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High-throughput digital pathology via a handheld,
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The recent advent of whole slide imaging (WSI) systems has moved digital pathology closer to diagnostic

applications and clinical practices. Integrating WSI with machine learning promises the growth of this field in

upcoming years. Here we report the design and implementation of a handheld, colour-multiplexed, and AI-

powered ptychographic whole slide scanner for digital pathology applications. This handheld scanner is built

using low-cost and off-the-shelf components, including red, green, and blue laser diodes for sample

illumination, a modified stage for programmable sample positioning, and a synchronized image sensor pair

for data acquisition. We smear a monolayer of goat blood cells on the main sensor for high-resolution

lensless coded ptychographic imaging. The synchronized secondary sensor acts as a non-contact encoder

for precisely tracking the absolute object position for ptychographic reconstruction. For WSI, we introduce a

new phase-contrast-based focus metric for post-acquisition autofocusing of both stained and unstained

specimens. We show that the scanner can resolve the 388-nm linewidth on the resolution target and

acquire gigapixel images with a 14 mm × 11 mm area in ∼70 seconds. The imaging performance is validated

with regular stained pathology slides, unstained thyroid smears, and malaria-infected blood smears. The

deep neural network developed in this study further enables high-throughput cytometric analysis using the

recovered complex amplitude. The reported do-it-yourself scanner offers a portable solution to transform

the high-end WSI system into one that can be made widely available at a low cost. The capability of high-

throughput quantitative phase imaging may also find applications in rapid on-site evaluations.

Introduction

The process of analysing histology slides using a regular light
microscope is the gold standard in diagnosing a large
number of diseases, including almost all types of cancers.
However, this process is highly subjective and suffers from
inter- and intra-observer variations despite its success in
diagnostic applications. The current workflow in a clinical
setting is also labour-intensive and mostly qualitative. It can
be easily disrupted when a pathologist bumps a slide to a
high magnification objective lens or switches to a different
objective lens.

Quantitative characterization of histopathology imagery is
vital for reducing observer errors in diagnoses. It can also
streamline and standardize the clinical workflow. Thus,

whole slide imaging (WSI) systems were developed to replace
conventional light microscopes for quantitative and
accelerated histopathological analyses.1 The first WSI
platform was developed based on a robotic microscope in
1990s.2 With imaging hardware and software developments,
the regulatory field for digital pathology using WSI systems
has advanced significantly in the past decade. A key
milestone was accomplished in 2017 when the Philips' whole
slide scanner was approved for primary diagnostic use in the
U.S.3 Furthermore, the recent advancement of artificial
intelligence (AI) in medical diagnostics promises further
growth of this field in the coming decades. In particular,
various deep learning approaches have been demonstrated
for automatic analysis of whole slide images with
performance comparable to human experts.4,5

A typical whole slide scanner consists of the following
hardware components:6 1) a microscope with high numerical
aperture (NA) objective lenses and a tube lens, 2) a motorized
x–y stage for rapid lateral scanning of the slide, 3) a precise
motorized z-stage for axial movement and rapid focusing of the
objective lens, 4) one or more image sensors for image
acquisition and autofocusing, and 5) a high-power light source
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for motion-frozen sample illumination. The resultant scanner
enables comprehensive digital rending of entire histology
slides. In addition, the colour information is often obtained
from the Bayer colour filter of the image sensor. The stitched
whole-slide digital image can then be viewed, shared,
navigated, and annotated with speed and ease on a computer
monitor.

Several challenges are associated with using the
conventional whole slide scanners for high-throughput
imaging. First, the depth of field of high-NA objective lenses
is on the micron scale. This limitation poses a challenge for
tracking the axial topography variations of tissue sections, as
specimens not placed within the depth of field of the
objective lens will result in degraded quality of the acquired
images. Ultimately, this leads to rescanning and workflow
delays. To address this challenge, many whole slide scanners
create a focus map before the scanning process. For each
focus point, a system needs to acquire a z-stack by axially
moving the objective lens to different z positions. The best
focus position can then be inferred based on the captured
intensity image with the highest Brenner gradient or other
focus metrics.6 However, most focus metrics employed in
these existing systems are only valid for adequately stained
specimens. For weakly stained or unstained samples,
intensity-based focus metrics would not be a good indicator
for the best focus position. This same limitation also applies
to whole slide scanners with a secondary camera for
autofocusing, including the widely adopted systems from
Leica and Philips.6 In a later section, we will introduce a new
focus metric based on the quantitative phase contrast that
works for both stained and unstained samples.

