Trapped Surfaces, Topology
of Black Holes, and the
Positive Mass Teorem

Lan-Hsuan Huang and Dan A. Lee

1. Introduction

Albert Einstein's theory of general relativity, first published
in 1915, successfully unified special relativity with grav-
ity and led to many predictions that have since been veri-
fied, marking one of the greatest triumphs of 20th century
physics. Perhaps one of the most sensational features of
the theory is the concept of a black hole—a region from
which even light cannot escape. But what is a black hole,
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precisely? Do black holes really exist in nature? What do
black holes have to do with mathematics?

These questions and others have been pondered by gen-
erations of researchers. The 2020 Nobel Prize in Physics
was awarded to mathematical physicist Roger Penrose for
his “discovery that black hole formation is a robust pre-
diction of the general theory of relativity,” and to astro-
physicists Reinhard Genzel and Andrea Ghez for their “dis-
covery of a supermassive compact object at the centre of
our galaxy.” Although the very first nontrivial solution to
Einstein’s equations ever discovered—the Schwarzschild
spacetime—describes a black hole, many physicists, in-
cluding Einstein, believed that black hole regions might
only be present in highly symmetric solutions that were
not realistic enough to describe nature. Penrose’s sem-
inal 1965 paper [Pen65] implied that the singular be-
havior associated with black holes persists even without
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Figure 1. This computer-simulated image shows a
supermassive black hole at the center of a galaxy. The black
region represents a snapshot of the event horizon of the black
hole. Light from background stars is stretched and distorted
due to the strong gravity of the black hole.

symmetry, which was enough to convince many that black
hole formation was a real physical phenomenon. But per-
haps just as importantly, Penrose revolutionized the study
of general relativity by introducing global differential geo-
metric and topological methods, in contrast to the more
calculation-based approaches of the past.

Also starting in the 1960s, the study of quasars even-
tually led astrophysicists to hypothesize that there were
black holes at the centers of most galaxies, including our
own galaxy, the Milky Way. It is difficult to directly ob-
serve something that cannot emit light, but starting in the
1990s, separate teams led by Genzel and Ghez began mak-
ing detailed observations of the movements of stars near
the center of the Milky Way, and after decades of collect-
ing increasingly accurate data, we can now be confident
that those movements are consistent with the existence of
a black hole whose mass is 4.3 million times that of our
Sun [EG96, GKMBY8]. See Figure 2.

Even more recently, in 2019, the Event Horizon
Telescope—an international collaboration linking radio
telescopes across the globe—treated us to spectacular

Figure 2. The W. M. Keck Observatory is a two-telescope
astronomical observatory near the summit of Mauna Kea in
Hawaii. Starting in the 1990s, Ghez and her team used these
telescopes and adaptive optics systems to track multiple stars
orbiting the center of our galaxy.
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Figure 3. This image shows the elliptical galaxy Messier 87.
The right top inset gives a close-up of two shockwaves
created by a jet emanating from the galaxy’s supermassive
black hole. The right bottom inset shows an image of that
black hole produced by the Event Horizon Telescope [Eve19].

pictures of the black hole (or rather, the “shadow” created
by it) at the heart of Messier 87, an elliptical galaxy 55 mil-
lion light-years from Earth. See Figure 3.

In this article we provide an exposition of Pen-
rose’s groundbreaking concepts of trapped surfaces and
marginally outer trapped surfaces (MOTS), and some of
their applications. Specifically, we will discuss Stephen
Hawking's result on the topology of black holes and some
recent developments on the positive mass theorem that go
back to the work of Richard Schoen and Shing-Tung Yau.
The study of MOTS gives an effective way to understand
some properties of black holes and turns out to have many
analogies with the study of minimal surfaces. The theory
of minimal surfaces is a mathematically rich topic with a
long history that goes back to Lagrange’s work in the 18th
century. Minimal surfaces also have many applications to
such diverse fields as architecture, biology, and engineer-
ing, in addition to general relativity. See Figure 4. Explor-
ing the intriguing connections between MOTS and mini-
mal surfaces has led to fruitful developments in both gen-
eral relativity and differential geometry.

