®

Check for
updates

Quantum Machine Learning Classifier

Avery Leider®™), Gio Abou Jaoude, Abigail E. Strobel, and Pauline Mosley

Seidenberg School of Information Systems and Computer Science,
Pace University, New York, USA
{al43110n,ga97026n,as66693n,pmosley }@pace.edu

Abstract. This Quantum Machine Learning Classifier (QMLC) uses
the mathematics of quantum computing in a deep neural network to
find and classify the specific flower type of the three different iris
flower species: Versicolor, Setosa and Virginica, utilizing the SciKit-Learn
dataset “Iris.” In that dataset, there are four characteristic features of
each iris type: petal length, petal width, sepal length, and sepal width.
The quantum computing machine learning classifier out-performed the
classical deep learning neural network methods. Significant is that this
classifier trained in fewer epochs.

Keywords: Quantum computing - Machine learning - Deep learning -
Quantum machine learning classifier - Quantum computing
mathematics

1 Introduction

Those new to the study of quantum computing find the literature complex because
of the many different variants of quantum computing. One variant is using the
mathematics of quantum computing to achieve a result. These mathematics are
often accomplished on a classical ordinary machine, possibly a high performance
computer or a cloud system, and these are not automatically considered a quan-
tum simulator. What they do to be considered “quantum computing” is that they
exploit the principles of quantum mechanics during the process of computation.
This can be done by using the mathematics expressed in quantum mechanics or
the subatomic particles that exhibit quantum mechanical properties.

Another variant is using quantum computing simulators. These platforms are
designed for programs using quantum mathematics but add realism by includ-
ing error. Quantum computers today are probabilistic: as there is always error
in these systems, it takes hundreds or thousands of attempts to run the same
program to find the probability of a specific output. For a quantum simulator
to be useful, it must include error into the calculations.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Arai (Ed.): FICC 2022, LNNS 438, pp. 459-476, 2022.
https://doi.org/10.1007/978-3-030-98012-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98012-2_34&domain=pdf
https://doi.org/10.1007/978-3-030-98012-2_34

460 A. Leider et al.

Then, we have real quantum computers, which is using subatomic or atomic
particles to do the computing. Most systems today are not actually purely quan-
tum, but rather a hybrid of classical machines that do some of the calculations
and store results, and the separate part which is actually where the quantum
bits or “qubits” are calculated.

In the deep learning quantum machine classifier described here, the first
variant is used, using the mathematics of quantum computing, expressed in linear
algebra, to achieve our deep learning neural network result. We used it first on
the cloud computing platform of Google Colab to write and test the program.
Then, we used a high performance computer, the AiMOS supercomputer, to run
the same Python script. The use of quantum computing mathematics in deep
learning improves the classical approach by a significant margin.

The next section is our Literature Review, followed by a section on our
Methodology, followed by our Investigation and Findings.

2 Literature Review

Classical computers can today both produce and recognize patterns in data with
neural networks. There is a hope that quantum computing methods can also both
recognize and produce statistical patterns. These would be more complex and
counter intuitive because of quantum mechanics and would be those that are
computationally difficult for a classical computer [5]. Small quantum computers
can produce such patterns, and the work now in machine learning is to train
them to recognize them. The hope is to find quantum algorithms for machine
learning that can deliver quantum speedup from classical computers. A quantum
algorithm is a set of instructions solving a problem that can be performed on a
quantum computer.

Exponential speedups have been predicted for implementing least squares
fitting [19], quantum Boltzmann machines [4], quantum principal components
analysis [12], and quantum support vector machines [18]. These are still theory.

Quadratic speedups have been theoretically demonstrated for Bayesian infer-
ence [13], online perceptron [21], classical Boltzmann machines [20], and quantum
reinforcement learning [10]. These are also still theory.

All of these speedups need a low-error rate, universal, quantum computer
with hundreds to thousands of qubits. In addition, the speedup of some of these
algorithms requires quantum RAM, which would enable a quantum mapping of
a classical vector into a quantum state, but this does not currently exist. These
research publications cited are all written before 2019, which was a landmark year
in which IBM realized actual working primitive quantum computers and made
them available for researchers for free on the Internet. Since that time, there has
been a gap, as the possibility of creating something from all that promise is a
challenge made closer and also more difficult in its steep concreteness.

