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Abstract—Advances in deep learning research over the past 
decade have been enabled by an increasingly unsustainable 
demand for compute power. This trend has dramatically outpaced 
the slowing growth in the performance and efficiency of electronic 
computing hardware. Here, we propose a hybrid photonic-
electronic computing architecture which leverages a photonic 
crossbar array and homodyne detection to perform large-scale 
coherent matrix-matrix multiplication. This approach bypasses 
the requirements of high-speed electronic readout and frequent 
reprogramming of photonic weights which significantly reduces 
energy consumption and latency in the limit of large matrices—
two major factors limiting efficiency for many analog computing 
approaches. 
 

Index Terms—Artificial intelligence, Neural network hardware, 
Analog computers, Optical computing, Analog processing circuits 
 

I. INTRODUCTION 
EW technological innovations have been as wide-reaching 
or impactful within the last decade as the field of deep 

learning. Advances in AI through the development of Deep 
Neural Networks (DNNs) have transformed a broad range of 
disciplines such as medical imaging and diagnostics, materials 
discovery, autonomous navigation, and natural language 
processing. While the positive societal impact of DNNs have 
been thrilling to witness, they come with a voracious appetite 
for computing resources—an increasingly unsustainable 
paradigm. Thus, the generality and accuracy of DNNs, which 
fundamentally scales with the amount of training data and 
available computation, is also their Achilles’ heel [1], [2]. 
While graphics processors (GPUs) have historically enabled 
continued advances in deep learning, this is due to their 
suitability for distributed training of DNNs across large clusters 
of individual nodes, rather than significantly improving 
computational throughput of a single node. This distributed 
approach to deep learning development can easily take several 
months, cost millions of dollars in computing services, and 
expel hundreds of tons of CO2 to optimally train a complex 
DNN [3]. With these current trends, continued progress in the 
field of deep learning using conventional computing hardware 
is both economically and environmentally unsustainable. 

Computing in the optical domain is one approach to 
overcome the energy-bandwidth trade-off intrinsic to electronic 

deep learning hardware [4] and has already shown significant 
experimental progress in the last few years. Various photonic 
architectures, such as cascaded Mach-Zehnder interferometers 
[5], [6], in-memory computing [7], [8], reconfigurable 
metasurfaces [9], frequency comb shaping [10], and 
neuromorphic computing [11]–[13] have all demonstrated the 
feasibility of analog computing in the photonic domain. 
However, the majority of these approaches rely on fixed 
photonic weights and high-speed photodetectors and analog-to-
digital converters (ADCs) to convert the results of an optical 
matrix-vector multiplication (MVM) back into the digital 
domain for further processing. Therefore, the opto-electronic 
readout circuitry must operate at the same speed as the electro-
optical modulators at the input, and thus place an upper limit on 
the overall throughput and energy efficiency of the photonic 
accelerator. Additionally, unlike digital-to-analog conversion 
which can be highly efficient [14], conversion from the analog 
to digital domain is nontrivial and energy consumption scales 
with the operation frequency of the ADC [15], [16]. Therefore, 
the overall energy consumption of the readout circuitry—a 
large fraction of the overall power consumption for many 
analog computing systems [17], [18]—roughly scales as 
~𝑁𝑁 × 𝑓𝑓, where 𝑁𝑁 is the number of optical output channels and 
𝑓𝑓 is the ADC operating speed. 

To address this challenge, Hamerly et al. [19] recently 
proposed a novel method for achieving large-scale, multiply-
accumulate operations in the optical domain via homodyne 
detection. This approach has several benefits: (1) It decouples 
the modulation frequency of the optical inputs from the speed 
of the electrical readout circuitry. (2) The differential nature of 
homodyne detection enables both positive and negative 
numbers (i.e., ℝ ∈ [−1, 1]) to be implemented by controlling 
the phase and amplitude of two coherent optical inputs. (3) 
Homodyne detection removes common-mode noise which 
allows one to use extremely low optical powers which approach 
the standard quantum limit determined by the photodetector 
shot noise. (4) Finally, by multiplexing multiply-accumulate 
operations in space and time, the system is scalable to very large 
matrix operations. However, in spite these advantages, 
experimental implementation using free space optics is 
extremely challenging since the optical path of the two beams 
must be both spatially and temporally coherent. Additionally, 
the spatial light modulators (SLMs) needed to encode matrix 
values in this free space architecture are currently limited to 
modulation speeds of ~1 kHz or less. 

Here, we propose an integrated photonic platform to 
implement large-scale matrix-matrix multiplication (MMM) 
which overcomes both phase-matching and modulation 
challenges of a free space approach. Leveraging prior 
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experimental demonstrations of large scale photonic phased-
arrays [20], nanophotonic LIDAR [21], [22], and our in-
memory photonic computing architecture [7], [8], we use an 
array of waveguide crossings, directional couplers, and 
balanced photodetection to achieve fan-out and coherent 
interference of optical signals on-chip. Our design (illustrated 
in Fig. 1) uses robust components which are well suited for 
large scale fabrication in a photonics foundry. In addition to de-
coupling the requirement for high-speed electrical read-out 
from the data modulation rate, we also encode both matrices in 
the optical input signals, thus removing the costly 
reprogramming step required by many other photonics 
approaches. In Sections II and III, we present an approach for 
designing an integrated photonic matrix-matrix multiplier and 
analyze the effects of system noise on computational precision. 
We then estimate the energy consumption of our platform in 
Section IV. Finally, we compare the overall energy 
consumption and latency of MMM operations with other 
computing approaches in the optical and electronic domains 
and propose a mixed architecture approach to computing 
(Sections V and VI). 

II. DESIGN OF INTEGRATED PHOTONIC MATRIX-MATRIX 
MULTIPLIER  

A. Background 
The multiplication of two matrices 𝐴𝐴𝑚𝑚×𝑛𝑛 and 𝐵𝐵𝑛𝑛×𝑝𝑝 is simply 

the result of 𝑚𝑚𝑚𝑚 dot-products between the row vectors of matrix 
𝐴𝐴 and the column vectors of matrix 𝐵𝐵. Thus, each element in 
the resulting matrix of size 𝑚𝑚 × 𝑝𝑝 can be written as: 

 (𝐴𝐴𝐴𝐴)𝑖𝑖𝑖𝑖 = �𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑟𝑟𝑟𝑟

𝑛𝑛

𝑟𝑟=1

= 𝑎⃑𝑎𝑖𝑖 ∙ 𝑏𝑏�⃑𝑗𝑗 (1) 

where 𝑎⃑𝑎𝑖𝑖 is the ith row of 𝐴𝐴 and 𝑏𝑏�⃑𝑗𝑗 is the jth column of 𝐵𝐵. If the 
above summation of products between 𝑎𝑎𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑟𝑟𝑟𝑟 are 
multiplexed in time and scaled such that |𝑎𝑎𝑖𝑖𝑖𝑖|, �𝑏𝑏𝑟𝑟𝑟𝑟� ∈ [0, 1], 
this dot product can be computed optically using a balanced 
homodyne detection scheme [19] as illustrated in Fig. 1a. In this 
approach, vectors 𝑎⃑𝑎𝑖𝑖 and 𝑏𝑏�⃑𝑗𝑗 from equation (1) are encoded in 
the time-varying amplitudes of two interfering electric fields 
𝑬𝑬��⃑ 𝑎𝑎(𝑡𝑡) = 𝒂𝒂�𝐸𝐸𝑎𝑎(𝑡𝑡)𝑒𝑒𝑖𝑖𝜑𝜑𝑎𝑎(𝑡𝑡) and 𝑬𝑬��⃑ 𝑏𝑏(𝑡𝑡) = 𝒃𝒃�𝐸𝐸𝑏𝑏(𝑡𝑡)𝑒𝑒𝑖𝑖𝜑𝜑𝑏𝑏(𝑡𝑡) incident on 
a 3dB directional coupler (or 50:50 beam splitter [19]). Due to 

