
Comparing Quantum Computing
Platforms

Siddh Agarwal1, Gio Abou Jaoude2, Avery Leider2(B),
and Charles C. Tappert2

1 Hicksville High School, Hicksville, NY, USA
sba17@protonmail.com

2 Seidenberg School of CSIS, Pace University, New York, USA
{ga97026n,al43110n}@pace.edu, cctappert@gmail.com

Abstract. This research compares and contrasts two commonly avail-
able quantum computing platforms available today to academic
researchers: the IBM Q-Experience and the University of Maryland’s
IonQ. Hands-on testing utilized the implementation of a simple two qubit
circuit and tested the Pauli X, Y, and Z single-qubit gates as well as the
CNOT 2+ qubit gate and compared the results, as well as the user expe-
rience. The user experience and the interface must be straightforward to
help the user’s understanding when planning quantum computing train-
ing for new knowledge workers in this exciting new field. Additionally,
we demonstrate how a quantum computer’s results, when the output is
read in the classical computer, loses some of its information, since the
quantum computer is operating in more dimensions than the classical
computer can interpret. This is demonstrated with the ZX and XZ gates
which appear to give the same result; however, using the mathematics of
matrix notation, the phase difference between the two answers is revealed
in their vectors, which are 180◦ apart.

Keywords: IBM Q-experience · IonQ · Quantum computing
pedagogy · Quantum information · Amazon braket services

1 Introduction

When educators learn a new technology, it is always joined with thoughts of
how to teach it to the next learner. IBM’s Q-Experience quantum computer is
clearly in the lead for researchers to use in education, as the company was the
first to develop a universal quantum computer in 2017, and in January 2019,
IBM opened up their quantum computers to worldwide research for free on the
Internet. IBM offers free tutorials and enough free time on its simulators and real
quantum computers for an educator to include this today as a lab component
when they teach quantum computing.

IBM’s competitors are working to catch up with them and replicate their
success. However, the design of their hardware is not the same as IBM’s app-
roach, and so their interface is different because it is specific to their company’s

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Arai (Ed.): FICC 2022, LNNS 438, pp. 423–441, 2022.
https://doi.org/10.1007/978-3-030-98012-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98012-2_32&domain=pdf
https://doi.org/10.1007/978-3-030-98012-2_32

424 S. Agarwal et al.

hardware. This research study reports the experience we had running quantum
computing circuits on the quantum computers of IBM and IonQ, a competitor
to IBM, to compare them in order to help future researchers make informed
decisions of which quantum computer to use.

The IBM Q-Experience is simple and easy to use. To obtain the free resources
and tutorials, you simply need to register and obtain an IBM ID. The free
resources are a certain amount of computing time that refreshes every 24 h, and
all of the free time you want looking at the site. There is a link to the open
source platform used for programming code, called QISKit (Quantum Informa-
tion Science Kit). QISKit is written in Python, and utilizes Jupyter notebooks.
Valuable visualizations are offered, so you can drag and drop gates into quantum
circuits without any programming at all. If programming is preferred, Python
can be used via QISKit, as well as OpenQASM, IBM’s assembly language for
quantum computing. Both of these options are available alongside the drag-and-
drop circuit composer, so you can switch between them if you want to. The single
qubit gates can be seen in a Q-sphere visualization that changes dynamically as
you move the gates around. IBM has many different simulators and quantum
computers, which are free to use within the time limit.

The IonQ is more complex to use. First, you must establish an account at
Microsoft Azure or Amazon Web Services (AWS). We created a Braket account
at AWS, which requires a credit card. Only a small amount of time, one hour
is offered for free, on the TN1 and SV1 simulators, and after that, it bills your
credit card. The local simulator appears to be free to use, but a small fee is
charged to use Amazon’s online Jupyter notebook service, SageMaker, as shown
in Fig. 1.

