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Abstract

MRP.py is a Python-based parameterization program for covalently modi�ed amino

acid residues for molecular dynamics simulations. Charge derivation is performed via an

RESP charge �t, and force constants are obtained through rewriting of either protein or

GAFF database parameters. This allows for the description of interfacial interactions

between the modifed residue and protein. MRP.py is capable of working with a variety

of protein databases. MRP.py's highly general and systematic method of obtaining

parameters allows the user to circumvent the process of parameterizing the modi�ed

residue-protein interface. Two examples, a covalently bound inhibitor and covalent

adduct consisting of modi�ed residues, are provided in the supporting information.
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Introduction

Covalently modi�ed amino acids are present in many proteins, from naturally occurring

post-translational modi�cations (PTMs) and adductions to arti�cially inhibited enzymes

via covalent modi�cation. Many PTMs like methylation and hydroxylation are required

for enzyme catalytic function. PTMs are often central to metabolic regulatory mechanisms

(e.g., phosphorylation, acetylation, etc.)1 or cellular/membrane targeting (e.g., acylation).2

There is a growing list of enzymes known to undergo post-translational crosslinking of side

chains to produce protein-based cofactors, such as galactose-oxidase, catalase-peroxidase,

and cysteine-dioxygenase.3,4 Furthermore, controlled modi�cation of amino acid residues

may provide utility in novel protein engineering and design.5 Similarly, in the emerging �eld

of peptidomimetics, chemical altering of peptides such as peptide stapling have been shown to

confer increased pharmacologic performance.6 Thus, the understanding of modi�ed residues

in enzymology and the variety of roles they play, such as cofactors in catalysis and in the

regulation of signal transduction events, has been and continues to be of critical importance.

Molecular dynamics (MD) enables fast simulation of large biomolecules in comparison

with a full quantum mechanical (QM) treatment.7 In MD, the classical dynamics of atoms

is replicated computationally through the use of force �elds.8 Force �elds seek to accurately

describe the potential energy surface (PES) of a molecule through bonding and nonbonding

terms. An example force �eld is given below:

U =
∑
bonds

kb(b− b0)2 +
∑
angles

kθ(θ − θ0)2 +
∑

torsions

∑
n

1

2
Vn[1 + cos(nω − γ)]

+
∑
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2 +

∑
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( qiqj
4πε0rij
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[( rij
Rij

)12
− 2
( rij
Rij

)6]) (1)

The dynamics of bond lengths and bond angles are encapsulated by harmonic equations

for potential energy terms, with b and θ representing the bond lengths and angles, kb, kθ,

representing the bond and angle spring constants, and b0 and θ0 representing the zero-energy

bond and angle values. The energy due to torsion constraints is represented by a Fourier
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expansion term, where Vn is the torsion barrier, n is the periodicity, ω is the torsion angle,

and γ is the phase. Improper torsions are also included as a harmonic restraint, with kω

and ω0 representing the corresponding force constant and zero-energy angle, respectively.

Together, these three terms represent all bonding interactions within a molecule. The last

two terms correspond to the nonbonding interactions between atoms and include Coulombic

interactions and the Lennard-Jones potential to account for charged species and van der

Waals terms, respectively. Partial charges of atoms are represented by qi and qj, while Rij

and εij correspond to the well minima and depth, respectively.

Accurate molecular modeling relies on accurate deduction of force constants for each term

in the force �eld. Several methods are available to determine these force constants, such as

through experimental (e.g., NMR, normal-mode analysis),9,10 or purely theoretical means,

namely via Hessian matrix calculations from a QM-derived PES.11 Due to the challenge

of the former as well as the ease and high degree of accuracy of the latter, theoretically

determined force constants are often preferred. For large biomolecules such as proteins,

force �eld databases (e.g., �14SB) are available, which encompass the majority of bonding

and nonbonding interactions in amino acid residues.12

AMBER13 is a software package for the simulation of biomolecules via molecular dy-

namics. AMBER features a variety of tools to handle ligand parameterization, such as

antechamber14 and MCPB.py15 for organic and organometallic ligands, respectively. Ligand

parameterization can be partitioned primarily into two parts, charge derivation and force

constant assignment. Most charge derivations, including those for the �14SB database, are

performed via a restrained electrostatic potential (RESP) �t.16,17 Variability in RESP �ts

stem from approaches to the QM calculation and selection of restrained atoms. Force con-

stant assignment, however, provides more options. Force constant estimation of nonstandard

parameters (parameters not documented in force �eld databases), such as that featured in

the parmchk program in antechamber or via ab initio force constant derivation (e.g., using

