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ABSTRACT

In our prior work toward Bartnik’s static vacuum extension conjecture for near Euclidean boundary data, we establish a sufficient condition,
called static regular, and confirm that large classes of boundary hypersurfaces are static regular. In this paper, we further improve some of
those prior results. Specifically, we show that any hypersurface in an open and dense subfamily of a certain general smooth one-sided family of
hypersurfaces (not necessarily a foliation) is static regular. The proof uses some of our new arguments motivated from studying the conjecture
for boundary data near an arbitrary static vacuum metric.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0089527

I. INTRODUCTION

Let n > 3 and (M, g) be an n-dimensional Riemannian manifold. We say that (M, g) is static vacuum (or g is a static vacuum metric on
M) if there is a scalar-valued function u on M satisfying
—uRicg + VZ,M =0,

(1.1)
Agu = 0.
Such u is called a static potential. The class of static vacuum metrics has played a fundamental role in general relativity because when u > 0,
the triple (M, g, u) gives rise to a Ricci flat spacetime (R x M, —u?dt® + g) that has a global Killing vector field d;.
A very important example of asymptotically flat, static vacuum metrics is the family of (Riemannian) Schwarzschild metrics g,

-1
gm = (1 - i’i) dr* + r’gg defined onR"\B(Zm)ﬁ,
with the static potential u,, = /1 - 72,1—',”2, where gg1 is the standard metric on the unit sphere $"~'. Note that the Schwarzschild metrics
are rotationally symmetric. When m = 0, the Schwarzschild metric becomes the Euclidean metric. When m > 0, the Schwarzschild manifold
has a minimal hypersurface boundary, precisely at u = 0. In fact, the Schwarzschild metrics are the only asymptotically flat, static vacuum
3-manifolds with such a property by the celebrated uniqueness theorem of static black holes (see Refs. 1-3). Another family of static vacuum
exact solutions was discovered by Weyl. The Weyl solutions are axially symmetric and have general asymptotics at infinity, but a subclass of
them can have an asymptotically flat end. Those exact solutions can be characterized by certain conditions (e.g., having black hole boundary),
and great efforts have been made toward the uniqueness and classification results of those static vacuum metrics. See, for example, Reiris and
Peraza’ and the references therein.

In contrast, Robert Bartnik conjectured the following “prescribing boundary value” problem for asymptotically flat, static vacuum mani-
folds [see Ref. 5 (Conjecture 7) and Ref. 6]. The conjecture was originated from his quasi-local mass program in 1989, for which we refer
to the reader to the survey article of Anderson’ for details. The conjecture itself is also of independent interest as a natural geometric
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partial differential equation (PDE) boundary value problem. Furthermore, progress toward this conjecture would give rise to new examples
of asymptotically flat, static vacuum metrics and advance our understanding toward the structure of static vacuum metrics (Ref. 6).

Conjecture 1 (static extension conjecture). Let (Q, go) be a compact manifold with scalar curvature Rg, > 0. Suppose the mean curvature
Hy, is positive somewhere on the boundary X. Then, there exists a unique asymptotically flat, static vacuum manifold (M, g) with the boundary
OM = X satisfying

Here, ()" denotes the restriction on the tangent bundle of 2.

Convention: The mean curvature H, of a hypersurface ¥ in a Riemannian manifold (M, g) is defined as Hg = div,yv, where v is the unit
normal vector of . When (M, g) is asymptotically flat, we choose v to point to infinity [and thus, the unit normal for £ in (Q, go) points
outward].

