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Key Points:

¢ Over Northern Hemisphere extratropical land, the projected fractional increase
of precipitation extremes is weaker in summer than winter

e The summer-winter contrast is mostly driven by weakened extreme ascent in sum-
mer, which is correlated with decreased surface relative humidity

e The summer-winter contrast is also evident in observations of historical changes
in daily precipitation extremes, consistent with CMIP5 models
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Abstract

Climate models project a distinct seasonality to future changes in daily extreme precip-
itation. In particular, models project that over land in the extratropical Northern Hemi-
sphere the summer response is substantially weaker than the winter response in percent-
age terms. Here we decompose the projected response into thermodynamic and dynamic
contributions and show that the seasonal contrast arises due to a negative dynamic con-
tribution in northern summer, and a positive dynamic contribution and an anomalously
strong thermodynamic contribution in northern winter. The negative dynamic contri-
bution in northern summer is due to weakened ascent and is strongly correlated with de-
creases in mean near-surface relative humidity. Finally, we show that the summer-winter
contrast is also evident in observed trends of daily precipitation extremes in northern
midlatitudes, which provides support for the contrast found in climate-model simulations.

Plain Language Summary

Extreme rainfall is a highly impactful aspect of the water cycle, and it is now well-
established that global warming tends to increase the severity of extreme rainfall events.
However, while this increase holds robustly on global scales, there is significant uncer-
tainty associated with understanding the response of extreme rainfall to warming in dif-
ferent regions of the world and in different seasons. Here we focus on understanding changes
in extreme rainfall in summer and winter over Northern Hemisphere extratropical land.
We find that global warming has a contrasting impact on extreme rainfall over this re-
gion depending on the season considered. In winter, there are large increases in extreme
rainfall with warming relative to the climatology, whereas in summer the changes are much
weaker. We use a simple, physics-based approach to decompose these changes into con-
tributions from changes in temperature and changes in ascent. Our results show that the
contrasting seasonal response over this region is mostly due to decreases in extreme as-
cent with warming in summer, and that the ‘summer-winter’ contrast is already present
in observed changes of extreme rainfall since the mid-20*" century.

1 Introduction

The impacts of extreme precipitation are felt acutely across the world with con-
sequences ranging from floods and landslides (Kirschbaum et al., 2012) to changes in ecosys-
tems (Knapp et al., 2008). Additionally, it is now well-understood that extreme precip-
itation events intensify overall on a global scale in response to global warming (Wehner
et al., 2020; Kharin et al., 2013; O’Gorman, 2015). On regional scales however, the re-
sponse of precipitation extremes to warming is uncertain, with some regions projected
to experience changes in precipitation extremes which are much higher or lower than the
global-mean intensification (Pfahl et al., 2017). Put together, this makes regional changes
in extreme precipitation potentially one of the most impactful consequences of global warm-
ing. Thus, understanding historical and future changes in regional extreme precipitation
important not only from a scientific perspective, but also for understanding the unequal
impacts of climate change (Diffenbaugh & Burke, 2019). In addition, considering pre-
cipitation extremes in different seasons helps to clarify physical drivers and can also be
important for impacts.

To understand projections of changes in precipitation extremes it is useful to de-
compose the changes into contributions from different physical drivers. One such approach
is to use the simple, physical scaling developed by O’Gorman and Schneider (2009a) which
relates the intensity of precipitation extremes, P., to the pressure vertical velocity (we)
and the vertical derivative of saturation specific humidity with respect to pressure as-

. . . . 1
suming a moist adiabatic lapse rate (- d(;j 0+ ),
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where {-} denotes a mass-weighted vertical integral over the troposphere, w, is evalu-
ated on the day of the extreme event, and dd?; o+ is evaluated using the temperature T,
on the day of the extreme event. Thus, when considering a change in precipitation ex-
tremes due to global warming, 6 P., we can decompose the change into a thermodynamic
contribution associated with changes in T, and a dynamic contribution associated with

changes in extreme ascent we,

(SPe ~ 6Pthermodynamic + 6denamic~ (2)

Pfahl et al. (2017) recently showed that Eq. 1 successfully captures the present-
day and future changes of precipitation extremes in simulations from the Coupled Model
Intercomparison Project Phase 5, CMIP5, (Taylor et al., 2012) and thus is a good proxy
for understanding and decomposing these future changes (Fig. S1). Pfahl et al. (2017)
used Eq. 1 to decompose future regional changes in annual and seasonal maximum daily
precipitation (hereafter, Rxlday) in the CMIP5 simulations into thermodynamic and dy-
namic contributions. The thermodynamic contribution is positive and relatively spatially
uniform, whereas the dynamic contribution varies strongly between regions and seasons
and can either locally amplify or counteract the increases from the thermodynamic con-
tribution.