2. Trapped Surfaces

In this article our basic setting is a 4-dimensional space-
time, representing one time dimension and three spatial
dimensions, and since we would like to describe an (ef-
fectively) isolated gravitational system, such as a galaxy,
we assume that this spacetime is asymptotic to the triv-
ial flat spacetime, which is usually called the Minkowski
spacetime, near “infinity.” A rigorous general mathemati-
cal definition of a black hole is quite technical, but roughly
speaking, when we refer to the black hole region of a space-
time, we mean a region that has the property that light rays
emanating from the black hole region can never reach its
complement, while from every point of the complement,
one should be able to “escape to infinity” by following a
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Figure 4. Left: The roof of the Denver International Airport is a
tensioned fabric structure that employs double-curved
minimal surfaces. Right: Triply periodic minimal surfaces are
used in industry as cost-effective functional components to
produce high-complexity customized structures via 3D
printing technology.

light ray. The boundary of the black hole region is called
the event horizon. Given a spatial 3-dimensional “snapshot
in time” M in our spacetime, we would like to understand
which points in M lie inside the black hole, but unfortu-
nately, since the black hole region can only be technically
defined in terms of global properties of the spacetime, it
is impossible to tell whether or not a given point in M lies
inside the black hole without complete knowledge of the
long-term spacetime future of M.

Penrose’s concept of a trapped surface offers us an acces-
sible way to understand the location of a black hole with-
out knowing its long-term future: Given a 2-surface ¥ in
spacetime, imagine shooting a light ray from each point of
¥, and then define %; to be the surface obtained by follow-
ing these light rays for parameter-time ¢, so that X, can be
thought of as a “shell of light” emanating from X. (Note
that we should not think of this ¢ as actual “time” since
light does not experience passage of time.) We typically
expect that if we shoot these light rays inward, the area of
%; will decrease in ¢, and that if we shoot them outward,
the area of Z; will increase, as is the case for a standard
sphere in the Minkowski spacetime. However, in the pres-
ence of strong gravity, it is possible for the family of outgo-
ing light shells to have decreasing area forms at each point
of X, and in this case we say that X is an (outer) trapped
surface. See Figure 5. Meanwhile, a marginally outer trapped
surface (or MOTS) refers to the borderline case in which the
area forms at each point are unchanging to first-order in ¢.

Penrose’s famed singularity theorem states that under
certain physically reasonable assumptions, the existence
of a closed trapped surface implies that there is a light ray
emanating from the trapped surface that eventually runs
into a singularity. Intuitively, the behavior of a trapped
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Figure 5. Typically, the outgoing “light shell” has increasing
area form as it exits the surface, as shown for the surface Z,.
Meanwhile, for the trapped surface %,, the area form is
decreasing.

surface feels a bit like saying that even though the light
rays are “directed outward,” they are still “moving inward,”
which vaguely captures the idea of light not being able
to “escape.” Because of this heuristic and Penrose’s singu-
larity theorem, physicists often associate trapped surfaces
with the existence of black holes, and in fact, under cer-
tain global hypotheses, one can even prove that trapped
surfaces must lie inside the black hole region. Because of
this relationship, the (weakly) trapped region of M, which
we define to be the region of M enclosed by either trapped
surfaces or MOTS in M, can be thought of as a simpler
stand-in for the intersection of M with the black hole re-
gion, and the apparent horizon of M, which we define to be
the boundary of the trapped region of M, can be thought
of as a simpler stand-in for the intersection of M with the
event horizon. The advantage of these concepts is that
the trapped region and apparent horizon are entirely deter-
mined by data along the spatial 3-dimensional “snapshot
in time” M.

3. Spacetime Geometry

Since we want to consider 4-dimensional spacetimes but
without a uniquely determined “time coordinate,” the
natural setting of general relativity is a 4-manifold. A
Lorentzian metric g on a 4-manifold N defines an inner
product with signature (—, +, +, +) on each tangent space
of N, smoothly depending on the base point. This means
that at each point of N, there is an orthogonal basis of
tangent vectors {eg, e;, €5, e3} such that g(ey,ep) = —1 and
glej,e;) = +1 fori = 1,2,3. So if a tangent vector v is
given by (v°,v!,v?,v%) when written in this basis, then
g,v) = —(V%)? + (LH)? + (V?)? + (V). If one thinks of
Riemannian geometry as being locally modeled on the Eu-
clidean metric ds?> = dx? + dy? + dz?, one can analogously
think of Lorentzian geometry as being locally modeled on
the Minkowski metric ds* = —dt? + dx? + dy? + dz?. Spe-
cial relativity is essentially the physics of Minkowski geom-
etry, so the reason why a Lorentzian manifold is the natu-
ral setting for general relativity is that the theory should
be locally modeled on special relativity. Moreover, we
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Figure 6. At the tangent space of each point, one can define
the future and past light cones. Two future null vectors ¢; + e;
and ey — e; are given. The yellow curve is null as its tangent
vector is null at each point. The submanifold at the
bottom-right is spacelike because its tangent vectors are
spacelike at each point.