 
Fig. 1.  Time-multiplexed photonic matrix-matrix multiplier (MMM) architecture. a) Schematic of a fully integrated photonic 
MMM platform capable of multiplying two 4×4 matrices. Each input of the coherent crossbar array is modulated in both amplitude 
and phase. The optical digital-to-analog converter (lower left) uses a segmented modulator to directly encode information from 
the digital electronic to optical analog domain (i.e., most significant bit “MSB” has longest segment and least significant bit “LSB” 
has shortest segment for binary code weighted scheme [30]). The intersection of each crossbar contains a photoelectric multiplier 
unit as proposed by Hamerly et al. [19] to achieve the dot product between two time-multiplexed optical signals (lower right). b) 
Simulated input and c) output signals of a single dot-product unit cell using Lumerical INTERCONNECT. The signs of elements 
in vectors 𝑎⃑𝑎𝑖𝑖(𝑡𝑡) and 𝑏𝑏�⃑𝑗𝑗(𝑡𝑡) are encoded in the optical phase while the magnitudes are encoded in the field amplitudes. 
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conservation of energy, the cross-coupled (or reflected) beam 
will experience a π/2-phase shift with respect to the transmitted 
beam. Assuming 𝑬𝑬��⃑ 𝑎𝑎(𝑡𝑡) and 𝑬𝑬��⃑ 𝑏𝑏(𝑡𝑡) are temporally and spatially 
coherent (i.e., phase-matched and single mode) and of the same 
polarization, the optical signal measured by the photodetectors 
at the two output ports of the 3-dB coupler can be written as: 

  𝑃𝑃+(𝑡𝑡) =
1
2

(|𝐸𝐸𝑎𝑎(𝑡𝑡)|2 + |𝐸𝐸𝑏𝑏(𝑡𝑡)|2)

+ Re[𝐸𝐸𝑎𝑎∗(𝑡𝑡)𝐸𝐸𝑏𝑏(𝑡𝑡)] sin(∆𝜑𝜑) 
(2) 

 𝑃𝑃−(𝑡𝑡) =
1
2

(|𝐸𝐸𝑎𝑎(𝑡𝑡)|2 + |𝐸𝐸𝑏𝑏(𝑡𝑡)|2)

− Re[𝐸𝐸𝑎𝑎∗(𝑡𝑡)𝐸𝐸𝑏𝑏(𝑡𝑡)] sin(∆𝜑𝜑) 
(3) 

where 𝑃𝑃±(𝑡𝑡) is the optical power incident on the two 
photodetectors and ∆𝜑𝜑 is the relative phase difference between 
𝑬𝑬��⃑ 𝑎𝑎(𝑡𝑡) and 𝑬𝑬��⃑ 𝑏𝑏(𝑡𝑡). From equations (2) and (3) we can see that 
the first term is simply proportional to the optical power of the 
two input signals, while the second term contains the product of 
the field amplitudes which differ by a sign. To convert optical 
power to photocurrent, we can multiply by the photodetector’s 
responsivity, 𝑅𝑅 = 𝜂𝜂𝜂𝜂

ℎ𝜈𝜈
, where 𝜂𝜂 is the quantum efficiency of the 

detector, 𝑒𝑒 is the charge of an electron, and ℎ𝜈𝜈 is the photon 
energy. Taking the difference of equations (2) and (3) allows us 
to cancel the first term and only keep the second using balanced 
photodetection: 

 
⟨𝑖𝑖𝑠𝑠⟩ =

1
𝑛𝑛𝑛𝑛
𝜂𝜂𝜂𝜂
ℎ𝜈𝜈

� �𝑃𝑃+(𝑡𝑡) − 𝑃𝑃−(𝑡𝑡)�
𝑛𝑛𝑛𝑛

0
𝑑𝑑𝑑𝑑

=
2
𝑛𝑛𝑛𝑛
𝜂𝜂𝜂𝜂
ℎ𝜈𝜈

� 𝐸𝐸𝑎𝑎(𝑡𝑡)𝐸𝐸𝑏𝑏(𝑡𝑡) sin(∆𝜑𝜑(𝑡𝑡) + ∆𝜑𝜑′)
𝑛𝑛𝑛𝑛

0
𝑑𝑑𝑑𝑑 

(4) 

 ⟨𝑖𝑖𝑠𝑠⟩ ∝�𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑟𝑟𝑟𝑟

𝑛𝑛

𝑟𝑟=1

 (5) 

In the above equation, ⟨𝑖𝑖𝑠𝑠⟩ is the difference signal measured 
by the homodyne setup, 𝑛𝑛𝑛𝑛 is the total duration of 𝑛𝑛 pulses of 
period 𝜏𝜏 = 1/𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, and we have assumed the fields 𝐸𝐸𝑎𝑎(𝑡𝑡) and 
𝐸𝐸𝑏𝑏(𝑡𝑡) are real. We note that ∆𝜑𝜑 = ∆𝜑𝜑(𝑡𝑡) + ∆𝜑𝜑′ contains both 
a time-dependent phase difference ∆𝜑𝜑(𝑡𝑡) = 𝜑𝜑𝑎𝑎(𝑡𝑡)− 𝜑𝜑𝑏𝑏(𝑡𝑡) 
and a fixed phase difference (∆𝜑𝜑′) based on the relative optical 
delay between the source of 𝑬𝑬��⃑ 𝑎𝑎(𝑡𝑡) and 𝑬𝑬��⃑ 𝑏𝑏(𝑡𝑡) and the two input 
ports of the 3dB directional coupler. Assuming ∆𝜑𝜑(𝑡𝑡) = 𝑞𝑞𝑞𝑞 
(where 𝑞𝑞 is an integer), the difference signal will be maximized 
by setting ∆𝜑𝜑′ = ±𝜋𝜋/2. This can be accomplished with 
thermo-optic phase tuning [5], [23], [24], but can also be 
accomplished using methods which require zero static power, 
such as laser trimming [25] or low-loss phase change materials 
[26]–[28]. The phase tuning required to set ∆𝜑𝜑′ = 𝜋𝜋/2 can be 
accurately determined experimentally by maximizing ⟨𝑖𝑖𝑠𝑠⟩ while 
both 𝐸𝐸𝑎𝑎(𝑡𝑡) and 𝐸𝐸𝑏𝑏(𝑡𝑡) are held constant and the time-dependent 
phase terms are set to 𝜑𝜑𝑎𝑎(𝑡𝑡) = 𝜑𝜑𝑏𝑏(𝑡𝑡) = 0. Once ∆𝜑𝜑′ has been 
trimmed to the correct relative phase difference, the amplitude 
and phase modulators at each of the inputs can be modulated 
such that equation (5) is satisfied (see the following section). 

