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Abstract. We consider the long time behavior of heterogeneously interacting diffusive par-
ticle systems and their large population limit. The interaction is of mean field type with
weights characterized by an underlying graphon. The limit is given by a graphon particle
system consisting of independent but heterogeneous nonlinear diffusions whose probability
distributions are fully coupled. Under suitable assumptions, including a certain convexity
condition, we show the exponential ergodicity for both systems, establish the uniform-in-
time law of large numbers for marginal distributions as the number of particles increases,
and introduce the uniform-in-time Euler approximation. The precise rate of convergence of
the Euler approximation is provided.
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1. Introduction

In this work we study the long time behavior of graphon particle systems and the finite
particle approximations. The interaction is of mean-field type and characterized by a graphon
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2 BAYRAKTAR AND WU

G, which is a symmetric measurable function from [0, 1] × [0, 1] to [0, 1] (see e.g. [27] for the
theory of graphons). More precisely, denoting by X̄u the state of the particle at u ∈ [0, 1],

X̄u(t) = X̄u(0) +

∫ t

0

(
f(X̄u(s)) +

∫ 1

0

∫
Rd

b(X̄u(s), x)G(u, v) µ̄v,s(dx) dv

)
ds

+ σBu(t), u ∈ [0, 1], t ≥ 0, (1.1)

where µ̄v,s is the probability distribution of the Rd-valued random variable X̄v(s) for each

v ∈ [0, 1] and s ≥ 0, f are b are suitable functions, σ ∈ Rd×d is a constant, {Bu : u ∈ I} are d-
dimensional standard Brownian motions, and {X̄u(0), Bu : u ∈ I} are mutually independent.
We will also study the mean-field particle system with heterogeneous interactions given by

Xn
i (t) = X̄ i

n
(0) +

∫ t

0

f(Xn
i (s)) +

1

n

n∑
j=1

ξnijb(X
n
i (s), Xn

j (s))

 ds

+ σB i
n

(t), i ∈ {1, . . . , n}, t ≥ 0, (1.2)

and its Euler discretization. Here {ξnij : 1 ≤ i ≤ j ≤ n} is a collection of independent [0, 1]-
valued random variables sampled from a step graphon Gn that converges to the graphon G
in the cut metric.

The study of mean-field heterogeneously interacting particle systems on random graphs
converging to a graphon emerged recently ([3,5,15,19,23,28,30–32]). There is also a growing
number of applications of graphons in game theory; see e.g. [1, 11–13, 21, 33, 37]for the study
of graphon mean field games in static and dynamic settings. Among these, the only work
on long time analysis is [15], which shows that the stochastic Kuramoto model defined on a
sequence of graphs converging to a constant graphon behaves asymptotically as the mean-field
limit (in general the manifold of McKean–Vlasov equations), up to an exponential time. More
precisely, it is shown in [15] that, in the subcritical regime, the trajectory of the empirical
measure of n oscillators ([0, 2π]-valued diffusions), over t ∈ [0, Tn] where Tn = exp(o(n)),
converges uniformly in probability to the same limit as in the Kuramoto model; while in the
supercritical regime, with initial states close to a stable stationary solution, the trajectory of
the empirical measure is uniformly close to the manifold of stable stationary solutions over
t ∈ [0, Tn]. This is in contrast to our case where the limiting system (1.1) is heterogeneous
and the stationary measure relies crucially on the underlying graphon (see Example 3.1).

The study of classic mean-field homogeneously interacting particle systems and the associ-
ated limiting system given by nonlinear processes, or equivalently, McKean–Vlasov equations,
dates back to works of Boltzmann, Vlasov, McKean and others; see [25,29,36] and references
therein. Besides large population limits such as law of large numbers (LLN) and propagation
of chaos (POC) on the finite time horizon, there have been an extensive collection of results on
long time behaviors and Euler approximations for such systems (see e.g. [7,8,10,38] and refer-
ences therein) with suitable convexity assumptions. In recent ten years, there has been a grow-
ing interest in the mean-field inhomogeneous particle system, where the interaction between
particles is governed by their own types and/or random graphs (see e.g. [2, 4, 6, 9, 16–18, 26])
and the limiting system consists of countable McKean-Vlasov processes (as opposed to un-
countable heterogeneous processes in graphon particle systems like (1.1)). Among these, the
paper [2] considers a collection of diffusions interacting through state-dependent fast evolving
random graphs and shows a uniform-in-time averaging and LLN result. The interaction in
[2], although not in the mean-field form, is close to be mean-field due to the averaging effect,
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and the limiting system is given by independent and identically distributed (i.i.d.) nonlinear
diffusions.

The goal of this work is to study the long time behavior, including the stationary distribu-
tion and uniform-in-time convergence, of the graphon particle system (1.1), the approximating
finite particle system (1.2), and its Euler discretization, under our standing assumptions stated
in Section 2, including convexity conditions (2.1) and (2.2). We are in particular interested
in the following two questions:

1. Knowing that Gn → G as n → ∞, does the long time behavior of {Xn
i : i = 1, . . . , n}

approach that of {X̄u : u ∈ [0, 1]}?
2. Given a graphon G and the associated {X̄u : u ∈ [0, 1]}, could one choose a sequence of

graphons Gn, finite particle systems {Xn
i : i = 1, . . . , n}, and the Euler discretizations to

approximate the long time behavior of {X̄u : u ∈ [0, 1]} such as the stationary distribution?
In order to control the approximation error, what would be the balance between the number
of particles, the time to run processes, and the discretization step size?

The first question is natural and its finite time analogue has been answered in the works
[3,5,15,28,32] mentioned above with (possibly) different model setups. The second question,
opposite to the first one, is also (and actually more) important to us, as one may worry that
the graphon particle system (1.1), consisting of uncountably many heterogeneous particles
(or equivalently, their probability distributions), is not always tractable, for the either finite-
time or long-time behavior (see Example 3.1). Answering the second question will suggest,
for example to simulate the stationary distributions of (1.1) using the Euler discretization
of (1.2), and how to choose parameters in a balanced and efficient manner. As the classic
POC result was useful in finding ε-Nash equilibrium in the mean field game (see e.g. [14]),
our uniform-in-time convergence and POC results will be helpful for the same purpose in the
graphon mean field game counterpart (such as with mean-reverting drifts).

Our first main result is the exponential ergodicity of the two systems (1.1) and (1.2). For
the graphon particle system (1.1), we show that µ̄u,t converges to a limiting distribution as
t → ∞ for each u ∈ [0, 1] with exponentially small errors, and the limit is invariant with
respect to the system evolution (Theorem 3.1). For the finite particle system (1.2), although
the random vector (Xn

i (t) : i = 1, . . . , n) is not Markovian, it is Markovian conditioned on
the interaction {ξnij : 1 ≤ i ≤ j ≤ n}. Using this observation we prove the quenched (and

hence annealed) exponential ergodicity and also show that the quenched limiting distribution
is invariant (Theorem 4.1).

The second main result is the uniform-in-time convergence of (1.2) to (1.1) when Gn → G
in the cut metric. A uniform-in-time LLN for marginal distributions is established in Theorem
5.1, which says that the empirical measure νn(t) of n particles {Xn

i : i = 1, . . . , n} converges
to the averaged distribution of a continuum of particles {X̄u : u ∈ [0, 1]}. The proof relies on
a truncation and approximation argument for the drift coefficients (Lemma 7.2), and certain
generalization (Lemma A.1) of bounds on the Wasserstein distance between i.i.d. random
variables and their common distribution established in [20]. In Theorem 5.2, we strengthen
Theorem 5.1 with additional assumptions on graphons, to further obtain a uniform-in-particle
convergence, LLN, and POC, all uniformly in time. Theorem 5.1 or 5.2, together with the
exponential ergodicity, guarantees the interchange of limits of large n and t for empirical
measures and the convergence of stationary measures (Corollaries 5.1, 5.2 and 5.3).

Our last main result is on the tractable computation of the graphon particle system and
its stationary distributions. We study the Euler scheme associated with (1.2), and obtain a
uniform-in-time bound (Theorem 6.1) for errors arising from the discretization. Under certain
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conditions on the graphons, explicit rates of convergence are obtained in Corollaries 6.1 and
6.2, of the empirical measure of the Euler discretization to the stationary distribution of the
graphon particle system (1.1). This in particular answers the second question above.

1.1. Organization. The paper is organized as follows. In Section 2 we state the space of
graphons, the standing assumptions, and well-posedness of systems (1.1) and (1.2). In Section
3 we study the long time behavior of the graphon particle system (1.1). The exponential
ergodicity and stationary distribution are shown in Theorem 3.1. In Section 4 we analyze the
long time behavior of the finite particle system (1.2). The quenched and annealed exponential
ergodicity and quenched stationary distribution are shown in Theorem 4.1. In Section 5 we
study the uniform-in-time convergence of the system (1.2) to the system (1.1). LLN and POC
are given in Theorems 5.1 and 5.2. We also show the interchange of limits and the convergence
of limiting distributions in Corollaries 5.1, 5.2 and 5.3. In Section 6 we introduce the Euler
discretization. The convergence that is uniform in time and the number of particles is shown
in Theorem 6.1. The rate of convergence in given in Corollaries 6.1 and 6.2. Finally Section
7 collects the proofs of results in Sections 3–6.

We close this section by introducing some frequently used notation.

1.2. Notation. Given a Polish space S, denote by B(S) the Borel σ-field. Let P(S) be the
space of probability measures on S endowed with the topology of weak convergence. For a
measurable function f : S → R, let ‖f‖∞ := supx∈S |f(x)|. Denote by C([0,∞) : S) (resp.
C([0, T ] : S) for T ∈ (0,∞)) the space of continuous functions from [0,∞) (resp. [0, T ]) to S,
endowed with the topology of uniform convergence on compacts (resp. uniform convergence).
We will use C to denote various positive constants in the paper and Cm to emphasize the
dependence on some parameter m. Their values may change from line to line. The probability
law of a random variable X will be denoted by L(X). Expectations under P will be denoted
by E. To simplify the notation, we will usually write E[Xk] as EXk. For vectors x, y ∈ Rd,
denote by |x| the Euclidean norm and x · y the inner product. Let N0 := N ∪ {0}.

Denote by Wp, p ∈ N, the Wasserstein-p distance (cf. [39, Chapter 6]) on P(Rk), k ∈ N:

Wp(m1,m2) :=

(
inf
π

∫
Rk×Rk

|x− y|p π(dx dy)

)1/p

, m1,m2 ∈ P(Rk),

where the infimum is taken over all probability measures π ∈ P(Rk × Rk) with marginals
m1 and m2, that is, π(· × Rk) = m1(·) and π(Rk × ·) = m2(·). It is well-known that (cf.
[39, Remarks 6.5 and 6.6])

Wp(m1,m2) ≥W1(m1,m2)

= sup

{∫
Rk

φ(x)m1(dx)−
∫
Rk

φ(x)m2(dx)
∣∣∣φ : Rk → R is 1-Lipschitz

}
. (1.3)

Note that

W 2
2 (m, m̃) ≥W 2

2 (m1, m̃1) +W 2
2 (m2, m̃2) (1.4)

for any m, m̃ ∈ P(Rk1 × Rk2) with marginals m1, m̃1 ∈ P(Rk1) and m2, m̃2 ∈ P(Rk2) respec-
tively, where k1, k2 ∈ N. In addition, if m = m1⊗m2 and m̃ = m̃1⊗m̃2 are product measures,
then

W 2
2 (m, m̃) = W 2

2 (m1, m̃1) +W 2
2 (m2, m̃2). (1.5)
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2. Model and assumptions

We follow the notation used in [27, Chapters 7 and 8]. Let I := [0, 1]. Denote by G the
space of all bounded symmetric measurable functions G : I × I → R. A graphon G is an
element of G with 0 ≤ G ≤ 1. The cut norm on G is defined by

‖G‖� := sup
S,T∈B(I)

∣∣∣∣∫
S×T

G(u, v) du dv

∣∣∣∣ ,
and the corresponding cut metric and cut distance are defined by

d�(G1, G2) := ‖G1 −G2‖�, δ�(G1, G2) := inf
ϕ∈SI

‖G1 −Gϕ2 ‖�,

where SI denotes the set of all invertible measure preserving maps I → I, and Gϕ(u, v) :=
G(ϕ(u), ϕ(v)).

Remark 2.1. We will also view a graphon G as an operator from L∞(I) to L1(I) with the
operator norm

‖G‖ := ‖G‖∞→1 := sup
‖g‖∞≤1

‖Gg‖1 = sup
‖g‖∞≤1

∫
I

∣∣∣∣∫
I
G(u, v)g(v) dv

∣∣∣∣ du.
From [27, Lemma 8.11] it follows that if ‖Gn−G‖� → 0 for a sequence of graphons Gn, then
‖Gn −G‖ → 0.