will often implicitly assume that g is asymptotic to the
Minkowski metric in some sense.

For any tangent vector v of N, we call it timelike if
g(v,v) < 0, null if g(v,v) = 0, and spacelike if g(v,v) > 0.
So for example, e is timelike, e, is spacelike, and e +¢; is
null. The null vectors form a double cone which separates
the timelike vectors from the spacelike ones. A spacetime
is a Lorentzian 4-manifold (N, g) equipped with a globally
defined unit timelike vector field, which we may select as
our e, at every point. This choice allows us to further dis-
tinguish between future null or timelike vectors, which lie
on or above the upper half of the null cone, and past null
or timelike vectors, which lie on or below the lower half of
the null cone.

A submanifold of N is called spacelike if all of its tan-
gent vectors are spacelike, or equivalently, if g induces a
Riemannian metric on it. In particular, we define a space-
like slice of N to be a 3-dimensional spacelike hypersurface
M, which is what we earlier referred to as a “snapshot in
time.” The induced Riemannian metric g and the second
fundamental form' k of a spacelike slice M can largely cap-
ture the spacetime geometry along M, and we will refer to
(M, g, k) as an initial data set. A curve is called null (or time-
like) if its tangent vector is null (or timelike) at each point.
See Figure 6. As in Riemannian geometry, a Lorentzian
metric g gives us a concept of “straight lines,” which we
call geodesics. The path of a light ray traces out a future
null geodesic in the spacetime, while a massive test parti-
cle will trace out a future timelike geodesic. A test particle
that traces out a spacelike geodesic would travel faster than
the speed of light, and thus it is unphysical.

Einstein’s equations demand that certain “curvatures”
of g must be equal to the stress-energy tensor, which

The second fundamental form of M C (N, g) is defined to be the tangential
part of Vgn where n is the future unit normal of M.
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light rays
(null curves)

P = 2
event horizon

r=0
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Figure 7. The Schwarzschild metric in the ingoing
Eddington-Finkelstein coordinates (one space dimension
suppressed). Any light ray that starts at a point where r < 2m
will crash into the r = 0 singularity. The surfaces %, , defined
by constant v, r coordinates are trapped surfaces whenever

r < 2m, and they are MOTS when r = 2m.

describes the distribution of energy in the spacetime.? One
can view these equations as a complicated nonlinear sys-
tem of partial differential equations on g, with the stress-
energy tensor as a source term. An initial data set (M, g, k)
may be regarded as Cauchy data for this system of partial
differential equations, as explicated by the fundamental
work of Yvonne Choquet-Bruhat on well-posedness of the
Einstein equations.

As alluded to earlier, the Schwarzschild metrics were the
first nontrivial solutions to be discovered with source term
equal to zero. In one particular choice of coordinates, the
Schwarzschild metric of mass m can be written as

gn=— (1 - 27m> dv? + 2dvdr + r*dQ?,

which is a smooth Lorentzian metric on R X (0, o0) X S2,
where v € R, r € (0,), and dQ? is the standard Rie-
mannian metric on the sphere S2. In this spacetime, one
can show that a light ray emanating from within the re-
gion r < 2m can never enter the region r > 2m, while
any point in the region r > 2m can be connected to “infin-
ity” by a light ray. Or in other words, the region r < 2m
is a black hole region, with its boundary r = 2m as the
event horizon. It is also a fact that as r approaches zero, the
metric becomes singular there in the sense that the curva-
ture blows up, and moreover, any light ray (or massive test

2Specfically, the curvatures referred to here are the Einstein tensor of g, defined
to be G = Ric — ERg where Ric and R are the Ricci and scalar curvatures of

g, respectively.
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Figure 8. Parallel surfaces of distance t away from X in the
direction v are shown. Positive mean curvature of X is
characterized by the property that the area of £, increases in t
for small ¢.

particle) starting at a point where r < 2m will inevitably
crash into this singularity. See Figure 7.