Quantum Machine Learning Classifier 461

The promise of new quantum algorithms for an exponential speed-up for
machine learning, involving clustering and finding patterns in big data with
quantum computing, may in part be hyperbole. However there are currently only
a few real quantum algorithms: Grover’s primitive search algorithm, Shor’s algo-
rithm for breaking public-key cryptography (currently unrealized due to lacking
a large enough quantum computer), and the idea that we could accelerate the
simulation of quantum physics and chemistry with other undiscovered quantum
algorithms, suggested by Richard Feyman [1].

However, the desire to find solutions drives researchers to push past the
hyperbole into new areas, such as Kathuria et al.’s [11] efforts to use quantum
machine learning to find the presence or absence of Alzheimer’s disease genes in
human genomes, which is a difficult problem, as they have encoded their massive
data into strings of Os and 1s that are expressed in blocks of 64 digits to ensure
non-overlapping windows of data elements.

This quantum circuit used in the quantum computing classifier extends the
work of William Cappelletti of Entropica Labs [7] as seen in Fig. 7. Important dis-
tinctions from Cappelletti’s work are the number of gates, the use of expectation
values rather than measurements and the use of a gradient [9]. The Cappelletti
circuit uses a method of optimization called Constrained Optimization by Lin-
ear Approximation (COBYLA). A distinction between COBYLA and gradient
descent algorithms is that COBYLA is considered to be slower (in number of
operations) in exchange for COBYLA requiring fewer weights for optimization.
A COBYLA optimized classifier is not equivalent to a gradient descent based
classifier.

2.1 Review of Quantum Computing Definitions

Quantum computing is a cross-section of computer science and quantum mechan-
ics, a nascent science that is exploding with new terms and discoveries. To
ensure the readers understand the quantum machine learning classifier that is
our research contribution, included here is a section reviewing the terms of quan-
tum computing that are directly relevant. This covers quantum bits (“qubits”)
and the two specific gates, the CNOT gate, CZNOT and the Rx gate, used in
this quantum circuit for the quantum machine learning classifier.

Qubit: The qubit is the quantum computing analog of a classical bit rep-
resented as a vector of two numbers. The two numbers can be represented as
a vector in three dimensional space. A qubit is represented as a wire in the
graphical representation of a circuit.

Dirac Notation: The Dirac notation as described first by Paul Dirac [8] is
the standard notation for quantum computing by which vectors are represented
through the use of (Bras| and |Kets) to denote, respectively, column and row
vectors.

Gate: A gate is an operation performed on a qubit. Mathematically the gate
is described as a matrix that changes the values of a qubit. This value change
corresponds with a rotation in three dimensional space. The degree of the rota-
tion can be a function of an input value. In this case, the gate was parameterized
with that value (called a parameter).

462 A. Leider et al.

Clircuit: A circuit is an ordered list of operations, gates, on a set of qubits to
perform computational algorithms.

Bloch Sphere: The Bloch Sphere is the three dimensional representation of
the possible orientations a qubit can have with a radius of one as described in
the lectures of Felix Bloch [6]. It is analogous to the unit circle.

Ezxpectation Value: The expectation value is the probabilistic value of a cir-
cuit.

Neural Network: A neural network is a learning algorithm designed to resem-
ble the neural connections in the human brain.

Neuron: A neuron is the basic building block of a neural network. Connected
neurons have weights to stimulate predetermined activation functions.

Weight: A weight can be thought of as the value denoting the strength of
the connection between two neurons. It transforms the output signal of a neuron
before it is fed into another neuron in the next layer.

AiMOS: AIMOS is a super computer at the Rensselaer Polytechnic Institute
Center for Computational Innovations [16].

Backpropagation: The algorithm by which a neural network decreases the
distance between the output of the neural network and the optimal possible
output of the same neural network. Backpropagation is an amalgam of the phrase
“backward propagation”.

Epoch: Epoch is one iteration of training.

Training Set: The subset of data used to train the neural network.

Testing Set: The set of data used to verify the accuracy of the trained neural
network.

Rx Gate: The Ry gate causes a rotation of a qubit about the X-axis to a
degree specified by a parameter. The angle of rotation is specified in radians and
can be positive or negative.

reo= (L8)

CZ Gate: The Cz gate, controlled-Z gate, causes a rotation in a target qubit
on the Z-axis based on the control qubit’s position on the Z-axis.