Fig. 1. AWS charges for notebooks

The quantum programming is also done in Jupyter notebooks, and the Braket
developer guide is mostly concerned with getting connected to the system. It
assumes that you already understand quantum computing, and does not offer free
tutorials. We found that there was significant time lost to running the Jupyter
notebook on the real machine. This was because of billing and metering of the
AWS system that allows you access to the IonQ computer. For the circuits we
ran on the IonQ machine, we were charged $0.01 per shot and $0.30 per task, as
shown in Fig. 2.

Comparing Quantum Computing Platforms 425

Fig. 2. IonQ charges for running our circuit

The IonQ results are read in zeroes and ones; however, the most significant
bit is not on the left-hand side, as in the IBM Q-Experience. Instead, the most
significant bit is on the right-hand side of the results.

Amazon Web Services offers many different quantum computers using the
Braket system, which can all be programmed the same way in Jupyter notebooks.
In the code, only one value has to be changed to run it on a different machine.
They do not include the IBM Q-Experience.

The quantum computing devices available now on AWS Braket Portal are the
D-Wave (Advantage system1.1, DW 2000Q 6), the Rigetti (Aspen-8, Aspen-9),
the IonQ, and two Amazon Braket simulators (the TN1 tensor network and the
SV1 state vector).

We also describe the theory of the circuit we are using as an example, and
what mathematical operation each quantum gate in the circuit is doing. The
theory is proven in mathematics, and then proven again when the results appear
as expected after the quantum circuit is run. Quantum computers are capable
of more than what is visible in the results, because there is a bottleneck in
the information sent as output from the quantum computer into the classical
computer so the output results can be read. The output must be only binary
zeros and ones.

The quantum circuit we ran on each of the quantum computers is displayed in
Fig. 5. It has two qubits, which become entangled. Then, one qubit is put through
a gate (one of the simple one-qubit Pauli gates, X, Y or Z; “U” represents that
the gate will be one or two of these Pauli gates that can be represented as a
Hermitian matrix). Following this, we de-entangle the two qubits, measure both
qubits, and report the results as they appear in the classical registers. We then
replace “U” with “X” to test the circuit. Then we replace “U” with “Y” to test
the circuit. Then we replace “U” with “Z” to test the circuit. This simple circuit
allows us to test the different platforms and find out if they give us the expected
results, as well as become aware of any additional observable information to
compare the platforms.

1.1 Summary of Introduction

The rest of this paper is composed of the Literature Review section, which iden-
tifies the sources of information used in this research; the Basic Concepts section,
which is a review of all quantum computing concepts needed to understand this
paper; the Methodology, which shows the approach used to compare the two

426 S. Agarwal et al.

quantum computing platforms; the Findings, which shows the results of using
this methodology on the two systems under study; and our final section, Future
Work.

2 Literature Review

This specific circuit that was selected to use for our Methodology is well known
in quantum computing, and was used because of its familiarity. Many have tested
a perceived error made by quantum researcher Michael Nielsen, who used the
same quantum circuit in his YouTube video “Superdense Coding: How to send
two bits using one qubit” [6], as part of his video series “Quantum Computing
for the Determined” [7].

Studying Nielsen’s video, there were several comments made by viewers that
said that he made an error, in which he said “XZ” when he meant to say “ZX”
when describing the gate combinations that were operating on the first qubit,
qubit 0. The difference is shown in Fig. 3 and in Fig. 4. Nielsen acknowledged
these comments and agreed that he had made the error.

However, in Lewis Westfall’s “Superdense Coding Step by Step” [10], in which
Nielsen’s presentation of the circuit is exactly replicated and explained without
adjusting for the error, there was no difference in the expected output from the
two gate combination. As seen in Fig. 4, testing “XZ” and “ZX” both result in
an answer of “11” and inclusion in the full circuit. This causes a question of
whether use of the “XZ” and “ZX” gates give the same output in this scenario,
and are thus interchangeable.

