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lifetime of the structure [16,17]. 
In the context of Inspection and Maintenance (I&M) planning, the 

decision maker faces a complex sequential decision-making problem 
under uncertainty. This sequential decision-making problem is illus
trated in Fig. 1, showcasing the involved random events and decision 
points, and can be formulated either from the perspective of the classical 
applied statistical decision theory [18], or through artificial intelligence 
[19] conceptions, or a combination thereof. In all cases, the main 
objective of a decision maker, or an intelligent agent, is to identify the 
optimal policy that minimizes the total expected costs. 

With the aim of addressing this complex decision-making problem, 
Risk-Based Inspection (RBI) planning methodologies have been tradi
tionally proposed [20] and have often also been applied to the I&M 
planning of offshore structures [21,22]. By imposing a set of heuristic 
decision rules, RBI methodologies are able to simplify and solve the 
decision-making problem within a reasonable computational time, 
while structural reliability methods are often employed within this 
framework, to quantify and update the reliability and risk metrics. 

More recently, RBI methodologies have also been integrated with 
Dynamic Bayesian Networks (DBNs) [23–27]. DBNs provide an intuitive 
and robust inference approach to Bayesian updating; however, they do 
not tackle the decision optimization problem by themselves. In the 
proposed methodologies, heuristic decision rules, usually based on en
gineering principles and understanding of the problem, are still utilized 
to simplify the decision problem. Albeit their practical advantages, the 
main shortcoming of heuristic-based policies is the limited policy space 
exploration due to the prior, ad hoc prescription of decision rules. In this 
paper, we thus present how DBNs describing deterioration processes can 
be instead combined with Markov decision processes and dynamic 
programming [28], and be used to define transition and emission 
probabilities in such settings. 

Partially Observable Markov Decision Processes (POMDPs) provide a 
principled mathematical methodology for planning in stochastic envi
ronments under partial observability. In the past, POMDPs were only 
applicable for small state space problems due to the difficulty of finding 
appropriate solutions in a reasonable computation time. However, 
starting with the development of point-based solvers [29], which 
managed to efficiently alleviate the inherent complexities of the solution 
process, POMDPs have been increasingly used for planning problems, 

especially, in the field of computer science and robot navigation [30,31]. 
POMDPs have also been proposed for I&M of engineering systems 
[32–36]. In the reported POMDP methodologies, either the condition of 
the structural component has been modeled with less than five discrete 
states or the rewards have not been defined in a structural reliability 
context. This different POMDP approach to the I&M problem, as 
compared with typical RBI applications, has raised some misconceptions 
in the literature about their use, which we formally rectify herein. 

In this work, POMDPs are successfully combined with dynamic 
Bayesian networks in a joint framework, for optimal inspection and 
maintenance planning, in order to take advantage of both the modeling 
flexibility of DBNs and the advanced optimization capabilities of 
POMDPs. In particular, this paper originally derives the POMDP dy
namics from DBNs, enabling optimal control of physically-based sto
chastic deterioration processes, modeled either through a conditional set 
of time-invariant parameters or as a function of the deterioration rate. 
We further provide all relevant formulations for deriving both infinite 
and finite horizon POMDPs within a structural reliability context. The 
proposed framework is analyzed, implemented, and tested for the case 
of a structural component subject to a fatigue deterioration process, and 
the capability of state-of-the-art point-based POMDP value iteration 
methods to efficiently solve challenging I&M optimization problems is 
verified. POMDP and typical heuristic risk-based and/or periodic pol
icies are thoroughly analyzed and compared, in a variety of problem 
settings, and results demonstrate that POMDP solutions achieve sub
stantially lower costs in all cases, as compared to their counterparts. 

2. Background: Risk-based inspection planning 

A typical Inspection and Maintenance (I&M) sequential decision 
problem under uncertainty is illustrated in Fig. 1. The optimal strategy 
can be theoretically identified by means of a pre-posterior decision 
analysis [18]. Assuming the costs at different times to be additive in
dependent, the pre-posterior analysis prescribes the observation de
cisions e ∈ E and actions a ∈ A that minimize the total expected cost 
CT(a, e) = Ct0 (e, a, s)t0 + … + CtN (e, a, s)tN γtN , i.e. the sum over the life
time tN of the discounted costs received at each time step t, with γ being 
the discount factor. Note that societal and environmental consequences, 

Fig. 1. (Top) Inspection and Maintenance (I&M) planning decision tree. Maintenance actions and observation decisions are represented by blue boxes and chance 
nodes are depicted by white circles. At every time step, the cost Ct depends on the action a, observation decision e, and state s of the component. (Bottom) An I&M 
POMDP sequence is represented where at each step t, the cost Ct depends on the action a, observation decision e, and state s of the component. In both repre
sentations, an observation outcome o is collected according to the current state, taken action and observation decision. 
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specified in monetary units, can also be included within the definition of 
the total expected cost. 

If the probabilities associated with the random events, as well as the 
costs, are assigned to each branch of the decision tree, then the branch 
corresponding to the optimal cost C*

T(a, e) can be identified. This anal
ysis is denoted backwards induction or extensive analysis. Alternatively, 
a normal analysis can also be conducted by identifying the optimal de
cision rule, h*

a,e, from all possible decision rules. In any case, the exact 
solution of a pre-posterior analysis very quickly becomes computation
ally intractable for practical problems because the number of branches 
increases exponentially with the number of time steps, actions, and 
observations. 

2.1. RBI assumptions and heuristic rules 

Risk-Based Inspection (RBI) planning methodologies [37] introduce 
simplifications to the I&M decision-making problem in order to be able 
to identify strategies in a reasonable computational time. To simplify the 
problem, the expected cost is computed only for a limited set of pre- 
defined decision rules ha,e. The best strategy among them is then iden
tified as the decision rule with the minimum cost. 

Within an I&M planning context, the total expected cost E[CT(h, tN)]

is the combination of expected costs from inspections E[CI(h,tN)], repairs 
E[CR(h, tN)], and failures E[CF(h, tN)], as a function of the imposed deci
sion rules ha,e. This expectation for a structural component designed for 
a lifetime of tN years is simply computed as: 

E[CT (h, tN)] = E[CI(h, tN)] + E[CR(h, tN)] + E[CF(h, tN)] (1)  

The simplifications introduced to the I&M decision-making problem by 
pre-defining a set of decision rules are listed below:  

i) Observations (inspections) are planned according to a pre- 
defined heuristic rule. Two heuristic rules are commonly 
employed in the literature [38]:  
• Equidistant inspections: inspections are planned at constant 

intervals of time Δt.  
• Failure probability threshold: inspections are planned just 

before a pre-defined annual failure probability ΔPF threshold is 
reached.  

ii) If the outcome of an inspection indicates damage detection 
(d > ddet), a repair action is immediately performed. In that 
case, the repair probability is equal to the probability of 
detection PR = P(d > ddet). Alternatively, other heuristic rules 
can also be imposed (adding computational complexity), such 
as that a repair is performed if an inspection indicates detection 
(d > ddet) and a pre-defined failure probability threshold PF is 
simultaneously exceeded.  

iii) After a component is repaired, it is assumed that it behaves like a 
component with no damage detection, i.e. the remaining life can 
be computed as if the inspection at the time of repair indicates 
no damage detection. With these assumptions, the decision tree 
represented in Fig. 1 can be simplified to a single branch. 
Alternatively, if a repair is performed at time t and it is assumed 
to be perfect, the component returns to its initial damage state at 
the beginning of a new decision tree with a lifetime equal to 
tN = tN −t. 