We shall refer to the geometric boundary data (gg, Hy, ) as the Bartnik boundary data. Let us also remark on the assumption that Hy,
is positive somewhere. The conjecture would fail without this assumption because such an extension, if exist, would contain a minimal
hypersurface homologous to the boundary (atleast in dimensions n < 7), and the extension must be Schwarzschild by the uniqueness theorem,
which put strong restriction on g; . See Ref. § for n = 3. For n < 7, by minimal surface theory, there is an outermost minimal hypersurface
homologous to the boundary. From the result of Martin, Miao, and the second author of this paper [Ref. 9, Theorem 1], the static potential
u = 0 on the outmost minimal hypersurface. From there, one applies the generalization of uniqueness of static black holes in higher dimensions
by Gibbons, Ida, and Shiromizu.'’

Even with the mean curvature assumption, it is highly speculated that Conjecture 1 does not hold, in general, as stated. Let Q be a
bounded open subset in R”. Observed by Refs. 11 and 12, if the boundary = = 9Q is only inner embedded, i.e., = touches itself from the
exterior region R"\Q, the induced data (g7, Hg) is valid Bartnik boundary data, but (g,1) in R"\Q is not a valid static vacuum extension
as R"\Q is not a manifold with the boundary. One can further arrange so that the mean curvature H; is positive everywhere. Those inner
embedded hypersurfaces are conjectured to be counter-examples to Conjecture 1 by Ref. 11 (Conjecture 5.2) (see also Ref. 7), though it is
not clear whether there could be another static vacuum extension far way from (R"\Q, g, 1). Nevertheless, positive results to Conjecture 1,
under suitable assumptions, will provide a structure theory for the space of static vacuum metrics (parameterized by their Bartnik boundary
data). It also connects the fundamental problem on isometric embeddings of hypersurfaces into a static vacuum manifold with prescribed
mean curvature. In particular, that question apparently has intriguing connections to the work of Chen, Wang, Wang, and Yau'® where the
notion of quasi-local energy defined via isometric embeddings into a reference static metric is proposed, extending the celebrated Wang-Yau
quasi-local mass with respect to the Minkowski spacetime.'*

There are some positive results toward Conjecture 1. The existence and local uniqueness is proven for # = 3 and for (go, Hg, ) sufficiently
close to the induced Bartnik boundary data on a round sphere from the Euclidean metric, i.e., (g0, Hy, ) sufficiently close to (gs,2). See the
work of Miao,"> Anderson-Khuri,'” and Anderson.'® In recent work,'” we give a general framework to tackle Conjecture 1 and confirm the
existence and local uniqueness of Conjecture 1 for large classes of boundary data, including those close to the induced boundary data on
either any star-shaped hypersurfaces or quite general perturbed hypersurfaces in the Euclidean space. In this paper, we improve Theorem 7 in
Ref. 17 by employing new arguments in our recent work.'® The new results are presented as Theorem 7, Corollary 8, and Theorem 9.

To describe the new results, we first recall the basic notations and definitions and review relevant results from Ref. 17.

Let Q be a bounded open subset in R” whose boundary = = 9Q is a connected, embedded smooth hypersurface in R”. We denote
by g the Euclidean metric in R" with g;; = & (with respect to a fixed Cartesian coordinate chart). Our analytic framework is based on the
weighted Holder spaces C IES(R”\Q) (see its definition in Sec. 2.1 of Ref. 17), and we always assume the Holder exponent « € (0,1) and the
fall-off rate g € ("%, n - 2) for asymptotical flatness. We denote by DRiclg (h) the linearization of the Ricci curvature at g; namely, let g(t) be

an arbitrary family of Riemannian metrics on R"\Q so that g(0) = g and ¢’(0) = h, then DRiclg(h) := Ricy(yy. Similarly, we define the

d

dt ’t:O
linearizations of the mean curvature and second fundamental form on X by DH|;(h) and DA|;(h), respectively. We will omit the subscript g
in those linearizations when the context is clear.

Definition 2. The boundary ¥ is said to be static regular in R"\Q if for any pair of a symmetric (0,2)-tensor h and a scalar-valued
function v satisfying (h,v) € C25(R"\Q) and

~DRic(h) + Vv =0, Av=0 inR"\Q,

T (12)
h' =0, DH(h)=0 onZ,

we must have DA(h) =0 on X.