4. Variations of Surface Area

Earlier we described trapped surfaces in terms of decreas-
ing area forms of “light shells.” Here we will make that
precise, but first we discuss the simpler concept of varying
the area form of a surface £ in a Riemannian 3-manifold
(M, g). Suppose v is a unit normal vector on X, which
we will regard as the “outward” direction (regardless of
whether ¥ separates M into an “outside” and “inside”),
and let @, be a family of diffeomorphisms on M with &,
equal to the identity. Then %; := ®,(X) defines a fam-
ily of surfaces, sometimes called variations of X, whose
first-order variation vector field X along X is defined by

F)
X(p) := 3tlico

®,(p) for each p € Z. Let us consider out-

ward normal variations, which are those for which X = e*v
along %, for some smooth function u.

One simple variation of X is the family of parallel sur-
faces, obtained by taking ®,(p) = expp(tv) for small ¢, at
each p € %, where exp, is the exponential map at p. This
just means that ®;(p) is obtained by starting at p, and then
moving along the geodesic pointing in the v direction for
t units of arclength. These are called parallel surfaces be-
cause X; will be exactly a (signed) distance ¢t away from X
in the v direction (for small enough t). For this family,
the first-order variation X is just v, and this family gives us
one way to define the mean curvature H: 1t measures the lo-
cal increase (or decrease) in area as we move through the
family of parallel surfaces. Explicitly, if do denotes the in-
duced area form on X and do; denotes the induced area
form on %, (and then pulled back to X via @), then the
mean curvature H is defined to be the unique function on
> such that

o)
3 - do; = Hdo,
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at each p € 2. Note that the sign of H will depend on
choice of v. See Figure 8.

One can then show that for any outward normal
variation with first-order variation X = e%v, we have

% do, = e*Hdo. From this we see that if H > 0 on
t=0

%, then all small outward normal variations will increase
area, and if H < 0 on X, then all small outward normal vari-
ations will decrease area. A minimal surface is defined to be
a surface with H = 0 everywhere. It is called this because
any surface whose area minimizes area among all small
outward and inward normal variations must have H = 0.
(Note that it is a bit of a misnomer since a minimal surface
need not minimize area among variations.)

Now consider a spacelike 2-surface ¥ in a 4-dimensional
spacetime (N, g). Now, instead of having a 1-dimensional
space of normal vectors at each point of X, we have a 2-
dimensional space of normal vectors. However, our space-
time geometry picks out exactly two future null directions,
which correspond to two normal directions from which
light rays can originate. Specifically, if v is a spacelike unit
vector orthogonal to T and e is a future timelike unit vec-
tor orthogonal to both ¥ and v, then those two future null
directions are given by ey + v and e, — v. Suppose that € is
a future null vector field defined along X which is normal
to X at each point. Note that we cannot demand a “unit
length” normalization since ¢ has “length” zero. Multi-
plying ¢ by a positive function yields another future null
normal vector field defined along Z, but modulo this sort
of rescaling, there can only be two choices of future null
normal, and we may designate one of them as “outward.”
Given a choice of (future) outward null normal ¢ for X, we
use it in the following construction:

Define a family £, = ®,(X) in N by defining ®;(p) =
expp(té), where exp,, is the exponential map at p. This is
the family of “light shells” referred to in Section 2, and it
is analogous to the family of parallel surfaces in the Rie-
mannian setting. Now we define the (outward) null expan-
sion analogously to how we defined the mean curvature: It
is the unique function 6 on X with the property that

0

3tl_, do; = 6do
at each p € Z. Since 6 depends on the exact choice of ¢,
and there is no natural choice of scaling for ¢, it turns out
that only the sign of 8 is a physical or geometric property
of . We can now define X to be an (outer) trapped surface if
0 < 0, an (outer) untrapped surface if © > 0, or a marginally
outer trapped surface (or MOTS) if 6 = 0.