Second, a high-NA objective lens often implies a small field
of view.7 To accommodate this limitation, current scanners
need to perform precise mechanical scanning of the sample at
high speeds. The resultant motion blur presents an issue
during the image acquisition process. Current solutions
include 1) using an expensive time-delay-integration image
sensor with precise synchronization with the sample motion, 2)
using pulsed illumination or specially-designed high-power
light sources to freeze the motion during the acquisition
process, and 3) mechanically pausing the motion for image
acquisition. The first two solutions require special hardware
with high premiums and thus, are not available for cost-
effective implementations. Alternatively, the motion
acceleration and deceleration involved within the third solution
would substantially decrease the scanning speed.

Third, challenges exist when upscaling the imaging
throughput for existing whole slide scanners. For example,
one can upscale the number of lenses used when building a
microscope array. In this respect, a lenslet array has been
utilized to demonstrate rapid WSI.8 However, the large
footprint, high cost, precise optical alignment, and other
hardware challenges have prevented the adoption of these
lenses in clinical settings. Another option is to scale up the
size of the objective lens to achieve a higher space-bandwidth
product.9 Giant objective lenses have been used to

demonstrate high-throughput, large-scale microscopic
imaging.10,11 However, these bulky and highly specialized
lenses are not readily available to researchers due to their
high costs and the required specialized acquisition hardware.

Here we report the design and implementation of a
handheld, lensless ptychographic whole slide scanner. This
handheld scanner is built using low-cost and off-the-shelf
components that operate without using any lenses. It offers a
portable solution to transform the high-end WSI system into
one that is utilizable without compromising the performance.

The reported scanner integrates several innovations into a
miniatured system. First, a synchronized image sensor pair is
used for data acquisition. The first sensor is smeared with a
monolayer of goat blood cells for high-resolution
ptychographic imaging. The second sensor is utilized for
providing precise lateral positional feedback during the
scanning process. In contrast, conventional whole slide
scanner employs a secondary camera for axial positional
tracking.6,12 Second, the reported device implements a novel
focus map generation scheme after the data has been
acquired. In particular, we adopt a new focus metric based
on the quantitative phase contrast of the specimen. This new
focus metric can find the correct focus positions for both
stained and unstained specimens post measurement. Third,
colour-multiplexed scheme is adopted in the reported device
for ptychographic reconstruction. A compact coherent
illumination module is developed using low-cost red, green,
and blue laser diodes. The high illumination flux from this
module allows image acquisition while the sample is in
continuous motion.

The integration of these innovations addresses the
challenges of the conventional scanner discussed above. In
contrast with the small depth of field of the conventional
scanner, the lensless nature of the reported device does not
impose any limit on the depth of field. After reconstruction,
we can digitally propagate the recovered complex wavefront
to any axial position post measurement. The scanning
mechanism of the reported device is also different from the
conventional scanner. The reported device has a large field of
view and the scanning step size in-between adjacent
acquisitions is on the micron scale. Therefore, the sample
can be in continuous motion without extra hardware. Lastly,
multiple image sensors can be employed in the reported
device to scale up the imaging throughput.

For application demonstration, we acquired whole slide
images of different specimens in this study. We show that
the scanner can resolve the 388 nm linewidth on the
resolution target and acquire gigapixel images with a 14 mm
× 11 mm area in ∼70 seconds. We also show that the
recovered phase information can be used to measure the
precise height map of unstained fine needle aspiration (FNA)
smears, thereby providing a powerful tool to visualize the
cellular topographic structure in 3D. We note that these thick
FNA cytology smears contain many slow-varying 2π wraps
that are challenging to obtain using other common imaging
techniques. To demonstrate the diagnostic potential in
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resource-limited settings, we performed automatic tracking
of malaria-infected blood cells over the entire microscope
slide. The recovered phase and phase gradient were used to
locate the malaria parasites in the blood cells. Finally, we
developed a deep neural network that uses the recovered
complex amplitude to perform high-throughput cytometric
analysis. We envision that the reported DIY miniature can be
used as a personal whole slide scanner for every pathologist
in their offices.

Materials and methods
Design of the ptychographic whole slide scanner

Fig. 1a shows the schematic and the operation principle of
the ptychographic whole slide scanner. We designed a three-
layer structure for this miniature. The bottom layer contains
the low-cost red, green, and blue laser diodes for multi-
wavelength coherent illumination. The laser beam is coupled
to a single-mode fiber using an optomechanical coupler.

Other components housed in this layer include the current
drivers for the stepper motor, the current drivers and
temperature management module for the laser diodes, and
the micro-controller for programmable positioning and
synchronization of the image sensor pair. The middle layer
contains a homemade motorized stage for lateral sample
positioning and a pair of image sensors for lensless data
acquisition. The motorized stage is modified from a low-cost
manual stage off-the-shelf (SEMY60-AS, Amazon). We used
two stepper motors (NEMA 11) with integrated lead screws to
translate the stage's metal plates mounted on the linear
guided sliding track. Lastly, the top layer of the device
contains the illumination module for the image sensor pair.