Summarizing, one can simplify the problem to one decision tree 
branch by assuming that: (i) inspections are to be planned according to a 
heuristic rule, (ii) a repair is to be performed if an inspection indicates 
detection, and (iii) after a repair is performed, the inspection at that time 
is considered as a no detection event. In this case, the individual con
tributions to the total expected cost in Eq. (1) can be computed 
analytically. 

The expected inspection cost E[CI(h, tN)] is computed as the sum of all 

conducted inspections In, with individual inspection cost Ci, and dis
counted by the factor γ ∈ [0,1]: 

E[CI(h, tN)] =
∑tIn

tI =tI1

CiγtI (2)  

The expected repair cost E[CR(h, tN)] corresponding to a heuristic 
scheme h is calculated as the repair cost Cr multiplied by the probability 
of repair PR at each inspection year tI: 

E[CR(h, tN)] =
∑tIn

tI =tI1

CrPR(h, t)γtI (3)  

The expected risk of failure E[CF(h, tN)] is computed as the sum of dis
counted annual failure risks, in which ΔPF is the annual failure proba
bility and Cf is the cost of failure: 

E[CF(h, tN)] =
∑tN

t=1
Cf ΔPF(h, t)γt (4)  

2.2. Probabilistic deterioration model and reliability updating 

Structural reliability methods and general sampling based methods 
[39] can be used to compute the probabilities associated with the 
random events represented in the I&M decision tree (Fig. 1). In a 
simplified decision tree, the main random events are the damage de
tections during inspections and the structural failure. 

The failure event is defined through a limit state gF(t) = dc −d(t), in 
which dc represents the failure criteria, such as the critical crack size, 
and d(t) is related to the temporal deterioration evolution. Uncertainties 
involved in the deterioration process are incorporated by defining d(t) as 
a function of a group of random variables or random processes. The 
probability of failure PF(t) can be then computed as the probability of 
the limit state being negative PF = P{gF(t) ≤ 0}, and the reliability index 
is inversely related to the failure probability, usually defined in the 
standard normal space as β(t) = −Φ−1{PF(t)}, in which Φ is the stan
dard normal cumulative distribution function. The probability of the 
failure event can also be defined over a reference period, e.g. the annual 
failure probability can be computed as ΔPF(t) = {PF(t) −PF(t −1)}. 

The measurement uncertainty of the available observations (in
spections) is often quantified by means of Probability of Detection 
(PoD) curves. A PoD indicates the probability of detection as a function 
of the damage size d and depends on the employed inspection method, 
i.e. the function of the detectable damage size can be modeled by an 
exponential distribution F(dd) = F0[1 − exp(−d/λ)], where F0 and λ are 
parameters determined by experiments. The event of no detection at 
time tI is then modeled by the limit state function gInd (tI) = d(tI) −dd(tI). 
Similarly, the event of detection at time tI is modeled by the limit state 
gId (tI) = dd(tI) −d(tI). Both detection and no detection events are 
evaluated as inequalities, for instance, the probability of no detection 
is assessed as the probability of the limit state being negative PInd =

P{gInd (tI) ≤ 0}. Alternatively, a discrete damage measurement dm can 
be collected and the limit state is modeled in this case as gm(tI) =

d(tI) −(dm −∊m), where ∊m is a random variable that represents the 
measurement uncertainty, and the equality event Pm = P{gm(t) = 0}

can be estimated equal to some limit, as explained in [39–41]. 
The additional information gained by observations can be used to 

update the structural reliability or failure probability PF by computing a 
failure event conditional on inspection events [42], as: 

PF|I1 ,…,IN (t) =
P

[
gF(t) ≤ 0 ∩ gI1 (t) ≤ 0 ∩ … ∩ gIN (t) ≤ 0

]

P
[
gI1 (t) ≤ 0 ∩ … ∩ gIN (t) ≤ 0

] (5)  

The conditional failure probability introduced in Eq. (5) can be 
computed by structural reliability methods (FORM, SORM) or by Monte 
Carlo sampling methods [39]. 
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3. Stochastic deterioration processes via dynamic Bayesian 
networks 

A brief overview on the adoption of dynamic Bayesian networks 
(DBNs) for structural deterioration and reliability problems is presented 
here, with the objective of demonstrating that the main principles un
derlying BNs inference tasks are fundamentally invariant to those 
employed by POMDPs. Bayesian networks (BNs) are directed acyclic 
graphical models particularly suited for inference tasks in probabilistic 
environments. A DBN is a template model of a Bayesian network 
evolving over time and in the context of structural reliability and related 
problems, DBNs have played an important role [23,24,43]. For a 
detailed background of probabilistic graphical models and BNs, the 
reader is directed to [44]. 

To allow DBNs based inference within a reasonable computational 
time for practical problems, the following assumptions are often 
imposed:  

i) Discrete state space: Exact inference algorithms are limited to 
discrete random variables [45]. A discretization operation must thus 
be performed to convert the original continuous random variables to 
the discrete space. The unknown error introduced by the dis
cretization operation converges to zero in the limit of an infinitesimal 
interval size. However, the computational complexity of the infer
ence task grows linearly with the number of states and exponentially 
with the number of random variables.  

ii) Markovian assumption: The state space S is the domain of all random 
variables involved in the description of the deterioration process, 
and the conditional probabilities P(st+1|st) associated with the 
random variables at time step t +1 depend only on the random 
variables at the current time step t, and are independent of all past 
states. 

The transition probability matrix P(st+1|st) can also be assumed as sta
tionary for some applications, thus facilitating the formulation of the 
problem. This can however be easily relaxed without entailing addi
tional computational efforts [46]. 

3.1. Parametric DBN 

A stochastic deterioration process can be represented by the DBN 
shown in Fig. 2. The deterioration is represented through the damage 
node dt which is influenced by a set of time-invariant random variables 
θt. The model is denoted as parametric DBN as the damage dt is influ
enced by the parameters θt. Imperfect observations are added into the 
DBNs by means of the node ot. This DBN can be extended by incorpo
rating time-variant random variables as proposed by [23]; yet, we 
consider only time-invariant random variables here as they are widely 
used in the literature and to avoid unnecessary presentation complica
tions. Finally, the binary node Ft provides an indication of the failure 
and survivability. 

Within the context of structural reliability and related problems, 
DBNs are often employed to propagate and update the uncertainty 
related to a deterioration process, incorporating evidence from in
spections or monitoring. Filtering becomes the preferred inference task 
for inspection and maintenance planning problems, as a decision is 
taken at time t supported by evidence gathered from the initial time step 
t0 up to time t. The belief state, defined as the probability distribution 
over states, can be propagated and updated by applying the forward 
operation from the forward–backward algorithm [45]. The transition 
algorithmic step of the forward operation is assumed to be Markovian, 
being therefore equivalent to the underlying transition model of a 
POMDP. More details on the formulation of POMDP transition models 
are introduced in Section 4.1. 