B. Encoding real numbers in the optical field 
To compute the dot-product between two vectors, the vector 

elements must be encoded in the optical fields. Using a 

balanced homodyne detection approach as detailed above, it is 
possible to encode all real-value numbers in the range [−1, 1] 
by modulating both the phase and amplitude of the optical 
signals. Amplitude modulation can easily be achieved with 
integrated high-frequency modulators (such as a silicon plasma-
dispersion MZI or microring modulators) which are readily 
available from most photonics foundries. It is important to note 
that while microring modulators are desirable for efficient and 
compact modulation, they also impart a nonlinear phase on the 
modulated signal which would require special compensation to 
correct (e.g., two cascaded ring modulators [29]). On the other 
hand, a balanced MZI modulator based on carrier depletion can 
be modulated with complementary voltages in both arms and 
therefore minimize phase modulation of the output optical 
signal. Additionally, both MZI and ring modulators have been 
demonstrated with built-in DACs which can efficiently convert 
a digital input into an amplitude modulated optical output [14], 
[30], [31]. For example, Moazeni et al. [14] demonstrated a 
highly linear 4-bit optical DAC capable of 40 Gb/s and with an 
efficiency of 42 fJ/bit using a segmented silicon microring 
modulator. This approach allows extremely high-speed electro-
optical and digital-to-analog conversion without additional 
circuitry which would reduce the overall efficiency of our 
optical computing approach.  

From equation (4), we can see that the homodyne signal is 
proportional to sin(∆𝜑𝜑(𝑡𝑡) + ∆𝜑𝜑′), where ∆𝜑𝜑′ = ±𝜋𝜋/2 does 
not vary with the optical signal. Therefore, by modulating 
𝜑𝜑𝑎𝑎(𝑡𝑡) and 𝜑𝜑𝑏𝑏(𝑡𝑡) to either 0 or 𝜋𝜋, we can encode both positive 
and negative numbers. Practically, this can be achieved by 
cascading an additional phase modulator with each amplitude 
modulator (see “Optical DAC” in Fig. 1a). Adding this phase 
term increases the total number of symbols we can encode by 
2× without placing additional requirements on the amplitude 
modulator (e.g., 5-bit signed integers in the case of a PAM-16 
modulator in series with a phase modulator). To minimize the 
effects of the rise and fall times of the amplitude and phase 
modulators, we add an additional intensity modulator 
immediately after the optical source to globally gate the optical 
signal during transitions (“CLK” signal in Fig. 1b). 

C. Directional coupler design 
Next, we discuss a method to ensure equal power distribution 

to each dot product unit cell within the array using a photonic 
crossbar architecture for fan-out [8]. Fig. 2a illustrates the 
parameters which define the cross-coupling coefficients (𝜅𝜅𝑛𝑛2) 
and the transmission of a single directional coupler (𝜂𝜂𝐷𝐷𝐷𝐷) and 
waveguide crossing (𝜂𝜂𝑥𝑥). For simplicity, we assume the 
insertion loss for the directional coupler is independent of 
coupling length (i.e., absorption and scattering in the coupling 
region are negligible compared to mode-mismatch). In order to 
have equal power distribution from the input waveguide to each 
unit cell in a given row, the following must be true: 

 
|𝐸𝐸0|2𝜂𝜂𝑥𝑥𝜅𝜅12 = |𝐸𝐸0|2𝜂𝜂𝑥𝑥2𝜂𝜂𝐷𝐷𝐷𝐷(1 − 𝜅𝜅12)𝜅𝜅22 
= |𝐸𝐸0|2𝜂𝜂𝑥𝑥3𝜂𝜂𝐷𝐷𝐷𝐷2 (1 − 𝜅𝜅12)(1− 𝜅𝜅22)𝜅𝜅32 

(6) 

In general, this leads to the following relationship between 
two neighboring directional couplers: 
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 𝜅𝜅𝑛𝑛2 =
𝜅𝜅𝑛𝑛+12

1
𝜂𝜂𝐼𝐼𝐼𝐼

+ 𝜅𝜅𝑛𝑛+12
 (7) 

where 𝜂𝜂𝐼𝐼𝐼𝐼 = 𝜂𝜂𝑥𝑥𝜂𝜂𝐷𝐷𝐷𝐷  is the insertion loss of each unit cell and can 
be modified to include the waveguide loss as well (e.g., 𝜂𝜂𝐼𝐼𝐼𝐼 =
𝜂𝜂𝑥𝑥𝜂𝜂𝐷𝐷𝐷𝐷𝑒𝑒−𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿). The above equation also holds true for equal 
power distribution along a column. If the total number of unit 
cells in a given row or column is 𝑁𝑁, then we can set the final 
cross coupling term to 𝜅𝜅𝑁𝑁2 = 1 and solve for all previous 
coupling coefficients recursively. We can also choose 𝜅𝜅𝑁𝑁2 = 0.5 
if we wish to use the output of the final coupler through port to 
calibrate the average insertion loss of a given row or column. 
This design choice is useful to experimentally determine the 
average unit cell transmission 𝜂𝜂𝐼𝐼𝐼𝐼���� after fabrication. The 
coupling coefficients for an ideal array (𝜂𝜂𝐼𝐼𝐼𝐼 = 1) and an array 
with realistic loss [8], [32] are shown in  Fig. 2b for an array 
with 64 unit cells in a row. 

D. Matrix-matrix multiplication 
Assume we have a photonic crossbar array as described 

above with 𝑘𝑘 × 𝑘𝑘 unit cells and wish to perform a matrix-matrix 
multiplication between 𝐴𝐴𝑚𝑚×𝑛𝑛 and 𝐵𝐵𝑛𝑛×𝑝𝑝. Using our proposed 
crossbar architecture, each unit cell of the crossbar performs the 
dot product (𝐴𝐴𝐴𝐴)𝑖𝑖𝑖𝑖 = 𝑎⃑𝑎𝑖𝑖 ∙ 𝑏𝑏�⃑𝑗𝑗, where 𝑖𝑖 and 𝑗𝑗 are the row and 
column index of the unit cell (Fig. 1a). From equation (4), we 
can see that the time required to perform each dot product will 
be dependent on the modulation speed and the number of 

elements in the vectors 𝑎⃑𝑎𝑖𝑖 and 𝑏𝑏�⃑𝑗𝑗. However, the strength of our 
approach lies in the fact that we can perform 𝑘𝑘2 dot products in 
parallel. Thus, if 𝑘𝑘 ≥ 𝑚𝑚, 𝑝𝑝, the operation 𝐴𝐴 × 𝐵𝐵 = 𝐶𝐶 has time 
complexity of 𝑂𝑂(𝑛𝑛). Compared to matrix multiplication in the 
digital domain which scales between 𝑂𝑂(𝑛𝑛3) and 𝑂𝑂(𝑛𝑛2.373) for 
two square matrices of size 𝑛𝑛 × 𝑛𝑛 [33]–[35], the linear scaling 
of our approach demonstrates the significant speed advantage 
of computing in the analog domain. For the case of both GPUs 
and tensor processing units (TPUs), latency is reduced from 
𝑂𝑂(𝑛𝑛3) to ~𝑂𝑂(𝑛𝑛) by significantly increasing the parallelism of 
the hardware and data pipeline. However, these parallel digital 
approaches do not overcome the 𝑂𝑂(𝑛𝑛2.373) lower bound on 
computational complexity for matrix-matrix multiplication. 