The ptychographic whole slide scanner prototype is shown
in Fig. 1b. The compact size and the lensless operation allow
us to hold the entire platform in one hand. Fig. 1c depicts
different parts on the bottom and middle layers. Fig. 1d
shows the laser module with the red (638 nm, 180 mW),
green (520 nm, 120 mW), blue (445 nm, 500 mW) laser

Fig. 1 The design and implementation of a handheld, multiplexed, and AI-powered ptychographic whole slide scanner. (a) The three-layer design of
the system. Layer 1 contains the red, green, and blue laser diodes and the related optomechanical coupler to a single-mode fiber. It also contains the
micro-controller, and the current drivers for the laser and the stepper motors. Layer 2 contains a modified x–y stage driven by two stepper motors for
programmable positioning. A pair of synchronized image sensors are mounted on the stage: one for lensless ptychographic imaging and the other one
as an absolute position encoder. Layer 3 contains the illumination module, including a prism for colour multiplexed illumination and a beam splitter for
directing the laser beam to the secondary image sensor. (b) The handheld ptychographic whole slide scanner. (c) A zoomed-in view of different parts of
the scanner. (d) The laser module at the bottom layer. (e) The synchronized image sensor pair at the middle layer. (f) The illumination module at the top
layer. Refer to Fig. S1 and S2† for the system design and Movie S1† for the operation of the scanner.
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diodes, and the corresponding dichroic mirrors. The use of
high-power laser diodes enables continuous sample motion
during the image acquisition process. The motion blur issue
in conventional whole slide scanners is absent from the
reported platform.

In Fig. S1a,† we used the digital pin from the
microcontroller to control the transistor–transistor logic of
the laser driver and adjusted the output power of the laser
diodes accordingly. Fig. S1b† shows the design of the
optomechanical coupler for directing the laser light to the
single-mode fiber. Fig. S1c† shows a magnified view of the
synchronized image sensor pair, where a monolayer of goat
blood cells is smeared on top of the main image sensor
(discussed in the next section). In Fig. S2,† we show the
mechanical design of the scanning stage. Fig. S2a† shows the
original low-cost stage with two manual actuators. We
removed the actuators (Fig. S2b†) in our design and replaced
them with two stepper motors for programmable control
(Fig. S2c and d†). With the stepper motors, the maximum
translation speed is ∼3 mm s−1. This simple modification
enables the development of a handheld whole slide scanner
for both lensless ptychographic imaging discussed here and
regular lens-based WSI platforms.13 Fig. 1e shows two 3D
printed plastic cases that cover the lead screws of the two
stepper motors.

Synchronized imager pair and image-based position encoder

A camera pair is often used for data acquisition in
conventional whole slide scanners. This pair is composed of
the main camera for high-resolution image acquisition and a
secondary camera to track the defocus position of the
specimen.6,12 In particular, the most successful whole slide
scanners from Philips and Leica place a tilted sensor at the
conjugated image plane to enable autofocusing during the
scanning process. This sensor generates a contrast curve
based on the intensity gradient of the captured image and
determines the best focus position for the main camera.6

The reported platform also adopts a synchronized image
sensor pair (IMX226, 1.85 μm pixel size) for data acquisition.
Our system utilizes the main sensor for lensless diffraction
data acquisition and a secondary sensor to track the absolute
position of the scanning stage. We synchronized the main
and secondary image sensors by sending the triggering signal
from the micro-controller.

For the main image sensor shown in Fig. 1e, we smeared
a monolayer of blood cells as a coded scattering lens.14–21 We
also fixed the blood cells using alcohol to prevent their
degradation over time. As we will discuss in the next section,
we tested blood cells from both goat and fish in the
experiment. The goat blood was obtained from Lampire
Biological Laboratories and the fish blood was obtained from
a supermarket. The coated monolayer layer of blood cells can
down-modulate the diffracted light waves for sensor
detection. The concept is similar to the operation of
structured illumination microscopy,22,23 where non-uniform

structured light patterns are used to down-modulate the
object information for detection. In the reported device, the
monolayer of blood cells redirects the light waves with large
diffraction angles into smaller angles, thereby improving the
achievable resolution of the recovered images.

Robust and high-performance translational scanning often
requires the use of encoders for measuring the absolute
position of the scanning stage. Without the encoder, the
open-loop operation would lose track of the position after
several runs. This is a drawback in some of the previous
demonstrations on low-cost microscope motorized
stages.13,24–27 In our implementation, a secondary image
sensor is used as a non-contact position encoder for tracking
the absolute position of the stage. As shown in Fig. 1f, we
place this sensor under an acrylic slide holder with a frosted
surface. When illuminated with a laser beam, the frosted
surface generates a speckle pattern on the sensor. By
scanning the slide holder to different lateral positions, we
can recover the absolute position of the stage via cross-
correlation analysis19,20,28 with sub-pixel accuracy.29 Fig. S3†
shows the tracking performance using the secondary sensor.
In this experiment, we used two motorized stages (ASI LS-50)
to move the slide holder to different x–y positions. The
recovered positions using the secondary sensor are plotted
with the positions returned by the motorized stages. The
average difference is ∼100 nm. We note that part of the
difference comes from the mechanical repeatability and
backlash of the motorized stages.