The results of Pfahl et al. (2017) show a pronounced ‘summer-winter’ contrast in
the response of seasonal Rx1lday. The fraction of Northern Hemisphere (NH) extratrop-
ical land experiencing robust increases is relatively small in June-July-August (JJA), due
to a negative dynamic contribution over land, particularly over Europe and North Amer-
ica. Similar results were found by Tandon et al. (2018) for the CanESM2 large ensem-
ble. By contrast, Pfahl et al. (2017) found a strong response of precipitation extremes
in the NH extratropics for December-January-February (DJF), and climate change was
found to induce a shift in precipitation extremes towards the cold season in this region.
Marelle et al. (2018) also found a shift towards the cold season for many regions in both
CMIP5 models and regional models from the Coordinated Regional Downscaling Exper-
iment (CORDEX). Furthermore, although climate models exhibit regional biases in pre-
cipitation extremes (Pfahl et al., 2017), Marelle et al. (2018) found that the CMIP5 and
CORDEX models reproduce most aspects of the seasonality of precipitation extremes
in the current climate when compared to gridded observations, which increases confidence
in their future projections for changes in seasonality.

High-resolution, regional models have also shown a weaker response of precipita-
tion extremes to climate change in JJA than DJF in Europe (Wood & Ludwig, 2020).
This summer-winter contrast was also found in convection-permitting simulations of the
Mediterranean (Pichelli et al., 2021) and the Contiguous United States (Prein et al., 2017),
which is notable since convection-permitting simulations are better able to represent short-
duration precipitation extremes (Prein et al., 2015). Precipitation extremes in JJA are
known to be sensitive to how convection is represented (Chan et al., 2014; Prein et al.,
2015; Ban et al., 2015; Kooperman et al., 2014), and caution is needed for projections
in regions and seasons with significant mesoscale convective activity, particularly for sub-
daily extremes. This emphasizes the importance of seeking observational evidence and
robust physical mechanisms that may support projected seasonal changes in precipita-
tion extremes.

Here, we focus on the summer-winter contrast in the fractional response of daily
precipitation extremes to climate warming in the NH in CMIP5 models and gridded ob-
servations. We begin by describing the model output and observational data and the meth-
ods of analysis (Section 2). We then show that the JJA-DJF contrast is primarily due
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to differences in the dynamic contribution between JJA and DJF, but that differences
in the thermodynamic contribution also play a role, particularly at high latitudes (Sec-
tion 3). We further show that the negative dynamic contribution in JJA is strongly cor-
related in terms of model scatter and spatial pattern to decreases in mean near-surface
relative humidity over land and explore possible physical mechanisms for this negative
dynamic contribution (Section 4). Finally, we demonstrate that the summer-winter con-
trast is also evident in gridded observational datasets and CMIP5 simulations over the
historical period (Section 5), before giving our conclusions (Section 6).

2 Methods

We analyse changes over 1950-2100 under the historical and RCP8.5 scenarios for
CMIP5. All models are used that provide the required data (listed in Text S1). The scal-
ing and decomposition based on Eq. 1 is taken from Pfahl et al. (2017), and further de-
tails can be found there, but we repeat the key points of the calculation here. We chose
not to repeat their calculations with CMIP6 output because there is little improvement
in the simulation of daily precipitation extremes between CMIP5 and CMIP6 (Wehner
et al., 2020).

Daily surface precipitation was used to calculate the maximum daily precipitation
amount (Rxlday) for JJA and DJF in each year. Daily-mean temperature and vertical
pressure velocity on all available pressure levels at the location and day of each daily-
maximum precipitation event (7T, and w,, respectively) were then used to calculate the
full extreme precipitation scaling following Eq. 1 by performing a vertical integral over
all tropospheric levels with ascent (w. < 0). To calculate the thermodynamic contri-
bution, this analysis is repeated but with w, replaced with its average over all years from
1950-2100.