The following fundamental result obtained in Ref. 17 says that “static regular” is a sufficient condition for existence and local uniqueness.
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Theorem 3 ([Ref. 17, Theorem 3]). Suppose the boundary ¥ is static regular in R"\Q. Then, there exist positive constants €, C such
that for each € € (0,€0), if (7,¢) satisfies [(1,¢) — (§ 7> Hg )|l c2a(s)xc12(z) < € then there exists an asymptotically flat pair (g, u) with | (g, u)
= (& 1) ¢2a(mn\q) < Ce such that (g, u) is a static vacuum pair in R"\Q having the Bartnik boundary data (¢g".Hg) = (1,¢) on =.
-9

Furthermore, the solution (g, u) is geometrically unique in a neighborhood U of (g, 1) in the C 2§ (R"\Q)-norm.

We remark that the “local uniqueness” in the above theorem is precisely described under the static-harmonic gauge and the orthogonal
gauge. Since we will not explicitly use them in the present paper, we refer to the reader to the discussion right after Theorem 3 in Ref. 17.

In Ref. 17, we furthermore show that large classes of hypersurfaces in R" are static regular. In particular, we show that static regular
hypersurfaces are “dense” in the following concrete sense. A family of embedded hypersurfaces {2} c R" is said to form a smooth generalized
foliation if the deformation vector X of {3} is smooth and on each %, g(X, v) = {, where { > 0 in a dense subset of X, and v is the unit normal
of 2. In other words, {2} is slightly more general than a foliation in that the leaves can overlap on a nowhere dense subset.

Theorem 4 ([Ref. 17, Theorem 7]). Let § > 0, t € [-6, 6], and each Oy c R" be a bounded open subset with the hypersurface boundary
% = OO embedded in R". Suppose the boundaries {X;} form a smooth generalized foliation. Then, there is an open dense subset J ¢ (=8,0)
such that 3 is static regular in R"\Q; forall t € ].

The above theorem has the following strong consequence because of the dilation property of the Euclidean static vacuum pair:

Corollary 5 ([Ref. 17, Corollary 8]). Let Q be a bounded open subset in R" whose boundary X = OQ is a star-shaped hypersurface. Then, =
is static regular in R"\Q.

The purpose of this paper is to extend Theorem 4.

Definition 6. A collection of embedded hypersurfaces {Z,} ¢ R" is a smooth one-sided family of hypersurfaces foliating along %, c %, with
relatively simply connected X¢\2; if the deformation vector X of {X;} is smooth, and on each X, (X, v) = { > 0 with { > 0 in a dense subset of
each %, c ¥ satisfying (24, 2¢) = 0.

For a subset U in M, the condition 7; (M, U) = 0 says that U is connected and the inclusion map U < M induces a surjection 7; (U)
— 1 (M). In our setting, we clearly have 7; (R"\(, Z) = 0. Thus, the additional condition for a subset % c 3 to satisfy 71 (2,2) = 0 implies
m (R™\Q, %) = 0. In loose terms, the later condition implies that for any point x € R"\(, all paths from x to 3 are (homotopically) equivalent.
See Fig. 1. This property is used in Theorem 2.5 to ensure certain global extensions of local vector fields.

Note that a smooth generalized foliation {2} defined earlier is necessarily a smooth one-sided family of hypersurfaces foliating along
%, ¢ 3, with relatively simply connected Z,\Z; (by letting 3, = Z;). However, a smooth one-sided family {2} in the above sense may not form
a foliation because the leaves can overlap on 2;\Z;. The following theorem generalizes Theorem 4.

Theorem 7. Let § > 0, t € [=68,8], and each Q; c R" be a bounded open subset with the hypersurface boundary ¥, = 0Q; embedded in R™.
Suppose the boundaries {Z;} form a smooth one-sided family of hypersurfaces foliating along 2, c X; with relatively simply connected Z:\X;.
Then, there is an open dense subset ] ¢ (=8,08) such that I, is static regular in R"\Q for all t € .