We note that it would be challenging to retrieve this
positional shift if a secondary sensor was not present. While
one can produce a transparent region on the main sensor for
positional tracking, the sample slide may not contain any
detailed features on this region. The tracking would thus be
subjected to the histology slide itself and would not be
reliable when imaging the edge area. The empty region on
the main sensor also reduces the effective field of view for
lensless imaging. In contrast, the reported device performs
positional tracking based on the frosted surface of the slide
holder without relying on the object profile. One can
precisely track the absolute position even if the object is an
empty glass slide.

Multiplexed data acquisition and ptychographic reconstruction

A user can turn on one or more laser diodes for sample
illumination to initiate the operation of the reported scanner
(Movie S1†). The slide holder will be scanned at different
lateral positions during the acquisition process. The imaging
model can be explained as the following sequence: First, the
histology slide is translated to the ith lateral position (xi, yi),
and two images are acquired using both the main and the
secondary sensors. Second, the image captured using the
secondary sensor is used to recover (xi, yi) by performing a
cross-correlation analysis with the reference image captured
at (x1, y1). Third, the translated object profile O(x–xi, y–yi)
propagates to the blood-cell monolayer on the main sensor,
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multiplies with this layer, and propagates to the surface of
the pixel array, obtaining the complex lightwave ψi(x, y).
Fourth, the pixel array samples the complex light wave with
both spatial and angular filtering, resulting in the captured
intensity image of Ii(x, y). The goal of the reconstruction
process is to recover the complex object profile O based on
all intensity measurements Ii (i = 1, 2, 3…).

In our implementation, we continuously translate the
stage at a speed of ∼60 μm s−1 and acquire the images at the
full camera framerate at 30 frames per second. For one field
of view of the image sensor, we typically acquire 450 images
in 15 seconds. The stage then positions to the next field of
view and repeats the process. For an area of 14 mm × 11 mm
on a regular slide, we typically acquire 4 fields of view of the
sensor and the acquisition time is ∼70 seconds, including 10
seconds for motion overhead.

At the heart of our reconstruction process is an imaging
technique termed ptychography.30 The original concept was
developed to address the missing phase problem in electron
microscopy.31 Its modern form was brought to fruition by
adopting the iterative phase retrieval framework.32 In a
typical lensless implementation, the specimen is laterally
translated through a spatially confined probe beam and the
lensless diffraction patterns are recorded at the reciprocal
space. It is also possible to swap these two spaces using a
lens-based setup.33,34

The reconstruction process of ptychography iteratively
imposes two different sets of constraints. First, the
diffraction measurements serve as the Fourier magnitude
constraints in the reciprocal space. Second, the confined
probe beam limits the physical extent of the object for each
measurement and serves as the support constraint in the real
space. For the reported platform, we replaced the confined
probe beam in conventional ptychography with the
unconfined transmission profile of the blood-cell layer. We
further employed a full-field illumination scheme to cover
the entire sample for high-throughput optical imaging.20,28

A single wavelength is often adequate to obtain the whole
slide image of unstained samples or samples stained with
only two complementary colours. Using the recovered
intensity and phase information, one can virtually stain the
image according to different staining protocols post-
measurement.21,24,35–39 When working with samples with
multiple stains, we can turn on the red, green, and blue laser
sequentially. The recovered images can then be combined to
form a colour whole slide image.33

Another strategy for colour imaging is to perform
multiplexed illumination by turning on the red, green, and
blue laser diodes simultaneously (Fig. 1b). In turn, the
captured data becomes an incoherent summation of the
diffraction patterns at three wavelengths. We can then
recover the complex object profiles at the three wavelengths
using a multiplexed ptychographic reconstruction
strategy.40–43 Fig. 1f shows the illumination module of the
device, where the laser light from the single-mode fiber is
split for both the main and the secondary image sensors. At

the illumination path of the main sensor, we added a prism
in-between the beam splitter and the specimen in Fig. 1f.
Consequently, the incident angles of the laser beams are
slightly different at different wavelengths. The resulting
complex profiles of the blood-cell monolayer become
uncorrelated at different wavelengths, thus breaking the
ambiguities in mixed-state reconstruction44 and facilitating
colour-multiplexed ptychographic reconstruction.40–43 Fig.
S4† shows the procedure of the reconstruction scheme. The
number of the colour channels reduces to one in Fig. S4†
when we illuminate the sample with one wavelength.