To calculate the sensitivity to climate change, we first normalize Rx1day and the
full and thermodynamic scalings by dividing by their average over the historical period
(1950-2000). We then calculate the dynamic contribution as the difference between the
full and thermodynamic scaling. This approach to calculating the dynamic contribution
differs slightly from Pfahl et al. (2017), but yields similar results (e.g., compare our Fig.
lc with their Fig. S8d). We then regress these normalized time series against global- and
annual-mean surface temperature anomalies over 1950-2000 using the Theil-Sen estima-

tor to produce sensitivities in units of (% K~!). The Theil-Sen estimator is a non-parametric

estimator which operates by choosing the median of the slopes of all lines through pairs
of points and is less sensitive to outliers than ordinary least-squares regression. This re-
gression approach has been shown to provide more robust results compared to taking
differences in multi-decadal means (Fischer et al., 2014). When presenting results for the
seasonal contrast (JJA-DJF), the sensitivities are calculated by differencing the normal-
ized JJA and DJF time series in each grid box, before regressing this ‘difference’ time
series against global-mean surface temperature anomalies for each model. Using a nor-
malization over a reference period can sometimes produce statistical biases for changes
in precipitation extremes (Donat et al., 2016; Sippel et al., 2017), but our results remain
largely unchanged when using the full 1950-2100 period for normalization (Fig. S2).

All analysis is performed on each model’s native grid, and then the sensitivities are
re-gridded to a uniform 1°x1° grid before calculating multi-model statistics and zonal
means. Pfahl et al. (2017) noted previously that some models produce very low seasonal
Rxlday at some grid points in the subtropics, which creates anomalously large extreme
precipitation sensitivities. Thus, when calculating multi-model or zonal means we ex-
clude grid boxes from models where the average seasonal Rxlday over the historical pe-
riod is less than 0.5 mm day~'. Additionally, we found that the CMCC-CMS model pro-
duced unrealistically large changes in the thermodynamic contribution over Pakistan and
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Afghanistan, and so for this model we exclude the region from 29.5° to 32.5° latitude
and 60° to 68° longitude.

We also analyse changes in seasonal Rx1day over the historical period over land
in observations and compare them to the same period in the CMIP5 simulations (com-
bining the historical and RCP8.5 simulations). We analyse the ‘extended’ NH summer
(MJJAS) and winter (NDJFM) seasons (as opposed to JJA and DJF) to improve the
signal-to-noise ratio and use data from 1950-2017, with the time-period chosen for max-
imum overlap with the CMIP5 data. For Rx1day observations, we focus on the HadEX3
gridded dataset (Dunn et al., 2020) which has a spatial resolution of 1.25° x 1.875°, but
we also show results for the GHCNDEX observational dataset over 1952-2018 (Donat
et al., 2013) which has a resolution of 2.5° x 2.5° in the supplement as a point of com-
parison. To calculate annual- and global-mean surface temperatures (including land and
ocean) from observations, we use the NOAA Merged Land-Ocean Surface Temperature
Analysis (Vose et al., 2012).

Sensitivities in % K~! for the observations are calculated at each gridbox as de-
scribed earlier but requiring at least 45 years of data at that grid box and normalizing
by an average over all the years used. When analysing the summer-winter contrast (here,
MJJAS-NDJFM) we require each grid box to have 45 years of data for both seasons in
each year, and we normalize each time series separately before differencing and then per-
forming the regression. CMIP5 data are subsampled to the observations in both space
and time. To reduce the influence of unforced variability and outliers, we then aggregate
the sensitivities into 5° latitude bands and calculate the median sensitivity across each
latitude band. We use bootstrapping to estimate the uncertainty due to inter-annual vari-
ability and the non-uniform spatial coverage of the observations. To do this we calcu-
late 10,000 bootstrap samples per latitude band, where each sample involves a random
choice of both the years used for each grid box to calculate the regression, and a ran-
dom choice of the grid boxes used to calculate the median sensitivity across the latitude
band. We then calculate the median sensitivity for each bootstrap sample, and then the
90% confidence interval across samples for each latitude band. Our conclusions are largely
insensitive to the size of the latitude bands and the number of bootstrap samples used,
except in the tropics where larger latitude bands can obscure seasonal migrations of the
ITCZ.

