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Abstract

MRP.py is a Python-based parameterization program for covalently modified amino
acid residues for molecular dynamics simulations. Charge derivation is performed via an
RESP charge fit, and force constants are obtained through rewriting of either protein or
GAFF database parameters. This allows for the description of interfacial interactions
between the modifed residue and protein. MRP.py is capable of working with a variety
of protein databases. MRP.py’s highly general and systematic method of obtaining
parameters allows the user to circumvent the process of parameterizing the modified
residue-protein interface. Two examples, a covalently bound inhibitor and covalent

adduct consisting of modified residues, are provided in the supporting information.



Introduction

Covalently modified amino acids are present in many proteins, from naturally occurring
post-translational modifications (PTMs) and adductions to artificially inhibited enzymes
via covalent modification. Many PTMs like methylation and hydroxylation are required
for enzyme catalytic function. PTMs are often central to metabolic regulatory mechanisms
(e.g., phosphorylation, acetylation, etc.)! or cellular/membrane targeting (e.g., acylation).?
There is a growing list of enzymes known to undergo post-translational crosslinking of side
chains to produce protein-based cofactors, such as galactose-oxidase, catalase-peroxidase,
and cysteine-dioxygenase.®* Furthermore, controlled modification of amino acid residues
may provide utility in novel protein engineering and design.® Similarly, in the emerging field
of peptidomimetics, chemical altering of peptides such as peptide stapling have been shown to
confer increased pharmacologic performance.® Thus, the understanding of modified residues
in enzymology and the variety of roles they play, such as cofactors in catalysis and in the
regulation of signal transduction events, has been and continues to be of critical importance.

Molecular dynamics (MD) enables fast simulation of large biomolecules in comparison
with a full quantum mechanical (QM) treatment.” In MD, the classical dynamics of atoms
is replicated computationally through the use of force fields.® Force fields seek to accurately
describe the potential energy surface (PES) of a molecule through bonding and nonbonding

terms. An example force field is given below:
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The dynamics of bond lengths and bond angles are encapsulated by harmonic equations
for potential energy terms, with b and 6 representing the bond lengths and angles, ky, kg,
representing the bond and angle spring constants, and by and 6y representing the zero-energy

bond and angle values. The energy due to torsion constraints is represented by a Fourier



expansion term, where V), is the torsion barrier, n is the periodicity, w is the torsion angle,
and ~ is the phase. Improper torsions are also included as a harmonic restraint, with k,
and wy representing the corresponding force constant and zero-energy angle, respectively.
Together, these three terms represent all bonding interactions within a molecule. The last
two terms correspond to the nonbonding interactions between atoms and include Coulombic
interactions and the Lennard-Jones potential to account for charged species and van der
Waals terms, respectively. Partial charges of atoms are represented by ¢; and ¢;, while R;;
and ¢;; correspond to the well minima and depth, respectively.

Accurate molecular modeling relies on accurate deduction of force constants for each term
in the force field. Several methods are available to determine these force constants, such as

through experimental (e.g., NMR, normal-mode analysis), %1

or purely theoretical means,
namely via Hessian matrix calculations from a QM-derived PES.!! Due to the challenge
of the former as well as the ease and high degree of accuracy of the latter, theoretically
determined force constants are often preferred. For large biomolecules such as proteins,
force field databases (e.g., ff14SB) are available, which encompass the majority of bonding
and nonbonding interactions in amino acid residues.