\ Y\ Xy
£ v

\ A~
PIFANDIN

FIG. 1. Each figure illustrates Definition 6 that {=; } foliates along 3:; with relatively simply connected %\ 5. In the left figure, a one-sided family of (topological) spheres {2}
is shown where 3¢ can be very small. In other words, ; can largely overlap on =\ ;. The right figure illustrates a one-sided family of (topological) tori with 71 (%, ) = .
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In the special case that T is simply connected (e.g., T is a topological sphere), we trivially have 71; (2, %) = 0 for any nonempty connected
subset 3. Slight perturbation on 3 produces a one-sided family {3} with £y = ¥ that foliates along small subsets 3, c 3 so that Zt\ﬁt coincides
with Z\3: for all £. See the left figure in Fig. 1. Theorem 7 says that X, is static regular for ¢ in an open and dense set. Together with Theorem 3,
we give the following corollary that one can solve for static vacuum extensions whose boundary data are arbitrarily close to the induced
boundary data (g7, Hz) on Z, except a small subset 3 c 2.

Corollary 8. Let = = 0Q be a simply connected, closed, embedded hypersurface in R". Given any nonempty open subset ¥ c 3 and any
8> 0, there exists (1o, o) € C**(Z) x C"*(2) and constants e, C > 0 satisfying

(t0,¢0) = (g7, Hy) on =\E
| (70, 60) = (87> He) 2o sy ragsy < 0

such that for each € € (0,e0), if (1,¢) satisfies | (7,¢) — (70, $0) [ c2e(s)xcre(z) < & then there exists an asymptotically flat pair (g,u) with
I(g:u) = (& 1) 20 (mmqy < Ce such that (g, u) is a static vacuum pair in R"\Q having the Bartnik boundary data (¢g".Hg) = (1,¢) on =.
-9
Furthermore, the solution (g, u) is geometrically unique in a neighborhood U of (g, 1) in the C25(R"\Q)-norm.
The proof to Theorem 7 involves several new arguments used in our recent work for general asymptotically flat, static vacuum back-

ground metrics.'® One of the key arguments is the following theorem, which can be viewed as a uniqueness theorem for “localized” boundary
data.

Theorem 9. Let 3 be an open subset of 3 (can be the entire X) satisfying m (,2) = 0. Let (h,v) € C25(R"\Q) solve

~DRic(h) + Vv =0
c(h)+ Vv " RO,
Av=0
R =0
DA(h) =0 on 3,

D(.A) () = 0

where D(V,A)(h) denotes the linearization of V,A. Then, there is a vector field X € C;.%(R"\Q) satisfying X =0 on 3 and X -K
€ C24(R™\Q) for some Euclidean Killing vector field K (possibly zero) such that

h=Lxg and v=0 inR"\Q
Furthermore, if h™ = 0 and DH(h) = 0 everywhere on 2, then X = 0 everywhere on X and thus DA(h) = 0 on .

Theorem 9 says that the solutions must be “trivial” in the sense that (h,v) must arise from “infinitesimal” diffeomorphisms. More
precisely, we let X be a vector field as in the above theorem and let ¢, be the family of diffeomorphisms on R"\Q generated from X (in par-
ticular, ¢; is the identity map on X for all ). Then, the family of static vacuum pairs (gr, u:) = ¢; (g, 1) as the pull-back pairs of (g, 1) would
also satisfy (1.1) and have the same boundary data (g, Az, V4Az) on £ (in fact, on the entire X)."” The linearization of (g, u:) becomes
(Lxg,X(1)) = (Lxg,0), which satisfies the linearized system in Theorem 9. On the other hand, Theorem 9 says that those are the only
solutions.

The rest of this paper is organized as follows: Theorem 9 is proved in Sec. 11, and then Theorem 7 is proved in Sec. I11.