10 0 O
010 0
001 0
00 0 -1
CNOT Gate: The CNOT gate, C'X gate, causes a rotation in a target qubit

based on the value of a control qubit.

oS o o
S o= O
= o O O
o = o o

Quantum Machine Learning Classifier 463

3 Objective and Contribution of This Research

The objective of this research is to find a quantum computing machine learn-
ing classifier that can surpass classical machine learning models in number of
operations needed for training. This would be a type of “speedup” - though not
necessarily the theoretical quadratic or exponential speedups referenced in the
Literature Review section.

The contribution of this research is a quantum machine learning classifier. It
uses quantum computing mathematics to classify data using deep learning.

4 Methodology

The development environment was Google Colab Jupyter Notebooks. The
dataset used was the Iris Dataset from SciKit Learn. Google Colab allowed
for comments and visualizations that helped open up understanding of how the
neural network was operating as it searched through the data looking for charac-
teristic features to make its classification decisions. First a benchmark program
was written of a classical deep learning neural network, and the dataset run
through that benchmark program. Then the quantum machine learning classi-
fier program was written and the dataset run through the Quantum Machine
Learning Classifier (QMLC). The results of the QMLC were significantly better,
finding the correct classification in fewer epochs. The code was then downloaded
from Colab in the .py file format and run on the AiMOS supercomputer, then the
output file interpreted with a visualization program to see and compare results
in an easy fashion. The results from the AiMOS computer were achieved faster,
and the output was same as those from Colab, which helped validate our results.

We used the PennyLane library for our program. PennyLane is designed for
quantum machine learning, using training of variational quantum circuits, as a
type of differential quantum programming, an quantum analog to TensorFlow
and PyTorch for classical computation. We imported the Python code libraries
of numpy, pandas, seaborn and plotly. These were for, respectively, processing
numbers, arrays, data plot visualizations and online graphing. We also imported
matplotlib.

For our dataset, we imported from sklearn.dataset load_iris, as well as the
preprocessing package of StandardScaler, the model selection of train_test_split
and from the sklearn.metrics code library, we imported the confusion_matrix,
accuracy_score, precision_score, recall_score and f1_score.

The Iris dataset [17] consists of 150 measurements taken by Edgar Ander-
son to quantify the variations in iris flower species. These measurements consist
of four attributes: sepal length, sepal width, petal length, and petal width of
the three species as seen in Fig. 1. The irises consisted of three species: Versi-
color, Setosa and Virginica. In the work displayed in this paper, each species is
referred to by a target number: Veriscolor is target zero, Setosa is target one,
and Virginica is target two. The statistics of the Iris dataset are seen in Fig. 2.
The pair plots of the attributes in the Iris dataset are seen in Fig. 3. These are

464 A. Leider et al.

the visualization plots of the dataset to compare with our benchmark classical
neural network classifier as well as the novel quantum classifier presented in this
paper. The goal of the classifiers is to correctly classify a row of measurements
as either target zero, one, or two correctly.

Figure 4 shows a correlation matrix that illustrates the relationships between
the measured characteristics in the dataset. Red values are positive correlations
and blue are negative correlations. Zero is a neutral relationship. This correlation
matrix is showing how strongly one characteristic feature attribute is directly
correlated to another. The data for this matrix is standardized, by bounding
them between the real numbers of —1 and positive 1. A positive number (signified
by a red square) means that if one attribute is present in a certain degree, then
the second attribute on the corresponding row or column is also present to
that degree with the likelihood of that standardized value. Otherwise, there is a
negative correlation.