CartHess2FC.py) provide alternatives to database force constants.14
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Additionally, the general AMBER force �eld (GAFF) is capable of parameterizing the

majority of organic molecules, namely molecules that are comprised of C, N, O, H, S, P, F, Cl,

Br and I.18 AmberTools recognizes atoms as belonging to either the AMBER or GAFF atom

type by upper or lower case designation, respectively. AMBER atom bonding parameters

are located in protein databases such as �14SB,7 whereas GAFF atom bonding parameters

are found in the GAFF database.18

Modeling of post-translationally modi�ed proteins presents a unique challenge in that

designating the modi�ed residue as either an amino acid via the AMBER atom type or an

organic molecule via the GAFF atom type leads to di�erent complications when parame-

terization is attempted. Similar issues have arisen in other molecular dynamics software

packages such as GROMACS,19 for which the Vienna-PTM Web Server20 has emerged as an

automated PTM parameterizer. The residuegen program in the antechamber suite14 enables

parameterization of modi�ed residues and is capable of handling multiple residue conforma-

tions, whereas MRP.py should be used when only one residue conformation is needed. To

our knowledge, MRP.py is the �rst application to streamline and generalize the complete

parameterization of proteins with PTMs using the AMBER and GAFF force �elds. AMBER

atom types are convenient to use to connect the modi�ed residue to the rest of the protein;

however, bonding not classi�ed by �14SB, which is common in PTM residues, will inevitably

leave missing parameters. Conversely, GAFF atom types enable coverage of the majority of

bonding interactions within the modi�ed residue, but fail to connect the modi�ed residue

to the rest of the protein via the main chain, as there is no direct communication between

AMBER and GAFF atom types. To circumvent this issue, the program developed herein

treats the modi�ed residue using GAFF atom types, and writes parameters describing the

connection of the protein to the modi�ed residue by �nding the corresponding �14SB or

GAFF parameter and rewriting it as a connection between an AMBER atom and GAFF

atom.

4



Figure 1: Conversion of a �14SB parameter to a hybrid AMBER/GAFF parameter to de-
scribe bonding between a modi�ed residue and a standard residue in the enzyme cysteine
dioxygenase (CDO). CDO is known to have a post-translationally formed adduct between a
tyrosine and a cysteine side chain.21 Modi�ed residue carbons are blue and standard residue
carbons are green.

Methodology

The input �le of MRP.py streamlines the parameterization process. The type of modi�ed

residue will determine the amount of input variables that must be adressed within the input

�le, as demonstrated in the supporting information examples. ACE (CO-CH3) and NME

(NH-CH3) functional groups are used to cap the ends of each modi�ed residue. Once capped,

a two step RESP charge �t, analogous to that found in the antechamber22 procedure is

employed to assign charges to each atom within the residue. The �rst step consists of a

charge �t with no restraints on the residue, while the second step involves isomerizing the

charges on methyl and methylene hydrogens. In both cases, the charges of the ACE and

NME groups are �xed such that each has a total charge of zero. Following the assignment of

charges, MRP.py renames the residue to distinguish it from standard residue types recognized

by AMBER and creates a corresponding mol2 �le for the newly named residue. MRP.py

then loads the PDB �le into tleap to �nd missing parameters, which consist of AMBER and

GAFF atom type bonding interactions. MRP.py employs a conversion of the GAFF atom

types of the residue to AMBER atom types and searches for the corresponding parameters
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in the �14SB database, which describes bonding interactions of AMBER atom types, and

returns the appropriate missing parameters. This conversion process is illustrated in Figure

1. If parameters are still missing, the inverse conversion from AMBER to GAFF atom types

is performed and parameters are searched for in the GAFF database. Fully parameterized,

the PDB can then be loaded into tleap with a ready-made input �le written by MRP.py. It is

important to note that because MRP.py employs GAFF for describing bonding interactions

within the modi�ed residue, MRP.py is capable of parameterizing a wide range of modi�ed

residues. A glossary of input keywords and their meanings are illustrated in Table 1.