A new focus metric for both stained and unstained specimens

Many commercially-available whole slide scanners generate a
focus map prior to the scanning process. For each focus
point, the system acquires a z-stack image of the slide by
translating the objective lens to different z-positions. A
specific figure of merit for each image is extracted to measure
the quality of the estimated focus position. Conventional
scanners often employ the image contrast or gradient of the
captured intensity data as the focus metric. The logic behind
this choice is that the captured intensity information should
demonstrate the largest image contrast when the specimen is
placed at the in-focus position. This logic, however, is only
correct for the stained tissue sections. For unstained or
weakly-stained sections, we show that the intensity contrast
is not a proper indicator for the in-focus position. As a result,
challenges arise when utilizing the conventional whole slides
scanners to image unstained or weakly-stained specimens. To
address this issue, we introduce a new focus metric based on
the quantitative phase-gradient contrast of the recovered
images. As we will discuss in a later section, this new focus
metric works for both stained and unstained specimens.

Tracking malaria-infected red blood cells

We also demonstrate the use of the recovered phase to locate
malaria-infected blood cells over the entire blood smear slide
(Plasmodium falciparum smear from Carolina Biological
Supply). In the segmentation process, we set a threshold of
1.2 radians for the recovered phase and a threshold of 0.42
radians per pixel for the phase gradient. The regions with the
phase and phase gradient larger than these two thresholds
were treated as candidates for malaria parasites. These two
threshold values were chosen based on an analysis of more
than 500 parasites from the recovered images. We then
further examine the size of the candidate to rule out the large
white blood cells.

AI-powered cytometric analysis

As we will discuss in a later section, we adopt a deep neural
network to segment different cells of a slide stained with
immuno-histochemical biomarkers. The segmented results
allow us to perform cytometric analysis with an effective
image acquisition throughput of >13 000 cells per second.
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Results
Imaging performance characterization

We first validated the imaging performance of the reported
scanner using a resolution target. In Fig. 2a–c, we show the
results of using a monolayer of goat blood cells as the coded
scattering lens. The cells were smeared directly on top of the
coverglass of the main sensor. Once smeared, they are firmly
attached to the surface and the transmission profile remains
unchanged for a long period. In addition, this monolayer of
blood cells allows the formation of a dense and thin layer
with both intensity and phase modulation. Goat blood was
chosen for our implementation because of its smallest cell
size among all animals (2–3 μm). As a comparison, we also
tested the fish blood cells as the coded scattering lens in
Fig. 2d–f. Fig. 2a and d show the captured raw images of the
resolution target using these two different types of blood
samples. Fig. 2b and e show the recovered image of the
resolution target. The recovered blood-cell monolayer profiles
are shown in Fig. 2c and f. We can resolve the 388 nm
linewidth using the goat blood cells and the 488 nm
linewidth using the fish blood cells, corresponding to 776
nm and 976 nm full pitch resolution, respectively. While it is

possible to use other microparticles or disorder-engineered
surfaces to form the thin scattering lens,14,15,19–21,45 smearing
blood cells is easy to operate yet highly effective, enabling a
DIY option for implementing lensless coded ptychographic
microscopy. Disorder-engineered surfaces also requires
sophisticated patterning and etching tools for fabrication.

Post-acquisition autofocusing via a phase-contrast metric

Once we recover the object exit wavefront from the diffraction
measurements, we can digitally propagate it back to different
axial positions for post-acquisition refocusing.20 Unlike the
conventional whole slide scanner, this process is performed
computationally without involving any mechanical
translation. In Fig. S5,† we refocused the recovered object exit
wavefront to 5 different axial positions, with the in-focus
position set as z = 0. For the hematoxylin–eosin (H&E) stained
slide in Fig. S5a,† the refocused intensity and phase images
show the highest contrast at the in-focus position. However,
the unstained thyroid smear in Fig. S5b† exhibits the lowest
contrast at the in-focus position. Therefore, the intensity
contrast is not a good focus indicator for WSI, especially for
weakly-stained or unstained slides.

Fig. 2 Imaging performance characterization. (a) The captured raw image using a monolayer of goat blood cells as the coded scattering lens. The
goat blood cells were smeared on top of the main image sensor and fixed with alcohol. (b) The reconstruction of (a). (c) The recovered
transmission profile of the monolayer goat blood cells on the main sensor. (d) The captured raw image using a monolayer of fish blood cells as the
coded scattering lens. (e) The reconstruction of (d). (f) The recovered transmission profile of the monolayer fish blood cells on the main sensor.
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In Fig. 3a, we calculated the Brenner gradient46 of the
refocused intensity and phase images of the H&E stained
slide. As a comparison, we show the same calculation of the
unstained thyroid smear in Fig. 3b. We can see that the
maximum points of the phase gradient correlate well with
the in-focus positions of both slides. In contrast, the intensity
gradient reaches a minimum point when the unstained slide
is placed at the in-focus position. In the following, we adopt
the Brenner gradient of the recovered phase image as the
new focus metric for post-acquisition autofocusing. In our
test, the axial range of this focus metric is ∼80 μm. Beyond
this range, the focus metric becomes saturated and provides
little information on the focus position.