Fig. 3. Circuit using XZ gate on qubit 0

Fig. 4. Circuit using ZX gate on qubit 0

Comparing Quantum Computing Platforms 427

However, there is a difference, which in our Findings section of this paper
can be observed in the IBM, but not the IonQ machine. The IBM Q-Experience
quantum computer provides a visualization of the phase showing the difference
as shown in Fig. 20 and 21. Also, one can see from the matrix multiplication that
there is indeed a difference.

XZ =>

(
0 1
1 0

) (
1 0
0 −1

)
=>

(
0 −1
1 0

)

Using matrix multiplication, we can see that the order of the gates after
transforming the ket keeps the direction, but changes the phase angle.

ZX =>

(
1 0
0 −1

) (
0 1
1 0

)
=>

(
0 1

−1 0

)

In our quantum circuit, in place of Nielsen’s X, Y, Z and ZX gates, we
first place a U gate in that location as a placeholder. The U gate represents
a gate that uses a unitary operation, and the reasoning for quantum circuit
complexity of a unitary operation is closely related to the problem of finding
minimal length paths in a particular curved geometry. This demonstrates the
quantum computer’s ability to calculate in more powerful ways than our current
classical computers [3].

3 Basic Concepts

In quantum computing there are some basic concepts which are explained here.
Matrix multiplication and linear algebra are used to understand and create cir-
cuits of gates. These circuits are for quantum bits, called “qubits” to be operated
on to give results. Dirac bra-ket notation [2] is used to describe the vectors of
zero ket and one ket. Kets can be explained in matrix form, and then multiplied
by gates, also described in matrix form, to prove what the results will be of the
gate operations on the quantum bits, or qubits. After doing the circuit in math,
we then do it in the quantum computer to prove our results.

3.1 The Basis States of Ground State and Active State

The mathematical symbol for “zero ket,” is used to express a vector used in
quantum mechanics that represents a qubit in its ground state:

|0〉

428 S. Agarwal et al.

Zero ket can be expressed as a 2 row by 1 column matrix:
[

1
0

]

The mathematical symbol for “one ket,” is used to express a vector used in
quantum mechanics that represents a qubit in its active state:

|1〉

One ket can be expressed as a 2 row by 1 column matrix:
[

0
1

]

3.2 Matrices of the Operators of the Gates X, Y and Z

The operations of the X, Y, and Z gates are expressed by using the 2× 2 matrix
of the gate, multiplying it by the 2× 1 matrix of the basis state (one or zero ket
meaning ground state or active state) and getting the result.

The X Gate. An X gate, called the “flip gate” because it always flips the qubit
180◦ about the x-axis, so a one-ket becomes a zero-ket and vice-versa. The X
gate is a 2 row by 2 column matrix:

(
0 1
1 0

)(
1
0

)
=

(
0
1

)

When we multiply the zero-ket 2× 1 matrix by the X gate 2× 2 matrix and
then reduce it back to a 2× 1, we see we have changed it to a one-ket. And
vice-versa, we flip the state of the qubit from one-ket to zero-ket by applying
the X gate:

|1〉
[

0
1

] (
0 1
1 0

)
= |0〉

[
1
0

]

We make a shorthand notation here, where instead of writing out the 2× 2
matrix of the X gate, we simply write X in front of the one-ket or zero-ket matrix
to show we are multiplying the X gate matrix times the one-ket matrix or the
zero-ket matrix:

X

[
1
0

]
=

[
0
1

]

The Y Gate. The Y gate is a 2 row by 2 column matrix:

Y =
(

1 −i
i 0

)

Comparing Quantum Computing Platforms 429

Multiply the zero-ket 2× 1 matrix (we use shorthand, here, writing “Y”
outside of the zero-ket 2 × 1 matrix to show we will multiply Y by it) and then
reduce it back to a 2 × 1, we see we have changed it and note that the negative
imaginary number has been changed to a positive i:

Y

[
1
0

]
=

[
0
i

]

Multiply the one-ket by the Y gate and we get these results:

Y

[
0
1

]
=

[−i
0

]

The Z Gate. The Z gate is a 2 row × 2 column matrix:

Z =
(

1 0
0 −1

)