At time step t0, the initial belief corresponds to the joint probability 
of the initial damage and time-invariant parameters P(dt0 , θt0 ). The for

ward operation is then applied for the subsequent time steps, comprised 
of the following steps:  

1. Transition step: the belief propagates in time according to a pre- 
defined conditional probability distribution or transition matrix 
P(dt+1, θt+1|dt , θt), as: 

P(dt+1, θt+1|o0, …, ot)

=
∑

dt

∑

θt

P(dt+1, θt+1|dt, θt)P(dt, θt|o0, …, ot) (6)    

2. Estimation step: the belief is now updated based on the obtained 
evidence by means of Bayes’ rule, as: 

P(dt+1, θt+1|o0, …, ot+1) ∝ P(ot+1|dt+1)P(dt+1, θt+1|o0, …, ot) (7)  

The quality of the observation is quantified by the likelihood 
P(ot+1|dt+1). This likelihood can be directly obtained from probabil
ity of detection curves or by discretizing a direct measurement. Since 
the random variables are discrete, a normalization of P(dt+1, θt+1|o0,

…, ot+1) can be easily implemented. 

The failure probability assigned to the node Ft corresponds to the 
probability of being in a failure state. As the failure states are defined 
based on the damage condition dt , the time invariant parameters θt can 
be marginalized out to compute the failure probability. Disregarding the 
discretization error, the resulting structural reliability is equivalent to 
the one computed in Eq. (5). 

In terms of computational complexity, note that the belief is 
composed of (|θ1|⋅…⋅|θk| |d|) states, defined by the damage d along with k 
time-invariant random variables. Thus, the transition matrix includes 
(|θ1|⋅…⋅|θk| |d|)

2 elements. Since P(θt+1|θt) is defined by an identity 
matrix, the transition is prescribed by a very sparse, block-diagonal 
matrix with a maximum density of ρP = 1/(|θ1|⋅…⋅|θk|). 

3.2. Deterioration rate DBN 

We present herein an alternative DBN in which a stochastic deteri
oration process is represented as a function of the deterioration rate. 
This model is adopted from [47] and denoted here as deterioration rate 
DBN. Fig. 3 graphically illustrates the model. In this case, the stochastic 
deterioration process is described in time t by the nodes dt, conditional 
on the deterioration rate τt . If the stochastic process is stationary, the 
deterioration evolution will vary equally over time, and thus the dete
rioration rate τt is not utilized. The deterioration does not, however, 
progress equally over time in a non-stationary process, and in that case, 
the parameter τt needs to be incorporated to effectively model the 
varying deterioration effects over time. After collecting experimental or 

Fig. 2. Parametric dynamic Bayesian network, adapted from [23]. The evolu
tion of a stochastic deterioration process is represented by the nodes dt influ
enced by a set of time-invariant random variables θt . Imperfect observations are 
added through the nodes ot, and Ft binary node indicates the probability of 
failure and survival events. 
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physically-based simulated data (e.g. Monte Carlo simulations) from a 
non-stationary deterioration process, the transition probabilities can be 
calculated, for each deterioration rate τt, by counting the number of 
transitions from dt to dt+1 over the total data available in dt . Additional 
methods to compute the transition model are described in [47]. As 
illustrated in Fig. 3, imperfect observations are added through the nodes 
ot and the structural reliability is indicated through the node Ft . 

To ensure compliance with the DBNs time invariant property, the 
belief incorporates both the damage condition and deterioration rate 
through the joint probability P(dt , τt). Yet, the node τt is a zero-one 
vector (one-hot) that transitions each time step from one deterioration 
rate τi to the next τi+1. The deterioration evolution is computed by a 
forward operation in a similar manner as for the parametric DBN. 
Initially, the belief corresponds to the joint probability P(d0, τ0). Sub
sequently, the belief experiences a transition according to the transition 
matrix P(dt+1, τt+1|dt , τt): 

P(dt+1, τt+1|o0, …, ot)

=
∑

dt

∑

τt

P(dt+1, τt+1|dt, τt)P(dt, τt|o0, …, ot) (8) 

Based on the gathered observations, the beliefs are then updated by 
applying Bayes’ rule. The likelihood P(ot+1|dt+1) can be directly defined 
from probability of detection curves or other observation uncertainty 
measures: 

P(dt+1, τt+1|o0, …, ot+1) ∝ P(ot+1|dt+1)P(dt+1, τt+1|o0, …, ot) (9) 

The computational complexity is influenced by the belief size. For 
the case of a deterioration rate DBN, the belief P(dt , τt) is composed of 
|τ|⋅|d| states and its sparse transition matrix P(dt+1, τt+1|dt , τt) accounts 
for (|τ| |d|)

2 elements. Since the only non-zero probabilities of the 
transition matrix P(τt+1|τt) are the ones to define the transition from 
deterioration rate τt to the next deterioration rate τt+1, the maximum 
density of P(dt+1, τt+1|dt , τt) is ρDR = 1/|τ|. 

Advantages between a parametric DBN and a deterioration rate one 
are case dependent. If the deterioration process can be modeled by just 
few parameters or it evolves over a long time span, the parametric DBN 
is recommended. However, if the deterioration modeling involves many 
parameters or complex random processes spanning over a short time 
horizon, the deterioration rate DBN should be preferred. If both DBN 
models are applied for the same problem, the results should be equiv
alent and differences are only affected by the discretization error. 

3.3. Risk-based inspection planning and DBNs 

While DBNs can be successfully used for reliability updating, they do 
not possess by themselves intrinsic optimization capabilities. To this 
end, modern RBI methodologies include a combination of DBNs and 
heuristic rules to identify the optimal strategy [43,48]. The 

methodologies often follow a similar logic as the theoretical scheme 
presented in Section 2, where the decision tree is simplified. 

Alternatively, the optimal I&M strategy among different alternatives 
can be identified with the support of DBNs in a simulation environment. 
Any of the proposed DBN types (Sections 3.1 and 3.2) can be generalized 
to an influence diagram by adding utility and decision nodes [24]. The 
total cost CT for a set of pre-defined heuristic rules ha,e can be computed 
by simulating one episode ep of length tN as: 

CTep (h) =
∑tN

t=t0

[
Ci(t)γt + Cr(t)γt + ΔPF(t)Cf γt] (10)  

The total expected cost E[CT(h)] is then computed with a Monte Carlo 
simulation of nep episodes (policy realizations): 

E[CT (h)] =

∑nep
ep=1

[
CTep (h)

]

nep
(11)  

One can compute the costs of all pre-defined heuristic rules and identify 
the strategy with the minimum expected cost as the optimal policy. 
However, the resulting optimal policies might be compromised due to 
the limited space covered by the imposed heuristic rules, out of all 
possible decision rules. 

4. Optimal I&M planning through POMDPs 

We propose herein a methodology for optimal I&M planning of 
deteriorating structures under uncertainty based on Partially Observable 
Markov Decision Processes (POMDPs). The methodology is adopted by 
similar frameworks, as studied in [49]. While the damage evolution was 
modeled in [49] as function of its deterioration rate, following the 
formulation presented in Section 3.2, we extend here the methodology 
to deterioration mechanisms modeled as functions of time-invariant 
parameters, formulated according to Section 3.1. In addition, the user 
penalty is defined in this work as a consequence of the annual failure 
probability experienced by the component. 