Given a graphon G ∈ G and a collection of initial distributions µ̄(0) := (µ̄u(0) ∈ P(Rd) :
u ∈ I), recall the graphon particle system (1.1) and the finite particle system (1.2). The
following assumptions will be made throughout the paper.

Standing Assumptions:

• The map I 3 u 7→ µ̄u(0) := L(X̄u(0)) ∈ P(Rd) is measurable, and supu∈I E|X̄u(0)|4 <
∞.
• The drift functions f and b are Lipschiz with Lipschitz constant Kf and Kb, respec-

tively, namely

|f(x1)− f(x2)| ≤ Kf |x1 − x2|, ∀x1, x2 ∈ Rd,

|b(x1, y1)− b(x2, y2)| ≤ Kb(|x1 − x2|+ |y1 − y2|), ∀x1, x2, y1, y2 ∈ Rd.

• Dissipativity: There exists some c0 ∈ (0,∞) such that

(x1 − x2) · (f(x1)− f(x2)) ≤ −c0|x1 − x2|2, ∀x1, x2 ∈ Rd (2.1)

and

κ := c0 − 2Kb > 0. (2.2)

• Gn ∈ G is a graphon and
(i) either ξnij = Gn( in ,

j
n),

(ii) or ξnij = ξnji = Bernoulli(Gn( in ,
j
n)) independently for 1 ≤ i ≤ j ≤ n, and indepen-

dent of {X̄u(0), Bu : u ∈ I}.

Remark 2.2. (a) The finite forth moment on X̄(0) is assumed to obtain Wasserstein-2 esti-
mates in Sections 5 and 6. A weaker condition such as a finite second moment on X̄(0)
would be sufficient to establish exponential ergodicity properties in Sections 3 and 4.

(b) Clearly, f and b have linear growth, namely there exists some C ∈ (0,∞) such that
|f(x)|+ |b(x, y)| ≤ C(1 + |x|+ |y|) for all x, y ∈ Rd.
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(c) By the Lipschitz property of f , there exists some c0 ∈ [−Kf ,Kf ] such that (2.1) holds.
Here the dissipativity assumption requires that c0 > 2Kb. A common example of b and f
satisfying (2.1) and (2.2) is linear (as in the study of linear quadratic graphon mean-field
games in, e.g., [21]) and mean-reverting:

f(x) + b(x, y) = −c1x+ c2y, for some c1 > c2 > 0.

In particular, the choice of f(x) = −(c1 + c2)x and b(x, y) = c2(x+ y) satisfies (2.1) and
(2.2) since c0 = c1 + c2 > 2c2 = 2Kb.

The following result gives well-posedness of systems (1.1) and (1.2).

Proposition 2.1. (a) There exists a unique pathwise solution to (1.1). For every T < ∞,
the map I 3 u 7→ µ̄u ∈ P(C([0, T ] : Rd)) is measurable and

sup
u∈I

sup
t∈[0,T ]

E
[
|X̄u(t)|4

]
<∞.

(b) There exists a unique pathwise solution to (1.2). Also for every T <∞,

max
i=1,...,n

sup
t∈[0,T ]

E
[
|Xn

i (t)|4
]
<∞.

The proof of Proposition 2.1 is standard (see e.g. [36] and [3] for part (a), and [24, Theorems
5.2.5 and 5.2.9] for part (b)) and hence is omitted.

3. Exponential ergodicity of the graphon particle system

In this section we show the exponential ergodicity for the graphon particle system (1.1).
First recall the standing assumptions in Section 2. The following result guarantees that

Proposition 2.1(a) holds uniformly in time.

Proposition 3.1. The system (1.1) has finite fourth moments uniformly in time, namely

sup
u∈I

sup
t≥0

E
[
|X̄u(t)|4

]
<∞.

Next we introduce some notations before stating the exponential ergodicity property. For
η := (ηu : u ∈ I) ∈ [P(Rd)]I with supu∈I

∫
Rd |x|4 ηu(dx) <∞, consider the system Ȳ η = (Ȳ η

u :
u ∈ I) given by

Ȳ η
u (t) = Ȳ η

u (0) +

∫ t

0

(
f(Ȳ η

u (s)) +

∫
I

∫
Rd

b(Ȳ η
u (s), x)G(u, v) µ̄ηv,s(dx) dv

)
ds (3.1)

+ σBu(t), µ̄ηu,t = L(Ȳ η
u (t)), u ∈ I,

where (Ȳ η
u (0) : u ∈ I) are mutually independent and also independent of {Bu : u ∈ I} with

L(Ȳ η
u (0)) = ηu. Note that Ȳ η is well-defined and supu∈I supt≥0

∫
Rd |x|4 µ̄ηu,t(dx) < ∞ by

Proposition 2.1(a). Denote by Pt the associated Markov semigroup:

Ptη := L(Ȳ η(t)), t ≥ 0. (3.2)

The following theorem shows that µ̄u,t (and its average) converges exponentially fast to the
limiting distribution, which is also invariant with respect to Pt.

Theorem 3.1. (a) There exists a unique collection of probability measures (µ̄u,∞ : u ∈ I)
such that

sup
u∈I

W2(µ̄u,t, µ̄u,∞) ≤
√

4κ1
c0 −Kb

κ
e−κt/2, t ≥ 0, (3.3)
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and hence

W2(µ̂(t), µ̂(∞)) ≤
√

4κ1
c0 −Kb

κ
e−κt/2, t ≥ 0, (3.4)

where κ1 := supu∈I supt≥0 E|X̄u(t)|2 and the averaged measures µ̂(t) and µ̂(∞) are defined
as

µ̂(t) :=

∫
I
µ̄u,t du, µ̂(∞) :=

∫
I
µ̄u,∞ du. (3.5)

(b) The collection µ̄(∞) := (µ̄u,∞ : u ∈ I) is invariant with respect to the Markov semigroup
Pt defined in (3.2), namely

Ptµ̄(∞) = µ̄(∞), t ≥ 0.

(c) There exists some C ∈ (0,∞) such that

sup
t∈[0,∞]

W2(µ̄u1,t, µ̄u2,t) ≤ max

{
W2(µ̄u1,0, µ̄u2,0), C

∫
I
|G(u1, v)−G(u2, v)| dv

}
, u1, u2 ∈ I.

Proofs of Proposition 3.1 and Theorem 3.1 are given in Section 7.1.
An immediate consequence of Theorem 3.1(c) is that the marginal distribution is (Lipschitz)

continuous as long as the initial distribution and the graphon are so.

Condition 3.1. There exists a finite collection of intervals {Ii : i = 1, . . . , N} for some
N ∈ N, such that ∪Ni=1Ii = I and for each i ∈ {1, . . . , N}:
(a) The map Ii 3 u 7→ µ̄u(0) ∈ P(Rd) is continuous with respect to the W2 metric.
(b) For each u ∈ Ii, there exists a subset Au ⊂ I such that λI(Au) = 0 and G(u, v) is

continuous at (u, v) ∈ I × I for each v ∈ I \ Au, where λI denotes the Lebesgue measure
on I.

Condition 3.2. There exist some KG ∈ (0,∞) and a finite collection of intervals {Ii : i =
1, . . . , N} for some N ∈ N, such that ∪Ni=1Ii = I and

W2(µu1(0), µu2(0)) ≤ KG|u1 − u2|, u1, u2 ∈ Ii, i ∈ {1, . . . , N},
|G(u1, v1)−G(u2, v2)| ≤ KG(|u1 − u2|+ |v1 − v2|), (u1, v1), (u2, v2) ∈ Ii × Ij , i, j ∈ {1, . . . , N}.

Corollary 3.1. (a) Suppose Condition 3.1 holds. Then for each i ∈ {1, . . . , N},
supt∈[0,∞]W2(µ̄u1,t, µ̄u2,t)→ 0 whenever u1 → u2 in Ii.

(b) Suppose Condition 3.2 holds. Then there exists some C ∈ (0,∞) such that

sup
t∈[0,∞]

W2(µ̄u1,t, µ̄u2,t) ≤ C|u1 − u2|

whenever u1, u2 ∈ Ii for some i ∈ {1, . . . , N}.

Proof. This is immediate from Theorem 3.1(c). �

We note that, as illustrated through the following example of Gaussian processes with
linear coefficients, the graph structure plays a crucial role in the long-time behavior of the
system, and hence the stationary measure, due to the heterogeneity of the system, is not
necessarily tractable. This is indeed one of the main reasons we are interested in the second
question in the introduction, which is answered via the uniform-in-time convergence and Euler
discretization in the next few sections.
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Example 3.1. Suppose d = 1. Suppose f and b are linear, namely f(x) = c1 − c2x and
b(x, y) = c3 + c4x+ c5y. Suppose c2 > 0 and c2− 2 max{|c4|, |c5|} > 0 so that the dissipativity
assumption holds. Then (1.1) is a collection of Gaussian processes. Letting mu(t) := E[X̄u(t)]
and Mu(t) := E[X̄2

u(t)], we have

mu(t) = mu(0) +

∫ t

0

(
c1 − c2mu(s) +

∫ 1

0
(c3 + c4mu(s) + c5mv(s))G(u, v) dv

)
ds,

Mu(t) = Mu(0) + E
[∫ t

0
2X̄u(s) dX̄u(s)

]
+ σ2t

= Mu(0) + 2

∫ t

0
(c1mu(s)− c2Mu(s)

+

∫ 1

0
(c3mu(s) + c4Mu(s) + c5mu(s)mv(s))G(u, v) dv

)
ds+ σ2t.

By Theorem 3.1, the limits mu(∞) := limt→∞mu(t) and Mu(∞) := limt→∞Mu(t) exist and
should satisfy the following equations:

c1 − c2mu(∞) +

∫ 1

0
(c3 + c4mu(∞) + c5mv(∞))G(u, v) dv = 0,

c1mu(∞)− c2Mu(∞) +

∫ 1

0
(c3mu(∞) + c4Mu(∞) + c5mu(∞)mv(∞))G(u, v) dv +

1

2
σ2 = 0.

Here the first equation is a Fredholm integral equation of the second kind, from which mu(∞)
could be written as a Liouville–Neumann series, and Mu(∞) could then be solved from the
second equation; see e.g. [34, Chapter 13] for methods of solving such integral equations.

We note that even in this setup of linear systems, the long time behavior crucially depends
on the graphon G and the stationary distribution, such as the mean mu(∞), is not necessarily
explicit or tractable. In some special cases, one can get explicit expressions. For example, if
we further assume c1 = c3 = 0, then we can get

mu(∞) = 0, Mu(∞) =
σ2

2(c2 − c4

∫ 1
0 G(u, v) dv)

,

and the second moment of the averaged measure µ̂(∞) is∫
R
x2 µ̂(∞)(dx) =

∫ 1

0
Mu(∞) du =

σ2

2

∫ 1

0

1

c2 − c4

∫ 1
0 G(u, v) dv

du.

4. Exponential ergodicity of the finite particle system

In this section we establish the exponential ergodicity of the joint distribution for the finite
particle system (1.2).

Using the standing assumptions in Section 2, we first show that Proposition 2.1(b) holds
uniformly in time, in the quenched sense by conditioning on the random interactions ξnij , and

hence also in the annealed sense. Write ξn := (ξnij)
n
i,j=1 and

En,z[ · ] := E[ · | ξn = (zij)
n
i,j=1], (zij = zji)

n
i,j=1 ∈ [0, 1]n

2
.

Proposition 4.1. There exists some constant κ2 ∈ (0,∞) such that

sup
n∈N

max
i=1,...,n

sup
t≥0

En,ξ
n [|Xn

i (t)|2
]
≤ κ2 a.s., sup

n∈N
max
i=1,...,n

sup
t≥0

E
[
|Xn

i (t)|2
]
≤ κ2.
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Next we introduce some notations before stating the exponential ergodicity property. Define
the annealed and quenched joint distributions at time t ≥ 0 by

θn(t) := L((Xn
i (t))ni=1) ∈ P((Rd)n)

and

θn,z(t) := L((Xn
i (t))ni=1 | ξn = (zij)

n
i,j=1), z = (zij = zji)

n
i,j=1 ∈ [0, 1]n

2
.