Fig. 3c shows the adaptive focus map generation scheme
post-measurement. In the first iteration, we identified 4 focus
points at the edge of the field of view, labelled by the blue
dots. For each focus point, we refocused a small region (256
× 256 pixels) of the corresponding object exit waves to
different axial positions. The searching process started with a
coarse z-step size of 10 μm with z-range of 500 μm. The best
focus position was determined by maximizing the phase-
contrast metric. We then reduced the z-step size to 1 μm and
performed a detailed search at a range of (−9 μm, +9 μm)
with respect to the identified coarse focus position.

At the second iteration, we identified 5 focus points labelled
by the red dots in Fig. 3c. We then estimated the in-focus
positions of these red dots via a bilinear interpolation of the 4
focus points from the first iteration. The axial range was
reduced to ∼250 μm for searching the focus points of these red
dots. For the entire field of view of the image sensor, we
typically assign 13 focus points and perform 3 iterations of the
searching process. The final focus map is generated based on a
2D interpolation of the identified focus points.

Fig. 4a shows the refocused image of the H&E-stained slide
based on the interpolated focus map generated in Fig. 4b.

Fig. 4c shows the recovered intensity images of the object exit
waves at the plane of the blood monolayer. Fig. 4d and e show
the corresponding refocused intensity and phase images of the
two regions based on the focus map.

Quantitative phase imaging of thick unstained slides

For conventional in-line holography or multiple-height phase
retrieval, it is challenging to restore the slow-varying phase
profiles with many 2π wraps.15 This drawback can be
explained by the phase transfer function that characterizes
the transfer property of the phase contents at different spatial
frequencies.47 For low spatial frequency contents, the phase
transfer function is close to 0 for regular in-line lensless
imaging setups.47 Therefore, the corresponding phase
information cannot be effectively converted into intensity
variations for detection, and the recovered phase is not
quantitative. Likewise, this same challenge also applies to
blind ptychography where both the complex probe beam and
the object profile need to be jointly recovered in the phase
retrieval process.48–51

The reported platform encodes the slow-varying phase
information into the spatial distortions of the intensity
diffraction patterns. The operation of the blood-cell
monolayer can be viewed as a special case of the microlens
array on top of the Shack–Hartmann sensor,52 which converts
the slightly tilted wavefront into spatial displacements of the
focused spots. To demonstrate its application in quantitative
phase imaging, we acquired a whole slide phase image of the
unstained thyroid smear in Fig. 5a. We can see that there are
many regions containing slow-varying phase profiles in the
right panel of Fig. 5a. Fig. 5b1 shows a zoomed-in view of the
unstained smear, where we can recover the phase profile with
many 2π wraps. Fig. 5b2 shows the unwrapped phase of
Fig. 5b1. In Fig. S6,† we also compare the recovered intensity
and phase of a small region of the unstained thyroid smear,
where we can clearly see the cell cluster from the unwrapped
phase but not from the intensity image. The unique
capability of high-throughput quantitative phase imaging
using the reported device can find applications in label-free
rapid on-site evaluations of biopsy samples. It can also be
used in other label-free biomedical applications.53

Assuming a refraction index of 1.43 for thyroid smear,54

we can recover the height map of the slide in Fig. 5c. In Fig.
S7,† we further show the difference between the captured raw
image (Fig. S7a†), the recovered phase (Fig. S7b†), the
unwrapped phase (Fig. S7c†), and the reference images
captured using a regular light microscope (Fig. S7d†).

Tracking of malaria-infected blood cells

The reported device can benefit diagnosis in challenging
environments, where access to physicians and good equipment
can be limited. To demonstrate this point, we applied the
prototype device to image a blood smear sample infected with
Plasmodium falciparum, a particularly harmful type of malaria
parasite and one of the major causes of death in the developing

Fig. 3 The intensity and phase gradient of the stained slide (a) and
unstained slide (b). (c) Adaptive focus map generation post-
measurement.
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Fig. 5 The refocused whole slide phase image of an unstained thyroid smear. (b1) The zoomed-in view of (a) with many 2π phase wraps. (b2) The
unwrapped phase of (b1). (c) The recovered height map of the smear.

Fig. 4 (a) The refocused whole slide image using the Brenner gradient of the recovered phase as the focus metric. (b) The generated focus map.
(c1 and c2) The recovered intensity of the object exit waves of regions 1 and 2 labelled in (a). The corresponding refocused intensity (d1 and d2)
and phase images (e1 and e2) of the exit waves.
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world. Fig. 6a shows the recovered phase image of the entire
blood smear. The inset of Fig. 6a shows the locations of the
malaria parasites tracked using the reported device. Fig. 6b
shows the zoomed-in view of the recovered phase, with the
malaria parasites highlighted by the blue arrows. Sample
images of malaria-infected blood cells are shown in Fig. 6c. In
Fig. S8,† we also show the input phase image and the resultant
mask for the parasite candidates.