A Markov decision process (MDP) is a 5-tuple 〈S, A, T, R, γ〉 controlled 
stochastic process in which an intelligent agent acts in a stochastic 
environment. The agent observes the component at state s ∈ S and takes 
an action a ∈ A, then the state randomly transitions to state s′

∈ S ac
cording to a transition probability model T(s,a,s′

) = P(s′

|s,a), and finally 
the agent receives a relevant reward Rt(s, a), where t is the current de
cision step. 

As described in Section 1, the optimal decisions result in a mini
mum expected cost. The expected cost, or value function, is expressed 
for a finite horizon MDP as the summation of the decomposed rewards 
V(s0) = Rt0 + … + RtN−1 γtN−1 , from time step t0 up to the final time step 
tN−1. For an infinite or unbounded horizon MDP, the rewards are 
infinitely summed up (tN = ∞). Note that the rewards are discounted 
by the factor γ. From an economic perspective, the discount factor 
converts future rewards into their present value. Computationally, 
discounting is also necessary to guarantee convergence in infinite 
horizon problems. 

An MDP policy (π : S→A) prescribes an action as a function of the 
current state. The main goal of an MDP is the identification of the 
optimal policy π*(s) which maximizes the value function V*(s). There 
exist efficient algorithms that compute the optimal policy using the 
principles of dynamic programming and invoking Bellman’s equation. 
Both value and policy iteration algorithms can be implemented to 
identify the optimal policy π*(s) [50]. While the state of the component 
in an MDP is known at each time step, imperfect observations are usually 
obtained in real situations, e.g. noise in the sensor of a robot, mea
surement uncertainty of an inspection, etc. POMDPs are a generalization 
of MDPs in which the states are perceived by the agent through imper
fect observations. The POMDP becomes a 7-tuple 〈S,A,O,T,Z,R,γ〉. While 
the dynamics of the environment are the same as for an MDP, an agent 

Fig. 3. Deterioration rate dynamic Bayesian network, derived from [47]. The 
evolution of a stochastic deterioration process is represented by the nodes dt 

dependent on the deterioration rate τt . Imperfect observations are included 
through the nodes ot, and Ft binary node indicates the probability of failure and 
survival events. 
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collects an observation o ∈ O in the state s′

∈ S with emission probability 
Z(o, s′

, a) = P(o|s′

, a), after an action a ∈ A is taken. Fig. 4 shows the 
dynamic decision network of a POMDP, which is built based on a 
parametric model. A deterioration rate POMDP can be equally repre
sented if one replaces the time-invariant parameters θ by a deterioration 
rate variable τ. 

Since an agent is uncertain about the current state, the decisions 
should in principle be planned based on the full history of observations 
o1 : ot, up to the current decision step t. Instead, a belief state b(s) is 
tracked to plan the decisions. A belief state b(s) is a probability distri
bution over states and it is updated as a function of the transition T(s′

, a, s)
and collected observation Z(o,s′

,a): 

b′

(s′

) ∝ P(o|s′

, a)
∑

s∈S
P(s′

|s, a)b(s) (12)  

The normalizing constant P(o|b, a) is the probability of collecting an 
observation o ∈ O given the belief state b and action a ∈ A. 

One can see in Eq. (12) that for a specific action a ∈ A, updating a 
belief is equivalent to the forward operation described for DBNs in Eqs. 
(6)–(9). Yet, the main objective of a POMDP is to identify the optimal 
policy π*(b) as a function of the belief state b. Since the belief state is a 
sufficient statistic equivalent to the history of all taken actions and 
gathered observations, a policy π*(b) as function of b will always be 
optimal, as compared to a policy π(h) constrained by a limited set of 
heuristic rules ha,e. This is also demonstrated through numerical exper
iments in Section 5. In Section 4.1, POMDP implementation details are 
provided and in Section 4.2, we explain how point-based solvers are able 
to solve high-dimensional state space POMDPs and find the optimal 
strategies. 

4.1. POMDP model implementation 

A systematic scheme for building a POMDP model in the context of 
optimal inspection and maintenance planning is provided in this section. 
A POMDP is built by defining all the elements of the tuple 〈S,A,O,T,Z,R,γ〉. 
While most of the reported applications of POMDPs for infrastructure 
planning employed a deterioration rate model [49], a parametric model 
as presented in Section 3.1 is originally implemented here. 

4.1.1. States 
For the typical discrete state MDP/POMDP cases, a discretization 

should be first performed for continuous random variables, transforming 
them to the discrete state space. As mentioned in Section 3, an efficient 
discretization has to balance model fidelity and computational 
complexity. 

To construct an infinite horizon POMDP equivalent to the DBN 
parametric model presented in Section 3.1, the states St = Sdt × Sθ are 
assigned as the domain instances of the joint probability P(dt , θ). 
POMDPs are often represented in robotics applications by Markov hid
den models containing only one hidden random variable. This has 
induced some confusion in the literature, where it is reported that 
POMDPs cannot handle deterioration mechanisms as function of time- 
invariant parameters [51]. However, a deterioration represented by 
time-invariant parameters can be easily modeled with POMDPs by 
augmenting the state space to include the joint probability distribution 
P(dt , θ). While state-augmentation techniques have been already pro
posed in the literature [49,52,53], we particularly augment the state 
space here in order to specify the POMDP dynamics based on deterio
ration processes modeled as parametric DBNs that also include time- 
invariant parameters. This approach can also accommodate formula
tions with model updating. Naturally, augmenting the state space im
plies an increase of computational complexity, as is the case for both 
DBNs and POMDPs. 

If the deterioration rate model (Section 3.2) is instead preferred, the 
states St = Sdt × Sτt are defined directly from the domain of the joint 
probability P(dt , τt). The implementation for this case is documented in 
[49]. At the initial time step, one can prescribe the initial belief b0 as the 
joint probability P(dt=0, θ) or P(dt=0, τ0). 

4.1.2. Action-observation combinations 
Actions a ∈ A correspond to maintenance actions, such as “do- 

nothing”, “perfect-repair” or “minor-repair”, and observation action 
e ∈ E are defined based on the available inspection or monitoring 
techniques, such as “no-observation”, “visual-inspection” or “Nonde
structive Evaluation (NDE)-inspection”. 

Since rewards are assigned as a result of an agent who takes an action 
and perceives an observation, it is recommended to combine actions and 
observations into groups [49]. For instance, one can combine the action 
“do-nothing” with two inspections, resulting in the two combinations: 
“do-nothing/visual-inspection” or “do-nothing/NDE-inspection” and a 
relevant reward will be assigned to each combination. 