For η ∈ P((Rd)n) and z = (zij = zji)
n
i,j=1 ∈ [0, 1]n

2
, consider the system Y n,z,η = (Y n,z,η

i )ni=1

given by

Y n,z,η
i (t) = Y n,z,η

i (0) +

∫ t

0

f(Y n,z,η
i (s)) +

1

n

n∑
j=1

zijb(Y
n,z,η
i (s), Y n,z,η

j (s))

 ds (4.1)

+ σB i
n

(t), i ∈ {1, . . . , n},

where Y n,z,η(0) is independent of {Bu : u ∈ I} with L(Y n,z,η(0)) = η. Denote by Pn,zt the
associated Markov semigroup:

Pn,zt η := L(Y n,z,η(t)), t ≥ 0, η ∈ P((Rd)n). (4.2)

The following theorem shows that θn,z(t) (resp. θn(t)) converges exponentially fast to the
limiting distribution, which is also invariant with respect to Pn,zt .

Theorem 4.1. (a) There exists a unique collection of probability measures {θn,z(∞) : z =

(zij = zji)
n
i,j=1 ∈ [0, 1]n

2} such that

sup
n∈N

1√
n
W2(θn,ξ

n
(t), θn,ξ

n
(∞)) ≤

√
4κ2e

−κt, t ≥ 0, a.s., (4.3)

and hence

sup
n∈N

1√
n
W2(θn(t), θn(∞)) ≤

√
4κ2e

−κt, t ≥ 0, (4.4)

where κ2 is as in Proposition 4.1, and

θn(∞) := E[θn,ξ
n
(∞)]. (4.5)

(b) The joint distribution θn,z(∞) is invariant with respect to the Markov semigroup Pn,zt

defined in (4.2), namely

Pn,zt θn,z(∞) = θn,z(∞), t ≥ 0.

Proofs of Proposition 4.1 and Theorem 4.1 are given in Section 7.2.

5. Uniform-in-time convergence

In this section we analyze the uniform-in-time convergence of the finite particle system
(1.2) to the graphon particle system (1.1).

We make the following assumption on the kernel Gn. Note that (5.1) is just a convenient

and natural form to view (Gn( in ,
j
n) : i, j = 1, . . . , n) as a piece-wise constant graphon.

Condition 5.1. Gn is a step graphon, that is,

Gn(u, v) = Gn

(
dnue
n

,
dnve
n

)
, for (u, v) ∈ I × I. (5.1)

Moreover, Gn → G in the cut metric as n→∞.
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Remark 5.1. In general, if δ�(Gn, G) → 0 for a sequence of step graphons, then it follows
from [27, Theorem 11.59] that ‖Gn − G‖� → 0, after suitable relabeling of Gn. Therefore
we directly assume in Condition 5.1 that the convergence of Gn to G is in the cut metric
d�, instead of assuming that d�(Gϕn

n , G) → 0 for some relabeling function ϕn and Xn
i (0) =

X̄ϕ−1
n ( i

n
)(0).

The following convergence on finite time intervals was shown in [3, Theorem 3.1] without
the dissipativity assumption.

Proposition 5.1. ([3, Theorem 3.1]) Suppose Conditions 3.1 and 5.1 hold. Fix T ∈ (0,∞).
As n→∞,

1

n

n∑
i=1

E

[
sup
t∈[0,T ]

∣∣∣Xn
i (t)− X̄ i

n
(t)
∣∣∣2]→ 0.

Recall µ̂(t) and µ̂(∞) introduced in (3.5). Let

νn(t) :=
1

n

n∑
i=1

δXn
i (t), µn(t) :=

1

n

n∑
i=1

L(Xn
i (t)) = Eνn(t).

Although Proposition 5.1 holds for finite time horizon, it does not provide sufficient infor-
mation about the convergence of stationary measures. Under the dissipativity assumption,
we have the following uniform in time convergence of Xn

i and LLN of νn and µn, which in
particular guarantees the convergence of stationary measures (see Corollary 5.3).

Theorem 5.1. Suppose Conditions 3.1 and 5.1 hold.

(a) As n→∞,

sup
t≥0

1

n

n∑
i=1

E|Xn
i (t)− X̄ i

n
(t)|2 → 0.

(b) (LLN) As n→∞,

sup
t≥0

W2(µn(t), µ̂(t))→ 0, sup
t≥0

EW2(νn(t), µ̂(t))→ 0. (5.2)

Remark 5.2. (a) We note that Theorem 5.1 and many existing results (such as [2, The-
orem 2.1(b)], [8, Theorem 3.4], [10, Theorem 3.4] and [38, Theorem 2]) work on
the marginal distributions, which is sufficient for the analysis of approximating sta-
tionary measure in Corollary 6.2. The study on the trajectory level of the difference

E
[
supt≥0

1
n

∑n
i=1 |Xn

i (t)− X̄ i
n

(t)|2
]

is more challenging and beyond the scope of this work.

(b) We also note that graphs with vanishing density degrees and rescaled strength of inter-
actions are analyzed in [3] and Proposition 5.1 is proved under certain conditions via a
Girsanov’s change of measure argument. It is challenging to apply such an argument
to the long-time analysis. The study of the uniform-in-time convergence (and Euler dis-
cretization) for such graphs will be the future work.

The following condition will be used for analyzing efficient Euler discretization and simu-
lation in Section 6.

Condition 5.2. Gn is a graphon such that Gn( in ,
j
n) = G( in ,

j
n) for each i, j ∈ {1, . . . , n}.

Remark 5.3. We note that Condition 5.2 is trivially satisfied if Gn = G. Alternatively, one
may take Gn to be a step graphon that is consistent with G:

Gn(u, v) = G

(
dnue
n

,
dnve
n

)
, for (u, v) ∈ I × I.
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Condition 5.2 allows one to obtain POC and the rate of convergence in Theorem 5.1. Let

a(n) := n−1/d + n−1/12. (5.3)

Theorem 5.2. Suppose Conditions 3.2 and 5.2 hold. Then there exists some C ∈ (0,∞)
such that the following hold.

(a) For all n ∈ N,

sup
t≥0

max
i=1,...,n

E|Xn
i (t)− X̄ i

n
(t)|2 ≤ C

n
.

(b) (LLN) For all n ∈ N,

sup
t≥0

W2(µn(t), µ̂(t)) ≤ C√
n
, sup

t≥0
EW2(νn(t), µ̂(t)) ≤ Ca(n).

(c) (POC) For all n, k ∈ N and any distinct i1, . . . , ik ∈ {1, . . . , n},

sup
t≥0

W2(L(Xn
i1(t), . . . , Xn

ik
(t)), µ̄ i1

n
,t
⊗ · · · ⊗ µ̄ ik

n
,t
) ≤ C

√
k√
n
.

Proofs of Theorems 5.1 and 5.2 are given in Section 7.3.

Remark 5.4. The rate a(n) is related to the upper bound of the Wasserstein distance between
the empirical measure of independent random variables and their averaged distribution. It may
be replaced by other function of n that vanishes faster, as a result of which the constant C in
Theorem 5.2(b) will be larger; see Remark 7.1.

As an immediate consequence of the exponential ergodicity of the graphon particle system
(1.1) and the uniform-in-time convergence, one has the interchange of limits as t → ∞ and
n→∞.

Corollary 5.1. Suppose Conditions 3.1 and 5.1 hold. Then

lim
n,t→∞

W2(µn(t), µ̂(∞)) = 0, lim
n,t→∞

EW2(νn(t), µ̂(∞)) = 0.

Proof. This follows from (3.4) and Theorem 5.1(b). �

Corollary 5.2. Suppose Conditions 3.2 and 5.2 hold. Then there exists C ∈ (0,∞) such that
the following hold.

(a) For all n ∈ N and t ≥ 0,

W2(µn(t), µ̂(∞)) ≤ C
(

1√
n

+ e−κt/2
)
, EW2(νn(t), µ̂(∞)) ≤ C

(
a(n) + e−κt/2

)
.

In particular,

lim
n,t→∞

W2(µn(t), µ̂(∞)) = 0, lim
n,t→∞

EW2(νn(t), µ̂(∞)) = 0.

(b) For all n, k ∈ N, t ≥ 0 and any distinct i1, . . . , ik ∈ {1, . . . , n},

W2(L(Xn
i1(t), . . . , Xn

ik
(t)), µ̄ i1

n
,∞ ⊗ · · · ⊗ µ̄ ik

n
,∞) ≤ C

√
k

(
1√
n

+ e−κt/2
)
.

Proof. (a) This follows from (3.4) and Theorem 5.2(b).
(b) This follows from Theorem 5.2(c), (1.5) and (3.3). �
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From Theorem 4.1(a) we know that the limiting distribution

µn(∞) := lim
t→∞

µn(t) = lim
t→∞

1

n

n∑
i=1

L(Xn
i (t))

is well-defined. The following corollary shows that µn(∞) converges to the averaged long time
distribution µ̂(∞) of the graphon particle system (1.1).

Corollary 5.3. (a) Suppose Conditions 3.1 and 5.1 hold. Then

lim
n→∞

W2(µn(∞), µ̂(∞)) = 0.

(b) Suppose Conditions 3.2 and 5.2 hold. Then there exists C ∈ (0,∞) such that

W2(µn(∞), µ̂(∞)) ≤ C√
n
.

In addition, for all n, k ∈ N, t ≥ 0 and any distinct i1, . . . , ik ∈ {1, . . . , n},

W2( lim
t→∞
L(Xn

i1(t), . . . , Xn
ik

(t)), µ̄ i1
n
,∞ ⊗ · · · ⊗ µ̄ ik

n
,∞) ≤ C

√
k√
n
.

Proof. Write

W2(µn(∞), µ̂(∞)) ≤W2(µn(∞), µn(t)) +W2(µn(t), µ̂(∞)).

Using the convexity of W 2
2 (·, ·), (1.4) and (4.4), we have

W 2
2 (µn(∞), µn(t)) ≤ 1

n

n∑
i=1

W 2
2 ( lim
s→∞

L(Xn
i (s)),L(Xn

i (t))) ≤ 1

n
W 2

2 (θn(∞), θn(t)) ≤ Ce−2κt

for each t ≥ 0. Combining these with Corollary 5.1 (resp. Corollary 5.2(a)) gives part (a)
(resp. the first statement in part (b)). The second statement in part (b) follows by taking
t→∞ in Corollary 5.2(b). �

6. Euler discretization

In this section we analyze the Euler discretization of the system (1.2) with step size h > 0,
namely, with sh := b shch,

Xn,h
i (t) = X̄ i

n
(0) +

∫ t

0

f(Xn,h
i (sh)) +

1

n

n∑
j=1

ξnijb(X
n,h
i (sh), Xn,h

j (sh))

 ds

+ σB i
n

(t), i ∈ {1, . . . , n}, t ≥ 0. (6.1)

The following theorem shows the convergence of the Euler scheme, uniformly in time t and
the number of particles n. The proof is given in Section 7.4.

Theorem 6.1. There exist C, h0 ∈ (0,∞) such that

sup
n∈N

max
i=1,...,n

sup
t≥0

E|Xn,h
i (t)−Xn

i (t)|2 ≤ Ch, ∀h ∈ (0, h0).

Theorem 6.1 and Corollary 5.1 guarantee that the Euler scheme (6.1) provides a good
numerical approximation to the graphon particle system (1.1) uniformly in time, as shown in
the following corollary. Let

νn,h(t) :=
1

n

n∑
i=1

δ
Xn,h

i (t)
, µn,h(t) :=

1

n

n∑
i=1

L(Xn,h
i (t)) = Eνn,h(t).
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Corollary 6.1. Suppose Conditions 3.1 and 5.1 hold. Then there exist C, h0 ∈ (0,∞) such
that

lim sup
n→∞

sup
t≥0

W2(µn,h(t), µ̂(t)) ≤ C
√
h, lim sup

n→∞
sup
t≥0

EW2(νn,h(t), µ̂(t)) ≤ C
√
h,

and

lim sup
n,t→∞

W2(µn,h(t), µ̂(∞)) ≤ C
√
h, lim sup

n,t→∞
EW2(νn,h(t), µ̂(∞)) ≤ C

√
h,

for all h ∈ (0, h0).

Proof. Let h0 ∈ (0,∞) be as in Theorem 6.1. Taking π = 1
n

∑n
i=1 L(Xn,h

i (t), Xn
i (t)) as the

coupling of µn,h(t) and µn(t) gives

sup
n∈N

sup
t≥0

W2(µn,h(t), µn(t)) ≤ sup
n∈N

sup
t≥0

(
1

n

n∑
i=1

E|Xn,h
i (t)−Xn

i (t)|2
)1/2

≤ C
√
h, (6.2)

and taking π = 1
n

∑n
i=1 δ(Xn,h

i (t),Xn
i (t))

as the coupling of νn,h(t) and νn(t) gives

sup
n∈N

sup
t≥0

EW2(νn,h(t), νn(t)) ≤ sup
n∈N

sup
t≥0

(
1

n

n∑
i=1

E|Xn,h
i (t)−Xn

i (t)|2
)1/2

≤ C
√
h, (6.3)

for all h ∈ (0, h0). Combining these with Theorem 5.1(b) (resp. Corollary 5.1) gives the first
(resp. second) statement. This completes the proof. �

As stated in the second question in the introduction, we are also interested in the precise
rate of convergence of the Euler scheme, as an approximation to the graphon particle system
(1.1) and its stationary distribution. This is answered in the following corollary.