Fig. 1. Versicolor, Setosa and Virginica [17]

sepal_length sepal_width petal_length petal_width

count 150.000000 150.000000 150.000000 150.000000
mean 5.843333 3.054000 3.758667 1.198667
std 0.828066 0.433594 1.764420 0.763161
min 4.300000 2.000000 1.000000 0.100000
25% 5.100000 2.800000 1.600000 0.300000
50% 5.800000 3.000000 4.350000 1.300000
75% 6.400000 3.300000 5.100000 1.800000
max 7.900000 4.400000 6.900000 2.500000

Fig. 2. Statistics of iris dataset

Quantum Machine Learning Classifier 465

Pair Plot: Actual Flower

O
TR LY

o SepalL
>
‘a.a:;

)
£
N
\
e

4
-2 = ActualFlower
o
.1
* 2
1
=
z
< 0
&
-1
15
10
E 05
£ o0
&

0 2 -25 0.0 25 o 2 o 2
SepallL Sepalw Petall PetalWw

Fig. 3. Pair plots of attributes of the iris dataset

5 Investigation and Findings

5.1 The Classic Deep Learning Neural Network

The metrics of the classifier were measured after every backpropagation of the
entire neural network. This occurs after training on every data point in every
epoch. No testing set data was used for training. The testing set is meant to
gather metrics only. In Fig.5 the blue line that denotes accuracy is plotted
over the recall as they are equivalent in every measurement taken. The highest
accuracy reached in the 13 epochs on the classical deep learning neural network
was 89%.

The weights of the classifier were also recorded after every backpropagation.
Observing a few of the weights closely (Fig. 6) shows that patterns appear in the
repeated fluctuations of weight values. This is a direct result of gradient descent
causing small changes to the weights in the same order over multiple epochs. Also
of note, some weights experience minor inflections over the course of training. In
addition, the right hand side of the image shows increasing discernment by the
classifier over its initial understandings of the data on its left hand side.

466 A. Leider et al.

Real Flowers Correlation Matrix

1.00
-
]
o
&

0.75
= 0.12
]
Q
& 050
=
"
i -025
&
z 0.96 =0.00
g
&

-=-0.25
0.72 0.92

-0.50
- 0.2 0.12

-0.75
~ 0.14 0.72 0.77

-1.00

Sepall SepalW Petall PetalW 0 1 2
Fig. 4. Correlation matrix of iris dataset
Metrics recorded over every
09 : am'acy
— e AT
08 T
, L

04
03
02

Fig. 5. Recording the classic

neural network metrics over the course of training.

Quantum Machine Learning Classifier 467

Weights recorded over every backpropagation

-05

0 200 400 600 800 1000 1200 1400

Fig. 6. Recording the classic neural network weights over the course of training.

This was the methodology used to create an accurate benchmark of a classic
deep learning neural network with which to compare the new quantum comput-
ing machine learning classifier.

5.2 Quantum Machine Learning Classifier

Our work is expressed in full in two Google Colab Jupyter Notebooks online,
the first is the classical neural network we used for validation and benchmark-
ing posted online [3] and the second is our contribution, the novel quantum
machine learning classifier posted online [2]. After writing the code, it was run
first in the Google Colab environment, then downloaded and run on the AiIMOS
supercomputer, where it worked equally well.

o

g,

Fig. 7. The guantum circuit for the classification of Ins dataset. Vector w
encodes for (sepal length, sepal width, petal length. petal width). Note that
the features are re-uploaded.

Fig. 7. The Cappelletti circuit [7]

Cappelletti et al. outline two rules in their paper used to guide the design
of the quantum circuit classifiers. They write, “First, we want to minimize the
number of gates. Second, we need enough parametric gates to encode the input
vector and provide adequate learning capacity.” These ‘guidelines’ do not limit
the number of features or qubits that can be used in the circuit.

468 A. Leider et al.

As noted in the Fig. 7 showing a representation of the Cappelletti circuit, the
omega vector (w) denotes the features of the Iris dataset and where they are fed
into the circuit as radians for Rx gate rotations. Notice that they are each encoded
into the circuit twice. This is the same for the gradient based classifier in Fig. 8, and
in the same order. In the Cappelletti circuit, after each two feature values, we see
a gate connecting both wires. Cappelletti leaves the specific axis of the NOT gate
used vague but the gradient based quantum classifier on the bottom uses ZNOT
gates in alternating directions after each pair of Rx rotation gates.

q0, — Rx | o N . m . N ., BN . N . N . I —-ﬂ-—
0755 loooso2 | l09és 0768 { 0755, l 0281 0346 ’ 0151
q0; — B+ o o n ¢ n ¢, n o I v} Ryl o
10493 0101 0111 0274 0493 0478 0111
2 0
c0