4.1.3. Transition probabilities 
A transition matrix T(s, a, s′

) models the transition probability P(s′

|s, a)

of a component from state s ∈ S to state s′

∈ S after taking an action a ∈ A. 
Therefore, the transition matrix is constructed as a function of the main
tenance actions:  

• Do-nothing (DN) action: there is no maintenance action planned in 
this case and the state evolves according to the stochastic deterio
ration process. For an infinite horizon POMDP, the transition prob
ability T(s, aDN, s′

) is equal to the transition matrix P(dt+1, θt+1|dt , θt)

or P(dt+1, τt+1|dt , τt), derived in Section 3.  
• Perfect repair (PR) action: a maintenance action is performed and the 

component returns from its current damage belief bt, at time step t, to 
the belief b0, associated with an intact status. In a belief space 
environment, a perfect repair transition matrix is defined as: 

P(s′

|s, aPR) =

⎛

⎜
⎜
⎝

b0(s0) b0(s1) ⋯ b0(sk)

b0(s0) b0(s1) ⋯ b0(sk)

⋮ ⋮ ⋱ ⋮
b0(s0) b0(s1) ⋯ b0(sk)

⎞

⎟
⎟
⎠ (13)  

Since the belief state is a probability distribution, the summation 
over all the states is equal to one (

∑
bt(s) = 1). If one multiplies a 

belief state by the transition matrix defined in Eq. 13, the current 
belief returns to the belief b0, independently of its current condition 

Fig. 4. Graphical representation of a Partially Observable Markov Decision 
Process (POMDP). The states St are modeled as the joint distribution of the 
time-invariant parameters θt and the damage size dt . The imperfect observa
tions are modeled by the node ot. Actions at are represented by rectangular 
decision nodes and rewards Rt are drawn with diamond shape nodes. A dete
rioration rate POMDP can be graphically modeled by adding a deterioration 
rate variable τt instead of the time-invariant parameters θt . 
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as: 

b0(s) = bt(s) P(s
′

|s, aPR) (14)  

If the states are fully observable, the belief state becomes a zero-one 
vector and a perfect repair matrix can be formulated as P(s0|st ,aPR) =

1, transferring any state st to the intact state s0.  
• Imperfect repair (IR) action: a maintenance action is performed and 

the component returns from a damage belief bt to a healthier damage 
state or more benign deterioration rate. The definition of the repair 
transition matrix P(st+1|st , aIR) is thus case dependent. Some exam
ples can be found in [49]. 

4.1.4. Observation probabilities 
An observation matrix Z(o, s′

, a) quantifies the probability P(o|s′

, a) of 
perceiving an observation o ∈ O in state s′

∈ S after taking action a ∈ A. 
Note that we denote the observation action as a to be coherent with 
usual POMDP formulation; yet the observation action could be also 
named as e to be consistent with the nomenclature used in Section 2.1. 
The relevant observation actions considered here are:  

• No observation (NO): the belief state should remain unchanged after 
the transition as no additional information is gathered. The emission 
probability P(o|s′

, aNO) can be modeled as a uniform distribution over 
all observations. Alternatively, it can be modeled as P(o0|s′

,aNO) = 1. 
The former is recommended as it will speed up the computation [49].  

• Discrete indication (DI): the likelihood P(o|s′

, aDI) is modeled as a 
discrete event, for instance, a binary indication: detection or no- 
detection. The likelihood is usually quantified for the binary case 
by a Probability of Detection (PoD) curve. A PoD(s′

) is equivalent to 
the probability P(oD|s′

) of collecting an observation oD ∈ O as func
tion of the state s′

∈ s, and the emission probability can be directly 
implemented as P(oD|s′

, aDI) = PoD(s′

). The implementation can be 
equally applied for a higher dimensional discrete observation space.  

• Continuous indication (CI): the likelihood P(o|s′

, aCI) is modeled as a 
continuous distribution, for example, a direct measure of a crack. In 
this case, the observation space must be discretized into a finite set of 
observations. 

4.1.5. Rewards 
An agent having a belief b, receives a reward R(b, a) after taking an 

action a ∈ A and collecting an observation o ∈ O. In a MDP, the reward 
R(s, a) is defined as a function of the state, while in a POMDP, the reward 
R(s, a) is weighted over the belief state b to finally obtain R(b,a): 

R(b, a) =
∑

s∈S
b(s)R(s, a) (15)  

For ease of notation, the reward model is formulated hereafter based on 
the same notation used for the definition of the RBI cost model in Section 
2. If desired, societal, environmental, and other consequences can also 
be incorporated to the reward model. In the context of infrastructure 
planning, the state cost C(s, a, s′

) is defined depending on the action- 
observation combination. Some recommendations are listed below:  

• Do-nothing/no-observation (DN/NO): this case corresponds to 
computing the failure risk. Once the failure state subspace SF⫅S is 
defined, the annual failure probability is the probability P(S′

F
⃒
⃒S) of 

reaching any state in the failure state subspace S
′

F from the state space 
S. Alternatively, Eq. 16 defines the cost CF(s, aDN−NO) only as a function 
of the initial state s ∈ S, if the transition matrix P(s′

|s, a) is implicitly 
considered. This option leads to a faster computation with a point- 
based solver, as explained subsequently. The cost value C(s, aDN−NO)

is equal to the failure cost Cf if s ∈ SF, and equal to 0, otherwise: 

CF(s, aDN−NO) =
∑

s′
∈SF

{
P(s′

|s, aDN−NO)Cf
}

− C(s, aDN−NO) (16)    

• Do-nothing/observation (DN/O): the cost is equal in this case to the 
one related failure risk plus one inspection cost. Both discrete and 
continuous indications can be included in this category. One can 
therefore compute the cost CO(s, aDN−O) just by further considering 
the inspection cost Ci: 

CO(s, aDN−O) = CF(s, aDN−NO) + Ci (17)    

• Repair/no-observation (R/NO): the cost CR(s, aR−NO) is equal to the 
repair cost Cr: 

CR(s, aR−NO) = Cr (18)  

The cost CR(s, aR−O) for a repair/inspection combination can be 
similarly defined by including also the inspection cost Ci along with 
the repair cost CR(s,aR−NO). 

4.2. Point-based POMDP solvers 

In principle, one could apply a value iteration algorithm [54] to solve 
a POMDP. While value updates are computed in a |S|-dimensional 
discrete space for an MDP, value updates for POMDPs should be instead 
computed in a (|S| −1)-dimensional continuous space. The computation 
thus scales up considerably with the number of dimensions, increasing 
the computational complexity. This fact is denoted as the curse of 
dimensionality. Moreover, planning in a horizon tN also suffers from the 
curse of history, as the number of potential action-observation histories 
scales exponentially with the number of time steps. Hence, solving 
POMDPs by applying a value iteration algorithm to the whole belief 
state space B, or even to a discretized belief space grid, becomes 
computationally intractable for practical problems. 

Relatively recent, however, point-based solvers have emerged able to 
solve high-dimensional state space POMDPs. Point-based solvers 
compute value updates only based on a representative set of belief 
points. Several point-based solvers [30,31,55] have been presented in 
the literature. Their main difference is their basis for selecting the set of 
representative belief points. The reader is directed to [56] for a detailed 
analysis of point-based solvers applied to infrastructure planning 
problems. 

In an I&M planning context, the main objective is to identify the 
optimal policy, as explained in Section 2. Instead of constraining the 
policy space with pre-defined decision rules, POMDPs’ main objective is 
to find the sequence of actions a0, …, at that maximizes the expected sum 
of rewards for each belief b ∈ B. The value function is then formulated 
as a function of beliefs: 

V*(b) = max
a∈A

[
∑

s∈S
b(s)R(s, a) + γ

∑

o∈O
P(o|b, a)V*(bs′ )

]

(19)  

It is demonstrated in [57] that the value function is piece-wise linear and 
convex when it is solved exactly. The piece-wise linearity property is 
related to an effective value function parametrization by a set of hyper- 
planes or α-vectors ∈ Γ, each of them associated with an action a ∈ A. 
The optimal policy π*(b) can be selected by identifying the α-vectors that 
maximize the value function V*(b): 

V*(b) = max
α∈Γ

∑

s∈S
α(s)b(s) (20)  

The convexity property now is associated with the value of information 
theory [58], i.e. lower-entropy states result in better decisions and as 
such have higher expected values than higher-entropy states. Both of 
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these properties of piece-wise linearity and convexity can be easily 
visualized in up to 4D state spaces, e.g. in [34]. Naturally, in applica
tions where the state space is augmented, as explained in Section 4.1, the 
belief still remains a probability over states and the value function 
preserves its piece-wise linearity and convexity at this newly defined, 
enhanced state space. 