It is important to note that while the compute time of matrix-
vector operations scale as 𝑂𝑂(1) for both optical and electrical 
in-memory computing approaches [8], the output of our 
crossbar array is a full 𝑘𝑘 × 𝑘𝑘 matrix rather than a single vector 
of length 𝑘𝑘. Thus, the operation 𝐴𝐴𝑚𝑚×𝑛𝑛 × 𝐵𝐵𝑛𝑛×𝑝𝑝 scales as 𝑂𝑂(𝑝𝑝) 
for an in-memory architecture where 𝐴𝐴𝑚𝑚×𝑛𝑛 is a memory array 
of fixed weights. Frequency multiplexing approaches 
demonstrated in both the optical [8], [10], [36] and electrical 
domains [37] can reduce this to 𝑂𝑂 ��𝑝𝑝

𝑑𝑑
��, where 𝑑𝑑 is the number 

of frequency channels used simultaneously. 
In the more likely scenario that 𝑚𝑚,𝑝𝑝 > 𝑘𝑘, the time 

complexity becomes ~𝑂𝑂 �𝑛𝑛 �𝑚𝑚
𝑘𝑘
� �𝑝𝑝

𝑘𝑘
�� for a single crossbar array. 

In this case, we have subdivided 𝐴𝐴𝑚𝑚×𝑛𝑛 × 𝐵𝐵𝑛𝑛×𝑝𝑝 into �𝑚𝑚
𝑘𝑘
� �𝑝𝑝

𝑘𝑘
� 

sequential operations of size 𝐴𝐴𝑘𝑘×𝑛𝑛 × 𝐵𝐵𝑛𝑛×𝑘𝑘 to match the 
dimensions of our photonic crossbar (illustrated in Fig. 4b). 
Since these operations are independent of one another, they can 
be parallelized across multiple crossbar arrays to reduce the 
time complexity back to 𝑂𝑂(𝑛𝑛). Note that unlike a fixed-matrix 
approach which places an upper limit of 𝑛𝑛 ≤ 𝑘𝑘 for a 𝑘𝑘 × 𝑘𝑘 array 
of weights, we are encoding 𝑘𝑘 × 𝑛𝑛 weights in the time-domain 
such that 𝑛𝑛 is no longer limited by physical hardware (i.e., 𝑛𝑛 ≫
𝑘𝑘). This has significant implications on both the compute 
efficiency and latency which we explore in more detail in 
Section V. 

III. NOISE ANALYSIS: 
The computational precision of any analog computing system 

is fundamentally limited by the signal-to-noise ratio (SNR). The 
minimum acceptable SNR is highly dependent on the 
application, though neural networks in general seem to be 
relatively robust to unstructured noise [38] (and can even 
benefit from added noise in the case of limited precision [39]). 
In the case of analog computing systems that are applied to 
machine learning problems, using fixed precision arithmetic is 
a logical choice [39], [40]. Therefore, if we require an output 
precision of 𝑁𝑁𝑏𝑏 bits, we can define the minimum SNR of our 
system to be: 

 SNR2 =  22𝑁𝑁𝑏𝑏 =
⟨𝑖𝑖𝑠𝑠2⟩

2𝑒𝑒(⟨𝑖𝑖𝑆𝑆𝑆𝑆⟩ + ⟨𝑖𝑖𝐷𝐷⟩)∆𝑓𝑓 + ⟨𝑖𝑖𝑅𝑅𝑅𝑅2 ⟩ (8) 

where ⟨𝑖𝑖𝑠𝑠2⟩ is the mean square value of the measured homodyne 
photocurrent, ⟨𝑖𝑖𝑆𝑆𝑆𝑆⟩ is the photocurrent due to photon shot noise, 
⟨𝑖𝑖𝐷𝐷⟩ is the dark current of the photodetector, ∆𝑓𝑓 is the 

 
Fig. 2.  Loss-compensated fan-out design. a) Illustration of first 
three unit cells of the crossbar array in a given row. Insertion 
losses of the crossbar and directional couplers (𝜂𝜂𝑥𝑥 and 𝜂𝜂𝐷𝐷𝐷𝐷 , 
respectively) are accounted for in the cross-coupling 
coefficients (𝜅𝜅𝑖𝑖2). b) Calculated cross-coupling coefficients for 
a 64×64 crossbar array using experimentally measured 
insertion losses from [8], [32]. 
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bandwidth of the read-out circuitry, and ⟨𝑖𝑖𝑅𝑅𝑅𝑅2 ⟩ is the noise of the 
read-out circuitry (including Johnson noise, 1/𝑓𝑓 noise from 
amplifier, etc.). If we assume that the measurement is limited 
by shot noise, then ⟨𝑖𝑖𝑆𝑆𝑆𝑆⟩ ≫ ⟨𝑖𝑖𝐷𝐷⟩ and �𝑖𝑖𝑅𝑅𝑅𝑅

2 �
2𝑒𝑒∆𝑓𝑓

. This is reasonable in 

the case of well-designed read-out circuitry and for 𝑖𝑖𝐷𝐷 ≪
𝜂𝜂𝜂𝜂
ℎ𝜈𝜈
𝑃𝑃�±, 

where 𝑃𝑃�± is the average power incident on each photodetector. 
The photocurrent due to shot noise can be written as: 

 
⟨𝑖𝑖𝑆𝑆𝑆𝑆⟩ =

1
𝑛𝑛𝑛𝑛
𝜂𝜂𝜂𝜂
ℎ𝜈𝜈

� �𝑃𝑃+(𝑡𝑡) + 𝑃𝑃−(𝑡𝑡)�
𝑛𝑛𝑛𝑛

0
𝑑𝑑𝑑𝑑 

=
1
𝑛𝑛𝑛𝑛
𝜂𝜂𝜂𝜂
ℎ𝜈𝜈

� (|𝐸𝐸𝑎𝑎(𝑡𝑡)|2 + |𝐸𝐸𝑏𝑏(𝑡𝑡)|2)
𝑛𝑛𝑛𝑛

0
𝑑𝑑𝑑𝑑 

 

 ⟨𝑖𝑖𝑆𝑆𝑆𝑆⟩ =
𝜂𝜂𝜂𝜂
ℎ𝜈𝜈

(𝑃𝑃�𝑎𝑎 + 𝑃𝑃�𝑏𝑏) (9) 

where 𝑃𝑃�𝑎𝑎 and 𝑃𝑃�𝑏𝑏 are the time-averaged optical powers of the 
two input signals. The photocurrent due to optical shot noise is 
therefore dependent on the total optical power used to compute 
the dot product. Combining equations (4), (8), and (9), we have 
the following expression: 

 ℎ𝜈𝜈
2𝜂𝜂

(𝑃𝑃�𝑎𝑎 + 𝑃𝑃�𝑏𝑏)∆𝑓𝑓 ∙ 22𝑁𝑁𝑏𝑏 = ��
𝐸𝐸𝑎𝑎(𝑡𝑡)𝐸𝐸𝑏𝑏(𝑡𝑡)

𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛

0
𝑑𝑑𝑑𝑑�

2

 (10) 

where we have removed the term sin(∆𝜑𝜑(𝑡𝑡) + ∆𝜑𝜑′) by setting 
∆𝜑𝜑′ = ±𝜋𝜋/2 and requiring ∆𝜑𝜑(𝑡𝑡) = 0 or 𝜋𝜋. This is equivalent 
to restricting the normalized electric field amplitude to 
ℝ[−1, 1] which is the real number encoding system we have 
defined in Section II. We can also assume that by modulating 
the intensity of the optical source using a clock signal, we can 
mitigate any transition effects due to modulating 𝐸𝐸𝑎𝑎(𝑡𝑡) and 
𝐸𝐸𝑏𝑏(𝑡𝑡) such that their values are constant over the duration of a 
single pulse (see simulation results of Fig. 1b-c). Thus, 𝐸𝐸𝑎𝑎(𝑡𝑡) 
and 𝐸𝐸𝑏𝑏(𝑡𝑡) can be represented by the discrete variables 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 
normalized by the maximum field amplitude such that the 
integral in equation (10) becomes a summation: 

��
𝐸𝐸𝑎𝑎(𝑡𝑡)𝐸𝐸𝑏𝑏(𝑡𝑡)

𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛

0
𝑑𝑑𝑑𝑑�

2

= max(|𝐸𝐸𝑎𝑎|2|𝐸𝐸𝑏𝑏|2) �
1
𝑛𝑛�𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
2

 (11) 

The distribution of the discrete variables 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 will have 
a significant impact on the SNR we measure at the output. If we 
restrict 𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑖𝑖 ∈ ℝ[0, 1], the product of 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 will always be a 
positive value. Thus, assuming 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 are independent 
random variables with a mean value of 𝑎𝑎�𝑖𝑖 = 𝑏𝑏�𝑖𝑖 = 0.5, the 
expected value of equation (11) is: 

 E�max(|𝐸𝐸𝑎𝑎|2|𝐸𝐸𝑏𝑏|2) �
1
𝑁𝑁′�𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖

𝑁𝑁′

𝑖𝑖=1

�

2

� = 𝑃𝑃�𝑎𝑎𝑃𝑃�𝑏𝑏 (12) 

where we have replaced max ��𝐸𝐸𝑎𝑎,𝑏𝑏�
2
� = 4𝑃𝑃�𝑎𝑎,𝑏𝑏, which is the 

average optical power in each signal if 𝑎𝑎�𝑖𝑖 = 𝑏𝑏�𝑖𝑖 = 0.5. The SNR 
is maximized when 𝑃𝑃�𝑎𝑎 = 𝑃𝑃�𝑏𝑏. Therefore, the minimum average 
optical power required to resolve the dot product of two vectors 
with positive, random inputs will be: 

 𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚 =
ℎ𝜈𝜈
𝜂𝜂 ∙

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝑛𝑛 ∙ 22𝑁𝑁𝑏𝑏     (0 ≤ 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 ≤ 1) (13) 

An important observation of equation (13) is that the 
minimum optical power is proportional to the measurement 
bandwidth ∆𝑓𝑓 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚/𝑛𝑛. Therefore, a longer integration time 
(longer input vector) will require less optical power per 
multiply-accumulate (MAC) operation. If we solve for the 
average optical energy per MAC operation, we find: 

 𝐸𝐸�𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
=
ℎ𝜈𝜈
𝜂𝜂 ∙

22𝑁𝑁𝑏𝑏
𝑛𝑛     (0 ≤ 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 ≤ 1) (14) 

Similar to the case of electronic crossbar arrays [40], the total 
noise limited optical energy required to compute the dot product 
𝑎⃑𝑎𝑖𝑖 ∙ 𝑏𝑏�⃑𝑗𝑗 does not depend on the input vector size for fixed 
precision arithmetic. It is helpful to compare the derived 
minimum optical power in equation (14) to that of 𝑛𝑛 incoherent 
MAC operations using a single photodetector. Assuming input 
vector 𝑎⃑𝑎 is encoded on the optical power and 𝑏𝑏�⃑  on the optical 
transmission of the network (e.g., microring resonators or 
optical phase-change memory [8], [41]) and 𝑎𝑎�𝑖𝑖 = 𝑏𝑏�𝑖𝑖 = 0.5, 
equations (13) and (14) become: 

 
𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚 =

4ℎ𝜈𝜈
𝜂𝜂

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝑛𝑛 ∙ 22𝑁𝑁𝑏𝑏 ,   

𝐸𝐸�𝑀𝑀𝑀𝑀𝑀𝑀 =
4ℎ𝜈𝜈
𝜂𝜂 ∙

22𝑁𝑁𝑏𝑏
𝑛𝑛      (0 ≤ 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 ≤ 1) 

(15) 

which is 4× larger than the coherent case. The reason for this is 
twofold. First, we have a 2× advantage in SNR using homodyne 
detection [42] and secondly, we are performing multiplication 
using the optical field rather than the optical intensity resulting 
in an average 2× greater contribution to the signal photocurrent 
compared to the shot noise. However, for analog computing 
approaches the optical power is typically dwarfed by the power 
consumption of the readout electronics (especially the ADC) 
which scales approximately linearly with the sampling rate 
[15]. Thus, reducing the ADC operation frequency by 1/𝑛𝑛 is 
likely to result in the largest energy savings of our proposed 
approach. We note that equation (15) is a factor of 4× larger 
than the lower bound for an incoherent photonic MAC 
architecture as derived by Nahmias et al. [43] (note that 
2𝐸𝐸�𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀(𝑂𝑂) in Eq. (12) of [43]). This is because we wish 
to resolve the expected value of two random input vectors to 𝑁𝑁𝑏𝑏 
bits of precision, rather than the maximum signal possible (i.e., 
𝑎𝑎𝑖𝑖 = 𝑏𝑏𝑖𝑖 = 1 for all 𝑖𝑖) which is of trivial interest computationally 
in most cases (for a more detailed analysis of the impact of 
random variable distributions on SNR and power consumption, 
see [44]). 

If we make full use of both phase and intensity modulation, 
𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 can be both positive and negative such that the product 
𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 ∈ ℝ[−1, 1]. For the case of deep neural networks, we can 
assume that the data passing between layers is positive after the 
activation function (e.g., ReLU, softmax, etc.), while the 
connectivity matrix is normally distributed within ℝ[−1, 1] 
with a mean of zero (𝑏𝑏𝑖𝑖  ~ 𝑁𝑁(0,𝜎𝜎𝑏𝑏)). From the law of 
expectations, the average product of 𝑎𝑎𝚤𝚤𝑏𝑏𝚤𝚤����� = 𝑎𝑎�𝑖𝑖𝑏𝑏�𝑖𝑖 = 0 and our 
signal ⟨𝑖𝑖𝑠𝑠2⟩ will sum to zero on average. In this case, we wish to 
resolve the variance (rather than the mean) of ∑𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 to 𝑁𝑁𝑏𝑏 bits 
of resolution [40]. If 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 are independent random 
variables, we have: 
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Var �
max(|𝐸𝐸𝑎𝑎||𝐸𝐸𝑏𝑏|)

𝑛𝑛 �𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�

=
max(|𝐸𝐸𝑎𝑎|2|𝐸𝐸𝑏𝑏|2)