Now suppose that the 2-surface X lies in a designated
spacelike slice M of the spacetime (N, g). In this case, a
choice of outward normal v to  in M gives us a choice of
outward null normal € on X by taking ¢ = e + v as above,
where e is the future timelike unit normal to M. In the
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special case where M is totally geodesic in N, 6 is equal to
H, and hence a MOTS is just a minimal surface. Because
of this, MOTS can be thought of as generalizations of min-
imal surfaces, and therefore any general facts or heuristics
about MOTS arising from physics automatically translate
into statements about minimal surfaces. Conversely, some
parts of the highly developed theory of minimal surfaces
can be used to attack questions concerning MOTS. For ex-
ample, the existence theory for minimal surfaces using bar-
riers was adapted by Lars Andersson and Jan Metzger and
by Michael Eichmair to prove a corresponding existence
theorem for MOTS, and they were also able to prove that
an apparent horizon must be a smooth MOTS [AEM11].

5. Topology of Black Holes

Goingback to the example of the Schwarzschild spacetime,
each choice of (v,r) defines a 2-sphere X, .. In this case,
there is a natural choice for which of the two future null
directions is “outward” and we can choose it as our ¢, and
then we can compute the null expansion 6 of X, , to see
that X, , is trapped when r < 2m, untrapped when r > 2m,
and is a MOTS when r = 2m. See Figure 7. In fact, one can
show that for a spacelike slice M of Schwarzschild, the ap-
parent horizon in M is actually equal to the intersection of
M with the event horizon. More generally, this is true for
any slice M of a “stationary” spacetime.®> Using this fact,
Hawking was able to show, under reasonable physical hy-
potheses, that any cross-section (i.e. a spacelike 2-surface)
of an event horizon in a stationary spacetime must be a
topological sphere [Haw72]. Or in simpler terms, the sur-
face of a black hole must be a topological sphere. Based on
a suggestion by Gary Gibbons, Hawking was able to gener-
alize his argument to show that even without the station-
ary hypothesis (which is very strong), apparent horizons
must be topological spheres [Haw73]. We will explain this
result below.

Let M be a spacelike slice of a spacetime. Given a surface
¥ in M with a choice of “outward” normal v, we say that ©
is a locally outermost MOTS in M if it is a MOTS and there
do not exist arbitrarily small outward normal variations of
¥ in M with 6 < 0. An apparent horizon in M must be a
locally outermost MOTS in M, and this is the relevant prop-
erty used in Hawking's proof, which is a beautiful combi-
nation of calculus of variations and the Gauss-Bonnet the-
orem.

Theorem 1 (Hawking). Any orientable locally outermost
closed MOTS in an initial data set satisfying the dominant en-
ergy condition must be a topological sphere.

3A spacetime is called stationary if it admits a global Killing vector field that is
asymptotically timelike.

ArriL 2022

The dominant energy condition is a physically realis-
tic assumption on the stress-energy tensor?, which we will
come back to later. This result was generalized by Gre-
gory Galloway and Schoen, who showed that higher di-
mensional analogues of apparent horizons must be topo-
logically Yamabe positive [GSO06].

6. The Locally Outermost Property

Schoen and Yau were the first to notice that minimal sur-
faces could be used to study scalar curvature. The scalar
curvature Ry, of a Riemannian metric (M, g) is a scalar func-
tion on M which is defined to be the full trace of the Rie-
mann curvature tensor of g, and as its name suggests, it
is the simplest scalar function that can be computed from
g that is invariant under change of coordinates. In three
dimensions, it has the property that for small » > 0, the
volume of the geodesic ball of radius r around p € M is
given by §m'3 - i—ZRM(p)r5 +0(r7), so Ry;(p) measures the
deviation of volumes of small balls around p from their
Euclidean comparison balls. A similar formula holds in
other dimensions, and in particular, for a 2-surface Z, Ry
is just twice the more familiar Gauss curvature K.

While Hawking exploited the relationship between an
outermost MOTS X, the dominant energy condition, and
the Gauss curvature of X, Schoen and Yau similarly ex-
ploited the relationship between an area minimizing sur-
face X, scalar curvature of the ambient Riemannian space,
and the Gauss curvature of . To be more precise, sup-
pose we have a closed orientable surface X in a Riemann-
ian 3-manifold with nonnegative scalar curvature. Schoen
and Yau observed that if £ minimizes area compared to all
small variations of Z, then X must be topologically either
a sphere or a torus. By a refined argument, Mingliang Cai
and Galloway showed that if X is strictly area-minimizing,
then Z must be a topological sphere. We will explain a
similar result that is a special case of Hawking's theorem.