The Z gate multiplied by the zero-ket gives us these results:

Z

[
1
0

]
=

[
1
0

]

When the Z gate is multiplied by the one-ket, it gives this result:

Z

[
0
1

]
=

[
0
−1

]

3.3 Is It a Hermitian? The Hermitian Test for Reversibility

The matrices of the X, Y and Z gates are Hermitian. A French mathematician,
Charles Hermite, developed this test, named after him, and it is also called
the self-adjoint matrix. This is a test for pure reversibility in a matrix that is
a square. Square means the matrix is in the set of n × n matrices. To test if a
square matrix is Hermitian, there are two steps. First step is to take the complex
conjugate of the matrix. Second step is to transpose it. If the result of the two
steps looks exactly like the original matrix, that matrix is Hermitian.

In quantum computing, a Hermitian gate is a gate with a Hermitian matrix
which keeps the ket pointing on the unit sphere. The significance of the Hermi-
tian gate is that this means that the operation of the gate is completely reversible
in one step. The power and danger of quantum computing’s ability to crack RSA
encryption [9], the most commonly used cipher method for bank-to-bank financial
transactions worldwide, is because of its ability to reverse circuits. RSA counts on
the difficulty of factoring large prime numbers with current classical computers,
who operate using circuits that are not reversible, and therefore take too long to
find the factors of a six hundred digit number. Quantum computers are able to cal-
culate so effectively with their reversible circuits, that in just a few years, as soon as

430 S. Agarwal et al.

they are stable with enough qubits, they will crack RSA in moments. Another sig-
nificant user of RSA cipher methods are military communications. Ability to crack
this and see all of the communications in plain text and clear voice of their adver-
sary gives great advantage to the military force who has this technology. Another
significant characteristic of the Hermitian matrix is that Hermitian matrices have
real eigenvalues whose eigenvectors form a unitary basis, a characteristic used in
themathematics of quantumcomputing. In quantumcomputing, theHilbert space
is used to predict by calculations the output of operations, and all of the matrices
used in the Hilbert space are Hermitian.

The first step, the complex conjugate, means to look at all the complex
numbers in the matrix (complex numbers C contain both a real number part
R and an imaginary number part i) and change the negative complex number
signs to positive complex number signs, and vice-versa. When written out, the
number value is written first, as a variable name, such as Y , then afterwards,
the complex conjugate should have a prime tic mark on that same name, such
as Y ′, or, sometimes it is marked with a star, such as Y ∗, to show it has been
changed. In this case, we have changed it to its complex conjugate.

This is reversible, one can go from Y ′ back to Y in the same way and end
up back where we started. Why when we take the complex conjugate, do we
not change the negative or positive sign on the 1? Because 1 is not a complex
number C. Why do we change the negative to positive sign, or, the positive to
negative sign, on the i numbers? Because they are complex numbers, revealed
by the fact that they are i, which is the imaginary part of a complex number.

For example, the complex conjugate of the Y gate is Y ′:

Y =
(

0 −i
i 1

)
∼ comConj ∼ Y ′

(
0 i
−i 1

)

The reason the word complex is used is to show how to handle imaginary
numbers, which is to include them, even if i is equal to 0 or 1 when doing the
complex conjugate include them as i: for example, the complex conjugate of
a + bi => a − bi. If we said that we were taking the conjugate without any
imaginary numbers, then it would be a + b => a − b. In quantum computing,
we accommodate imaginary numbers for a specific reason.

The second step is the transpose. This means to see the square matrix as if
it were a page of transparent paper. Take the upper right corner of the square
matrix and flip it over so that the upper right corner is now the bottom left
corner.

For example, the transpose of the Y ′ returns us to the original matrix of Y .
This means that the Y matrix passes the 2-steps of the Hermitian.