Il. LOCALIZED BOUNDARY DATA

The major motivation for the definition of static regular, Definition 2, is the following uniqueness theorem for Cauchy boundary data
from Ref. 17:

Theorem 2.1. Let (h,v) € Ci’f;(R"\Q) solve

—DRic(h) + Vv =0
(h) .
Av=0
h' =0
on Z.
DA(h) =0
J. Math. Phys. 63, 052503 (2022); doi: 10.1063/5.0089527 63, 052503-4
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Then, there is a vector field X € C}*(R"\Q) satisfying X =0 on = and X - K € C?’_"‘q(R"\Q)for some Euclidean Killing vector field K (possibly
zero) such that
h=Lxg and wv=0in R™\Q.

Proof. From the Proof of Lemma 4.8 in Ref. 17, we see that v = 0 in R"\Q. Therefore, h is a Ricci flat deformation in the sense that
DRic(h) = 0 in R"\Q. Then, by Theorem 2.8 of Ref. 17, we get the desired conclusion. ]

The goal of this section is to prove Theorem 9, whose main difference from the above theorem is that the boundary conditions for
Theorem 9 are “localized” only on a subset 3 c ¥ satisfying 7 (2,3) = 0.

We will first establish some basic results, and then Theorem 9 follows immediately after proving Propositions 2.4 and 2.6.

We say that a symmetric (0,2)-tensor A is said to satisfy the geodesic gauge (of order 2) on X if

h(v,-) =0, (V,h)(»,-)=0, (V3h)(»-)=0 onX,

where v is the unit normal vector of X parallelly extended into a collar neighborhood of .
Following the same argument as in Ref. 17 (Lemma 2.5), we see that any tensor h can be “transformed” to satisfy the geodesic gauge.

Lemma 2.2 [cf. Ref. 17 (Lemma 2.5)]. Let h € C2*(R\Q) be a symmetric (0,2)-tensor. Then, there exists a vector field V € C** with V = 0

loc

on X and V vanishing outside a collar neighborhood of X such that k := h + Ly g satisfies the geodesic gauge on X.

The following lemma gives an analytic interpretation for the geometric boundary conditions of Theorem 9.

2,
loc

Lemma 2.3. Let 3 be an open subset of the boundary Z (can be the entire X). Suppose h € C 2% (R"\Q)satisfies the geodesic gauge and

h' =0, DA(h)=0, D(V,A)(h)=0 on 3.

Then,
h=0, Vh=0, Vh=0 on3.

Proof. The first identity is an immediate consequence of 4" = 0 and the geodesic gauge.
To show the second identity, it suffices to show (V,#)" = 0 because (Vasbitrary) (v,+) = 0 and (vtangenﬁalh)T =0 from h = 0 and geodesic
gauge. Recall the formula [see Ref. 17, Eq. (2.3)],

DAM)z%GUMT+th—%LgT—%M%ﬂA, @1)

where the one-form w is defined by w(-) = h(v,-), A is the second fundamental form of ¥ c (R",g), and (Ao h)sp = 3 (Aachj, + Apchs).
Therefore, the assumption DA (k) = 0 implies that (V,#)" = 0 and, thus, VA = 0.

To show V*h = 0, we just need to show that (V2h)" = 0 because Viangential (V1) = 0 and V, Viangential? = Viangential Vv/ plus terms involv-
ing h and Vh, which are all zero on 3. Note that since h satisfies the geodesic gauge, we also have V,(DA)(h) = D(v,A)(h) on £. To see this,
we compute, for tangential vectors eg, ej, to 2,

(DT B)ener) = 4| (Tuhen) e

= (Vu(DA)(h))(easev) + (V) A) (easer)
= (Vu(DA)(h))(earer),

where in the second line (V)" == %L:ov"g(f)’ and one can verify that ((va(t) )'A)(ea, ey) because h = 0 and Vh = 0 on 3.