Given a surface £ with a choice of “outward” normal
v, we will say that X is a locally outermost minimal surface if
it is a minimal surface and there are no arbitrarily small
outward normal variations of £ with H < 0.

Theorem 2. Any orientable locally outermost closed minimal
surface ¥ in a Riemannian 3-manifold (M, g) with nonnegative
scalar curvature must be a topological sphere.

Proof. Let ; be an outward normal variation of £ in M,
with first-order variation X = e*v, and let H; denote the
mean curvature of ¥; (pulled back to X). One can always

4Explicitly, we say that an initial data set (M, g, k) satisfies the dominant en-
ergy condition if the Einstein tensor satisfies G(eg, v) > 0 where e is the future
normal to M and v is any future null or timelike vector. The condition can also
be expressed purely in terms of (g, k).

NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 541



Figure 9. Lawson’s minimal surfaces of genus 2, 3, 4, 5, and 6 in S3, stereographically projected to R? in two different ways.

find an outward normal variation such that

oH, = let @9)]

ot li=o
for some constant 4. (More precisely, e is chosen to be the
principal eigenfunction of the linearized mean curvature
operator.) The locally outermost assumption on X implies
that 4 > 0, because otherwise, we would have H; < 0 for
small ¢ > 0.

Routine geometric computations, including use of the

Gauss equation, show that

oH;
at t=0

= et (—Azu —|Vuf> + Ky — %RM - §|A|2) ()
< et (—Azu + Kz) ,

where Ay denotes the Laplace-Beltrami operator on X, A
is the second fundamental form of £ in M, and we used
the assumption that Ry; > 0. Combining this with (1), we
have

A < —Azu + Kz,

and integrating this over ¥ and using the Gauss-Bonnet
Theorem, it follows that

0<1-(Area ) <2my(%).

Therefore X is either a torus or a sphere.

To rule out the torus, suppose to the contrary that X is
a torus. Then y(Z) = 0, and thus A = 0. In this case, an in-
verse function theorem argument can be used to construct
an outward normal variation X, with the added property
that each Z; has constant mean curvature H,. Let X; = etv,
be the first-order variation of X, at an arbitrary ¢. As in (2),

we have
OH, _
We Ut < —Aztut +Kzt.
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. . 8H; . . .
Since ; is a torus and =, s constant over %, integrating

. . . 8H
both sides of the above inequality over Z, shows that a_tt <

0 for all t > 0, which contradicts the locally outermost

assumption. O

Without the locally outermost assumption, a minimal
surface can have higher genus. For example, the stan-
dard 3-sphere admits closed minimal surfaces of arbitrary
genus. See Figure 9. Over the last decade Fernando Mar-
ques and André Neves have advanced the study of min-
imal surfaces using min-max methods, and building on
their work, Haozhao Li and Xin Zhou proved that a generic
closed Riemannian 3-manifold with positive Ricci curva-
ture admits closed minimal surfaces with arbitrarily high
genus, and Antoine Song proved Yau's 1982 conjecture
that all closed Riemannian 3-manifolds admit infinitely
many closed minimal surfaces.

The proof of Theorem 1 is conceptually similar to that
of Theorem 2. In that case, we start with an orientable
locally outermost closed MOTS X in an initial data set
(M, g, k). We still look at outward normal variations of
in M, but instead of (2), we obtain

%,

< e4 (—Azu + KZ + diVZ W) .
ot t=0

for some quantity W, where this time the inequality fol-
lows from the dominant energy condition rather than non-
negative scalar curvature. The rest of the proofis essentially
the same since the integral of the extra divergence term is

. . 36
zero. However, dealing with the case where a—; =0 re-

quires an additional argument (by Galloway) because the
formula for 2 at a general ¢ has an extra term involving
6; (which happens to vanish when ¢ = 0).
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7. Positive Mass Theorem

We will now discuss how a version of the topological argu-
ment from the previous section can be used to prove the
celebrated positive mass theorem. Let (M, g, k) be an ini-
tial data set and assume that it is asymptotically flat, mean-
ing that in coordinates, the metric g;; is asymptotic to the
Euclidean metric §;; while the second fundamental form
ki; is asymptotic to zero, in some precise sense that we will
not describe here. An asymptotically flat initial data set has
a well-defined total ADM energy-momentum5 (E,B,B,B).