Corollary 6.2. Suppose Conditions 3.2 and 5.2 hold. Then there exist C, h0 ∈ (0,∞) such
that the following hold.

(a) For all h ∈ (0, h0), n ∈ N and t ≥ 0,

W2(µn,h(t), µ̂(t)) ≤ C
(

1√
n

+
√
h

)
, EW2(νn,h(t), µ̂(t)) ≤ C

(
a(n) +

√
h
)
,

and

W2(µn,h(t), µ̂(∞)) ≤ C
(

1√
n

+
√
h+ e−κt/2

)
,EW2(νn,h(t), µ̂(∞)) ≤ C

(
a(n) +

√
h+ e−κt/2

)
.

(b) For all n, k ∈ N, t ≥ 0 and any distinct i1, . . . , ik ∈ {1, . . . , n},

W2(L(Xn,h
i1

(t), . . . , Xn,h
ik

(t)), µ̄ i1
n
,t
⊗ · · · ⊗ µ̄ ik

n
,t
) ≤ C

√
k

(
1√
n

+
√
h

)
,

and

W2(L(Xn,h
i1

(t), . . . , Xn,h
ik

(t)), µ̄ i1
n
,∞ ⊗ · · · ⊗ µ̄ ik

n
,∞) ≤ C

√
k

(
1√
n

+
√
h+ e−κt/2

)
.

Proof. (a) Combining (6.2), (6.3) and Theorem 5.2(b) (resp. Corollary 5.2(a)) gives the first
(resp. last) two statements.
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(b) Taking π = L
((
Xn,h
i1

(t), . . . , Xn,h
ik

(t)
)
,
(
Xn
i1

(t), . . . , Xn
ik

(t)
))

, we have

W2(L(Xn,h
i1

(t), . . . , Xn,h
ik

(t)), L(Xn
i1(t), . . . , Xn

ik
(t))) ≤

 k∑
j=1

E|Xn,h
ij

(t)−Xn
ij (t)|

2

1/2

≤ C
√
kh,

where the last line uses Theorem 6.1. Combining this with Theorem 5.2(c) (resp. Corollary
5.2(b)) gives the first (resp. second) statement. This completes the proof. �

Remark 6.1. The constant C here could be made explicit, but we didn’t explore that direction.

7. Proofs

We first present an elementary result that will be used in several later proofs.

Lemma 7.1. Let y : [0,∞)→ [0,∞) be a non-negative differentiable function. Suppose

y(t)− y(r) ≤ −a1

∫ t

r
y(s) ds+ a2

∫ t

r

√
y(s) ds+

∫ t

r
a3(s) ds, ∀ t > r ≥ 0,

for some a1 > 0, a2 ∈ R and non-negative and continuous function a3. Then

y(t) ≤ max

y(0),

(
a2

2a1
+

√
sup0≤s≤t a3(s)

a1
+

a2
2

4a2
1

)2
 , ∀ t ≥ 0.

In particular, y(t) ≤ max
{
y(0),

sup0≤s≤t a3(s)

a1

}
if a2 = 0.

Proof. Fix T ∈ (0,∞). Since y(t) is differentiable, we have

y′(t) ≤ −a1y(t) + a2

√
y(t) + a3(t) ≤ −a1

(√
y(t)− a2

2a1

)2

+ sup
0≤s≤T

a3(s) +
a2

2

4a1
, t ∈ [0, T ].

Noting that the right hand side above is negative when

√
y(t) >

a2

2a1
+

√
sup0≤s≤T a3(s)

a1
+

a2
2

4a2
1

,

we have the desired result. �

7.1. Proofs for Section 3.

Proof of Proposition 3.1. Using Itô’s formula, Remark 2.2(b) and Proposition 2.1(a), we have

E|X̄u(t)|4 − E|X̄u(0)|4

= E
∫ t

0
4|X̄u(s)|2X̄u(s) ·

(
f(X̄u(s)) +

∫
I

∫
Rd

b(X̄u(s), x)G(u, v) µ̄v,s(dx) dv

)
ds+ Ct.

Therefore the functions

αu(t) := E|X̄u(t)|4, α(t) :=

∫
I
E|X̄v(t)|4 dv =

∫
I
αv(t) dv
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are differentiable, and

E|X̄u(t)|4 − E|X̄u(r)|4 (7.1)

= E
∫ t

r
4|X̄u(s)|2X̄u(s) ·

(
f(X̄u(s)) +

∫
I

∫
Rd

b(X̄u(s), x)G(u, v) µ̄v,s(dx) dv

)
ds+ C(t− r)

for all t > r ≥ 0. From (2.1) we have

x · (f(x)− f(0)) ≤ −c0|x|2

and hence for each s ≥ 0,

E
[
|X̄u(s)|2X̄u(s) · f(X̄u(s))

]
≤ E

[
−c0|X̄u(s)|4 + |f(0)||X̄u(s)|3

]
≤ −c0αu(s) +

c0 − 2Kb

4
αu(s) + C, (7.2)

where the last line uses Young’s inequality and (2.2). For the rest of integrand in (7.1), using
the Lipschitz property of b we have

E
[
|X̄u(s)|2X̄u(s) ·

∫
I

∫
Rd

b(X̄u(s), x)G(u, v) µ̄v,s(dx) dv

]
≤
∫
I

∫
Rd

E
[
|X̄u(s)|3

(
|b(0, 0)|+Kb|X̄u(s)|+Kb|x|

)]
µ̄v,s(dx) dv

≤ Cα3/4
u (s) +Kbαu(s) +Kbα

3/4
u (s)

∫
I
α1/4
v (s) dv

≤ c0 − 2Kb

4
αu(s) + C +Kbαu(s) +

3

4
Kbαu(s) +

1

4
Kbα(s),

where the third line uses Jensen’s inequality and the last line uses Young’s inequality and
(2.2). Combining this with (7.1) and (7.2) gives

αu(t)− αu(r) ≤ −(2c0 − 3Kb)

∫ t

r
αu(s) ds+Kb

∫ t

r
α(s) ds+ C(t− r). (7.3)

Integrating over u ∈ I gives

α(t)− α(r) ≤ −2(c0 − 2Kb)

∫ t

r
α(s) ds+ C(t− r).

Since the function α(t) is non-negative and differentiable, using Lemma 7.1 (with a1 = 2(c0−
2Kb), a2 = 0, a3 = C) we have α(t) ≤ C. Applying this to (7.3) gives

αu(t)− αu(r) ≤ −(2c0 − 3Kb)

∫ t

r
αu(s) ds+ C(t− r).

Since the function αu(t) is non-negative and differentiable, using Lemma 7.1 again we have
αu(t) ≤ C, uniformly in u ∈ I. This completes the proof. �

Proof of Theorem 3.1. (a) From Proposition 3.1 we see that the quantity κ1 =
supu∈I supt≥0 E|X̄u(t)|2 is finite. Let

A :=

{
η := (ηu : u ∈ I) ∈ [P(Rd)]I : sup

u∈I

∫
Rd

|x|2 ηu(dx) ≤ κ1

}
.

Recall κ in (2.2) and the process Ȳ η
u in (3.1).
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We claim that

sup
u∈I

W 2
2 ((Ptη)u, (Ptη̃)u) ≤ c0 −Kb

κ
e−κt sup

u∈I
W 2

2 (ηu, η̃u) (7.4)

for any η, η̃ ∈ A and t ≥ 0. To see this, by Itô’s formula, we have

eκtE|Ȳ η
u (t)− Ȳ η̃

u (t)|2 − E|Ȳ η
u (0)− Ȳ η̃

u (0)|2

=

∫ t

0
eκsE

[
2
(
Ȳ η
u (s)− Ȳ η̃

u (s)
)
·
(
f(Ȳ η

u (s))− f(Ȳ η̃
u (s))

+

∫
I

(∫
Rd

b(Ȳ η
u (s), x) µ̄ηv,s(dx)−

∫
Rd

b(Ȳ η̃
u (s), x) µ̄η̃v,s(dx)

)
G(u, v) dv

)]
ds

+

∫ t

0
κeκsE|Ȳ η

u (s)− Ȳ η̃
u (s)|2 ds.

Using (2.1) we have

E
[(
Ȳ η
u (s)− Ȳ η̃

u (s)
)
·
(
f(Ȳ η

u (s))− f(Ȳ η̃
u (s))

)]
≤ −c0E|Ȳ η

u (s)− Ȳ η̃
u (s)|2.

By adding and subtracting terms, we have

E
[(
Ȳ η
u (s)− Ȳ η̃

u (s)
)
·
∫
I

(∫
Rd

b(Ȳ η
u (s), x) µ̄ηv,s(dx)−

∫
Rd

b(Ȳ η̃
u (s), x) µ̄η̃v,s(dx)

)
G(u, v) dv

]
≤ E

[(
Ȳ η
u (s)− Ȳ η̃

u (s)
)
·
∫
I

∫
Rd

(
b(Ȳ η

u (s), x)− b(Ȳ η̃
u (s), x)

)
µ̄ηv,s(dx)G(u, v) dv

]
+ E

[(
Ȳ η
u (s)− Ȳ η̃

u (s)
)
·
∫
I

∫
Rd

b(Ȳ η̃
u (s), x)

(
µ̄ηv,s(dx)− µ̄η̃v,s(dx)

)
G(u, v) dv

]
≤ KbE|Ȳ η

u (s)− Ȳ η̃
u (s)|2 +KbE|Ȳ η

u (s)− Ȳ η̃
u (s)|

∫
I
W2(µ̄ηv,s, µ̄

η̃
v,s) dv

≤ 3Kb

2
E|Ȳ η

u (s)− Ȳ η̃
u (s)|2 +

Kb

2

∫
I
W 2

2 (µ̄ηv,s, µ̄
η̃
v,s) dv,

where the fourth line uses the Lipschitz property of b and (1.3) and the last line uses Young’s
inequality and Jensen’s inequality. Combining above three displays gives

eκtE|Ȳ η
u (t)− Ȳ η̃

u (t)|2 − E|Ȳ η
u (0)− Ȳ η̃

u (0)|2

≤ −(2c0 − 3Kb − κ)

∫ t

0
eκsE|Ȳ η

u (s)− Ȳ η̃
u (s)|2 ds+Kb

∫ t

0
eκs
∫
I
W 2

2 (µ̄ηv,s, µ̄
η̃
v,s) dv ds. (7.5)

Since the function t 7→ eκtE|Ȳ η
u (t)− Ȳ η̃

u (t)|2 is non-negative and differentiable, using Lemma

7.1 (with a1 = 2c0 − 3Kb − κ, a2 = 0, a3(s) = Kbe
κs
∫
IW

2
2 (µ̄ηv,s, µ̄

η̃
v,s) dv) we have

eκtE|Ȳ η
u (t)− Ȳ η̃

u (t)|2 ≤ max

{
E|Ȳ η

u (0)− Ȳ η̃
u (0)|2,

Kb sup0≤s≤t e
κs
∫
IW

2
2 (µ̄ηv,s, µ̄

η̃
v,s) dv

2c0 − 3Kb − κ

}

≤ E|Ȳ η
u (0)− Ȳ η̃

u (0)|2 +
Kb

2c0 − 3Kb − κ
sup

0≤s≤t
eκs sup

v∈I
W 2

2 (µ̄ηv,s, µ̄
η̃
v,s).
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Taking the infimum over the joint distribution of (Ȳ η
u (0), Ȳ η̃

u (0)) gives

eκtW 2
2 ((Ptη)u, (Ptη̃)u) ≤ eκtE|Ȳ η

u (t)− Ȳ η̃
u (t)|2

≤W 2
2 (ηu, η̃u) +

Kb

2c0 − 3Kb − κ
sup

0≤s≤t
eκs sup

v∈I
W 2

2 (µ̄ηv,s, µ̄
η̃
v,s).

Taking the supremum over u ∈ I and the time interval [0, t] gives

sup
0≤s≤t

eκs sup
u∈I

W 2
2 ((Psη)u, (Psη̃)u) ≤ sup

u∈I
W 2

2 (ηu, η̃u)+
Kb

2c0 − 3Kb − κ
sup

0≤s≤t
eκs sup

u∈I
W 2

2 (µ̄ηu,s, µ̄
η̃
u,s).