Y ′ =
(

0 i
−i 1

)
∼ transpose ∼ Y =

(
0 i
−i 1

)

For the X gate, we take the first step, which is the complex conjugate, which
changes nothing, because the X gate contains no complex numbers that need to
have their negative or positive numbers changed. T

Comparing Quantum Computing Platforms 431

X =
(

0 1
1 0

)
∼ comConj ∼ X ′ =

(
0 1
1 0

)

Then for step two, which is the transpose, the upper right corner and lower
left corner switch places as we turn it over. Again, there is no change. We have
returned to our original matrix of X. The X gate is Hermitian.

X ′ =
(

0 1
1 0

)
∼ transpose ∼ X =

(
0 1
1 0

)

For the Z gate, we take the first step, which is the which is the complex con-
jugate, which changes nothing, because the Z gate contains no complex numbers
that need to have their negative or positive numbers changed.

Z =
(

1 0
0 −1

)
∼ comConj ∼ Z ′ =

(
1 0
0 −1

)

Then for step two, which is the transpose, the upper right corner and lower
left corner switch places as we turn it over. Again, there is no change. We have
returned to our original matrix of Z. The Z gate is Hermitian.

Z ′ =
(

1 0
0 −1

)
∼ transpose ∼ Z =

(
1 0
0 −1

)

3.4 Summary of Literature Review

This review of the literature and of all of the basic mathematical quantum com-
puting concepts needed to understand this paper shows two significant gaps:
we found no comparisons of one quantum computer versus another in terms of
the user experience, especially for a new student learning quantum computing.
Additionally, we found a gap in documented methodology in the literature to
use to evaluate that user experience from one quantum computer to another.

4 Methodology

4.1 Using the IBM Q-Experience

Fig. 5. Michael Nielsen’s circuit using U gate

432 S. Agarwal et al.

Fig. 6. Histogram results of our U gate are 50% 01 and 50% 11

The results of running the U gate as shown in the Michael Nielen’s circuit shown
in Fig. 5 are shown in the histogram in Fig. 6, which is a 50% probability of get-
ting the answer 01, and a 50% probability of getting the answer 11. When reading
the first answer, 01, that means the qubit 0 resulted in a 1 value after measure-
ment. This binary number is equivalent to 1 in decimal. The measurement of
qubit 1 resulted in value 0.

“This representation of the bitstring puts the most significant bit (MSB) on
the left, and the least significant bit (LSB) on the right. This is the standard
ordering of binary bitstrings. We order the qubits in the same way (qubit repre-
senting the MSB has index 0), which is why Qiskit uses a non-standard tensor
product order” [4].

In other words, binary should be read from right to left in the IBM Q-
Experience.

Then we tested each of the single qubit Pauli gates. Figure 7 shows the X
gate.

Fig. 7. Our circuit for this test with X gate

When we ran this circuit on the IBM-Q Experience quantum computer sim-
ulator, for 1,000 shots, we received these results shown in Fig. 8. The simulator
results can give a perfect result, such as 100%, but running the quantum circuits
on the real quantum computers always has error in it.

Comparing Quantum Computing Platforms 433

Fig. 8. Histogram results of our X gate are a 100% chance of 10

Figure 9 shows our quantum circuit using the Y gate on qubit 0.

Fig. 9. Our circuit for this test with Y gate

When we ran this circuit on the IBM-Q Experience quantum computer, we
received these results shown in Fig. 10.

Fig. 10. Using Y gate on qubit 0 results in 100% chance of output 11

434 S. Agarwal et al.

Figure 11 shows the circuit using the Z gate on qubit 0.

Fig. 11. Our circuit for this test with Z gate

When we ran this circuit in Fig. 11 on the IBM-Q Experience quantum com-
puter, we received these results shown in Fig. 12.

Fig. 12. Results of our Z gate show a 100% probability of output 01

Then we tested the quantum circuit using “XZ” as in Fig. 13 and again using
“ZX” as shown Fig. 14 to compare the differences. This is how we found that
Michael Nielsen’s video on superdense coding did result in the answer ‘11’ for
both, however, there was more information that was not accounted for.