Multiplexed illumination for lensless colour imaging

Fig. 7 shows the results of multiplexed illumination for
colour imaging, where we turn on all three laser diodes and
acquire the coherent state mixture for data
reconstruction.40–43 This process requires the blood-cell
monolayer to be calibrated at the three wavelengths upfront.
In our implementation, we used a human blood smear as the
object in the calibration process. For each wavelength, we
acquired 1500 images and jointly recovered both the human
blood smear and the coded layer of goat blood cells on the
main sensor. The recovered coded layers at different
wavelengths were then enforced in the multiplexed
reconstruction detailed in Fig. S3.† Fig. 7a shows the
recovered whole slide colour image based on 600 raw
measurements captured under the colour-multiplexed
illumination. Fig. 7b shows the recovered phase at the green

wavelength. The zoomed-in views of the two regions are
shown in Fig. 7c. The colour images captured using a regular
light microscope are shown in Fig. 7d as a reference. In Fig.
S9,† we also show the recovered phase and intensity images
at the three wavelengths.

AI-powered cytometric analysis

Ki-67 biomarker is a proliferation-associated nuclear protein
that is only detected in dividing cells. The fraction of Ki-67
positive tumour cells is often correlated with the clinical
course of cancer. In this study, we develop a deep neural
network to perform cytometric analysis of Ki-67 cells using
the recovered complex object amplitude. Fig. 8 shows the
training and inference workflow of the network. In the
training stage, we first recovered the intensity and phase
images of the immunohistochemical slides labelled with the
Ki-67 biomarkers (at the green wavelength). We then acquired
the colour image of the same slides using a regular light
microscope with a 40×/0.95 NA objective lens. A feature-based
algorithm was implemented for image registration between
these two sets of images.55

For colour images acquired using the regular light
microscope, we first performed colour deconvolution56 to
separate the colour information into a brown channel and a
blue channel, corresponding to the Ki-67 positive and

Fig. 6 Tracking malaria-infected blood cells over the entire microscope slide. (a) The recovered phase image of the sample. (b) The zoomed-in
view of the recovered phase. (c) Sample images of malaria-infected blood cells located by the reported device.
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negative cells, respectively. Based on the deconvoluted colour
channels, we then performed marker-controlled watershed

segmentation57 to extract the cells and obtain the
segmentation masks as the ground truth labels.

Fig. 7 Multiplexed illumination for colour imaging. (a) The recovered colour whole slide image. (b1 and b2) The recovered phase of regions 1 and
2 at the green wavelength. (c1 and c2) The zoomed-in views of the recovered colour images of regions 1 and 2. (d1 and d2) The corresponding
images of regions 1 and 2 captured using a 20× objective.

Fig. 8 Development of a deep neural network for automatic cell segmentation and counting based on the recovered intensity and phase images.
(a) In the training stage, we minimized the difference between the network output and the ground-truth segmentation labels obtained from a
regular light microscope. (b) The output of the network is a mask with the segmented positive cells, negative cells, and background of the slide.
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The employed deep neural network was built based on the
DeepLabv3+ structure58 with a ResNet-18 backbone.59 This
neural network can encode multi-scale contextual
information by probing the incoming features at multiple
rates and multiple effective fields of view. The input for this
network contains two channels: the recovered intensity and
phase images from the ptychographic scanner. The network
output is a pixel-level probability map of the Ki-67 positive
cells, negative cells, and the background of the slide. We
trained the network by minimizing the difference between
the network output and the microscope-based segmentation
labels shown in Fig. 8a. Our training dataset includes 1500
aligned image pairs with a lateral dimension of 512 × 512
pixels each. We used the stochastic gradient descent
approach with momentum acceleration for minimizing the
loss function. The mini-batch size was set to 8 and the
learning rate was set to 0.01. The optimization process took
200 epochs before the validation loss became saturated.

Fig. 8b shows the inference workflow, where the trained
network generates a probability heatmap on the positive
cells, negative cells, and the background. This heatmap is

further processed by the watershed algorithm followed by
image binarization. The final output is a mask with the
segmented positive cells, negative cells, and the background
of the slide.

Fig. 9a shows the recovered whole slide intensity and
phase images of a slide labelled with the Ki-67 biomarkers.
This slide has not been used in the training process. Fig. 9b
shows the segmentation results using the deep neural
network. The zoomed-in views of Fig. 9a2 and b are shown in
Fig. 9c. With more than 200 000 cells identified in Fig. 9b,
the effective imaging throughput is >13 000 cells per second
in this demonstration.