To conclude, we get V,(DA) (k) = 0 on % using (2.2) and the assumption that D(V,A) (k) = 0 on £. Covariant differentiating (2.1) in v,
we obtain (V2h)" = 0. o

(2.2)

Proposition 2.4. Let 3 be an open subset of = (can be the entire 3). Let (h,v) € C%’Z(]R”\Q) solve

—DRic(h) + Vv =0
ic(h) + Vv n R"\Q,
Av =0
h' =0
DA(h) =0 on 3.
D(Vv,A)(h) =0
J. Math. Phys. 63, 052503 (2022); doi: 10.1063/5.0089527 63, 0525035
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Then, v = 0 and DRic(h) = 0 in R"\Q.

Proof. By Lemma 2.2, we may assume that h satisfies the geodesic gauge. The boundary conditions and Lemma 2.3 imply that 4 =0,
Vh=0,v*h=00n%.
Note that DRic(h) involves h and its derivatives up to the second order; precisely, in local coordinates {see, e.g., Ref. 17 [Eq. (2.1)]},

. 1 1 1
(DRiclg (h))ij = —= 8 hiswe + - 8" (hioes + hjer) = — (trh)
2 2 2
1
+ E(R,-th + Righi) — Rygih™*  foralli, j=0,1,...,n- 1.

Restricting —DRic(h) + Vv = 0 on the boundary, we see Vv = 0 on 3.

Next, we define the function f = % forsomei=1,...,n, where (x1,...,x,) are the Cartesian coordinates. Since v is harmonic, f is also

a harmonic function in R"\Q. The conditions that V*v = 0 on ¥ imply
Vf=0 and v(f)=0 on3.

The first identity implies f = ¢ for some constant ¢ in a connected open subset of 3. Together with the second identity and uniqueness of the
Cauchy boundary value for the harmonic equation, we conclude that f = ¢ everywhere in R"\Q. Since f — 0 by the fall-off rate of v, we see
that f = g—: is identically zero. Since i is arbitrary, we see that Vv = 0, and thus, v is constant. Since v — 0 at infinity, we conclude that v is
identically zero. ]

In the above proposition, we have shown DRic(h) = 0 in R"\Q. Proposition 2.6 generalizes Theorem 2.8 of Ref. 17, where £ was assumed
to be the entire boundary X. The key argument is the following extension theorem for h-Killing vector fields, which extends the classical result
of Nomizu for the case that & is identically zero.”’

Theorem 2.5 ([Ref. 18, Theorem 7], Cf. [Ref. 21, Lemma 2.6]). Let (M, g) be a connected, analytic Riemannian manifold. Let h be an
analytic, symmetric (0,2)-tensor on M. Let U ¢ M be a connected open subset satisfying m1 (M, U) = 0. Then, if h = Lxg in U, there is a unique
global vector field Y such that Y = X in U and h = Lyg in the whole manifold M.

Proposition 2.6. Let 3 be an open subset of X satisfying mi (2,%) = 0. Let h € C25(R"\Q) satisfy

DRic(h) =0 in R"\Q
h' =0 .
on 2.
DA(h) =0

Then, there is a vector field X € C;,%(R"\Q) satisfying X = 0 on £ and X - K € C2§(R"\Q) for some Euclidean Killing vector field K (possibly
zero) such that
h=Lxg in R"\Q.

Furthermore, if h™ = 0 and DH(h) = 0 everywhere on 2, then X = 0 everywhere on % and, thus, DA(h) = 0 on 2.