Fig. 13. Two gates of XZ on qubit 0 in place of U gate

Comparing Quantum Computing Platforms 435

Fig. 14. Two gates of ZX on qubit 0 in place of U gate

4.2 Using the IonQ

Using the IonQ computer, with the Amazon Web Services Braket service, we
found the X, Y, and Z gates to work just like the IBM Q-Experience. We found
an important difference in the results: IonQ (as well as Amazon Braket’s other
simulators and quantum computers) deliver the binary results in reverse order
than the IBM Q-Experience. As you can see in Fig. 15, the results of the IonQ
are read from left to right. So, a result of 01 (the equivalent of 2 in binary) means
that qubit 0 had the value 0, and qubit 1 had the value 1 after measurement. 01
should be read as a 10 (the equivalent of 1 in binary). IonQ uses the standard
tensor product order.

Fig. 15. Reading the bits in reverse order

Also, the IonQ does not give us the visualization of the Q-sphere that helped
us see what the difference was between ZX and XZ. It is not visible - the results
are both 11 and the important quantum information about the results, that one
created a vector that was 180◦ from the other, is lost.

The circuits we designed to run on the IonQ machine, are the XZ gate,
as shown in Fig. 16, and the ZX gate, as shown in Fig. 17, and one can see
immediately that the visualization of the circuit is not as clear to the user as it
is with the IBM Q-Experience:

Fig. 16. ZX circuit on the IonQ

436 S. Agarwal et al.

Fig. 17. XZ circuit on the IonQ

The XZ circuit consists of a Hadamard (H) gate on qubit 0, a controlled
NOT (CNOT) gate with qubit 0 as the control and qubit 1 as the target, a Z
gate followed by an X gate on qubit 0, another CNOT gate with qubit 0 as the
control and qubit 1 as the target, and lastly another H gate on qubit 0. The ZX
circuit is identical, but with the X and Z gates in the opposite order.

The H gate is a single-qubit gate that is used to put the qubit into superpo-
sition, which means that instead of being either a 0 or a 1, it is a combination
of these two states. The H gate is reversible, so when used for the second time
it takes the qubit out of superposition.

The CNOT gate is a 2+ qubit gate that is used to “flip” the target qubit’s
state (in our case, qubit 1) only if the control qubit (in our case, qubit 0) has a
state of 1.

The Z gate is a single-qubit gate that rotates the qubit 180◦ about the Z
axis, when representing the qubit as a vector on the Felix Bloch sphere [1]. The
Bloch sphere is a diagram that is used to represent the state of a qubit and is
shown in Fig. 18.

Fig. 18. Diagram of the bloch sphere[8]

The X gate is a single-qubit gate that is similar to the Z gate, but instead
rotates the qubit 180◦ about the X axis.

4.3 Advantages of Proposed Method

In order to compare the two platforms, IonQ via AWS and the IBM Q-
Experience, multiple characteristics of each platform were compared. The same

Comparing Quantum Computing Platforms 437

circuits, the XZ and ZX circuits, were tested on both platforms in order to com-
pare the accuracy of our results. The user interface for building and executing
circuits was also compared, as well as the price for using each platform. Then,
the information received when building and executing circuits on each platform
was compared. For example, the Q-Experience provides the measurement out-
come graph, the Q-Sphere visualization, and the probability graph, while IonQ
provides only the number of shots resulting in each outcome. Finally, we com-
pared any other characteristics of each platform that we found, such as the IBM
Q-Experience’s unconventional bit string order, which reads right-to-left from
the most significant bit to the least significant bit.

This approach finds advantages and disadvantages for both platforms for
users of all experience levels, while being cohesive and examining various impor-
tant aspects of both platforms. This is summarized in Fig. 19.

Fig. 19. Summary of advantages and disadvantages

5 Findings

Based on the results of both the IonQ and IBM Q-Experience machines, we
found that both the XZ and ZX circuits result in the output 11. While at first
this seems to show that the X and Z gates are interchangeable, this is not the
case.

The IBM Q-Experience has a diagram of the Q-sphere, which provides us
more information than just the results measured by the classical computer. This
allows us to see that although the XZ and ZX circuits gave the same binary
results, they have a different phase.