𝑛𝑛2 �Var(𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

= 16
𝑃𝑃�𝑎𝑎𝑃𝑃�𝑏𝑏
𝑛𝑛

(𝑎𝑎�𝑖𝑖2 + 𝜎𝜎𝑎𝑎2)𝜎𝜎𝑏𝑏2      �𝑏𝑏�𝑖𝑖 = 0� 

(16) 

where 𝜎𝜎𝑎𝑎2 and 𝜎𝜎𝑏𝑏2 are the variance of 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖, respectively. If 
we let 𝜎𝜎𝑏𝑏 = 0.5 and 𝑎𝑎𝑖𝑖 is uniformly distributed on the interval 
[0, 1], 𝑎𝑎�𝑖𝑖 = 0.5 and 𝜎𝜎𝑎𝑎2 = 1/12 so equation (16) becomes: 

 Var �
max(|𝐸𝐸𝑎𝑎||𝐸𝐸𝑏𝑏|)

𝑛𝑛 �𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� =
4𝑃𝑃�𝑎𝑎𝑃𝑃�𝑏𝑏

3𝑛𝑛  (17) 

Again setting 𝑃𝑃�𝑎𝑎 = 𝑃𝑃�𝑏𝑏 to maximize SNR, our expressions for 
the minimum average optical power and average optical energy 
per MAC operation become: 

 
𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚 =

4ℎ𝜈𝜈
3𝜂𝜂 𝑛𝑛∆𝑓𝑓 ∙ 22𝑁𝑁𝑏𝑏 =

4ℎ𝜈𝜈
3𝜂𝜂 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 22𝑁𝑁𝑏𝑏 

𝐸𝐸�𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
=
4ℎ𝜈𝜈
3𝜂𝜂 ∙ 22𝑁𝑁𝑏𝑏     (−1 ≤ 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 ≤ 1) 

(18) 

Unlike the case for 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 ∈ [0,1], the average optical energy 
per MAC operation does not depend on the length of the input 
vectors 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖. Thus, the optical energy required to compute 
the dot product between two vectors within the range of [−1,1] 
scales linearly with the input vector size, 𝑛𝑛. One approach to 
overcome this issue (assuming 𝑎⃑𝑎𝑖𝑖 is positive) is to perform two 
dot products instead of one such that the input vectors 
𝑎⃑𝑎𝑖𝑖, 𝑏𝑏�⃑𝑗𝑗+, 𝑏𝑏�⃑𝑗𝑗− ∈ [0,1] are all positive numbers: 𝑎⃑𝑎𝑖𝑖 ∙ 𝑏𝑏�⃑𝑗𝑗 = 𝑎⃑𝑎𝑖𝑖 ∙ 𝑏𝑏�⃑𝑗𝑗+ −

𝑎⃑𝑎𝑖𝑖 ∙ 𝑏𝑏�⃑𝑗𝑗−. Using this strategy significantly reduces the energy 
consumption for large input vectors at the cost of doubling 
either the computation time or hardware footprint. We note that 
a recent work on quantifying power consumption in photonic 
neural network accelerators has suggested that the optical 
power and energy of analog photonic processors actually scales 
as 23𝑁𝑁𝑏𝑏 rather than 22𝑁𝑁𝑏𝑏 in the shot-noise-limited regime [44]. 
This would place an even stricter upper limit on the maximum 
computational precision that can be practically achieved in 
photonic neural networks, thus we have limited our analysis in 
Sections IV and V to 𝑁𝑁𝑏𝑏 = 5-bits. 

IV. ENERGY AND COMPUTE DENSITY ANALYSIS: 
We now estimate the total energy consumption and compute 

efficiency of our photonic crossbar array. Using an externally 
modulated continuous-wave laser source, the minimum total 
optical power needed to overcome the quantum limited shot 
noise for positive valued inputs is: 

 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≥  

4ℎ𝜈𝜈𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚
2 𝜂𝜂𝑃𝑃𝑃𝑃𝜂𝜂𝑥𝑥𝜅𝜅12

�
𝑘𝑘
𝑛𝑛� ∙ 22𝑁𝑁𝑏𝑏 

≈  
4ℎ𝜈𝜈𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚
2 𝜂𝜂𝑃𝑃𝑃𝑃

�
𝑘𝑘2

𝑛𝑛 � ∙ 22𝑁𝑁𝑏𝑏  
(19) 

where 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 is the transmission of the clock and input optical 
modulators, 𝜂𝜂𝑃𝑃𝑃𝑃 is the quantum efficiency of the 
photodetectors, 𝜂𝜂𝑥𝑥𝜅𝜅12 is the fraction of power coupled into the 
first unit cell (defined in equations (6) and (7)), and 𝑘𝑘 × 𝑘𝑘 is the 
size of the crossbar array. The extra factor of 4× arises from the 
fact that while the average power is �𝐸𝐸𝑎𝑎,𝑏𝑏/2�

2
, the maximum 

power required to cover the full range [0,1] is �𝐸𝐸𝑎𝑎,𝑏𝑏�
2

= 4𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚. 

 
Fig. 3.  Influence of matrix and crossbar dimensions on computing efficiency (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 12 GHz, 𝑁𝑁𝑏𝑏 = 5-bits). a) Compute 
efficiency in energy per multiply-accumulate (MAC) operation and b) Tera-operations per Watt (TOPS/W) as a function of 
crossbar size and input matrix dimension. c) Breakdown of power consumption as a function of crossbar size for four different 
matrix dimensions. As the row/column dimension (𝑛𝑛) increases, the power of the optical source and readout circuitry decreases, 
causing the E/O modulation power to dominate. 
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In the ideal case of lossless passive components, 𝜂𝜂𝑥𝑥𝜅𝜅12 ≈ 1/𝑘𝑘 
to account for fan-out. The total power required to operate the 
crossbar array will be: 

 
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≈ �

𝑘𝑘2

𝑛𝑛 � ∙
4ℎ𝜈𝜈𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝜂𝜂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
∙ 22𝑁𝑁𝑏𝑏 + (2𝑘𝑘 + 1)

∙ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝐸𝐸/𝑂𝑂 + 𝑘𝑘2 ∙ 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑂𝑂/𝐸𝐸  
(20) 

where 𝜂𝜂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚
2 𝜂𝜂𝑃𝑃𝑃𝑃𝜂𝜂𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 includes the laser wall plug 

efficiency (typically assumed to be ~20%), 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝐸𝐸/𝑂𝑂 is the power 

consumption of each modulator, and 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑂𝑂/𝐸𝐸  is the electrical 

power necessary to read-out a single dot-product unit cell 
including analog to digital conversion. We note that while our 
proposed architecture requires 𝑘𝑘2 balanced photodetector units 
with accompanying readout circuitry, the readout rate is 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚/𝑛𝑛 
and therefore the readout power scales linearly with crossbar 
dimension 𝑘𝑘 if 𝑘𝑘 ≈ 𝑛𝑛. This is more obvious if we calculate the 
energy consumption per MAC operation for the entire crossbar 
array: 

 
𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 =

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
# MAC/s ≈

1
𝑛𝑛 ∙

4ℎ𝜈𝜈
𝜂𝜂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

∙ 22𝑁𝑁𝑏𝑏 

+
(2𝑘𝑘 + 1)

𝑘𝑘2 ∙ 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑏𝑏 +
1
𝑛𝑛 ∙ 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑂𝑂/𝐸𝐸  
(21) 

where 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑏𝑏𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝐸𝐸/𝑂𝑂, 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑂𝑂/𝐸𝐸 ∙ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

= 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑂𝑂/𝐸𝐸 , and 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 is 

the modulation efficiency in J/bit. This result has a similar form 
to Eq. (13) of [43]. We can thus conclude that since 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀  is 
inversely proportional to both 𝑘𝑘 and 𝑛𝑛, larger matrix operations 
will result in the larger energy savings due to the advantages of 
fan-out and our choice of fixed-precision operations. Using the 
values in Table 4 of the Supplementary, Fig. 3 plots the energy 
consumption of our coherent matrix-multiplier as a function of 
photonic crossbar and input matrix dimensions 𝑘𝑘 and 𝑛𝑛. 