3 Summer-Winter contrast in CMIP5

Figure 1 shows the multi-model mean patterns of seasonal Rx1day sensitivity based
on the scaling Eq. 1 and its decomposition into thermodynamic and dynamic contribu-
tions for JJA, DJF and JJA-DJF. As found in previous studies, the thermodynamic con-
tribution is relatively uniform with robust agreement on the sign and the magnitude in
both seasons. In stark contrast, the dynamic contribution exhibits strong regional and
seasonal variations.

The NH extratropics show a strongly negative JJA-DJF contrast especially over
land (Fig. 1g). Over this region, the DJF response (Fig. 1d) is amplified by a positive
contribution from the dynamics (Fig. 1f) and a relatively strong thermodynamic con-
tribution particularly at high latitudes (Fig. le). On the other hand, the response dur-
ing JJA is ‘muted’, with much less multi-model agreement and with some regions (par-
ticularly Europe and the continental United States) exhibiting close to no change or even
negative responses of extreme precipitation to warming (Fig. 1a). This weak JJA response
arises predominantly due to the strongly negative dynamic contribution (Fig. 1c) which
cancels out the robust, positive increase due to the thermodynamic contribution (Fig.
1b). The negative dynamic contribution in JJA is particularly strong over land and parts
of the subtropical Atlantic. A land-ocean contrast in the dynamic contribution in JJA
is apparent when examining anomalies from the zonal-mean (Fig. S3), which show that
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Figure 1. Multi-model mean Rxlday sensitivity over 1950-2100 according to the scaling Eq. 1
(a,d,g) and decomposition into (b,e,h) thermodynamic and (c,f,i) dynamic contributions for (a-c)
JJA, (d-f) DJF and (e-i) JJA minus DJF, the summer-winter contrast. Stippling indicates where
at least 90% of the models agree on the sign of the change.

the negative dynamic contribution extends further poleward over NH land as compared
to ocean. The combination of the very weak response in JJA and the amplified response
in DJF leads to the strong JJA-DJF difference in the response, particularly over NH mid-
latitude land. The dynamic contribution is responsible for most of the JJA-DJF differ-
ence, as illustrated by the similarity between Fig. 1g and i, but seasonal differences in
the thermodynamic contribution also play a role (Fig. 1h).

We next examine zonal-mean changes in the scaling decomposition over both land
and ocean and over land only (Fig. 2). The thermodynamic contribution is larger at higher
latitudes (e.g., Fig. 2b,e) and is partly responsible for the JJA-DJF contrast at NH mid-
dle and high latitudes (Fig. 2c,f), implying a stronger thermodynamic contribution in
DJF than JJA. A stronger thermodynamic contribution is expected for the lower tem-
peratures in winter and at higher latitudes because percentage increases in ‘fiqs lg« with
increasing temperature are larger at lower temperatures (O’Gorman & Schneider, 2009a).
It could also be argued that Arctic amplification of surface warming also plays a role,
and indeed the JJA-DJF contrast in the NH thermodynamic contribution is negligible
when we regress against zonal-mean temperature (Fig. S4). However, the stronger ther-
modynamic contribution at higher (and colder) latitudes is also found to occur even when
a globally uniform surface warming is imposed (O’Gorman et al., 2021) suggesting that
it is not tied to Arctic amplification. Additionally, previous studies have found there is
less warming of T, than mean temperature at middle and high latitudes (e.g., Fig. S5
of O’Gorman and Schneider (2009a) or Fig. 8c of O’Gorman and Schneider (2009b)) which
suggests that normalizing by the local changes in zonal-mean temperature gives too much
emphasis to Arctic amplification.
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Figure 2. Zonal-mean of the Rxlday sensitivity over 1950-2100 according to the scaling and
its decomposition into thermodynamic and dynamic contributions for (a) JJA, (b) DJF and (c)
JJA-DJF. Lines indicate multi-model means and shading shows the 90% model range. Panels

(d,e,f) show the same results but for over land only.