438 S. Agarwal et al.

Fig. 20. The Q-sphere for the XZ circuit[8]

Fig. 21. The Q-sphere for the ZX circuit[8]

As seen above, the XZ circuit has a phase of π, while the ZX circuit has
a phase of 0. This means that the matrices contain the same values, but in a
different order, resulting in different vector direction.

XZ =>

(
0 −1
1 0

)

ZX =>

(
0 1

−1 0

)

Note the difference in the location of the −1 in the matrix. The output in
both cases is 11 but the phase difference was not shown in our results. This is
an example of how using classical computers to obtain results from quantum
computers loses some information, which will be improved in the future when
we are able to reveal more of the quantum computing calculations in our results
than we can today.

Also, it should be noted that Amazon Braket/IonQ did not provide a visu-
alization of the Q-sphere, which makes the gates seem interchangeable based on
our results.

Since qubits are very difficult to manipulate precisely, they are prone to error.
Quantum computers can have varying degrees of error, caused by various factors.

The IonQ computer had more accurate results than the quantum computers
we tested on the IBM Q-Experience, as you can see in Table 1 and Table 2.
This is a direct comparison to the results we obtained from our tests of the
same circuits on the IBM-Q Santiago computer as shown in Table 3 and Table 4.

Comparing Quantum Computing Platforms 439

Table 1. IonQ ZX circuit results showing accuracy rate

IonQ ZX Circuit

Result 11 01 10 00
Shots 970 19 9 2

For the ZX gate, the computer got the correct answer 970 out of the 1000 shots
we ran it for. In contrast, in our testing, the most accurate quantum computer
on the IBM Q-Experience was “ibmq santiago”. The results are shown in Table 3
and Table 4.

Table 2. IonQ XZ circuit results showing accuracy rate

IonQ XZ Circuit

Result 11 01 10 00
Shots 962 26 11 1

For the XZ gate, the computer got the correct answer in 962 out of the 1000
shots, or times we ran the circuit. So, on average, the IonQ computer was 96.6%
accurate in our testing.

Table 3. ibmq santiago ZX circuit results showing accuracy rate

ibmq santiago ZX Results

Result 11 10 01 00
Shots 934 30 35 1

Table 4. ibmq santiago XZ circuit results showing accuracy rate

ibmq santiago XZ Results

Result 11 10 01 00
Shots 923 28 38 11

In this case, it does not matter (since our desired result, 11, is the same
backwards), but note that IBM and IonQ use binary in the reverse order of each
other. The top row in the table is different for IonQ and IBM to reflect this.

As seen in Table 4, the XZ circuit got the correct result 934 out of the 1000
shots. As seen in Table 3, the ZX circuit got the correct result 923 out of the
1000 shots. So, on average, in our testing, the “ibmq santiago” computer was
approximately 92.4% accurate.

440 S. Agarwal et al.

Both the IonQ and “ibmq santiago” machines took multiple minutes to get
results back from. The IonQ machine took slightly longer to complete.

In conclusion, the IonQ machine offers superior accuracy to the IBM
machines, but is more complex to use. The IBM Q-Experience is much more
straightforward and provides more information, but is less accurate.

The IBM Q-Experience seems to be the better choice for those that are new
to the field of quantum computing, with its well-written tutorials, educational
resources such as QISKit, its free time to use actual quantum computers, and
its drag-and-drop interface.

IonQ seems to be the better choice for those with more experience in the
field of quantum computing. For projects which need high accuracy results,
IonQ would be a better choice than IBM. The Amazon Braket Developer Guide
provides sufficient information to create quantum computing circuits for those
with a higher understanding of quantum computing. Having some background
with AWS would also be beneficial, as it is somewhat confusing to navigate for
people that are new to it.