Fig. 8. The Cappelletti circuit in QisKit

The alternating ZNOT gates in Fig.8 means that the roles of target and
control qubit alternate after each Rx gate. The theta vector (6) in the Cappel-
letti circuit denotes the weights. Notice that in the gradient quantum classifier,
there are only 7 weights (not 8). Finally, the Cappelletti gate uses a measure-
ment of both wires to predict the value of an iris measurement. This is done
by attributing certain binary combinations to each iris; ‘00’ to Iris zero, ‘01’ to
Iris one and ‘10’ to Iris two. The gradient based classifier does not do this. It
is a pseudo binary classifier that uses the expectation value of the top wire to
generate a value denoting the confidence value of the circuit. This means that,
unlike the single circuit Cappelletti Classifier, our classifier uses three circuits to
classify a measurement.

5.3 Owur Novel Quantum Machine Learning Classifier

The novel quantum machine learning classifier described here consists of 3 sim-
ilar circuits, shown in Fig.9. Each circuit is assigned to a target iris. The first
circuit was assigned to Iris zero, the second circuit was assigned to Iris one and
the third circuit was assigned to Iris two. Each circuit consists of 7 weights each.
The process of classifying a measurement is similar to the forward propagation
process of the neural network: each circuit is fed the measurements of sepal
length, sepal width, petal length and petal width within the form of gate rota-
tions in two parts of the circuits each, as described in the Cappelletti circuit.
The weights of each circuit and the features of the irises cause rotations in each
qubit, including ZNOT rotations.

Then, the expectation value (also called the confidence value) of the top
qubit in each circuit is calculated. The classifier then determines the circuit
with the highest confidence value and classifies the measurement as the target
iris assigned to that circuit. This may sound similar to the final layer of the
neural network (the soft-max layer). This was done intentionally to help parallel
the classification process of the benchmarking neural network. An important

Quantum Machine Learning Classifier 469

distinction between the confidence values and the soft-max layer is that the
output of the soft-max layers were the result of normalizing the values and
then rounded to give the neural network more simplicity. The confidence values
do not sum to one and can individually range from 0 to 1 as per the original
explanation of qubit expectation values. The goal is to optimize each circuit so
that they produce higher expectation values when feature values associated with
their target irises are fed into the gates.

5.4 Gradient Parameter-Shift Rule

The key characteristic of the quantum classifier is in its ability to optimize each
circuit through the use of taking the gradient with respect to each measurement
in the training set. This is done using the gradient parameter-shift rule. This rule
(more of a formula) is the Gradient Parameter-Shift Rule at Eq. 1. The first step

oo 8
oo, 18

2

c0

oo
.

T
" i

i i

a—— -
o

i

B E] AL

Fig. 9. Quantum machine learning classifier circuits

in the rule is to take the expectation value of a circuit twice, once after moving
a single parameter forward by pi/2 and once after moving the same parameter
backward by pi/2. Half of the difference between these two expectation values
is the gradient of that parameter. If we add this gradient to the parameter and
run the circuit again, the expectation value will be larger.

~ 1 ~ - = ~
Vo, (B)(©) =35 [(B) (0+ &) - (B) (6-3a)] (1)
! 2 2 2
To optimize the entire circuit, we repeat the gradient shift rule with every
weight in the circuit. It is important to note that the parameters do not change

until the gradient is calculated for every weight. This could allow for the gradient
parameter-shift rule to be applied to each weight independently and of optimizing

470 A. Leider et al.

the circuit by parallel processing. This would greatly decrease the time needed
to change all weights because the expectation value must be estimated twice for
every weight in the circuit (42 times).

The circuit at Fig. 10 was given values for each gate at random. The weights
were changed using the gradient parameter-shift rule as seen in Fig. 11. Notice
that only the parameters located in a gate that would contain a weight are
changed. This still leads to a circuit with a higher expectation value. This process
can be repeated until the expectation value reaches the highest possible value, 1.