In the tropics, the zonal-mean results in Fig. 2 are consistent with amplification
of precipitation extremes along the ITCZ region, which moves seasonally. This leads to
a southward shift in precipitation extremes when considering the summer-winter con-
trast (Fig. 2¢,f) because the ITCZ occurs further south in DJF than in JJA. These shifts
are driven by the dynamic contribution as demonstrated by the similarity between the
changes in the full scaling and the dynamic contribution in the tropics (gray and orange
lines in Fig. 2c,f).

We have presented results in terms of percentage changes in (% K~!) as opposed
to absolute changes (mm day~! K1) because it is useful to consider the change in each
season relative to what is expected for that season and because previous studies have also
focused on percentage changes which are easier to relate to physical processes. Absolute
changes also show a seasonal contrast for much of NH midlatitude land but not for some
parts of Asia (Fig. S5g) or for zonal-mean quantities (Fig. S6f), because the thermody-
namic contribution offsets the dynamic contribution when considering absolute changes.
Thus, one additional advantage of considering percentage changes is that it provides a
strong zonal-mean signal to look for in the observational record (Section 5).

4 Physical mechanisms of the negative dynamic contribution in JJA

Dynamic weakening of precipitation extremes during JJA is a large contributor to
the JJA-DJF contrast in the extratropical NH, particularly over land (Figs. 1c and 2d).
Physically then, what mechanisms could be responsible for this dynamic weakening? Tandon
et al. (2018) tackled this question using a three-term approximation of the QG-w equa-
tion and found the weakening of extreme ascent was related to increases in the horizon-
tal length scale of extreme ascent. However, Li and O’Gorman (2020) numerically in-
verted the QG-w equation in extreme precipitation events and found that changes in eddy
length were less important when all terms were retained in the QG-w equation, although
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they did not separately analyse extremes in JJA. Changes in moist static stability, o,
have also been found to be important in previous studies (Li & O’Gorman, 2020; Tan-
don et al., 2018), with an increase in o, associated with a weakening of ascent. Here,

we calculate changes in moist static stability on the days of the extreme events follow-
ing previous work (Text S2) and find that the changes in moist static stability are mostly
consistent with the spatial pattern of the JJA dynamic contribution (Fig. S7), but they
fail to capture the inter-model spread in projections over NH land (Fig. S8).

The fact that precipitation extremes in JJA over NH extratropical land are con-
vective in nature motivates us to investigate an mechanism for the dynamic contribu-
tion in terms of changes in low-level relative humidity which would affect the environ-
ment for convection and the associated convective heating that amplifies large-scale as-
cent. Decreases in near-surface relative humidity (RHap, ) over land are expected with
global-warming because of the land-ocean warming contrast (Byrne & O’Gorman, 2016,
2018) and decreases in stomatal conductance (Cao et al., 2010; Berg et al., 2016). Fur-
thermore, previous work has shown that decreases in relative humidity cause an increase
in convective inhibition (CIN) that is particularly large over NH land in JJA (Chen et
al., 2020).

a) 6RH2m, JJA b) 6denamic: JJA
N 5.0 e o 10
25 5 -
T 7
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Figure 3. Sensitivity for JJA over 1950-2100 of (a) seasonal-mean near-surface relative hu-
midity and (b) the dynamic contribution to changes in precipitation extremes. Results are shown
for the 12 models that archived RH2y, and for which the dynamic contribution was calculated.
Stippling indicates where 10 out the 12 models agree on the sign of the sensitivity. Panel (c)
shows a scatter plot of the median sensitivities across land grid boxes in the latitude band 40-
70°N for each model.

In Fig. 3 we compare the sensitivities of seasonal-mean RHs,, and the dynamic con-
tribution to precipitation extremes during JJA for climate change over 1950-2100. The
sensitivity of RHyy, is defined using regression analogously to the sensitivity of precip-
itation extremes and normalized by the 1950-2000 mean. There is strong agreement be-
tween the spatial pattern of the change in RHa,, and the dynamic contribution (Fig. 3a,b),
with the models agreeing robustly on strong decreases in relative humidity and a neg-
ative dynamic contribution over similar regions of the globe. Furthermore, Fig. 3c shows
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that models with a stronger decrease in JJA RHay, also tend to have a stronger nega-

tive dynamic contribution when averaged over NH midlatitude land. The link between

the dynamic contribution and RHsy, is not as strong in individual model runs (Fig. S9
and S10), potentially due to unforced variability in precipitation extremes and other mech-
anisms which act to change w, in precipitation extremes but are not robust across mod-
els. Changes in RHsyp, on the day of the event are weaker but are nonetheless strongly
correlated with the dynamic contribution (Fig. S11).