4.2.1. Finite horizon POMDPs 
Existing point-based solvers are mostly able to solve large state space 

problems for infinite horizon POMDPs [59]. However, an infinite hori
zon POMDP can be transformed to a finite horizon one by augmenting 
the state space, as proposed by [12,34,49]. In this case, the time must be 
encoded in the state space and a terminal state is required. Note that the 
resulting transition, observation and reward matrices will be very 
sparse. Yet, it remains essential to augment the space efficiently by 
taking into consideration the nature of the decision-making problem. 
Some recommendations are listed below:  

• Parametric model: the transition model is stationary. Then, the same 
transition matrix built for an infinite horizon POMDP can be reused 
for any time step of the augmented, finite horizon POMDP. To ensure 
a finite horizon, the last time step must include an absorbing state. 
An infinite horizon POMDP with |S| states and |A| actions can be 
augmented to a |A| |S| tN +|S| +1 finite horizon one with horizon tN.  

• Deterioration rate model: the state space can be efficiently formatted 
if the component experiences only one deterioration rate per time 
step. This way, one deterioration rate is considered at the first time 
step, two deterioration rates at the second time step, and so on, 
incorporating one additional deterioration rate per step until the last 
time step is reached. An absorbing state must also be included at the 
end. A deterioration rate model with |Sd| states, spanning over a tN 
horizon and two actions (do-nothing and one maintenance action) 
becomes a finite horizon POMDP with 
{(tN + 1)

2⃒
⃒Sd

⃒
⃒ +(tN +1)

⃒
⃒Sd

⃒
⃒}/2 +1 states. Additional maintenance 

actions can be included without an increase of the state space if they 
do not introduce additional/new deterioration rates. 

5. Numerical experiments: Crack growth represented by time- 
invariant parameters 

With the main objectives of providing implementation details for the 
two presented POMDP formulations, as well as quantifying the differ
ences in policies and costs between POMDP and heuristic-based I&M 
approaches, a set of numerical experiments is performed in this section. 
All computations are conducted on an Intel Core i9 −7900X processor 
with a clock speed of 3.30 GHz. The experiments consist in identifying 
the optimal I&M strategy for a structural component subjected to fatigue 
deterioration. In particular, the first presented I&M planning setting (in 
Section 5.2) is inspired by an earlier investigation of risk-based main
tenance planning methods [51]. In that study, the fatigue deterioration 
model was approximated by a 2-parameter Weibull distribution, 
whereas a physically-based crack growth model is directly utilized here. 
According to this fracture mechanics model, the crack size dt+1 is 
computed as a function of the crack size at the previous time step dt: 

dt+1 =
[(

1 −
m
2

)
CFMSm

R πm/2n + d1−m/2
t

]2/(2−m)

(21) 

This Markovian model is derived from Paris’ law, as shown in [39]. 
The process uncertainty is incorporated through the random variables 
listed in Table 1, where SR stands for stress range, CFM corresponds to a 
crack growth parameter, and d0 represents the initial crack size. While 
the crack distribution evolves over time, the parameters CFM and SR are 
time-invariant random variables. The remaining parameters, i.e. the 
crack growth parameter m and the number of cycles n are considered 
deterministic. The component fails once the crack exceeds the plate 

thickness dc and its considered life spans over a finite horizon tN of 30 
years. 

5.1. Discretization analysis 

A discretization analysis is performed to select an appropriate state 
space for this application. As explained in Section 3, either a parametric 
model or a deterioration rate model can be used to track the deterio
ration. The transition models are calculated, for both DBN models, based 
on data collected from simulations of the fracture mechanics model in 
Eq. (21). The POMDPs associated with these models are graphically 
represented in Fig. 5. Note that the parameters CFM and SR are grouped 
together for the parametric model, resulting in a new parameter K. By 
combining two random variables into one, we alleviate computational 
efforts [23]. K thus corresponds to CFMSm

R πm/2n. 
The main purpose of a proper discretization is to allocate the relevant 

intervals so that a high accuracy is achieved, without hindering 
computational tractability. Although several simulations were run, the 
reported results are mainly related to the case in which two inspections 
are planned at years 18 and 25, resulting in a no-detection outcome. The 
inspection quality is quantified with a probability of detection curve 
PoD(d) ∼ Exp[μ = 8]. A crude Monte Carlo Simulation (MCS), contain
ing 107 samples, was run to estimate the cumulative failure probability 
PFMCS (Eq. (5)). The accuracy is quantified here as the squared difference 
between PFMCS and the cumulative failure probability PF retrieved by 
each discretized state space model. PF was obtained by unrolling a DBN 
over time. Note that PF can be calculated directly through a DBN, as the 
probability of being in the failure states of d. Both PFMCS and PF are 
normalized to PF = (PF −μPF−MCS

)/σPF−MCS , where μPF−MCS 
and σPF−MCS are the 

mean and standard deviation of the failure probabilities computed by 
MCS, respectively. The error ξ is computed as the squared difference of 
PFMCS and PF for each time step: 

ξ =
∑N

t=0

[
PFMCS

(
t
)

− PF

(
t
)]2

(22) 

Table 2 lists the discretization intervals for both parametric and 
deterioration rate models. Since the discretization is arbitrary, the in
terval boundaries were selected by trial and error, according to the 
recommendations proposed in [23], i.e. a logarithmic transformation is 
applied to both Sd and Sk spaces. Different state spaces were also tested 
by varying the number of states for |K| and |d|. Table 3 reports the error ξ 
for each considered state space. While the deterioration rate model of 
930 overall states results in an error of magnitude less than 10−3, the 
state space of the parametric model is increased up to 16,000 overall 
states to achieve an error of magnitude less than 10−3. To illustrate the 
differences between the analyzed models, Fig. 6 shows the unnormal
ized error 

⃒
⃒PFMCS −PFDBN

⃒
⃒ for each case. The error of the deterioration rate 

model is negligible before the first inspection update at 18 years, while 
the parametric model accumulates error throughout the whole analysis. 

In general, the selection of the discretized model will depend on the 
available computational resources and required accuracy. For this 

Table 1 
Random variables and deterministic parameters utilized to model fatigue 
deterioration.  

Variable Distribution Mean Standard Deviation 

ln(CFM) Normal −35.2  0.5  

SR(N/mm2) Normal 70 10 

d0(mm) Exponential 1 1 
m Deterministic 3.5  – 
n(cycles) Deterministic 106  – 

tN(yr) Deterministic 30 – 
dc(mm) Deterministic 20 –  
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application, the deterioration rate model with 930 states is utilized for 
the numerical experiments, due to its reduced state space as compared to 
the parametric models. 