900 i —— e —— -
a0 Ji————)

Fig. 10. Initial values for gradient parameter-shift circuit application

The code used to take the gradient of every weight was taken from Penny
Lane with some alterations to account for Iris measurements being fed into the
circuit as parameters that do not change with a gradient [15]. The weights are
referred to in the code as parameters and the measurements as features. Notice
that the circuit function, which returns an expectation value, takes both features
and parameters as arguments. The gradient for each parameter is calculated
sequentially but could be done in parallel.

ato S — g
ZE e e B e S e

2 v 0

cl

Fig. 11. Values after gradient parameter-shift circuit application

5.5 Classifier Optimization

Given the parameter-shift rule, it is possible to optimize each circuit individually
based on the target of each row in the training data. But this procedure did not
work. The lack of a cohesive cost function that tied the circuits together meant
that the expectation values only increased over the course of training. FEach
circuit learned to interpret the features associated with irises but not distinguish
between iris targets. This led to our novel method for classifier optimization
outlined with the following example.

The circuits are trained with data from the training set with the actual value
of the iris and a learning rate smaller than 1. The circuit associated with that
iris is optimized in the procedure mentioned previously; the features of the data
are placed into the appropriate gates and held as fixed while the weights are
changed using the parameter-shift rule to determine the gradient and increase

Quantum Machine Learning Classifier 471

the expectation value of that circuit with respect to the data. For instance,
when the target value is zero, circuit zero is optimized. The novel approach of
this method is to repeat the same process for the other circuits while multiplying
the gradients by a value of —0.33. This is referred to as the ‘de-optimization’
of a circuit. The goal is to have the circuits produce a lower expectation value
when features of a different target are fed into the non-corresponding circuits. A
parallel could be drawn to a similar concept in reinforced learning called negative
reinforcement. The ‘de-optimization’ of the circuits kept the expectation values
from rising perpetually. Both the learning rate and the ‘de-optimization’ factor,
the -0.33 value, were estimated by trial and error.

5.6 Metrics

Refer to Fig. 13 and Fig. 12. The testing set was meant to gather metrics only.
The quantum classifier was trained for 13 epochs to allow for comparison with
the neural network. The quantum classifier achieved 100% accuracy by the 9th
epoch. It is important to note that the classifier did not constantly improve. The
accuracy of the classifier repeatedly dropped between epoch 0 (with randomly
chosen weights) and epoch 3.

Metrics recorded over every optimization

[200 400 500 800 1000 1200 1400

Fig. 12. Recordings of the classical neural network metrics over the course of training.

QML vs Classical Neural Network Metrics: The metrics of the quantum
classifier outperform that of the neural network in Fig. 13. Notice the vast juxta-
position of the wildly fluctuating weights in the quantum classifier graph and the
more smooth quantum classifier metrics graph as compared against the neural
networks graphs which follow an almost opposite trend.

QML vs Classical Neural Network Weights: The weights of the classifier
were recorded after every optimization of the classifier. There are two glaring dif-
ferences between the neural network weights and the quantum classifier weights.

472 A. Leider et al.

Metrics recorded over every optimization

0 200 200 800 800 1000 1200 1400

Fig. 13. Recordings of the quantum machine learning classifier metrics over the course
of training.

The weights have units and radians, and they can be examined separately by
circuit number. Figure 14 displays all the weights in one graph to highlight the
clearly nonlinear nature of the gradient parameter-shift rule. The ‘static’ from
the ordered gradient descent is visible in both graphs but much more so in the
quantum classifier even with a larger scale y-axis. This may indicate a method
involving momentum operators or stochastic methods could contribute greatly
to stabilizing the weights of the quantum classifier.

Circuit 0 Weights: An assumption that proved false was that the weights
would follow some clear trigonometric function, like a sine, cosine or tan function.
As seen in Fig. 15, there are several inflection points of the weights on a scale
larger than can be attributed to a gradient descent approach. For example,
weight number 4 starts to repeat the gradient descent ‘static’ common from a
basic descent without using any momentum or stochastic approach after the
800th recording of the weight. The inflection of weights 1 and 3 between the 1st
and 300th measurement cannot be attributed to this same phenomena. These
drastic inflections happen in repeated patterns in other iterations of the classifier
(using other random starting weights). The smoother inflection of weight 2 is
also common among other iterations.

Circuit 1 Weights: In Fig. 16, one can see that weight 8 shows another inter-
esting pattern. The units of the weight are in radians and the weight repeatedly
peaks above and then dips below the value of pi. Another assumption proven
false was that this value would have some sort of strong significance given its
role in trigonometry, like an asymptotic limit for the weights. This is not the
case. Placing the iris features before the weights in the circuit removed any
associations with typical ‘magic numbers’ such as in trigonometry.