Fig. 3a-b plot the total energy per MAC and overall compute 
efficiency (in Tera-Ops/W or “TOPS/W”) of our photonic 
matrix-matrix multiplier. For 𝑛𝑛 ≈ 𝑘𝑘, the compute efficiency 
saturates at relatively small crossbar sizes since the laser and 
electrical readout energies dominate equation (21). However, 
when 𝑛𝑛 ≫ 𝑘𝑘, the 1/𝑛𝑛 term causes the laser and readout energies 
to become negligible, and the E/O modulation energy becomes 
dominant. This is more clearly evident in Fig. 3c where we 
break down the total power consumption into the power used 
by the optical source, E/O modulation, and O/E conversion. The 
1/𝑛𝑛 term in equation (21) leads to very favorable energy scaling 
for large matrix operations as observed by Hamerly et al. [19] 
since both the minimum optical power and relative number of 
O/E conversions decrease significantly. Recent work by Wang 
et al. [45] has experimentally demonstrated that less than 1 
photon per MAC is possible for optical dot products with large 
vector sizes (>103 elements). Thus, for large scale matrix 
operations, optical energy is unlikely to be dominant in the 
overall power consumption of the system as seen in Fig. 3c. 

V. COMPARISON WITH OTHER COMPUTING ARCHITECTURES: 
We now compare our proposed photonic matrix-matrix 

multiplier against several integrated photonic computing 
architectures that have been previously demonstrated 
experimentally. While these demonstrations have been limited 

to relatively small weight matrices (a maximum weight matrix 
of 4×4 and 9×4 was demonstrated by Shen et al. [5] and 
Feldmann et al. [8], respectively) we have used idealized 
scaling to project the best-case performance and have limited 
𝑁𝑁𝑏𝑏 = 5-bits throughout. For all fixed-weight architectures, we 
have assumed a single photonic core that requires 
reprogramming if the dimensions of the input matrix 𝐴𝐴𝑚𝑚×𝑛𝑛 
exceeds that of the available photonic weights (𝑚𝑚,𝑛𝑛 > 𝑘𝑘). For 
simplicity, we have also assumed square matrices in our 
simulations (𝑚𝑚 = 𝑛𝑛 = 𝑝𝑝). Note, for the broadcast-and-weight 
architecture using microring resonators [46], the number of 
wavelength channels on a single bus waveguide is limited to 
𝑘𝑘 ≤ 56 based on crosstalk between nearest neighbors [43]. 

The fundamental difference between a fixed-weight photonic 
architecture and our time-multiplexed architecture is 
highlighted in Fig. 4a-b. In the case when 𝑚𝑚, 𝑛𝑛 > 𝑘𝑘 (very likely 
for practical machine learning tasks with many millions of 
trained weights as illustrated in Section VI), the matrix 𝐴𝐴𝑚𝑚×𝑛𝑛 
must be split into 𝑀𝑀𝑀𝑀 sub-matrices of dimension 𝑘𝑘 × 𝑘𝑘 (for 
example, see 𝐴𝐴11 in Fig. 4a). To compute the sub-matrix 𝐶𝐶11, 
requires 𝑁𝑁 matrix-matrix MAC operations with 𝑁𝑁 
reprogramming steps of the photonic array between [36]. 
Additionally, the results of each sub-matrix operation require 
the O/E conversion and digital storage of (𝑁𝑁 − 1)𝑘𝑘2 
intermediate results which can cause additional latency and 
energy consumption that greatly outweighs the advantages of 
computing in the photonic domain. By contrast, our time-
multiplexed architecture allows the entire row and column of 
the input matrix to be processed sequentially with a single 
readout of the final result (𝐶𝐶11). This approach is much more 
efficient and does not require any additional O/E conversions 
or digital storage operations. Additionally, the energy savings 
improves with matrix dimension for positive valued inputs as 
highlighted in the previous section. 

A. Computational efficiency and latency: 
To estimate the computational efficiency of various fixed-

weight photonic platforms, we use the following equations to 
account for the total energy consumption: 

 
𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 =

1
𝑚𝑚𝑚𝑚𝑚𝑚 �𝐸𝐸𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸/𝑂𝑂 + 𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡

+ 𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑂𝑂/𝐸𝐸 + 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� 

(22) 

where we have defined the various computing energies in 
Supplementary Table 1. 

In the case of our time-multiplexed architecture, there are no 
weight components or intermediate sub-matrix products to be 
stored/processed (𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 ,𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ,𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0). This 
significantly reduces the overall energy per MAC by 
approximately four orders of magnitude compared to the most 
efficient fixed-weight architecture (broadcast-and-weight 
microring resonators [43], [46] or “MRR”) as shown in Fig. 4c. 
We also see more than 100× greater compute efficiency than 
state-of-the-art commercial GPUs/TPUs [47], [48] in the limit 
of large 𝑛𝑛. While this is highly promising, full system modeling 
of data transfer between digital memory and the photonic chip 
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is needed for a more accurate comparison which is outside the 
scope of this paper.  

The dramatic increase in energy consumption for the fixed-
weight architectures is due to the need for multiple sub-matrix 
operations which requires reprogramming of the photonic 
weight array. In the case of the MZI [5] and MRR [46] 
architectures, we have assumed that reprogramming a column-
addressed array of thermal phase shifters requires a settling time 
of at least ~10 μs per column, which significantly increases the 
overall energy consumption. While MEMS and electro-optic 
modulators have been proposed [44], [49] to overcome the 
static power consumption and slow update speed of thermal 
phase shifters, these approaches have their own challenges (i.e., 
optical insertion loss, footprint, leakage current, limited multi-
bit resolution, etc.) and have yet to be experimentally 
demonstrated for scalable photonic computing. Electronic 
switching speeds as fast as ~10 to 20 ns has been demonstrated 
for phase-change photonic memory cells [50], [51], but the 
switching energy is still on the order of ~1 nJ to 10 nJ per 
switching event. In our architecture, the energy per weight is 
approximately ~𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑏𝑏/𝑘𝑘 in the limit of large 𝑛𝑛 and 𝑘𝑘. Since 
E/O modulator efficiencies can be on the order of ~fJ/bit or less 
[4], [52] the cost per weight is on the order of a few femto-joules 
or less. Any fixed-weight architecture that requires frequent 
weight updates during computation will likely perform much 
worse than our approach. 

Fig. 4d compares the latency of various computing 
architectures as a function of matrix dimension. Similar to the 

case of computing efficiency, the latency of fixed-weight 
architectures increases dramatically once weight updates are 
considered. Again, we have assumed that columns are written 
in parallel, but rows are written sequentially for the MZI, MRR, 
and PCM architectures. Additionally, we have added a digital 
processing time to account for the 𝑁𝑁 additional sub-matrix 
accumulate operations. The total processing time can be 
expressed as follows: 

 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜏𝜏𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (23) 
where 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚, 𝜏𝜏𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, and 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  are the times required for 
modulation, weight updates, and digital processing of sub-
matrix results. Since these time delays are quite dependent on 
the specific architecture in question, we summarize the various 
sources of latency in Supplementary Table 2. 