Since κ = c0 − 2Kb > 0, by rearranging terms we have

sup
0≤s≤t

eκs sup
u∈I

W 2
2 ((Psη)u, (Psη̃)u) ≤ c0 −Kb

c0 − 2Kb
sup
u∈I

W 2
2 (ηu, η̃u).

This gives the claim (7.4).
Note that µ̄(t) := (µ̄u,t : u ∈ I) ∈ A and µ̄(t) = Ptµ̄(0) for each t ≥ 0 by Propositions

2.1(a) and 3.1. It then follows from (7.4) that

W 2
2 (µ̄u,t+s, µ̄u,t) = W 2

2 ((Ptµ̄(s))u, (Ptµ̄(0))u)

≤ c0 −Kb

κ
e−κtW 2

2 (µ̄u,s, µ̄u,0)

≤ 4κ1
c0 −Kb

κ
e−κt. (7.6)

This means that µ̄u,t is a W2-Cauchy family when t → ∞. So there exists a probability

measure µ̄u,∞ ∈ P(Rd) such that

lim
t→∞

W2(µ̄u,t, µ̄u,∞) = 0. (7.7)

In fact, taking s → ∞ in (7.6) gives W2(µ̄u,t, µ̄u,∞) ≤
√

4κ1
c0−Kb
κ e−κt/2, uniformly in u ∈ I.

This gives (3.3). Since W 2
2 (·, ·) is convex, (3.4) follows from (3.3) and (3.5).

(b) Next we argue that µ̄(∞) is invariant with respect to Pt. Noting that µ̄(∞) ∈ A, we
can apply (7.4) and use (7.7) to get

lim sup
s→∞

W2((Ptµ̄(∞))u, µ̄u,t+s) ≤ lim sup
s→∞

√
c0 −Kb

κ
e−κt/2W2(µ̄u,∞, µ̄u,s) = 0

and

lim sup
s→∞

W2(µ̄u,t+s, µ̄u,s) ≤ lim sup
s→∞

√
c0 −Kb

κ
e−κs/2W2(µ̄u,t, µ̄u,0) = 0.

Combining these two with (7.7) gives

W2((Ptµ̄(∞))u, µ̄u,∞) ≤ lim sup
s→∞

W2((Ptµ̄(∞))u, µ̄u,t+s)

+ lim sup
s→∞

W2(µ̄u,t+s, µ̄u,s) + lim sup
s→∞

W2(µ̄u,s, µ̄u,∞)

= 0.

This gives part (b).
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(c) Fix u1, u2 ∈ I. Consider the following diffusions:

X̃u1(t) = X̃u1(0) +

∫ t

0

(
f(X̃u1(s)) +

∫
I

∫
Rd

b(X̃u1(s), x)G(u1, v) µ̄v,s(dx) dv

)
ds+ σB(t),

X̃u2(t) = X̃u2(0) +

∫ t

0

(
f(X̃u2(s)) +

∫
I

∫
Rd

b(X̃u2(s), x)G(u2, v) µ̄v,s(dx) dv

)
ds+ σB(t).

Here B is a d-dimensional Brownian motion independent of {X̃u1(0), X̃u2(0)}, L(X̃u1(0)) =

µ̄u1,0, L(X̃u2(0)) = µ̄u2,0, but X̃u1(0) and X̃u2(0) may not be independent. From the unique-

ness property in Proposition 2.1(a) we have L(X̃u1) = µ̄u1 and L(X̃u2) = µ̄u2 . Using Itô’s
formula we have

E|X̃u1(t)− X̃u2(t)|2 − E|X̃u1(r)− X̃u2(r)|2

= E
∫ t

r
2(X̃u1(s)− X̃u2(s)) ·

(
f(X̃u1(s))− f(X̃u2(s))

+

∫
I

∫
Rd

(
b(X̃u1(s), x)G(u1, v)− b(X̃u2(s), x)G(u2, v)

)
µ̄v,s(dx) dv

)
ds.

For each s ≥ 0, from (2.1) we have

E
[
(X̃u1(s)− X̃u2(s)) ·

(
f(X̃u1(s))− f(X̃u2(s))

)]
≤ −c0E|X̃u1(s)− X̃u2(s)|2.

By adding and subtracting terms we get

E
∣∣∣∣(X̃u1(s)− X̃u2(s)) ·

∫
I

∫
Rd

(
b(X̃u1(s), x)G(u1, v)− b(X̃u2(s), x)G(u2, v)

)
µ̄v,s(dx) dv

∣∣∣∣
≤ E

∣∣∣∣(X̃u1(s)− X̃u2(s)) ·
∫
I

∫
Rd

(
b(X̃u1(s), x)− b(X̃u2(s), x)

)
G(u1, v) µ̄v,s(dx) dv

∣∣∣∣
+ E

∣∣∣∣(X̃u1(s)− X̃u2(s)) ·
∫
I

∫
Rd

b(X̃u2(s), x) (G(u1, v)−G(u2, v)) µ̄v,s(dx) dv

∣∣∣∣ .
For the first term on the right hand side, it follows from the Lipschitz property of b that

E
∣∣∣∣(X̃u1(s)− X̃u2(s)) ·

∫
I

∫
Rd

(
b(X̃u1(s), x)− b(X̃u2(s), x)

)
G(u1, v) µ̄v,s(dx) dv

∣∣∣∣
≤ KbE|X̃u1(s)− X̃u2(s)|2.

For the other term, using the Cauchy-Schwarz inequality, Young’s inequality, the Lipschitz
property of b and Proposition 3.1 we have

E
∣∣∣∣(X̃u1(s)− X̃u2(s)) ·

∫
I

∫
Rd

b(X̃u2(s), x) (G(u1, v)−G(u2, v)) µ̄v,s(dx) dv

∣∣∣∣
≤ KbE|X̃u1(s)− X̃u2(s)|2 +

1

4Kb
E
(∫

I

∫
Rd

|b(X̃u2(s), x)||G(u1, v)−G(u2, v)| µ̄v,s(dx) dv

)2

≤ KbE|X̃u1(s)− X̃u2(s)|2 + CE
(∫

I

(
1 + |X̃u2(s)|

)
|G(u1, v)−G(u2, v)| dv

)2

≤ KbE|X̃u1(s)− X̃u2(s)|2 + C

(∫
I
|G(u1, v)−G(u2, v)| dv

)2

.
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Combining above five displays gives

E|X̃u1(t)− X̃u2(t)|2 − E|X̃u1(r)− X̃u2(r)|2

≤ −2(c0 − 2Kb)

∫ t

r
E|X̃u1(s)− X̃u2(s)|2 ds+ C(t− r)

(∫
I
|G(u1, v)−G(u2, v)| dv

)2

.

Since the function t 7→ E|X̃u1(t) − X̃u2(t)|2 is non-negative and differentiable, using Lemma

7.1 (with a1 = 2(c0 − 2Kb), a2 = 0, a3 = C
(∫
I |G(u1, v)−G(u2, v)| dv

)2
) we have

E|X̃u1(t)− X̃u2(t)|2 ≤ max

{
E|X̃u1(0)− X̃u2(0)|2, C

(∫
I
|G(u1, v)−G(u2, v)| dv

)2
}
.

Taking the infimum over the joint distribution of X̃u1(0) and X̃u2(0) gives part (c) and com-
pletes the proof. �

7.2. Proofs for Section 4.

Proof of Proposition 4.1. Fix n ∈ N and z = (zij = zji)
n
i,j=1 ∈ [0, 1]n

2
. Using the Lipschitz

property of f, b and a standard argument one has

max
i=1,...,n

sup
0≤t≤T

En,z|Xn
i (t)|2 <∞ a.s., ∀T ∈ (0,∞).

Using this and Itô’s formula, we have

En,z|Xn
i (t)|2 − En,z|Xn

i (r)|2

= En,z
∫ t

r
2Xn

i (s) ·

f(Xn
i (s)) +

1

n

n∑
j=1

zijb(X
n
i (s), Xn

j (s))

 ds+ C(t− r),

and hence the functions

αn,zi (t) := En,z|Xn
i (t)|2, αn,z(t) :=

1

n

n∑
i=1

En,z|Xn
i (t)|2

are differentiable. For each s ≥ 0, using (2.1) and the Lipschitz property of b we have

En,z
Xn

i (s) ·

f(Xn
i (s)) +

1

n

n∑
j=1

zijb(X
n
i (s), Xn

j (s))


≤ En,z

−c0|Xn
i (s)|2 + C|Xn

i (s)|+ 1

n

n∑
j=1

|Xn
i (s)|

(
C +Kb|Xn

i (s)|+Kb|Xn
j (s)|

)
≤ −c0α

n,z
i (s) +

c0 − 2Kb

2
αn,zi (s) + C +Kbα

n,z
i (s) +

Kb

2
αn,zi (s) +

Kb

2
αn,z(s),

where the last line uses Young’s inequality and (2.2). Therefore

αn,zi (t)− αn,zi (r) ≤ − (c0 −Kb)

∫ t

r
αn,zi (s) ds+Kb

∫ t

r
αn,z(s) ds+ C(t− r). (7.8)

Taking the average over i = 1, . . . , n gives

αn,z(t)− αn,z(r) ≤ −(c0 − 2Kb)

∫ t

r
αn,z(s) ds+ C(t− r).
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Since the function αn,z(t) is non-negative and differentiable, using Lemma 7.1 (with a1 =
c0 − 2Kb, a2 = 0, a3 = C) we have αn,z(t) ≤ C. From this and (7.8) we further have

αn,zi (t)− αn,zi (r) ≤ −(c0 −Kb)

∫ t

r
αn,zi (s) ds+ C(t− r).

Since the function αn,zi (t) is non-negative and differentiable, using Lemma 7.1 again we have
αn,zi (t) ≤ C, uniformly in n ∈ N, i = 1, . . . , n and t ≥ 0. This completes the proof. �

Proof of Theorem 4.1. (a) Recall Proposition 4.1 and κ2 therein. Fix n ∈ N and z = (zij =

zji)
n
i,j=1 ∈ [0, 1]n

2
. Let

An :=

{
η ∈ P((Rd)n) : max

i=1,...,n

∫
(Rd)n

|xi|2 η(dx) ≤ κ2

}
.

Recall the process Y n,z,η in (4.1).
We claim that

W 2
2 (Pn,zt η, Pn,zt η̃) ≤W 2

2 (η, η̃)e−2κt (7.9)

for any η, η̃ ∈ An and t ≥ 0. To see this, by Itô’s formula, we have

e2κt
n∑
i=1

En,z|Y n,z,η
i (t)− Y n,z,η̃

i (t)|2 −
n∑
i=1

En,z|Y n,z,η
i (0)− Y n,z,η̃

i (0)|2

=

∫ t

0
e2κs

n∑
i=1

En,z
[
2
(
Y n,z,η
i (s)− Y n,z,η̃

i (s)
)
·
(
f(Y n,z,η

i (s))− f(Y n,z,η̃
i (s))

+
1

n

n∑
j=1

zij

(
b(Y n,z,η

i (s), Y n,z,η
j (s))− b(Y n,z,η̃

i (s), Y n,z,η̃
j (s))

) ds
+

∫ t

0
2κe2κs

n∑
i=1

En,z|Y n,z,η
i (s)− Y n,z,η̃

i (s)|2 ds.

Using (2.1) we have

n∑
i=1

En,z
[(
Y n,z,η
i (s)− Y n,z,η̃

i (s)
)
·
(
f(Y n,z,η

i (s))− f(Y n,z,η̃
i (s))

)]
≤ −c0

n∑
i=1

En,z|Y n,z,η
i (s)− Y n,z,η̃

i (s)|2.

Using the Cauchy-Schwarz inequality, the Lipschitz property of b and Young’s inequality we
have

n∑
i=1

En,z
(Y n,z,η

i (s)− Y n,z,η̃
i (s)

)
· 1

n

n∑
j=1

zij

(
b(Y n,z,η

i (s), Y n,z,η
j (s))− b(Y n,z,η̃

i (s), Y n,z,η̃
j (s))

)
≤

n∑
i=1

En,z
∣∣∣Y n,z,η

i (s)− Y n,z,η̃
i (s)

∣∣∣ · Kb

n

n∑
j=1

(∣∣∣Y n,z,η
i (s)− Y n,z,η̃

i (s)
∣∣∣+
∣∣∣Y n,z,η
j (s)− Y n,z,η̃

j (s)
∣∣∣)


≤ 2Kb

n∑
i=1

En,z|Y n,z,η
i (s)− Y n,z,η̃

i (s)|2.
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Combining above three estimates with the definition of κ in (2.2) gives

e2κt
n∑
i=1

En,z|Y n,z,η
i (t)− Y n,z,η̃

i (t)|2 ≤
n∑
i=1

En,z|Y n,z,η
i (0)− Y n,z,η̃

i (0)|2.