Quantum Machine Learning Classifier 473

Weights recorded over every optimization

’ M‘WW e S i ki aas ‘5
6

=

—9

2 30
'"..w.‘\ ,~\ ,gw&-'w,_-'@-"~~* S e T e ey E§

% il Mm‘ oy p % S —

! “ / PN o NP AN PP NG o Sy ey S N o N
Lm0 A —_n

o 38

-

S Y AV Y AV ST A eV — 2
Y A A A oA

-2

0 200 00 600 00 1000 1200 1400

Weights recorded over every bac

Fig. 14. Recordings of the QML classifier weights and classic neural network weights
over the course of training.

Circuit 0 over Optimi

I o B R S e e g S

W0y |
Y ‘-s“«'-invnu\.. <

PP iaAs i

-2

Fig. 15. Recordings of the circuit associated with target 0.

474

A. Leider et al.

Circuit 1 Parameters over Optimization

-05

0 200 400 600 80 1000 1200 1400

Fig. 16. These are the recordings of the circuit associated with target 1.

Circuit 2 Parameters over Optimization

°

! ’,ﬁ Wiy '{’;M\m\-;/ (LA WA g W

P

—u
A a

A =

—
- -]
A~ »

o

bt

Ooa,

“NA

200 400 600 80 1000 1200 1400

Fig. 17. Recordings of the circuit associated with target 2.

Circuit 2 Weights: In the circuit in Fig. 17 one can see a trend found in some
‘curse of dimensionality’ problems. The value starts at 0 and increases, almost
linearly, until it hovers at a value just under 4 after the 1200th measurement.
Trigonometry tells us that a rotation of 4 radians is a larger radial distance than
the equivalent rotation in the negative direction. A simpler example in other
units could be; why move 270° in one direction when you could move 90° in the
other direction and reach the equivalent spot? One conclusion, that requires more
research, is the curse of dimensionality made this weight take the longer path to
reach the same global minimum. This is a major proposition that requires more
research but could eventually be the ultimate proof of this and other quantum
circuits’ potentials as classifiers.

Quantum Machine Learning Classifier 475

6 Conclusions

The quantum machine learning classifier trained in four fewer epochs than the
traditional neural network.

7 Future Work

This quantum computing machine learning classifier is more efficient than its
classic deep learning neural network counterpart when compared on classical
computers using the Iris dataset as it delivers optimal results in fewer epochs.
Future work would be to use it with larger datasets that consist of more targets
and rows.

Acknowledgments. The authors are especially grateful to the CAREERS
(Cyberteam to Advance Research and Education in Eastern Regional Schools) pro-
gram for supporting Gio Abou Jaoude with a stipend and with tutoring by sponsoring
our research project. Our work here will be extended to its next phase of code optimiza-
tion on the AIMOS supercomputer hosted at Rensselaer Polytechnic institute (RPI),
the largest supercomputer in New York State. The CAREERS Cyberteam Program is
a 3-year initiative funded by the National Science Foundation (Award No. 2018873)
to build a regional pool of Research Computing Facilitators to support researchers
at small and mid-sized institutions in Connecticut, Delaware, New Jersey, New York,
Pennsylvania, and Rhode Island, leveraging the work of the Northeast Cyberteam and
national programs including XSEDE Campus Champions, CaRCC and others [14].

References

1. Aaronson, S.: Read the fine print. Nat. Phys. 11(4), 291-293 (2015)

2. Jaoude, G.A.: Quantum machine learning classifier in a Google Colab
Jupyter Notebook (2021). https://colab.research.google.com/drive/
1YMPn7LTtfd73WpWcdXmGUsAxHruDOWBf?usp=sharing

3. Aflack, O.: neural_network.ipynb (2018). https://colab.research.google.com/drive/
10y6glU28-sa-OtkeL8Bt AtRIOITGMnMw#scrollTo=oTrTMpTwtLXd

4. Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltz-
mann machine. Phys. Rev. X 8(2), 021050 (2018)

5. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quan-
tum machine learning. Nature 549(7671), 195-202 (2017)

6. Bloch, F., Walecka, J.D.: Fundamentals of Statistical Mechanics: Manuscript and
Notes of Felix Bloch. World Scientific (2000)