5.2. Case 1. Traditional I&M planning setting 

The fatigue deterioration is modeled according to the time-invariant 
crack growth described at the beginning of Section 5. In this traditional 
setting, the decision maker is only allowed to control the deterioration 
by undertaking a perfect repair and is able to collect observations 
through one inspection technique type. The perfect repair returns the 
component to its initial condition d0 and the quality of the inspection 
technique is quantified with a PoD(d) ∼ Exp[μ = 8]. This I&M decision- 

making problem is solved here by both POMDPs and heuristics. For the 
case of POMDPs, point-based solvers provide a theoretical guarantee to 
optimality, whereas RBI approaches can analytically compute the E[CT ]

from a simplified decision tree, as explained in Section 2. Alternatively, 
the computation of the E[CT] can be performed in a simulation envi
ronment, in which the deterioration process is modeled by DBNs and the 
costs are evaluated according to the predefined heuristic policies, as 
shown in Eq. (11). To equally compare the policies generated by POMDP 
and heuristics, the total expected costs E[CT] are computed both on an 
analytical basis and in a simulation environment. 

5.2.1. Analytical comparison 
Following the results of the discretization analysis, a finite horizon 

(FH) POMDP is derived from the deterioration rate model with 930 
states (|Sd| = 30 and |Sτ| = 31). Since the horizon spans over 30 years, 
the state space is augmented from 930 to 14,880 states, as explained in 
Section 4.2. Actions and observations are combined into three action- 
observation groups: (1) do-nothing/no-inspection, (2) do-nothing/ 
inspection, and (3) perfect-repair/no-inspection. The fourth combina
tion (repair/inspection) is not included as it will hardly be the optimal 
action at any time step. A total of three representative experiments are 
conducted, assigning different inspection, repair and failure costs to 
each of them. Each experiment is characterized by a different ratio be
tween repair and inspection costs RR/I, as well as the ratio between 
failure and repair costs RF/R. Since these ratios are of relevance in this 
work, analyzing the problem from an optimization perspective, an 
explicit separation of economic, societal, and environmental conse
quences and their scaling to monetary units is not considered. The 
SARSOP point-based POMDP solver [30] is used for the computation of 
the optimal I&M policies. Additionally, the policies from FRTDP [31] 
and Perseus [55] point-based solvers are computed specifically for 
experiment RR/I50 −RF/R20. In this theoretical comparison, the expected 
costs are computed based on the lower bound alpha vectors, as 
explained in Section 4.2. 

In contrast, the optimal RBI policies are determined based on the best 
identified heuristic decision rules. For this theoretical comparison, the 
decision tree is simplified to a single branch with two schemes consid
ered here: equidistant inspections (EQ-INS) and annual failure proba
bility ΔPF threshold (THR-INS). For the maintenance actions, the 
component is perfectly repaired after a detection indication, behaving 
thereafter as if a crack was not detected at that inspection. The opti
mized heuristics for each experiment are listed in Table 4, e.g. an 

Fig. 5. Graphical representation of the POMDPs utilized for the numerical experiments. A parametric POMDP and a deterioration rate POMDP are created from the 
DBNs displayed in Figs. 2 and 3, respectively. Note that the random variables CFM and SR are combined into the variable K. 

Table 2 
Description of the discretization schemes considered in the sensitivity analysis, 
for both parametric and deterioration rate POMDP models.  

Variable Interval boundaries 

Parametric model 
Sd  0, exp

{

ln
(

10−1)
:

ln(dc) − ln(10−1)

|Sd | − 2
: ln(dc

)}

, ∞  
SK  0, exp

{

ln
(

10−5)
:

ln(1) − ln(10−5)

|SK| − 2
: ln(1

)}

, ∞   

Deterioration rate model 
Sd  0, exp

{

ln
(

10−4)
:

ln(dc) − ln(10−4)

|Sd | − 2
: ln(dc

)}

, ∞  

Sτ  0 : 1 : 30   

Table 3 
Accuracy of the considered discretization schemes. The normalized error ξ and 
state spaces corresponding to each parameter are reported.  

Model |SK| |Sτ | |Sd| |S| ξ  

Deterioration rate (DRd15)  – 31 15 465 8.6⋅10−3  

Deterioration rate (DRd30)  – 31 30 930 2.1⋅10−4  

Parametric (PARK50−d40)  50 – 40 2,000 7.1⋅10−2  

Parametric (PARK50−d80)  50 – 80 4,000 7.2⋅10−3  

Parametric (PARK50−d160)  50 – 160 8,000 3.4⋅10−3  

Parametric (PARK100−d80)  100 – 80 8,000 2.5⋅10−3  

Parametric (PARK100−d160)  100 – 160 16,000 4.3⋅10−4   
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Fig. 6. Error |PFMCS −PFDBN | between the continuous deterioration model and the considered discrete space models. The continuous model is computed by a Monte 
Carlo simulation of 10 million samples and is compared with discrete state-space DBN models. The circles in the graph represent the error from deterioration rate 
models and the squares represent the error from parametric models. 

Table 4 
Analytical (AN) and simulation-based (SIM) comparison between POMDPs and optimized heuristic-based policies in a traditional setting. E[CT ] is the total expected 
cost and Δ%[POMDP FH] indicates the relative difference between each method and SARSOP finite horizon POMDP. Confidence intervals on the expected costs, 
assuming Gaussian estimators, are listed for the simulation-based cases.  

Traditional setting E[CT] (95%C.I) Δ%[POMDP FH]  

Experiment RR/I20 −RF/R100    

Ci = 5, Cr = 102,Cf = 104, γ = 0.95    
AN: POMDP Finite horizon. SARSOP – Lower bound 58.35 – 
AN: Heur.* EQ-INS ΔIns = 4  69.17 +18% 

AN: Heur.* THR-INS ΔPFth = 3⋅10−4  65.62 +12% 

SIM: POMDP Infinite horizon. SARSOP – 30 years** 60.23 (±0.76)  +3% 
SIM: Heur. EQ-INS ΔIns = 4  69.02 (±0.83)  +18% 

SIM: Heur. THR-INS ΔPFth = 3⋅10−4  64.81 (±0.75)  +11%  

Experiment RR/I10 −RF/R10    

Ci = 1, Cr = 10,Cf = 102, γ = 0.95    
AN: POMDP Finite horizon. SARSOP – Lower Bound 2.25 – 
AN: Heur.* EQ-INS no inspections 2.25 +0% 
AN: Heur.* THR-INS no inspections 2.25 +0% 
SIM: POMDP Infinite horizon. SARSOP – 30 years** 2.50 (±0.02)  +11% 
SIM: Heur. EQ-INS no inspections 2.25 (±0.00)  +0% 
SIM: Heur. THR-INS no inspections 2.25 (±0.00)  +0%  

Experiment RR/I50 −RF/R20    

Ci = 1, Cr = 50,Cf = 103, γ = 0.95    
AN: POMDP Finite horizon. SARSOP – Lower Bound 12.45 – 
AN: POMDP Finite horizon. FRTDP – Lower Bound 12.45 +0% 
AN: POMDP Finite horizon. PERSEUS – Lower Bound 12.96 +4% 
AN: Heur.* EQ-INS ΔIns = 11  17.06 +37% 

AN: Heur.* THR-INS ΔPFth = 1⋅10−3  16.69 +34% 

SIM: POMDP Infinite horizon (DR). SARSOP – 30 years** 12.99 (±0.24)  +4% 
SIM: POMDP Infinite horizon (PAR). SARSOP – 30 years** 13.08 (±0.23)  +5% 
SIM: Heur. EQ-INS ΔIns = 11  16.28 (±0.19)  +31% 

SIM: Heur. THR-INS ΔPFth = 1.5⋅10−3  16.43 (±0.20)  +32% 

SIM: Heur. EQ-INS*** ΔIns = 5  14.17 (±0.26)  +14% 

SIM: Heur. THR-INS*** ΔPFth = 8⋅10−4  13.29 (±0.23)  +7%  

* The decision tree is simplified to one single branch, as explained in Section 2.1. 
** Simulation of an infinite horizon POMDP policy over a horizon of 30 years. 
*** Perfect repair actions are undertaken after two consecutive ‘detection’ observations. 
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inspection every 4 years (ΔIns = 4) is identified as the optimal equidis
tant inspection heuristic (EQ-INS) for Experiment RR/I20 −RF/R100. 