Theorem 3 (Positive mass theorem). Let M be a complete
asymptotically flat 3-dimensional initial data set satisfying the
dominant energy condition. Then the ADM energy-momentum
(E,B, B, B) satisfies E > |P|. Furthermore, the equality E =
|P| holds if and only if (M, g) can be isometrically embedded into
the Minkowski spacetime with second fundamental form k.

This is called the “positive mass theorem” because an
object with future timelike energy-momentum E > |P|
is said to have positive mass. Explicitly, the mass is
v/ E2 — |P|2. Note that a spacelike slice of the Schwarzschild
spacetime with mass m will (unsurprisingly) have ADM
mass equal to m. Negative mass, which is unphysical,
would correspond to past timelike energy momentum E <
—|P|, while spacelike energy momentum |E| < |P|, which
would correspond to “imaginary mass,” is also unphysi-
cal since it is associated with objects moving faster than
the speed of light. Meanwhile, null energy-momentum
|E| = |P| corresponds to zero mass.

The positive mass theorem is highly desirable for phys-
ical reasons. The dominant energy condition can be de-
scribed as the reasonable physical assumption that the
sources for Einstein’s equations cannot travel faster than
light, as measured by any observer. The positive mass the-
orem loosely asserts that as long as these sources cannot
travel faster than light, the entire configuration of sources,
as viewed from far away, should not behave like an ob-
ject traveling faster than light, or as fast as light. An exam-
ple of a violation of the positive mass theorem could be
a configuration of positive mass sources that somehow re-
pels far away objects instead of attracting them. Because of
the nonlinearities of Einstein’s equations, it is highly non-
trivial to prove that such perversities cannot happen.

The study of the positive mass theorem has a long his-
tory. A particularly important special case is when M is

>The ADM energy-momentum was formulated by physicists Arnowitt, Deser,
and Misner, and explicitly, the numbers (E, Py, P, P3) are defined by
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Figure 10. Under the (contradictory) assumption E < |P|, two
coordinate planes IT; and II,, together with the lateral side of
a cylinder of large radius, provide barriers for the existence of
a MOTS %, with prescribed boundary. A subsequential limit
surface of X, as r — oo is a complete MOTS satisfying a
stability property.

a totally geodesic slice of the spacetime. In this case, the
positive mass theorem reduces to a statement about Rie-
mannian geometry, which is often called the Riemannian
positive mass theorem: If (M, g) is a complete asymptoti-
cally flat manifold with nonnegative scalar curvature, then
E > 0 unless (M,g) is Euclidean. This special case was
first proved by Schoen and Yau in 1979 using minimal sur-
faces, and soon later they proved that E > 0 in the gen-
eral case using the Jang equation [SY79, SY81]. Edward
Witten was able to prove that E > |P| using a spinor ar-
gument [Wit81]. This might be more accurately called a
“nonnegative mass theorem” since it does not handle the
second statement about E = |P| in Theorem 3, which we
will refer as the equality case of the positive mass theorem. In
a 2015 article with Eichmair and Schoen, we gave an al-
ternative proof of this nonnegative mass theorem by ex-
tending Schoen and Yau's argument and by replacing the
minimal surfaces by MOTS [EHLS16]. In that article we
also tackled the more technically challenging case of n-
dimensional slices, for 3 < n < 8, by introducing a new
functional that mimics the first variation of the area func-
tional. There are recent results of Schoen and Yau and of
Lohkamp that deal with higher dimensions. One can also
weaken the hypotheses of Theorem 3 to allow M to have
a boundary as long as that boundary is a closed trapped
surface or MOTS [GHHP83, LLU21]. Physically, this corre-
sponds to allowing for the possibility of a black hole with-
out having to assume too much about the geometry inside
the black hole.

We outline the proof of the nonnegative mass theorem
for 3-dimensional M.