The details of the mechanism by which decreases in relative humidity inhibit con-
vective heating in extreme precipitation events requires further study, ideally with a cloud-
resolving model. One possibility is through increases in convective inhibition (CIN), and
we find that seasonal-mean CIN increases are correlated with the dynamic contribution
for both the spatial pattern and inter-model scatter (Text S3, Fig. S12). However, while
CIN on the day of the extreme precipitation event (CIN€) also increases, these changes
are not strongly correlated with the dynamic contribution in terms of inter-model scat-
ter (see Figs. S13-14 and discussion in Text S3). Thus, low-level relative humidity de-
creases may be inhibiting convection, but CIN on the day of the event is not clearly cap-
turing this effect. Relative humidity higher up in the troposphere on the day of the event
also decrease over land, but these changes are not as well correlated with the dynamic
contribution and may be caused by the changes in vertical velocity (Fig. S15, S16).

The relationship between changes in mean relative humidity and the negative dy-
namic contribution to changes in extreme precipitation in JJA (Fig. 3) is notable in that
it links changes in a mean quantity to changes in an extreme statistic. Such a link is po-
tentially very useful since mean quantities can be easier to observationally constrain than
extremes. The decrease in relative humidity occurs only over land, and factors such as
the changes in moist static stability discussed earlier (Li & O’Gorman, 2020; Tandon et
al., 2018), a general weakening of the extratropical storm track in NH JJA (O’Gorman,
2010; Gertler & O’Gorman, 2019), or the poleward expansion of the Hadley cells in the
subtropics (Pfahl et al., 2017; Norris et al., 2020) may also influence the dynamic con-
tribution over land and ocean.

In NH DJF, there is not a connection between changes in RHs,, and the dynamic
contribution (Fig. S17), which we hypothesize is because daily precipitation extremes

in DJF are controlled to a greater extent by large-scale dynamics as compared to the strongly

convective extremes in JJA.

Interestingly, there is also a negative dynamic contribution over the Southern Hemi-
sphere over both land and ocean in JJA (Fig. 1c). This negative dynamic contribution
does not show as clear a land-ocean contrast and primarily occurs at lower latitudes as
compared to the negative dynamic contribution in the NH, and thus we hypothesize it
may be more strongly influenced by factors such as Hadley cell expansion (Pfahl et al.,
2017; Norris et al., 2020).

5 Observed and modelled trends over the historical period

Given the difficulty in correctly representing convection in models, we next turn
our attention to gridded observations of precipitation extremes. Figure 4 shows the sen-
sitivity of daily precipitation extremes from HadEX3 observations and CMIP5 models
to warming over 1950-2017 for boreal summer (MJJAS) and extended winter (NDJFM),
and the seasonal contrast (MJJAS-NDJFM). The results are expressed as medians for
each 5° latitude bands (see Section 2). For the NH extratropics, the observed sensitiv-
ities are positive in both MJJAS and NDJFM, and there is a clear summer-winter con-
trast with lower sensitivities in MJJAS than NDJFM (Fig.4a,b,c). The seasonal contrast
is also evident when looking at maps of the sensitivities, but as expected there is con-
siderable noise when considering sensitivities for a period of this length in individual grid-
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Figure 4. The sensitivity of Rxlday to warming over 1950-2017 in MJJAS (a,d), NDJFM
(b,e) and MJJAS-NDJFM (c,f) for the HadEX3 dataset (a,b,c) and CMIP5 simulations subsam-
pled to the HadEX3 dataset (d,e,f). Solid lines show the median sensitivity across the 5° latitude
band. Dashed lines show the 90% confidence interval for HadEX3 and 90% of the model spread
for CMIP5. The total number of samples included in each latitude band is also shown (g,h,i)

which is the same for both the observations and the simulations.

boxes (Fig.S18 a,b,c). The NH extratropical summer-winter contrast is also present in
the CMIP5 models over the same historical period (Fig.4 d,e,f).