7. Cappelletti, W., Erbanni, R., Keller, J.: Polyadic quantum -classifier (2020).
https://arxiv.org/pdf/2007.14044.pdf

8. Dirac, P.A.M.: A new notation for quantum mechanics. In: Mathematical Pro-
ceedings of the Cambridge Philosophical Society, vol. 35, pp. 416-418. Cambridge
University Press (1939)

9. Doshi, S.: Various optimization algorithms for training neural network
(2019). https://towardsdatascience.com/optimizers-for-training-neural-network-
59450d71caf6

https://colab.research.google.com/drive/1YMPn7LTtfd73WpWc4XmGUsAxHruD0WBf?usp=sharing
https://colab.research.google.com/drive/1YMPn7LTtfd73WpWc4XmGUsAxHruD0WBf?usp=sharing
https://colab.research.google.com/drive/10y6glU28-sa-OtkeL8BtAtRlOITGMnMw#scrollTo=oTrTMpTwtLXd
https://colab.research.google.com/drive/10y6glU28-sa-OtkeL8BtAtRlOITGMnMw#scrollTo=oTrTMpTwtLXd
https://arxiv.org/pdf/2007.14044.pdf
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6

476

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Leider et al.

Dunjko, V., Taylor, J.M., Briegel, H.J.: Quantum-enhanced machine learning.
Phys. Rev. Lett. 117(13), 130501 (2016)

Kathuria, K., Ratan, A., McConnell, M., Bekiranov, S.: Implementation of a Ham-
ming distance-like genomic quantum classifier using inner products on IBMQX2
and ibmqg-16_melbourne. Quantum Mach. Intell. 2(1), 1-26 (2020)

Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis.
Nat. Phys. 10(9), 631-633 (2014)

Low, G.H., Yoder, T.J., Chuang, I.L.: Quantum inference on Bayesian networks.
Phys. Rev. A 89(6), 062315 (2014)

NSF: CAREERS: cyberteam to advance research and education in eastern regional
schools (2021). https://careers-ct.cyberinfrastructure.org/

PennyLane Dev Team: Quantum gradients with backpropagation (2021). https://
pennylane.ai/qml/demos/tutorial variational classifier.html

SCER Staff: AiIMOS, Most Powerful Supercomputer at a Private University, To
Focus on AI Research (2019). https://news.rpi.edu/content/2019/12/05/aimos-
most-powerful-supercomputer- private-university-focus-ai-research

SciKit Learn. Iris dataset (2021). https://scikit-learn.org/stable/auto_examples/
datasets/plot_iris_dataset.html

Spagnolo, N., et al.: General rules for bosonic bunching in multimode interferom-
eters. Phys. Rev. Lett. 111(13), 130503 (2013)

Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev.
Lett. 109(5), 050505 (2012)

Wiebe, N., Kapoor, A., Svore, K.M.: Quantum deep learning. arXiv preprint
arXiv:1412.3489 (2014)

Wiebe, N., Kapoor, A., Svore, K.M.: Quantum perceptron models. arXiv preprint
arXiv:1602.04799 (2016)

https://careers-ct.cyberinfrastructure.org/
https://pennylane.ai/qml/demos/tutorial_variational_classifier.html
https://pennylane.ai/qml/demos/tutorial_variational_classifier.html
https://news.rpi.edu/content/2019/12/05/aimos-most-powerful-supercomputer-private-university-focus-ai-research
https://news.rpi.edu/content/2019/12/05/aimos-most-powerful-supercomputer-private-university-focus-ai-research
https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html
https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html
http://arxiv.org/abs/1412.3489
http://arxiv.org/abs/1602.04799

	Quantum Machine Learning Classifier
	1 Introduction
	2 Literature Review
	2.1 Review of Quantum Computing Definitions

	3 Objective and Contribution of This Research
	4 Methodology
	5 Investigation and Findings
	5.1 The Classic Deep Learning Neural Network
	5.2 Quantum Machine Learning Classifier
	5.3 Our Novel Quantum Machine Learning Classifier
	5.4 Gradient Parameter-Shift Rule
	5.5 Classifier Optimization
	5.6 Metrics

	6 Conclusions
	7 Future Work
	References