AMBER?® is a software package for the simulation of biomolecules via molecular dy-
namics. AMBER features a variety of tools to handle ligand parameterization, such as
antechamber !4 and MCPB.py!® for organic and organometallic ligands, respectively. Ligand
parameterization can be partitioned primarily into two parts, charge derivation and force
constant assignment. Most charge derivations, including those for the ff14SB database, are
performed via a restrained electrostatic potential (RESP) fit.16!” Variability in RESP fits
stem from approaches to the QM calculation and selection of restrained atoms. Force con-
stant assignment, however, provides more options. Force constant estimation of nonstandard
parameters (parameters not documented in force field databases), such as that featured in
the parmchk program in antechamber or via ab initio force constant derivation (e.g., using

CartHess2FC.py) provide alternatives to database force constants.'*



Additionally, the general AMBER force field (GAFF) is capable of parameterizing the
majority of organic molecules, namely molecules that are comprised of C, N, O, H, S, P, F, CI,
Br and I.'¥ AmberTools recognizes atoms as belonging to either the AMBER or GAFF atom
type by upper or lower case designation, respectively. AMBER atom bonding parameters
are located in protein databases such as ff14SB,” whereas GAFF atom bonding parameters
are found in the GAFF database.!®

Modeling of post-translationally modified proteins presents a unique challenge in that
designating the modified residue as either an amino acid via the AMBER atom type or an
organic molecule via the GAFF atom type leads to different complications when parame-
terization is attempted. Similar issues have arisen in other molecular dynamics software
packages such as GROMACS, ! for which the Vienna-PTM Web Server?® has emerged as an
automated PTM parameterizer. The residuegen program in the antechamber suite'* enables
parameterization of modified residues and is capable of handling multiple residue conforma-
tions, whereas MRP.py should be used when only one residue conformation is needed. To
our knowledge, MRP.py is the first application to streamline and generalize the complete
parameterization of proteins with PTMs using the AMBER and GAFF force fields. AMBER
atom types are convenient to use to connect the modified residue to the rest of the protein;
however, bonding not classified by ff14SB, which is common in PTM residues, will inevitably
leave missing parameters. Conversely, GAFF atom types enable coverage of the majority of
bonding interactions within the modified residue, but fail to connect the modified residue
to the rest of the protein via the main chain, as there is no direct communication between
AMBER and GAFF atom types. To circumvent this issue, the program developed herein
treats the modified residue using GAFF atom types, and writes parameters describing the
connection of the protein to the modified residue by finding the corresponding ff14SB or
GAFF parameter and rewriting it as a connection between an AMBER atom and GAFF

atom.
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Figure 1: Conversion of a ff14SB parameter to a hybrid AMBER/GAFF parameter to de-
scribe bonding between a modified residue and a standard residue in the enzyme cysteine
dioxygenase (CDO). CDO is known to have a post-translationally formed adduct between a
tyrosine and a cysteine side chain.?! Modified residue carbons are blue and standard residue
carbons are green.

Methodology

The input file of MRP.py streamlines the parameterization process. The type of modified
residue will determine the amount of input variables that must be adressed within the input
file, as demonstrated in the supporting information examples. ACE (CO-CH3) and NME
(NH-CH3;) functional groups are used to cap the ends of each modified residue. Once capped,
a two step RESP charge fit, analogous to that found in the antechamber?? procedure is
employed to assign charges to each atom within the residue. The first step consists of a
charge fit with no restraints on the residue, while the second step involves isomerizing the
charges on methyl and methylene hydrogens. In both cases, the charges of the ACE and
NME groups are fixed such that each has a total charge of zero. Following the assignment of
charges, MRP.py renames the residue to distinguish it from standard residue types recognized
by AMBER and creates a corresponding mol2 file for the newly named residue. MRP.py
then loads the PDB file into tleap to find missing parameters, which consist of AMBER and
GAFF atom type bonding interactions. MRP.py employs a conversion of the GAFF atom

types of the residue to AMBER atom types and searches for the corresponding parameters



in the ff14SB database, which describes bonding interactions of AMBER atom types, and
returns the appropriate missing parameters. This conversion process is illustrated in Figure
1. If parameters are still missing, the inverse conversion from AMBER to GAFF atom types
is performed and parameters are searched for in the GAFF database. Fully parameterized,
the PDB can then be loaded into tleap with a ready-made input file written by MRP.py. It is
important to note that because MRP.py employs GAFF for describing bonding interactions
within the modified residue, MRP.py is capable of parameterizing a wide range of modified

residues. A glossary of input keywords and their meanings are illustrated in Table 1.