Therefore

W 2
2 (Pn,zt η, Pn,zt η̃) ≤

n∑
i=1

En,z|Y n,z,η
i (t)− Y n,z,η̃

i (t)|2 ≤ e−2κt
n∑
i=1

En,z|Y n,z,η
i (0)− Y n,z,η̃

i (0)|2.

Taking the infimum over the joint distribution of (Y n,z,η(0), Y n,z,η̃(0)) gives the claim (7.9).
Note that θn,z(t) = Ptθ

n,z(0) ∈ An for each t ≥ 0 by Proposition 4.1. Therefore

W 2
2 (θn,z(t), θn,z(0)) ≤

n∑
i=1

En,z|Xn
i (t)−Xn

i (0)|2 ≤ 2
n∑
i=1

En,z[|Xn
i (t)|2 + |Xn

i (0)|2] ≤ 4nκ2.

It then follows from (7.9) that

W 2
2 (θn,z(t+ s), θn,z(t)) = W 2

2 (Pn,zt θn,z(s), Pn,zt θn,z(0))

≤W 2
2 (θn,z(s), θn,z(0))e−2κt

≤ 4nκ2e
−2κt. (7.10)

This means that θn,z(t) is a W2-Cauchy family when t → ∞. So there exists a probability
measure θn,z(∞) ∈ P((Rd)n) such that

lim
t→∞

W2(θn,z(t), θn,z(∞)) = 0. (7.11)

In fact, taking s→∞ in (7.10) gives

1√
n
W2(θn,z(t), θn,z(∞)) ≤

√
4κ2e

−κt,

which gives (4.3). From this and (4.5) we have

1√
n
W2(θn(t), θn(∞)) ≤ sup

z∈[0,1]n2

1

n
W2(θn,z(t), θn,z(∞)) ≤

√
4κ2e

−κt.

Therefore (4.4) hold.
(b) Finally we argue that θn,z(∞) is invariant with respect to Pn,zt . Noting that θn,z(∞) ∈

An, we can apply (7.9) and use (7.11) to get

lim sup
s→∞

W2(Pn,zt θn,z(∞), θn,z(t+ s)) ≤ lim sup
s→∞

e−κtW2(θn,z(∞), θn,z(s)) = 0

and

lim sup
s→∞

W2(θn,z(t+ s), θn,z(s)) ≤ lim sup
s→∞

e−κsW2(θn,z(t), θn,z(0)) = 0.

Combining these two with (7.11) gives

W2(Pn,zt θn,z(∞), θn,z(∞)) ≤ lim sup
s→∞

W2(Pn,zt θn,z(∞), θn,z(t+ s))

+ lim sup
s→∞

W2(θn,z(t+ s), θn,z(s)) + lim sup
s→∞

W2(θn,z(s), θn,z(∞))

= 0.

This gives part (b) and completes the proof. �
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7.3. Proofs for Section 5. We need the following lemma to prove Theorem 5.1.

Lemma 7.2. Suppose Conditions 3.1 and 5.1 hold. For s ≥ 0, write

Rns :=
1

n

n∑
i=1

E

∣∣∣∣∣∣ 1n
n∑
j=1

∫
Rd

b(X̄ i
n

(s), x)Gn(
i

n
,
j

n
) µ̄ j

n
,s(dx)

−
∫
I

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
, v) µ̄v,s(dx) dv

∣∣∣∣2 . (7.12)

Then

lim
n→∞

sup
s≥0
Rns = 0.

Proof. Fix M > 1 and write

bM (x, y) := b(x, y)1{|x|≤M,|y|≤M}. (7.13)

It then follows from [35, Corollary 2 of Theorem 3.1] that there exist some m ∈ N and
polynomials

b̃m(x, y) :=

m∑
k=1

ak(x)ck(y)1{|x|≤M,|y|≤M}, (7.14)

where ak and ck are polynomials for each k = 1, . . . ,m, such that

|bM (x, y)− b̃m(x, y)| ≤ 1/M. (7.15)

By adding and subtracting terms, we have

Rns ≤
5

n

n∑
i=1

E

∣∣∣∣∣∣ 1n
n∑
j=1

∫
Rd

(
b(X̄ i

n
(s), x)− bM (X̄ i

n
(s), x)

)
Gn(

i

n
,
j

n
) µ̄ j

n
,s(dx)

∣∣∣∣∣∣
2

+
5

n

n∑
i=1

E
∣∣∣∣∫
I

∫
Rd

(
b(X̄ i

n
(s), x)− bM (X̄ i

n
(s), x)

)
G(

i

n
, v) µ̄v,s(dx) dv

∣∣∣∣2

+
5

n

n∑
i=1

E

∣∣∣∣∣∣ 1n
n∑
j=1

∫
Rd

(
bM (X̄ i

n
(s), x)− b̃m(X̄ i

n
(s), x)

)
Gn(

i

n
,
j

n
) µ̄ j

n
,s(dx)

∣∣∣∣∣∣
2

+
5

n

n∑
i=1

E
∣∣∣∣∫
I

∫
Rd

(
bM (X̄ i

n
(s), x)− b̃m(X̄ i

n
(s), x)

)
G(

i

n
, v) µ̄v,s(dx) dv

∣∣∣∣2

+
5

n

n∑
i=1

E

∣∣∣∣∣∣ 1n
n∑
j=1

∫
Rd

b̃m(X̄ i
n

(s), x)Gn(
i

n
,
j

n
) µ̄ j

n
,s(dx)

−
∫
I

∫
Rd

b̃m(X̄ i
n

(s), x)G(
i

n
, v) µ̄v,s(dx) dv

∣∣∣∣2
=: 5

5∑
k=1

Rn,ks . (7.16)
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Next we analyze each term. For Rn,1s and Rn,2s , using (7.13), Remark 2.2(b), Proposition
3.1 and the Cauchy-Schwarz inequality we have

Rn,1s ≤ C

n

n∑
i=1

E

 1

n

n∑
j=1

∫
Rd

(
1 + |X̄ i

n
(s)|+ |x|

)(
1{|X̄ i

n
(s)|>M} + 1{|x|>M}

)
µ̄ j

n
,s(dx)

2

≤ C

n

n∑
i=1

E
[(

1 + |X̄ i
n

(s)|
)2

1{|X̄ i
n

(s)|>M}

]
≤ C√

M
, (7.17)

and

Rn,2s ≤ C

n

n∑
i=1

E
[∫

I

∫
Rd

(
1 + |X̄ i

n
(s)|+ |x|

)(
1{|X̄ i

n
(s)|>M} + 1{|x|>M}

)
µ̄v,s(dx) dv

]2

≤ C

n

n∑
i=1

E
[(

1 + |X̄ i
n

(s)|
)2

1{|X̄ i
n

(s)|>M}

]
+ C

∫
I
E
[(

1 + |X̄v(s)|
)2

1{|X̄v(s)|>M}

]
dv

≤ C√
M
. (7.18)

For Rn,3s and Rn,4s , using (7.15) we have

Rn,3s ≤ C

M2
, Rn,4s ≤ C

M2
. (7.19)

For Rn,5s , using the step graphon structure (5.1) of Gn and by adding and subtracting terms,
we have

Rn,5s =

∫
I
E
∣∣∣∣∫
I

∫
Rd

b̃m(X̄ dnue
n

(s), x)Gn(u, v) µ̄ dnve
n

,s
(dx) dv

−
∫
I

∫
Rd

b̃m(X̄ dnue
n

(s), x)G(
dnue
n

, v) µ̄v,s(dx) dv

∣∣∣∣2 du
≤ 3

∫
I
E
∣∣∣∣∫
I

∫
Rd

b̃m(X̄ dnue
n

(s), x) (Gn(u, v)−G(u, v)) µ̄ dnve
n

,s
(dx) dv

∣∣∣∣2 du
+ 3

∫
I
E
∣∣∣∣∫
I

∫
Rd

b̃m(X̄ dnue
n

(s), x)

(
G(u, v)−G(

dnue
n

, v)

)
µ̄ dnve

n
,s

(dx) dv

∣∣∣∣2 du
+ 3

∫
I
E
∣∣∣∣∫
I

∫
Rd

b̃m(X̄ dnue
n

(s), x)G(
dnue
n

, v)
(
µ̄ dnve

n
,s

(dx)− µ̄v,s(dx)
)
dv

∣∣∣∣2 du
=: Rn,6s +Rn,7s +Rn,8s . (7.20)

For Rn,6s , using the definition of b̃m in (7.14), Proposition 3.1 and Remark 2.1, we have

Rn,6s ≤ 3m

m∑
k=1

∫
I
E
[
a2
k(X̄ dnue

n

(s))
]

·
∣∣∣∣∫
I

(Gn(u, v)−G(u, v))

(∫
Rd

ck(x)1{|x|≤M} µ̄ dnve
n

,s
(dx)

)
dv

∣∣∣∣2 du
≤ CM‖Gn −G‖,
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where CM depends on M but not on n or s. For Rn,7s , we have

Rn,7s ≤ CM
∫
I×I

∣∣∣∣G(u, v)−G(
dnue
n

, v)

∣∣∣∣ du dv.
For Rn,8s , using (1.3) and the Lipschitz property of b (and hence b̃m), we have

Rn,8s ≤ CM
∫
I
W 2

2 (µ̄ dnve
n

,s
, µ̄v,s) dv.

Combining above three estimates with (7.20) and using Remark 2.1, Condition 5.1, Condition
3.1 and Corollary 3.1(a) gives

lim
n→∞

sup
s≥0
Rn,5s = 0.

Combining this with (7.16)–(7.19) gives

lim sup
n→∞

sup
s≥0
Rns ≤

C√
M
.

Taking lim supM→∞ completes the proof. �

Proof of Theorem 5.1. (a) Using Itô’s formula, we have

1

n

n∑
i=1

E|Xn
i (t)− X̄ i

n
(t)|2

=
1

n

n∑
i=1

E
∫ t

0
2(Xn

i (s)− X̄ i
n

(s)) ·
(
f(Xn

i (s))− f(X̄ i
n

(s))

+
1

n

n∑
j=1

ξnijb(X
n
i (s), Xn

j (s))−
∫
I

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
, v) µ̄v,s(dx) dv

 ds.

This implies that the function

αn(t) :=
1

n

n∑
i=1

E|Xn
i (t)− X̄ i

n
(t)|2 (7.21)

is differentiable, and

1

n

n∑
i=1

E|Xn
i (t)− X̄ i

n
(t)|2 − 1

n

n∑
i=1

E|Xn
i (r)− X̄ i

n
(r)|2

=
1

n

n∑
i=1

E
∫ t

r
2(Xn

i (s)− X̄ i
n

(s)) ·
(
f(Xn

i (s))− f(X̄ i
n

(s))

+
1

n

n∑
j=1

ξnijb(X
n
i (s), Xn

j (s))−
∫
I

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
, v) µ̄v,s(dx) dv

 ds. (7.22)

For each s ≥ 0, using (2.1) we have

1

n

n∑
i=1

E
[
(Xn

i (s)− X̄ i
n

(s)) ·
(
f(Xn

i (s))− f(X̄ i
n

(s))
)]
≤ −c0

1

n

n∑
i=1

E
[
|Xn

i (s)− X̄ i
n

(s)|2
]
.

(7.23)
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For the rest in the integrand of (7.22), by adding and subtracting terms, we have

1

n

n∑
i=1

E
[
(Xn

i (s)− X̄ i
n

(s))

·

 1

n

n∑
j=1

ξnijb(X
n
i (s), Xn

j (s))−
∫
I

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
, v) µ̄v,s(dx) dv


=

1

n

n∑
i=1

E

(Xn
i (s)− X̄ i

n
(s)) ·

 1

n

n∑
j=1

ξnij

(
b(Xn

i (s), Xn
j (s))− b(X̄ i

n
(s), X̄ j

n
(s))

)
+

1

n

n∑
i=1

E
[
(Xn

i (s)− X̄ i
n

(s))

·

 1

n

n∑
j=1

(
ξnijb(X̄ i

n
(s), X̄ j

n
(s))−

∫
Rd

b(X̄ i
n

(s), x)Gn(
i

n
,
j

n
) µ̄ j

n
,s(dx)

)
+

1

n

n∑
i=1

E
[
(Xn

i (s)− X̄ i
n

(s))

·

 1

n

n∑
j=1

∫
Rd

b(X̄ i
n

(s), x)Gn(
i

n
,
j

n
) µ̄ j

n
,s(dx)−

∫
I

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
, v) µ̄v,s(dx) dv


=: Sn,1s + Sn,2s + Sn,3s . (7.24)

For Sn,1s , using the Lipschitz property of b and Young’s inequality, we have

Sn,1s ≤ 2Kb
1

n

n∑
i=1

E|Xn
i (s)− X̄ i

n
(s)|2. (7.25)

For Sn,2s , using the Cauchy-Schwarz inequality we have

Sn,2s ≤

(
1

n

n∑
i=1

E|Xn
i (s)− X̄ i

n
(s)|2

)1/2

·

 1

n

n∑
i=1

E

∣∣∣∣∣∣ 1n
n∑
j=1

(
ξnijb(X̄ i

n
(s), X̄ j

n
(s))−

∫
Rd

b(X̄ i
n

(s), x)Gn(
i

n
,
j

n
) µ̄ j

n
,s(dx)

)∣∣∣∣∣∣
21/2

.