We next quantify the NH midlatitude response by averaging the sensitivities over
land between 30-70°N with area-weighting. For the observations, the mean NH sensi-
tivity is 5.6 % K1 for MJJAS, 11.6 % K~! for NDJFM, and -7.2 % K~ for MJJAS-
NDJFM. For the CMIP5 models over the same period, the multimodel-mean sensitiv-
ity and full model range are 4.4% K=! (2.1 to 9.1 % K1) for MJJAS, 7.0 % K~ (4.7
to 10.8 % K1) for NDJFM, and -2.4 % K~ (0.6 to -8.4 % K1) for MJJAS-NDJFM.
Thus, while the models and observations show similar sensitivities during MJJAS, none
of the models capture the very strong observed sensitivity for NDJFM. As a result, while
the observed MJJAS-NDJFM contrast lies within the model range, the multi model-mean
value is smaller in magnitude than the value in observations. The smaller magnitude of
the sensitivity in the multimodel mean than in observations may be related to unforced
internal variability, which is reduced by considering the multimodel mean but is likely
to be still important in observations. Despite this, most but not all models (15/18) give
a negative MJJAS-NDJFM contrast for this period, consistent with the observations.

GHCNDEX has a coarser spatial resolution and fewer grid boxes with data com-

pared to HadEX3, particularly in the tropics, but we find similar changes in seasonal Rx1day
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over the Northern Hemisphere (Figs. S18 and S19), which strengthens our confidence

in the results. Similar results are also found when the CMIP5 data are not subsampled
to the observations (Figure S20), which suggests that missing grid points in the obser-
vations are not affecting our conclusions. The robust presence of the MJJAS-NDJFM
contrast in observed trends over the historical period supports the contrast found in ear-
lier sections.

6 Conclusions

In this study we have demonstrated that CMIP5 models project a robust summer-
winter contrast in the response of precipitation extremes to warming over Northern Hemi-
sphere midlatitude land, with considerably weaker percentage changes in JJA than DJF.
We have also shown that this summer-winter contrast is evident in gridded observations
over the historical period, which strengthens our confidence in the future projections.
CMIP5 simulations over the historical period also show a summer-winter contrast that
occurs in 15/18 models, and the model range includes the observed value of this contrast.

Furthermore, we have used a simple, physical scaling to help explain the cause of
the summer-winter contrast in changes in precipitation extremes. The contrast is pri-
marily caused by the dynamic contribution (related to changes in extreme ascent) with
strongly negative dynamic contribution in JJA and a weakly positive dynamic contri-
bution in DJF. The negative dynamic contribution in JJA is strong over NH extratrop-
ical land, and we show it is correlated with decreases in near-surface relative humidity
in terms of spatial pattern and inter-model scatter. The negative dynamic contribution
is also correlated with increases in seasonal CIN but less so for CIN on the day of the
extreme precipitation event, and thus further work is required to investigate the dynam-
ical mechanism involved and demonstrate causality.

The thermodynamic contribution to changes in precipitation extremes also helps
to amplify the response in winter over summer, particularly over high latitudes. We have
focused on percentage seasonal changes because they may be more relevant for impacts
in a given season and to better connect with physical mechanisms. If absolute rather than
percentage changes in precipitation extremes are considered, the thermodynamic con-
tribution is larger in summer than winter, and this offsets the JJA-DJF contrast in the
dynamic contribution, although the contrast is still evident over much of NH midlati-
tude land (Fig. S5).

Future work could build on our observational analysis by performing a formal de-
tection and attribution analysis of the seasonal difference in trends of precipitation ex-
tremes. Future work could also build more understanding of the positive dynamic con-
tribution in the NH extratropics in winter, which is important as DJF is the season of
maximum daily precipitation in many regions (Marelle et al., 2018). Future work could
also investigate the detailed mechanism of the link between changes in relative humid-
ity and precipitation extremes in summer using idealized experiments in cloud-resolving
models, which would also help to establish the physical reliability of this link. Given the
potential importance of decreases in relative humidity over land for convection and pre-
cipitation extremes, it would be helpful to develop an emergent constraint for the mag-
nitude of the expected decrease, although this may be difficult to the extent that it de-
pends both on the land-ocean warming contrast and the plant physiological response to
increased on COy levels.

7 Open Research

Processed observational and climate model data supporting the conclusions in this
study can be found at https://doi.org/10.5281 /zenodo.6341493.
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