6 Future Work

In the future, we will study the design of the IonQ computer, because of its
low error rate, and identify its strengths so that they could be used by other
quantum computing companies to improve their designs and decrease their error
rate. IBM, for example, could improve their quantum computers based on these
strengths. If IonQ doesn’t give us sufficient information, we will study other high-
accuracy quantum computers that are available to use over the Internet, such as
Rigetti’s computers, and identify their advantages, which could be implemented
on IBM’s quantum computers.

Recently IBM is hosted a challenge where they are requesting participants’
help in “reducing gate errors” and “increasing circuit fidelity for graph state
preparation,” for a $100,000 reward [5]. This and similar incentives will likely
lead to innovative new solutions to these problems by continuing to stimulate
research in comparing quantum computers.

The improvement of the design of quantum computers comes from adding
more qubits, in order to solve more complex problems. Currently, quantum com-
puters have an increasing rate of error as more qubits are added. This should be
solved because quantum computers have a wide range of applications. These
include encryption algorithms, social network analysis, and medicine design.
Advancements in fields such as these could improve many aspects of our lives,
such as security on the Internet, physical safety, and health, respectively.

References

1. Bloch, F.: Nuclear induction. Phys. Rev. 70(7–8), 460 (1946)
2. Dirac, P.A.M.: The Principles of Quantum Mechanics. Number 27. Oxford Univer-

sity Press (1981)

Comparing Quantum Computing Platforms 441

3. Dowling, M.R., Nielsen, M.A.: The geometry of quantum computation. Quantum
Inf. Comput. 8(10), 861–899 (2008)

4. IBM Research: Getting started with qiskit (2021). https://quantum-computing.
ibm.com/lab/files/qiskit-tutorials/tutorials/circuits/1 getting started with
qiskit.ipynb

5. Lanes, O., Kim, J.-S., Sheldon, S.: The open science prize: solve for swap gates and
graph states (2020). https://www.ibm.com/blogs/research/2020/11/open-science-
prize/

6. Nielsen, M.: Superdense coding: how to send two bits using one qubit (2010).
https://youtu.be/w5rCn593Dig

7. Nielsen, M.: Quantum computing for the determined (2010). https://
michaelnielsen.org/blog/quantum-computing-for-the-determined/

8. QuTiP: Bloch sphere (2021). http://qutip.org/docs/4.1/guide/guide-bloch.html
9. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
10. Westfall, L., Leider, A.: SuperDense coding step by step. In: Arai, K., Bhatia, R.

(eds.) FICC 2019. LNNS, vol. 70, pp. 357–372. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-12385-7 28

https://quantum-computing.ibm.com/lab/files/qiskit-tutorials/tutorials/circuits/1_getting_started_with_qiskit.ipynb
https://quantum-computing.ibm.com/lab/files/qiskit-tutorials/tutorials/circuits/1_getting_started_with_qiskit.ipynb
https://quantum-computing.ibm.com/lab/files/qiskit-tutorials/tutorials/circuits/1_getting_started_with_qiskit.ipynb
https://www.ibm.com/blogs/research/2020/11/open-science-prize/
https://www.ibm.com/blogs/research/2020/11/open-science-prize/
https://youtu.be/w5rCn593Dig
https://michaelnielsen.org/blog/quantum-computing-for-the-determined/
https://michaelnielsen.org/blog/quantum-computing-for-the-determined/
http://qutip.org/docs/4.1/guide/guide-bloch.html
https://doi.org/10.1007/978-3-030-12385-7_28
https://doi.org/10.1007/978-3-030-12385-7_28

	Comparing Quantum Computing Platforms
	1 Introduction
	1.1 Summary of Introduction

	2 Literature Review
	3 Basic Concepts
	3.1 The Basis States of Ground State and Active State
	3.2 Matrices of the Operators of the Gates X, Y and Z
	3.3 Is It a Hermitian? The Hermitian Test for Reversibility
	3.4 Summary of Literature Review

	4 Methodology
	4.1 Using the IBM Q-Experience
	4.2 Using the IonQ
	4.3 Advantages of Proposed Method

	5 Findings
	6 Future Work
	References