Due to the independence of ξnij and X̄u, we have

E

∣∣∣∣∣∣ 1n
n∑
j=1

(
ξnijb(X̄ i

n
(s), X̄ j

n
(s))−

∫
Rd

b(X̄ i
n

(s), x)Gn(
i

n
,
j

n
) µ̄ j

n
,s(dx)

)∣∣∣∣∣∣
2

=
1

n2

n∑
j=1

E
∣∣∣∣ξnijb(X̄ i

n
(s), X̄ j

n
(s))−

∫
Rd

b(X̄ i
n

(s), x)Gn(
i

n
,
j

n
) µ̄ j

n
,s(dx)

∣∣∣∣2
≤ C

n
, (7.26)
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where the last line uses Remark 2.2(b) and Proposition 3.1. Therefore

Sn,2s ≤ C√
n

(
1

n

n∑
i=1

E|Xn
i (s)− X̄ i

n
(s)|2

)1/2

. (7.27)

For Sn,3s , using the Cauchy-Schwarz inequality and the definition of Rns in (7.12), we have

Sn,3s ≤ (Rns )1/2

(
1

n

n∑
i=1

E|Xn
i (s)− X̄ i

n
(s)|2

)1/2

. (7.28)

Combining (7.21)–(7.25), (7.27) and (7.28), we have

αn(t)− αn(r) ≤ −2(c0 − 2Kb)

∫ t

r
αn(s) ds+

(
C√
n

+ 2 sup
s≥0

√
Rns
)∫ t

r

√
αn(s) ds.

Recall that the function αn(t) is differentiable, non-negative, and αn(0) = 0. It then follows
from Lemma 7.1 (with a1 = 2(c0 − 2Kb), a2 = C√

n
+ 2 sups≥0

√
Rns , a3 = 0) that

αn(t) ≤ C
(

1

n
+ sup

s≥0
Rns
)
.

Combining this with Lemma 7.2 gives part (a).
(b) Next we prove the first convergence statement in (5.2). Write

µ̄n(t) :=
1

n

n∑
i=1

µ̄ i
n
,t. (7.29)

Using the triangle inequality we have

W2(µn(t), µ̂(t)) ≤W2(µn(t), µ̄n(t)) +W2(µ̄n(t), µ̂(t)). (7.30)

Taking π = 1
n

∑n
i=1 L(Xn

i (t), X̄ i
n

(t)) as the coupling of µn(t) and µ̄n(t) and using part (a),

we have

sup
t≥0

W2(µn(t), µ̄n(t)) ≤ sup
t≥0

(
1

n

n∑
i=1

E|Xn
i (t)− X̄ i

n
(t)|2

)1/2

→ 0

as n→∞. Using the convexity of W 2
2 (·, ·) and Corollary 3.1(a) we have

sup
t≥0

W 2
2 (µ̄n(t), µ̂(t)) ≤

∫ 1

0
sup
t≥0

W 2
2 (µ̄ dnue

n
,t
, µ̄u,t) du→ 0 (7.31)

as n→∞. Combining these three displays gives the first convergence in part (b).
Finally, for the second convergence statement in part (b), let

ν̄n(t) :=
1

n

n∑
i=1

δX̄ i
n

(t). (7.32)

From the triangle inequality we have

EW2(νn(t), µ̂(t)) ≤ EW2(νn(t), ν̄n(t)) + EW2(ν̄n(t), µ̄n(t)) +W2(µ̄n(t), µ̂(t)). (7.33)

In view of (7.31), it suffices to show

sup
t≥0

EW2(νn(t), ν̄n(t)) + sup
t≥0

EW2(ν̄n(t), µ̄n(t))→ 0 (7.34)
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as n → ∞. Taking π = 1
n

∑n
i=1 δ(Xn

i (t),X̄ i
n

(t)) as the coupling of νn(t) and ν̄n(t) and using

part (a), we have

sup
t≥0

EW2(νn(t), ν̄n(t)) ≤ sup
t≥0

(
1

n

n∑
i=1

E|Xn
i (t)− X̄ i

n
(t)|2

)1/2

→ 0

as n→∞. Applying Lemma A.1 with Yi = X̄ i
n

, p = 3 and q = 4, we have

EW2(ν̄n(t), µ̄n(t)) ≤
(
EW p

p (ν̄n(t), µ̄n(t))
)1/p ≤ C (∫

Rd

|x|q µ̄n(t)(dx)

)1/q

a(n),

where a(n) = n−1/d + n−1/12 is defined in (5.3). It then follows from Proposition 3.1 that

sup
t≥0

EW2(ν̄n(t), µ̄n(t)) ≤ Ca(n)→ 0 (7.35)

as n→∞. Therefore (7.34) holds and hence the second convergence in part (b) holds. This
completes the proof. �

Remark 7.1. The choice of p = 3 above (7.35) could be replaced by any 2 < p < 4. As a
result, the constant C and rate a(n) will change accordingly, by Lemma A.1.

Proof of Theorem 5.2. (a) Similar to the proof of Theorem 5.1(a), we apply Itô’s formula and
get

E|Xn
i (t)− X̄ i

n
(t)|2 = E

∫ t

0
2(Xn

i (s)− X̄ i
n

(s)) ·
(
f(Xn

i (s))− f(X̄ i
n

(s))

+
1

n

n∑
j=1

ξnijb(X
n
i (s), Xn

j (s))−
∫
I

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
, v) µ̄v,s(dx) dv

 ds.

This implies that the functions

ᾱni (t) := E|Xn
i (t)− X̄ i

n
(t)|2 and ᾱn(t) :=

1

n

n∑
i=1

E|Xn
i (t)− X̄ i

n
(t)|2 (7.36)

are differentiable, and

E|Xn
i (t)− X̄ i

n
(t)|2 − E|Xn

i (r)− X̄ i
n

(r)|2

= E
∫ t

r
2(Xn

i (s)− X̄ i
n

(s)) ·
(
f(Xn

i (s))− f(X̄ i
n

(s))

+
1

n

n∑
j=1

ξnijb(X
n
i (s), Xn

j (s))−
∫
I

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
, v) µ̄v,s(dx) dv

 ds. (7.37)

For each s ≥ 0, using (2.1) we have

E
[
(Xn

i (s)− X̄ i
n

(s)) ·
(
f(Xn

i (s))− f(X̄ i
n

(s))
)]
≤ −c0E|Xn

i (s)− X̄ i
n

(s)|2. (7.38)
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For the rest in the integrand, by adding and subtracting terms and using Condition 5.2, we
have

E
[
(Xn

i (s)− X̄ i
n

(s))

·

 1

n

n∑
j=1

ξnijb(X
n
i (s), Xn

j (s))−
∫
I

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
, v) µ̄v,s(dx) dv


= E

(Xn
i (s)− X̄ i

n
(s)) ·

 1

n

n∑
j=1

ξnij

(
b(Xn

i (s), Xn
j (s))− b(X̄ i

n
(s), X̄ j

n
(s))

)
+ E

[
(Xn

i (s)− X̄ i
n

(s))

·

 1

n

n∑
j=1

(
ξnijb(X̄ i

n
(s), X̄ j

n
(s))−

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
,
j

n
) µ̄ j

n
,s(dx)

)
+ E

[
(Xn

i (s)− X̄ i
n

(s))

·

 1

n

n∑
j=1

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
,
j

n
) µ̄ j

n
,s(dx)−

∫
I

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
, v) µ̄v,s(dx) dv


=: S̄n,i,1s + S̄n,i,2s + S̄n,i,3s . (7.39)

For S̄n,i,1s , using the Cauchy-Schwarz inequality, the Lipschitz property of b and Young’s
inequality, we have

S̄n,i,1s ≤ E

∣∣∣Xn
i (s)− X̄ i

n
(s)
∣∣∣ · Kb

n

n∑
j=1

(∣∣∣Xn
i (s)− X̄ i

n
(s)
∣∣∣+
∣∣∣Xn

j (s)− X̄ j
n

(s)
∣∣∣)


≤ 3Kb

2
E|Xn

i (s)− X̄ i
n

(s)|2 +
Kb

2

1

n

n∑
j=1

E|Xn
j (s)− X̄ j

n
(s)|2. (7.40)

For S̄n,i,2s , using the Cauchy-Schwarz inequality and the weak LLN type estimate (7.26), we
have

S̄n,i,2s ≤
(
E|Xn

i (s)− X̄ i
n

(s)|2
)1/2

·

E

∣∣∣∣∣∣ 1n
n∑
j=1

(
ξnijb(X̄ i

n
(s), X̄ j

n
(s))−

∫
Rd

b(X̄ i
n

(s), x)Gn(
i

n
,
j

n
) µ̄ j

n
,s(dx)

)∣∣∣∣∣∣
21/2

≤ C√
n

(
E|Xn

i (s)− X̄ i
n

(s)|2
)1/2

. (7.41)
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For S̄n,i,3s , note that

E

∣∣∣∣∣∣ 1n
n∑
j=1

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
,
j

n
) µ̄ j

n
,s(dx)−

∫
I

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
, v) µ̄v,s(dx) dv

∣∣∣∣∣∣
2

= E
∣∣∣∣∫
I

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
,
dnve
n

) µ̄ dnve
n

,s
(dx) dv −

∫
I

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
, v) µ̄v,s(dx) dv

∣∣∣∣2
≤ 2E

∣∣∣∣∫
I

∫
Rd

b(X̄ i
n

(s), x)

(
G(

i

n
,
dnve
n

)−G(
i

n
, v)

)
µ̄ dnve

n
,s

(dx) dv

∣∣∣∣2
+ 2E

∣∣∣∣∫
I

∫
Rd

b(X̄ i
n

(s), x)
(
µ̄ dnve

n
,s

(dx)− µ̄v,s(dx)
)
G(

i

n
, v)dv

∣∣∣∣2
≤ C

n2
,

where the last inequality uses Condition 3.2, Proposition 3.1 and Remark 2.2(b) for the
first term, and the Lipschitz property of b, (1.3) and Corollary 3.1(b) for the second term.
Therefore

S̄n,i,3s ≤
(
E|Xn

i (s)− X̄ i
n

(s)|2
)1/2

·

E

∣∣∣∣∣∣ 1n
n∑
j=1

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
,
j

n
) µ̄ j

n
,s(dx)−

∫
I

∫
Rd

b(X̄ i
n

(s), x)G(
i

n
, v) µ̄v,s(dx) dv

∣∣∣∣∣∣
21/2

≤ C

n

(
E|Xn

i (s)− X̄ i
n

(s)|2
)1/2

. (7.42)

Combining (7.36)–(7.42), we have

ᾱni (t)− ᾱni (r) ≤ −(2c0 − 3Kb)

∫ t

r
ᾱni (s) ds+Kb

∫ t

r
ᾱn(s) ds+

C√
n

∫ t

r

√
ᾱni (s) ds, (7.43)

Taking the average over i = 1, . . . , n gives

ᾱn(t)− ᾱn(r) ≤ −2(c0 − 2Kb)

∫ t

r
ᾱn(s) ds+

C√
n

∫ t

r

√
ᾱn(s) ds.

Since the function ᾱn(t) is non-negative and differentiable with ᾱn(0) = 0, using Lemma 7.1
(with a1 = 2(c0−2Kb), a2 = C√

n
, a3 = 0) we have ᾱn(t) ≤ C

n . From this and (7.43) we further

have

ᾱni (t)− ᾱni (r) ≤ −(2c0 − 3Kb)

∫ t

r
ᾱni (s) ds+

C√
n

∫ t

r

√
ᾱni (s) ds+

C

n
(t− r).