In Fig. S10a–d,† we further show the zoomed-in images of
the two regions and their corresponding segmentation
results. In Fig. S10e,† we compared the segmentation results
with the manual counting results using the 40×, 0.95 NA
objective lens. The average counting difference between the
deep neural network and the objective lens is ∼2.6% in this
experiment. In Table S1,† we analysed the precision, recall,
accuracy, and F1 score of the cell classification results using
the network. In Table S2,† we quantified the morphological

Fig. 9 AI-powered cytometric analysis using the ptychographic whole slide scanner. The recovered intensity (a1) and phase (a2) images of a slide
labelled with the Ki-67 markers. (b) The segmentation results using the deep neural network. (c1 and c2) Zoomed-in views of the highlighted
regions in (a2) and (b). (d) The measurement of dry mass and cell area for the Ki-67 positive and negative cells. (e) The histogram analysis of the cell
eccentricity, cell area, dry mass, and average phase.
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parameters with respect to the ground-truth results obtained
using the 40×, 0.95 NA objective lens.

In Fig. 9d, we plot the measurement of dry mass and cell
area for the segmented Ki-67 positive and negative cells. The
dry mass (nonaqueous content) of the cell is linearly
proportional to the optical phase shift accumulated through
the cell. The dry mass density at each pixel can be calculated
as ρ(x,y) = (λ/2πγ)ϕĲx,y), where λ is the center wavelength, γ is
the average refractive increment of protein (0.2 mL g−1), and
ϕĲx,y) is the measured phase.60 The total dry mass can then
be obtained by integrating the density over the segmented
cell. Due to the proliferation of the positive cells, the dry
mass and cell area are higher than those of negative cells.
However, we also note that Ki-67 biomarker may introduce
additional mass to the cells. Therefore, the measured dry
mass might not reflect the intrinsic cell mass without the
markers. The cell mass change before and after biomarker
labelling is an important research topic in the future.

In Fig. 9e, we plot the histogram analysis of the cell
eccentricity, cell area, dry mass, and average phase for both the
positive and negative cells. This demonstration shows the
metrological versatility of AI-powered quantitative high-
throughput cytometric analysis. The full clinical implications of
the cell morphology distribution require further investigations.

Discussion and conclusion

In summary, we have demonstrated the design and
implementation of a handheld lensless ptychographic whole
slide scanner for digital pathology applications. In our design,
we employed a synchronized image sensor pair for data
acquisition. The main sensor was smeared with a layer of goat
blood cells for coded ptychographic imaging. We found that
the goat blood cells give us an excellent imaging performance
as the cell size is the smallest among different animals. By
using this goat-blood-cell encoder, we show that the reported
scanner can resolve the 388-nm linewidth on the resolution
target. The secondary sensor in our scanner acts as a non-
contact image-based position encoder for tracking the absolute
position of the stage. Our scanning stage is modified from a
low-cost manual stage off-the-shelf. We replaced the original
manual actuators with two stepper motors with integrated lead
screws. When operated with the image-based position encoder,
this simple modification offers a portable solution for WSI.
Compared with the previous ptychographic implementations,
we can precisely track the absolute position even if the object is
an empty glass slide.

Conventional whole slide scanners often rely on
maximizing the intensity-contrast for autofocusing. For
unstained or weakly-stained slides, the intensity contrast,
however, is not a proper indicator for the in-focus position.
In this study, we introduce a new focus metric based on the
quantitative phase contrast of the recovered images. We show
that this new metric works for both stained and unstained
specimens. To validate the performance of the reported
scanner, we image various stained and unstained specimens.

High-resolution gigapixel images with an area of 14 mm × 11
mm can be acquired in ∼70 seconds. The achieved resolution
and the image acquisition time are similar to those of
conventional lens-based whole slide scanners.

One unique feature of the reported device is the recovery
of quantitative phase information. We show that the
recovered phase can be used to measure the height map of
the unstained thyroid smear samples, providing a tool to
visualize the cellular topographic structure in 3D. To
demonstrate the application in resource-limited settings, we
performed automatic tracking of malaria-infected blood cells
using the recovered phase. Lastly, a deep neural network was
developed for high-throughput cytometric analysis. This
network takes the recovered complex amplitude as the input.
The network output is a pixel-level probability map of
different cells. With this network, we quantify millions of
cells on immuno-histochemical-stained slides labelled by a
proliferation-associated biomarker and demonstrate an
effective image acquisition speed of >13 000 cells per second.
We also demonstrate the metrological versatility of the
reported platform for analysing the cell eccentricity, cell area,
dry mass, and average phase.

One future research direction is to improve and optimize
the phase sensitivity of the reported approach. The detection
limit of a small phase variation is related to the complex
profile of the encoder on the sensor. How to design an
engineered surface to maximize phase sensitivity is an
important research topic. A shorter distance between the
object and the encoder may also help to improve the phase
sensitivity limit.
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