Table 1: Glossary of keywords necessary when using MRP.py.

pdb_name PDB filename to extract modified residue

project name Names of files pertinent to modified residue will begin
with project name

residue ids Numerical index of modified residues in pdb file

adduct _connection atoms | Numerical index of atoms that bridge the modified
residue and other molecule/residue

adduct _connection _ids GAFF atom types of atoms that bridge the modified
residue and other molecule/residue

charge Total charge of modified residue and bound species

multiplicity Spin multiplicity of modified residue and bound species

water _model Water type for protein to be solvated in

The code can be obtained at GitHub (https://github.com/pgsahrmann/mrp). Two ex-
amples are provided in the Supporting Information demonstrating the capability of MRP.py
to parameterize covalently bound inhbitors and covalent adducts. The first is human mi-
crophage inhibitory factor exhibiting a proline covalently bound to phenethylisothiocyanate. 25
The second is catalase-peroxidase (KatG) from the bacterium Burkholderia pseudomallei, an
enzyme which bears a three amino-acid covalent adduct.?¢"2° Minimization, heating, equi-
libration and MD simulations were conducted with the GPU version of the Amber 2016
package for both examples.??3? Constrained hydrogen dynamics were employed, and a dif-
33-35

ferent water model was used for solvation in each example.

Workflow. MRP.py requires little prior knowledge of parameterization and charge deriva-
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Scheme 1: Workflow of MRP.py.

tion, as well as minimal user interference, to successfully operate. Scheme 1 illustrates the
workflow of MRP.py. MRP.py is designed to work with AmberTools and the Gaussian
software package to handle molecular modeling and QM calculations, respectively.?® Am-
berTools15' or higher should be used in conjuction with MRP.py, as data files and the
resp program from AmberToolsl5 are required. The ff14SB database is the default pro-
tein database used by MRP.py; however, MRP.py is also compatible with ff9437 and f99.38
MRP.py is structured around the Python Metal Site Modeling Toolbox (pyMSMT), and
incorporates the molecule class from pyMSMT. Both the protein and the modified residue(s)
should be appropriately protonated. This can be accomplished through available software
such as ProteinPrepare®® and H++ . MRP.py first caps the modified residue(s) present
and creates an initial mol2 file and Gaussian input file for geometry optimization and elec-
trostatic surface potential (ESP) generation. The initial mol2 file allows for the user to
determine whether to keep the designated GAFF atom types chosen by antechamber for
the modified residue or to designate their own for the purposes of later parameterization.

Geometry optimization of the capped modified residue is then performed. In the second



step, ESP generation and the subsequent RESP charge fit is performed. Next, any missing
GAFF parameters describing the bonding interactions within the modified residue are found
and written to an frcmod file via parmchk. Mol2 files are then written for each modified
residue containing the RESP fitted charges, and interface parameters (missing parameters
describing the connection of the modified residue to the protein) are written to another fr-
cmod file. The user is then free to edit an autogenerated tleap input file before generation
of the solvated protein topology and coordinate files. MRP.py thus not only parameterizes
modified residues but automates protein preparation and incorporation of related parameter

files through this tleap input file.

Conclusion

The prevalence of modified residues in enzymology warrants a systematic and simple method
of parameterization for molecular modeling of these species. In light of recent software
such as MCPB.py to streamline the parameterization process of nontrivial ligands, MRP.py
provides a simple procedure to aid in the simulation of biomolecules. MRP.py is capable
of parameterizing modified residues in a variety of biological contexts, such as covalently
bound inhibitors or covalently linked residues. MRP.py is intended to efficiently streamline
this process with minimal user interference. MRP.py is written to work with the molecular

modeling software package AmberTools and the QM software Gaussian.

Associated Content

Supporting Information

Two detailed examples using AMBER 2016 and Gaussian 16 (.docx). The MRP.py input
file, protonated PDB file, mol2 files, Gaussian .com and .log files, frcmod files, and tleap

input file for each of the two examples (.zip).
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