Table 1: Glossary of keywords necessary when using MRP.py.

pdb_name PDB �lename to extract modi�ed residue
project_name Names of �les pertinent to modi�ed residue will begin

with project name
residue_ids Numerical index of modi�ed residues in pdb �le
adduct_connection_atoms Numerical index of atoms that bridge the modi�ed

residue and other molecule/residue
adduct_connection_ids GAFF atom types of atoms that bridge the modi�ed

residue and other molecule/residue
charge Total charge of modi�ed residue and bound species
multiplicity Spin multiplicity of modi�ed residue and bound species
water_model Water type for protein to be solvated in

The code can be obtained at GitHub (https://github.com/pgsahrmann/mrp). Two ex-

amples are provided in the Supporting Information demonstrating the capability of MRP.py

to parameterize covalently bound inhbitors and covalent adducts. The �rst is human mi-

crophage inhibitory factor exhibiting a proline covalently bound to phenethylisothiocyanate.23�25

The second is catalase-peroxidase (KatG) from the bacterium Burkholderia pseudomallei, an

enzyme which bears a three amino-acid covalent adduct.26�29 Minimization, heating, equi-

libration and MD simulations were conducted with the GPU version of the Amber 2016

package for both examples.30�32 Constrained hydrogen dynamics were employed, and a dif-

ferent water model was used for solvation in each example.33�35

Work�ow.MRP.py requires little prior knowledge of parameterization and charge deriva-
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Scheme 1: Work�ow of MRP.py.

tion, as well as minimal user interference, to successfully operate. Scheme 1 illustrates the

work�ow of MRP.py. MRP.py is designed to work with AmberTools and the Gaussian

software package to handle molecular modeling and QM calculations, respectively.36 Am-

berTools1513 or higher should be used in conjuction with MRP.py, as data �les and the

resp program from AmberTools15 are required. The �14SB database is the default pro-

tein database used by MRP.py; however, MRP.py is also compatible with �9437 and �99.38

MRP.py is structured around the Python Metal Site Modeling Toolbox (pyMSMT), and

incorporates the molecule class from pyMSMT. Both the protein and the modi�ed residue(s)

should be appropriately protonated. This can be accomplished through available software

such as ProteinPrepare39 and H++40 . MRP.py �rst caps the modi�ed residue(s) present

and creates an initial mol2 �le and Gaussian input �le for geometry optimization and elec-

trostatic surface potential (ESP) generation. The initial mol2 �le allows for the user to

determine whether to keep the designated GAFF atom types chosen by antechamber for

the modi�ed residue or to designate their own for the purposes of later parameterization.

Geometry optimization of the capped modi�ed residue is then performed. In the second
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step, ESP generation and the subsequent RESP charge �t is performed. Next, any missing

GAFF parameters describing the bonding interactions within the modi�ed residue are found

and written to an frcmod �le via parmchk. Mol2 �les are then written for each modi�ed

residue containing the RESP �tted charges, and interface parameters (missing parameters

describing the connection of the modi�ed residue to the protein) are written to another fr-

cmod �le. The user is then free to edit an autogenerated tleap input �le before generation

of the solvated protein topology and coordinate �les. MRP.py thus not only parameterizes

modi�ed residues but automates protein preparation and incorporation of related parameter

�les through this tleap input �le.

Conclusion

The prevalence of modi�ed residues in enzymology warrants a systematic and simple method

of parameterization for molecular modeling of these species. In light of recent software

such as MCPB.py to streamline the parameterization process of nontrivial ligands, MRP.py

provides a simple procedure to aid in the simulation of biomolecules. MRP.py is capable

of parameterizing modi�ed residues in a variety of biological contexts, such as covalently

bound inhibitors or covalently linked residues. MRP.py is intended to e�ciently streamline

this process with minimal user interference. MRP.py is written to work with the molecular

modeling software package AmberTools and the QM software Gaussian.

Associated Content

Supporting Information

Two detailed examples using AMBER 2016 and Gaussian 16 (.docx). The MRP.py input

�le, protonated PDB �le, mol2 �les, Gaussian .com and .log �les, frcmod �les, and tleap

input �le for each of the two examples (.zip).
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