Since the function ᾱni (t) is non-negative and differentiable with ᾱni (0) = 0, it follows from

Lemma 7.1 again that ᾱni (t) ≤ C
n , uniformly in t ≥ 0, n ∈ N and i = 1, . . . , n. This gives part

(a).
(b) The proof is similar to that of Theorem 5.1(b), but we will have better estimates under

Conditions 3.2 and 5.2. Recall µ̄n(t) in (7.29). Taking π = 1
n

∑n
i=1 L(Xn

i (t), X̄ i
n

(t)) as the

coupling of µn(t) and µ̄n(t) and using part (a), we have

sup
t≥0

W2(µn(t), µ̄n(t)) ≤ sup
t≥0

(
1

n

n∑
i=1

E|Xn
i (t)− X̄ i

n
(t)|2

)1/2

≤ C√
n
.
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Using the convexity of W 2
2 (·, ·) and Corollary 3.1(b) we have

sup
t≥0

W 2
2 (µ̄n(t), µ̂(t)) ≤

∫ 1

0
sup
t≥0

W 2
2 (µ̄ dnue

n
,t
, µ̄u,t) du ≤

C

n2
. (7.44)

Combining these two estimates with (7.30) gives the first statement in part (b).
For the second statement in part (b), recall ν̄n(t) in (7.32). Taking π = 1

n

∑n
i=1 δ(Xn

i (t),X̄ i
n

(t))

as the coupling of νn(t) and ν̄n(t) and using part (a), we have

sup
t≥0

EW2(νn(t), ν̄n(t)) ≤ sup
t≥0

(
1

n

n∑
i=1

E|Xn
i (t)− X̄ i

n
(t)|2

)1/2

≤ C√
n
.

Combining this with (7.33), (7.35) and (7.44) gives the second statement in part (b).
(c) Finally, for all n, k ∈ N and any distinct i1, . . . , ik ∈ {1, . . . , n}, taking π =

L
((
Xn
i1

(t), . . . , Xn
ik

(t)
)
,
(
X̄ i1

n

(t), . . . , X̄ ik
n

(t)
))

as the coupling and using part (a), we have

sup
t≥0

W2(L(Xn
i1(t), . . . , Xn

ik
(t)), µ̄ i1

n
,t
⊗ · · · ⊗ µ̄ ik

n
,t
) ≤

 k∑
j=1

E|Xn
ij (t)− X̄ ij

n

(t)|2
1/2

≤ C
√
k√
n
.

This gives part (c) and completes the proof. �

7.4. Proofs for Section 6. We first show the following uniform-in-time estimates.

Lemma 7.3. There exist h0, C ∈ (0,∞) such that

sup
n≥1

max
i=1,...,n

E|Xn,h
i (s)−Xn,h

i (sh)|2 ≤ C(s− sh) ≤ Ch, ∀ s ≥ 0, h ∈ (0, h0),

and

sup
h∈(0,h0)

sup
n≥1

max
i=1,...,n

sup
t≥0

E|Xn,h
i (t)|2 ≤ C.

Proof. Before analyzing the system (6.1), consider the following equivalent discrete-time

model: Zn,hi (0) = Xn,h
i (0) and

Zn,hi (k + 1) = Zn,hi (k) +

f(Zn,hi (k)) +
1

n

n∑
j=1

ξnijb(Z
n,h
i (k), Zn,hj (k))

h+ ∆kB i
n
, k ∈ N0,

where ∆kB i
n

:= B i
n

((k + 1)h)−B i
n

(kh). Note that Zn,hi (k) := Xn,h
i (kh).

We claim that

sup
h∈(0,h0)

sup
n≥1

max
i=1,...,n

sup
k∈N0

E|Zn,hi (k)|2 <∞, (7.45)
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for some h0 ∈ (0,∞). To see this, write

|Zn,hi (k + 1)|2 − |Zn,hi (k)|2

= 2Zn,hi (k) ·
(
Zn,hi (k + 1)− Zn,hi (k)

)
+ |Zn,hi (k + 1)− Zn,hi (k)|2

= 2Zn,hi (k) · f(Zn,hi (k))h+ 2Zn,hi (k) ·

 1

n

n∑
j=1

ξnijb(Z
n,h
i (k), Zn,hj (k))

h+ ζn,hi (k) · σ∆kB i
n

+

∣∣∣∣∣∣f(Zn,hi (k)) +
1

n

n∑
j=1

ξnijb(Z
n,h
i (k), Zn,hj (k))

∣∣∣∣∣∣
2

h2 +
∣∣∣σ∆kB i

n

∣∣∣2 ,
where ζn,hi (k) is measurable with respect to σ{B j

n
(s) : 0 ≤ s ≤ kh}. Let βn,hi (k) :=

E|Zn,hi (k)|2 and βn,h(k) := 1
n

∑n
j=1 E|Z

n,h
j (k)|2. Using (2.1), the Lipschitz property of f, b

and the Cauchy-Schwarz inequality we have

βn,hi (k + 1)− βn,hi (k) = E|Zn,hi (k + 1)|2 − E|Zn,hi (k)|2

≤
(
−2c0β

n,h
i (k) + C

√
βn,hi (k) + 2Kbβ

n,h
i (k) + 2Kb

√
βn,hi (k)βn,h(k)

)
h

+ C
(

1 + βn,hi (k) + βn,h(k)
)
h2 + Ch.

Since C

√
βn,hi (k) ≤ (c0− 2Kb)β

n,h
i (k) + C2

4(c0−2Kb) and 2

√
βn,hi (k)βn,h(k) ≤ βn,hi (k) + βn,h(k),

we have

βn,hi (k + 1)− βn,hi (k) (7.46)

≤
(
−(c0 −Kb)β

n,h
i (k) +Kbβ

n,h(k) + C
)
h+ C

(
1 + βn,hi (k) + βn,h(k)

)
h2.

Taking the average over i = 1, . . . , n gives

βn,h(k + 1) ≤ (1− hκh)βn,h(k) + Ch,

where κh := c0− 2Kb−Ch. From (2.2) we can choose h0 > 0 such that infh∈(0,h0) κh > 0 and
1− hκh ∈ (0, 1) for all h ∈ (0, h0). Then for all h ∈ (0, h0),

βn,h(k + 1) ≤ (1− hκh)2βn,h(k − 1) + (1− hκh)Ch+ Ch ≤ · · ·

≤ (1− hκh)k+1βn,h(0) +
k∑
j=0

(1− hκh)jCh

≤ (1− hκh)k+1C +
Ch

1− (1− hκh)
≤ C.

Applying this back to (7.46) gives

βn,hi (k + 1) ≤ (1− hκh)βn,hi (k) + Ch,

which again gives βn,hi (k + 1) ≤ C and verifies (7.45).
Using (7.45) and Remark 2.2(b), we immediately have the first statement, which further

implies the second statement. This completes the proof. �
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Proof of Theorem 6.1. Recall h0 in Lemma 7.3. Using Itô’s formula, we have

E|Xn,h
i (t)−Xn

i (t)|2 = E
∫ t

0
2
(
Xn,h
i (s)−Xn

i (s)
)
·
(
f(Xn,h

i (sh))− f(Xn
i (s))

+
1

n

n∑
j=1

ξnijb(X
n,h
i (sh), Xn,h

j (sh))− 1

n

n∑
j=1

ξnijb(X
n
i (s), Xn

j (s))

 ds.

This implies that the functions

γni (t) := E|Xn,h
i (t)−Xn

i (t)|2, γn(t) :=
1

n

n∑
i=1

E|Xn,h
i (t)−Xn

i (t)|2

are differentiable.
By adding and subtracting terms, we have

E
[(
Xn,h
i (s)−Xn

i (s)
)
·
(
f(Xn,h

i (sh))− f(Xn
i (s))

)]
≤ E

[(
Xn,h
i (s)−Xn

i (s)
)
·
(
f(Xn,h

i (sh))− f(Xn,h
i (s))

)]
+ E

[(
Xn,h
i (s)−Xn

i (s)
)
·
(
f(Xn,h

i (s))− f(Xn
i (s))

)]
≤ C

√
γni (s)h− c0γ

n
i (s),

where the last line uses the Cauchy-Schwarz inequality, the Lipschitz property of f and Lemma
7.3 for the first term and (2.1) for the second term. Also by adding and subtracting terms,
we have

E

(Xn,h
i (s)−Xn

i (s)
)
·

 1

n

n∑
j=1

ξnijb(X
n,h
i (sh), Xn,h

j (sh))− 1

n

n∑
j=1

ξnijb(X
n
i (s), Xn

j (s))


= E

(Xn,h
i (s)−Xn

i (s)
)
· 1

n

n∑
j=1

ξnij

(
b(Xn,h

i (sh), Xn,h
j (sh))− b(Xn,h

i (s), Xn,h
j (s))

)
+ E

(Xn,h
i (s)−Xn

i (s)
)
· 1

n

n∑
j=1

ξnij

(
b(Xn,h

i (s), Xn,h
j (s))− b(Xn

i (s), Xn
j (s))

)
≤ C

√
γni (s)h+Kbγ

n
i (s) +Kb

√
γni (s)γn(s),

where the last line uses the Cauchy-Schwarz inequality, the Lipschitz property of b and Lemma
7.3. Combining these two estimates gives

γni (t)−γni (r) ≤ −2(c0−Kb)

∫ t

r
γni (s) ds+C

√
h

∫ t

r

√
γni (s) ds+2Kb

∫ t

r

√
γni (s)γn(s) ds (7.47)

for all t > r ≥ 0. Taking the average over i = 1, . . . , n, we get

γn(t)− γn(r) ≤ −2(c0 − 2Kb)

∫ t

r
γn(s) ds+ C

√
h

∫ t

r

√
γn(s) ds.
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Since the function γn(t) is non-negative and differentiable with γn(0) = 0, using Lemma 7.1

(with a1 = 2(c0− 2Kb), a2 = C
√
h, a3 = 0) we have γn(t) ≤ Ch. Applying this to (7.47) gives

γni (t)− γni (r) ≤ −2(c0 −Kb)

∫ t

r
γni (s) ds+ C

√
h

∫ t

r

√
γni (s) ds.

Since the function γni (t) is non-negative and differentiable with γni (0) = 0, it follows from
Lemma 7.1 again that γni (t) ≤ Ch, uniformly in h ∈ (0, h0), t ≥ 0, n ∈ N and i = 1, . . . , n.
This completes the proof. �

Appendix A. A Wasserstein distance result

In this section we prove Lemma A.1 on the Wasserstein distance about the empirical mea-
sure of independent (but not necessarily identically distributed) random variables. It is a
natural generalization of [20, Theorem 1] where i.i.d. samples are studied. It is also worth
mentioning that for i.i.d. samples, the upper bounds are obtained in [22, Lemma 3.7 and
Appendix] for complete cases with explicit constants that was not provided in [20, Theorem
1]. But the three cases in Lemma A.1 below are sufficient for our use and we provide a proof
for completeness.

Lemma A.1. Let {Yi : i ∈ N} be independent Rd-valued random variables. Write

µ̄i := L(Yi), νn :=
1

n

n∑
i=1

δYi , ν̄n :=
1

n

n∑
i=1

µ̄i.

Let p > 0. Assume that supi∈N E|Yi|q < ∞ for some q > p. Then there exists a constant C
depending only on p, q, d such that, for all n ≥ 1,

EW p
p (νn, ν̄n) ≤ C

(∫
Rd

|x|q ν̄n(dx)

)p/q

×


n−1/2 + n−(q−p)/q if p > d/2 and q 6= 2p,

n−1/2 log(1 + n) + n−(q−p)/q if p = d/2 and q 6= 2p,

n−p/d + n−(q−p)/q if p ∈ (0, d/2) and q 6= d/(d− p).

Proof of Lemma A.1. Fix A ⊂ Rd. In view of the proof of [20, Theorem 1], it suffices to verify
that

E|νn(A)− ν̄n(A)| ≤ min
{

2ν̄n(A),
√
ν̄n(A)/n

}
. (A.1)

For this, clearly we have

E|νn(A)− ν̄n(A)| ≤ Eνn(A) + ν̄n(A) = 2ν̄n(A).

Also note that, by the independence of {Yi : i ∈ N},

E|νn(A)− ν̄n(A)|2 = E

[
1

n

n∑
i=1

(
1{Yi∈A} − µ̄i(A)

)]2

=
1

n2

n∑
i=1

E
[
1{Yi∈A} − µ̄i(A)

]2
=

1

n2

n∑
i=1

µ̄i(A)(1− µ̄i(A)) ≤ 1

n2

n∑
i=1

µ̄i(A) =
1

n
ν̄n(A).

This completes the proof. �
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