B. Fabrication variability: 
Unlike the majority of other photonic computing approaches, 

our architecture is highly robust to fabrication variability across 
the crossbar array. To highlight this advantage, consider the 
effect of random variation in the coupling efficiency of one of 
the row or column directional couplers comprising a unit cell 
(𝜅𝜅𝚤𝚤� = 𝜅𝜅𝑖𝑖 + ∆𝜅𝜅𝑖𝑖, 𝜅𝜅𝚥𝚥� = 𝜅𝜅𝑗𝑗 + ∆𝜅𝜅𝑗𝑗). This is likely to be the source 
of the greatest fabrication error in our proposed architecture. 
The non-ideal directional coupler will scale ⟨𝑖𝑖𝑠𝑠⟩ by 𝜅𝜅𝚤𝚤�𝜅𝜅𝚥𝚥�  which 
can be factored outside of the integral in equation (4) and thus 
simply scales the dot-product 𝑎⃑𝑎𝑖𝑖 ∙ 𝑏𝑏�⃑𝑗𝑗 by a constant. This can be 
compensated across the entire crossbar array by performing a 

 
Fig. 4.  Comparison of fixed-weight versus time-multiplexed architectures for matrix-matrix multiplication. a) For a fixed-weight 
architecture where 𝑚𝑚,𝑛𝑛 > 𝑘𝑘, the array will have to be reprogramed a minimum of 𝑀𝑀𝑀𝑀 times which leads to significant latency 
and energy costs. b) For our time-multiplexed architecture, the entire sub-matrix 𝐶𝐶11 is computed in 𝑛𝑛 time steps without requiring 
any reprogramming or additional matrix-matrix operations. c) Energy per MAC and d) latency versus matrix dimension for various 
photonic architectures (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 12 GHz, 𝑁𝑁𝑏𝑏 = 5-bits). The large discontinuity for 𝑚𝑚,𝑛𝑛 > 𝑘𝑘 in the MZI [5], MRR [43], [46], and 
PCM [8] architectures is caused by the slow and power-hungry reprogramming operations of the weight array. Energy per MAC 
and latency for GPU and TPU architectures estimated from reported FLOPS and wall plug power [47], [48]. Parameters used in 
calculations are listed in Supplementary Table 4. Note: Transfer of digital data between memory and the photonic chip has not 
been considered in the photonic architectures compared in c) and d). 
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single Hadamard product between the computed output matrix 
and a calibrated 𝑘𝑘 × 𝑘𝑘 look-up table. Alternatively, one could 
conceivably reduce the computational burden even further by 
adjusting the relative gain of each unit cell’s differential 
amplifier at the hardware level.  

By a similar analysis, variations in the fan-out distribution 
network before the row and column modulators will also simply 
introduce a scaling term for each unit cell. In fact, the most 
significant impact of fabrication variability in the passive 
photonic crossbar is the requirement to increase the total input 

power of the optical source such that the minimum optical 
power derived in equation (15) (or equation (18) for negative 
inputs) is satisfied across all unit cells. 

VI. MIXED ARCHITECTURES FOR EFFICIENT DATA 
PROCESSING 

In this final section, we propose a mixed architecture 
approach which combines the relative strengths of fixed-weight 
and time-multiplexed architectures to achieve efficient 

 
Fig. 5.  Overview of mixed-architecture implementation for an example CNN. a) Data flow for a 9-layer CNN used to classify 
images from the CIFAR-10 dataset [53], [54]. Input, output, and kernel data dimensions for a convolutional layer (top inset). b) 
Total count of parameters stored and computed for a given layer in the network. c) Architecture overview and convolutional layer 
implementation for c) fixed-weight and d) time-multiplexed photonic hardware. The fixed-weight approach in c) has lower latency 
and is more efficient when the entire convolutional layer can be stored in photonic weights (𝑀𝑀𝑑𝑑2 ≪ 𝑛𝑛2). However, as the number 
of parameters within a layer grows (𝑀𝑀𝑑𝑑2 ≫ 𝑛𝑛2), a time-multiplexed approach will scale more efficiently. 
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photonic computing in large-scale neural networks. We 
illustrate this concept through a small, yet practical 
convolutional neural network (CNN) model used for image 
classification on the CIFAR-10 dataset [53], [54] shown in Fig. 
5a. This CNN model has 6 convolutional layers and 3 fully 
connected layers for a total of ~1.7 million parameters as 
detailed in Table 3 of the Supplementary.  

To store the entire model simultaneously in photonic 
hardware would require more than 400 separate photonic 
weight banks of size 64×64. This corresponds to a total 
footprint of >10 cm2 when assuming an ambitious 25×25 μm2 
unit cell. Rather than storing the entire model in photonic 
memory or exclusively using a time-multiplexed approach, it 
could be advantageous to use a fixed-weight photonic 
computing architecture for the first few convolutional layers. 
This takes advantage of the high speed MVM operations 
possible with a fixed-weight approach when the output feature 
maps are at their largest, while the number of stored weights is 
smallest (i.e., 𝑀𝑀𝑑𝑑2 ≪ 𝑛𝑛2 in Fig. 5a). As data flows through the 
convolutional layers, the number of parameters in each layer 
grows, while the output feature maps are reduced in size due to 
repeated max pooling as plotted in Fig. 5b. This is ideal for our 
proposed architecture since the time-multiplexed dimension 
can easily accommodate the growing number of parameters. 
Additionally, since the time-multiplexed dimension is larger 
than the input feature map (𝑀𝑀𝑑𝑑2 ≫ 𝑛𝑛2), we sum along the 
growing number of channels in the time domain which 
minimizes the number of opto-electronic conversions. Finally, 
since we are using a time-multiplexed approach for the layers 
deeper in the network, we minimize the number of costly 
weight updates in physical hardware during training, thus 
further improving the efficiency of the photonic network. While 
we have presented an intuitive approach for mixed-architecture 
design in the limit of 𝑀𝑀𝑑𝑑2 ≪ 𝑛𝑛2 or ≫ 𝑛𝑛2, intermediate cases 
will depend on the specifics of the photonic architecture and 
neural network being implemented. This requires full system 
modeling [49] which includes data movement, memory access, 
and other factors outside the scope of this work. 

VII. CONCLUSIONS: 
We have presented a photonic approach to large-scale 

matrix-matrix multiplication using standard components 
commonly available at PIC foundries. Our approach 
significantly reduces the ADC energy consumption and high-
speed electronic design requirements of prior photonic matrix-
vector multiplier strategies, while addressing the challenge of 
maintaining both spatial and temporal coherence between 
optical fields—a major difficulty in free space approaches to 
photonic computing. Additionally, our approach is easily 
scalable to large matrix-matrix operations without introducing 
the additional latency and energy needed to reconfigure fixed 
photonic weights. We have also shown that a computational 
efficiency of ~340 TeraOPs/W (~5.8 fJ/MAC) and peak 
computational speed of ~98 TeraOPs (64×64 array at 12 GHz 
modulation speed) are possible using experimentally 
demonstrated components. Finally, we have proposed a mixed 
architecture approach to photonic AI hardware design, 
providing a route toward ultrafast and efficient machine 

learning. 
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