dynamic contri-362

bution in DJF. The negative dynamic contribution in JJA is strong over NH extratrop-363

ical land, and we show it is correlated with decreases in near-surface relative humidity364

in terms of spatial pattern and inter-model scatter. The negative dynamic contribution365

is also correlated with increases in seasonal CIN but less so for CIN on the day of the366

extreme precipitation event, and thus further work is required to investigate the dynam-367

ical mechanism involved and demonstrate causality.368

The thermodynamic contribution to changes in precipitation extremes also helps369

to amplify the response in winter over summer, particularly over high latitudes. We have370

focused on percentage seasonal changes because they may be more relevant for impacts371

in a given season and to better connect with physical mechanisms. If absolute rather than372

percentage changes in precipitation extremes are considered, the thermodynamic con-373

tribution is larger in summer than winter, and this offsets the JJA-DJF contrast in the374

dynamic contribution, although the contrast is still evident over much of NH midlati-375

tude land (Fig. S5).376

Future work could build on our observational analysis by performing a formal de-377

tection and attribution analysis of the seasonal difference in trends of precipitation ex-378

tremes. Future work could also build more understanding of the positive dynamic con-379

tribution in the NH extratropics in winter, which is important as DJF is the season of380

maximum daily precipitation in many regions (Marelle et al., 2018). Future work could381

also investigate the detailed mechanism of the link between changes in relative humid-382

ity and precipitation extremes in summer using idealized experiments in cloud-resolving383

models, which would also help to establish the physical reliability of this link. Given the384

potential importance of decreases in relative humidity over land for convection and pre-385

cipitation extremes, it would be helpful to develop an emergent constraint for the mag-386

nitude of the expected decrease, although this may be difficult to the extent that it de-387

pends both on the land-ocean warming contrast and the plant physiological response to388

increased on CO2 levels.389

7 Open Research390

Processed observational and climate model data supporting the conclusions in this391

study can be found at https://doi.org/10.5281/zenodo.6341493.392
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