Proof. We may without loss of generality assume that h satisfies the geodesic gauge on X. We extend h by 0 across % into some small
open subset U c ) so that the “extended” manifold M = (R"\Q) U U has a smooth embedded boundary M and 7; (M, U) = 0. Denote the
extension of h by k € C (M),

. h inR"\Q,
“lo iU

LetZeC i’_“q(M) be a vector field that weakly solves AZ = Bk in M with Z = 0 on OM, where the Bianchi operator fk = —divgk + d(trgk),

or, equivalently, k + L, weakly solves 8(k + Lzg) = 0 in M. Together with the assumption that DRic(k) = 0 in R"\Q and the boundary
condition & =0,Vh =0 on =, we have that k + L7 is a weak solution to A(k + Lzg) = 0 in M. So far, the argument has followed closely
Ref. 17 (Theorem 2.8), to which we refer to the analytic details.

However, in the current setting, we cannot conclude that k + Lzg is identically zero as in Ref. 17 (Theorem 2.8). (In Ref. 17, it was
possible to extend the harmonic k + Lxg globally on the entire R".) Here, we apply Weyl’s lemma to see that k + L3 is analytic in Int(M).
Since k + Lzg = Lzg in U (remember k = 0 there), by Theorem 2.5, there is a unique vector field Y such that Y = Zin U and

k+Lzg=Lygin M.
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To summarize, we obtain X = Y — Z with X = 0 on 3 and
h=Lxg inR"\Q

Note that X € C:*(R\Q) because of the regularity h.

The rest of the conclusions follow from basic arguments as in Ref. 18, so we just give a sketch below. To show the desired asymptotic of
X toward infinity, one first considers the ordinary differential equation (ODE) for X along any ray to infinity to show that X = o(|x[*). Then,
writing the equation DRic(Lxg) = 0 in the harmonic gauge gives a harmonic expansion for X. Thus, X is asymptotic to a Euclidean Killing
vector field K using the fall-off rate Lxg = h € C%j.

Finally, to show that X = 0 on = under the added assumptions 4" = 0 and DH(h) = 0 on £, we write X = v + X', where X is tangential
to =. The assumptions 4" = 0 and DH(k) = 0 on T imply that #, X satisfies a linear PDE system on X. Since #, X" are identically zero on 3,
by unique continuation, they are identically zero everywhere on X. ]

Proof of Theorem 9. Let (h,v) be as in the statement of Theorem 9. By Proposition 2.4, v =0 in R"\Q, and thus, h satisfies the
assumptions in Proposition 2.6, which implies the desired conclusion. O

I1l. A SMOOTH ONE-SIDED FAMILY OF HYPERSURFACES

Let 8 > 0 and let Q; c R", f € [-6, 8], be bounded open subsets such that their boundaries 3 are connected, embedded hypersurfaces and
{2} form a smooth one-sided family foliating along 3; c =, with relatively simply connected ¥¢\. In particular, their deformation vector
X is smooth, and on each =, §(X,v) = { > 0 with { > 0 in a dense subset of 3 ¢ 3 satisfying 711 (21, 3¢) = 0. Let y; : R"\Q; — R” be the flow
of X. Let us denote Q = Qo, X = 3, and $ = 3. Then, Q; = v:(Q),2¢ = y¢(2). Denote by g = y; (ghRn\Qt) the pull-back metric defined on
R™\ Q. We also note gy = g.

Let us define a family of linear operators, with respect to g;, as

L : CE{(R"\Q) > €%, (R"\Q) x B(Z),

{DRic|g, M +Viv | ang
Agv '
Lt(h,U) = f
{ on2.
DH‘gx(h)

Here, B(Z) = C**(Z) x C"*(X) is the function space for the boundary operator. Note that each L; is the pull-back of the operator
corresponding to the boundary value problem (1.2) in R"\(;.
In Ref. 17, we observed that the kernel spaces Ker L; have the following properties:

Proposition 3.1 [cf. Ref. 17 (Proposition 6.6)]. There is an open dense subset ] ¢ (=8, 8) such that for every a € ] and every (h,v) € Ker L,,
there is a sequence {t;} in ] such that t; \ a, (h(t;),v(t;)) € KerLy, and (p,z) € C%’Z(R”\Q) such that, as tj \ a,

(h(5),v(8)) = (hv),
(h(5),v(4)) = (hv)
a

tj—

= (p2),
where both convergence are taken in the C%Q(R”\Q)-norm.