Outline of proof. By a subtle density theorem (see Section 6
of [EHLS16]), one can show that without loss of generality,
we can assume that the “strict” dominant energy condition
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holds and that the initial data (g, k) has especially “nice”
asymptotics at spatial infinity.

The proof proceeds by contradiction. Suppose that
E < |P|. The “nice” asymptotics imply that there exist non-
intersecting coordinate planes IT; and II, such that II, is
trapped and II, is untrapped; namely, 6 < 0 on II; and
@ > 0 on IT,. See Figure 10. From a PDE perspective, this
means that they provide barriers for the MOTS equation
6 = 0. Using these barriers, an existence theorem due to
Eichmair [Eic09] allows us to construct a MOTS with pre-
scribed boundary that is sandwiched between the planes
IT; and IT,. By taking that prescribed boundary larger and
larger, we can extract a subsequential limit surface which is
a complete MOTS X sandwiched between IT; and IT,, and
we can show that X itself is asymptotically planar. While
this £ need not be a locally outermost MOTS, it still en-
joys a “MOTS stability” property that, together with the
strict dominant energy condition, can be used to show that
Js K5 do > 0 in a manner that is conceptually similar to
the proof of Theorem 2. The “strict” dominant energy con-
dition is what forces this inequality to be strict. Finally, the
Gauss-Bonnet Theorem with boundary implies that this is
impossible for an asymptotically planar surface. d

To prove the equality case of the positive mass the-
orem requires significant extra work. One must show
that if E = |P|, then the slice M actually sits inside the
Minkowski spacetime, in the sense described in the the-
orem. This actually implies that E = |P| = 0 since any
slice of Minkowski has this property. The equality case
was proved for all spin manifolds by work of Robert Beig
and Piotr Chrusciel [BC96], and Chrusciel and Daniel
Maerten. This covers all 3-manifolds since all 3-manifolds
carry spin structures. More recently, we were able to pro-
vide a separate proof that avoids the use of a spin as-
sumption [HL20b]. Our proof uses a variational argument
among initial data sets satisfying the dominant energy con-
dition, which turns out to have an intriguing connection to
the question of “improving” the dominant energy condi-
tion studied by Justin Corvino and the first author [CH20].
The improvability of the dominant energy condition man-
ifestly relates to the fundamental problem of scalar curva-
ture deformation in differential geometry and was further
explored in our recent work [HL20a].

One curious feature of both our proof and the spinor
proofis that in higher dimensions, the equality case of the
positive mass theorem seems to require a stronger defini-
tion of asymptotic flatness than the standard one needed
for the “nonnegative mass theorem” to be true. Some-
what surprisingly, it turns out that when the spatial dimen-
sion is greater than eight, there do exist counterexamples
to the expected strict inequality E > |P|. See Example
7 of [HL20a]. Those examples arise from an important
family of exact solutions to the Einstein equations, called
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plane-fronted waves with parallel rays (or pp-waves for
short), which model radiation moving at the speed of light,
and thus any spacelike slices naturally have E = |P| (so
long as these quantities can be defined). The counterex-
amples come from slices of pp-waves which are asymptot-
ically flat enough to satisfy the hypotheses of the nonneg-
ative mass theorem, but not asymptotically flat enough to
satisfy the hypotheses of the equality case of the positive
mass theorem.

While Penrose’s advances were only recently honored
by the Nobel Prize in Physics, the topological and geomet-
ric methods that he introduced helped to build a long, in-
timate relationship between mathematics and general rel-
ativity over the past several decades. We discussed ground-
breaking work of Hawking, Schoen, and Yau as fine ex-
amples of the intriguing interactions between geometry,
topology, analysis, and general relativity. New applica-
tions and interconnections between mathematics and gen-
eral relativity are continually being discovered in more re-
cent developments, as described above. For a more exten-
sive introduction to this field of research, please see the re-
cent graduate-level textbook by the second author [Lee19].
We expect that the exchange of ideas between physics and
mathematics will continue to energize these directions of
inquiry, which we have only lightly touched upon here.
Penrose once stated, “We have a closed circle of consis-
tency here: the laws of physics produce complex systems,
and these complex systems lead to consciousness, which
then produces mathematics, which can then encode in
a succinct and inspiring way the very underlying laws of
physics that gave rise to it.”
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