Remark 3.2. InRef. 17 (Proposition 6.6), we actually proved the statement for the kernel of the corresponding “gauged” operators, which
extends directly to the above statement.

Theorem 3.3. Let J c (=8,08) be the open dense subset as in Proposition 3.1. Then, for every a € ] and every (h,v) € Ker L,, we have
DAy, (h) =0 and D(V,A)lg, (h) =0 on ¥,

where 25 = {x € £: v ({|s,)(x) > 0}. [In other words, w,(Zy ) is the subset of X, on which { > 0.]
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Proof. By re-parameterizing, we may assume a = 0, and hence, g, = g, %, = %,and we denote by L, = Land 2 = £*. We may also without
loss of generality assume that h satisfies the geodesic gauge. As proven in Ref. 17 (Theorem 7 and Theorem 7'), (p — Lxh,z — X(v)) is a static
vacuum deformation in R"\Q) satisfying the boundary conditions on X,

(p - Lxh)" = —2(DA(h),

DH(p — Lxh) = {A- DA(h). (3.1)

Recall a consequence of the Green-type identity from Ref. 17 (Corollary 3.5): If both (h,v), (k,w) € Ci’g(R”\Q) are static vacuum
deformations at (g, 1) and h satisfies k™ = 0, DH(h) = 0 on %, then

/((UA + DA(h) - v(v)g",2v), (K", DH(k))) do = 0.
b
We apply the previous identity by substituting (k,w) := (p — Lxh,z — X(v)) and using the boundary conditions (3.1) to obtain
0= /((vA + DA(h) - v(v)g ", 20), (~2(DA(h), (A - DA(h))) do
p>
- - [2tpA() do

s
where we compute g - DA(h) = 0 to get the last identity. Thus, we show that DA(h) =0 on =*.

To summarize our argument, we have shown that for any a € J and for any (h,v) € Ker L,, we must have DAy, (h) =0on 2.

Applying DA(h) =0 on =* to (3.1), the static vacuum deformation (k,w) = (p — Lxh,z — X(v)) defined earlier satisfies k' = 0 and
DH(k) = 0 everywhere on X. In particular, (k,w) € Ker L, and thus, DA(k) = 0 on £*. We show that DA (k) = V,(DA(h)) on £*: Using
DA(k) = DA(p — Lxh) and

1 1o 1 N
p = L= Jim £ (h(s) < ) = im i) = im 2 (h(5) - i ).

we compute on 2,

L1 *
0= DA(p~ Lh) = DA(;gg;j(h(r;) - %h))

1 %
Jim DAl (4(8) = ¥ )

1 *
= _%l_r)%t*jDMg:j (v h)

. 1 *
—%1_{%;].% (DA(h)‘zt])
- —Ly(DA(R))
= -{V.,(DA(h)),

where in the second equality, we use k() — y; h = 0 when t; = 0; in the third equality, we use DA|gtj (h(;)) = 0 on = because (h(t;),v(t))
€ KerL; and £} — =" as t; — 0; and in the last equality, we use DA(h) = 0 on =*.
To conclude the proof, we computed as in (2.2) to get

D(V,A)(h) = V,(DA(h)) =0 onZ".

Proof of Theorem 7. Let {%,}, t € [-8, 8], be given as in the theorem. Let ] be the open dense subset of J from Proposition 3.1. We will
show that for any a € J, Z, is static regular in R"\Q,. Let (h,v) € Ker L,. We apply Theorem 3.3 to see that DA|y, (h) = 0 and D(V,A)|g, (h) =0
on =¥ and hence on 3. Then, we can apply Theorem 9 to conclude that DA(k) = 0 on the entire Z. It completes the proof. ]
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