The total expected cost E[CT] resulting from finite horizon POMDPs 
and the best identified heuristics are listed in Table 4. Along with the 
E[CT], the relative difference between each method and the finite hori
zon POMDP is also reported, and Table 4 demonstrates that finite ho
rizon POMDP policies outperform heuristic-based policies. Even for this 
traditional I&M decision-making problem, POMDPs provide a signifi
cant cost reduction ranging from 11% in Experiment RR/I20 −RF/R100 to 
37% reduction in Experiment RR/I50 −RF/R20. Experiment 
RR/I10 −RF/R10 is merely conducted to validate the comparative results 
by checking that all the methods provide the same results for the case in 
which repairs and inspections are very expensive relatively to the failure 
cost. 

As pointed out in Section 4.2, point-based solvers are able to rapidly 
solve large state-space POMDPs. This is demonstrated in Fig. 7, where 
SARSOP outperforms heuristic-based schemes in less than one second of 
computational time. Note that POMDP policies are based on the lower 
bound, whereas the upper bound, when provided, is just an approxi
mation, to optimally sample reachable belief points [56]. 

5.2.2. Comparison in a simulation environment 
In this case, the total expected cost E[CT ] is evaluated in a simulation 

environment. Since the horizon can be controlled in a policy evaluation, 
infinite horizon POMDPs are also included in this comparison. The 
infinite horizon POMDP is directly derived from the deterioration rate 
model, and while the action-observation combinations remain the same 
as for the finite horizon POMDP, the belief space is now reduced to 930 
states, offering a substantial reduction in computational cost, as 
explained before. Note that even though policies generated by infinite 
horizon POMDPs can be evaluated over a finite horizon, the policies are 
truly optimal only in an infinite horizon setting. 

In this comparison, the best heuristic-based I&M policy is also 
identified by analyzing two inspection planning heuristics, as previ
ously, either based on equidistant inspections (EQ-INS) or based on an 
annual failure probability threshold (THR-INS). However, in this simu
lation setting, the component naturally returns to its initial condition 
after a repair, instead of modeling its evolution as a no-detection event. 
This operation might add a significant computational expense for 
analytical computations, if the decision tree is explicitly modeled; 
however, it can be easily modeled in a simulation-based environment. 

The expected utility E[CT ] is estimated according to Eq. (11). 
Table 4 lists the results of the comparison and given that the expected 

cost E[CT] is estimated through simulations, the numerical confidence 
bounds are also reported, assuming a Gaussian estimator. All the 
methods are compared relatively to the finite horizon POMDP that again 
outperforms the heuristic-based policies. The reduced state-space 
infinite horizon POMDP policy results in only a slight increment to the 
total expected cost obtained by the finite horizon POMDP, in this finite 
horizon problem. The optimal policy for an infinite horizon in experi
ment RR/I20 −RF/R100 includes the possibility of maintenance actions, 
whereas the policy for a finite horizon prescribes only the action do- 
nothing/no-inspection. This explains the slight difference of expected 
costs for the infinite horizon POMDP. The infinite horizon POMDP for a 
parametric model of 16,000 states is also computed and listed in Table 4 
for the experiment RR/I50 −RF/R20. As expected,the E[CT] for the para
metric (PAR) model results in good agreement with the deterioration 
rate (DR) model and the small difference is attributed to the dis
cretization quality. 

Finally, we showcase policy realizations to visualize the difference 
between POMDPs and heuristic-based policies over an episode, related 
to the experiment RR/I50 −RF/R20. Fig. 8a and b represent realizations of 
POMDP policies, whereas, Fig. 8c and d represent the realizations of 
heuristic-based policies. While heuristic-based policies prescribe a 
repair action immediately after a detection, POMDP-based policies 
might also consider a second inspection after a detection outcome. If the 
second inspection results in a no-detection outcome, a repair action may 
not be prescribed; however, if the second inspection also results in 
detection, a perfect repair is planned. POMDP-based policies provide, 
therefore, more flexibility, in general, and can reveal interesting pat
terns, such that it might be worthy, in certain cases, to conduct a second 
inspection before prescribing an expensive repair action. As such, based 
on analyzed POMDP policy patterns, heuristic rules can be informed and 
defined anew. As reported in Table 4, two additional heuristic rules are 
thus examined, where perfect repair actions are undertaken after two 
consecutive ‘detection’ observations. These modified heuristics yield 
results closer to those provided by POMDP policies, with POMDP pol
icies surpassing now the two heuristic ones by 7% and 14%, respec
tively. While an experienced operator might have initially guessed these 
more sophisticated heuristic decision rules, based on the imperfect and 
cheap observation model specified in this setting, in more complex 
settings, e.g. an I&M planning scenario with inspections that provide 

Fig. 7. Point-based POMDP solutions for Experi
ment RR/I50 −RF/R20. The expected total cost E[CT ]

is represented over the computational time. Results 
of SARSOP, FRTDP and Perseus point-based POMDP 
solvers are plotted, with a continuous line for the 
low bound and a dashed line for the upper bound. 
Optimized heuristic methods are represented by 
markers; the equidistant inspection planning 
scheme in red, and the annual failure probability 
threshold in black. The markers also indicate 
whether the investigated heuristics plan performs 
repair after observing one detection outcome, 
pRP −D, or after the collection of two consecutive 
detection outcomes, pRP −2D.   
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more than two indications (as shown in Section 5.3), decision makers 
might guide their choices for the selection of more advanced heuristic 
rules through an investigation of the patterns exposed by POMDP policy 
realizations. 

5.3. Case 2. Detailed I&M planning setting 

While only a perfect repair and one inspection technique have been 
available for the traditional setting applications, two repair actions and 
two inspection techniques are now available in this more complex case. 
Fatigue deterioration in this setting can be controlled by either per
forming a perfect or a minor repair. The perfect repair returns the 
component to its initial condition and the minor repair transfers the 
component two deterioration rates back. The two inspection techniques 
considered are inspection 1 (I1) with only 2 indicators: detection (D) or 
no-detection (ND); and inspection 2 (I2) with 5 indicators: no-detection 
(ND), low damage (LD), minor damage (mD), major damage (MD) and 
extensive damage (D). The quality of each inspection technique is 
quantified through probability of indication (PoI) curves. Fig. 9a cor
responds to the first inspection type with a PoD(d) ∼ Exp[μ = 8]. This 
inspection method is the same as the one used in the traditional I&M 
planning setting. The second inspection method includes, however, the 
following detection boundaries: PoI(d) ∼ Exp[μ = 4]; 

PoI(d) ∼ Exp[μ = 7]; PoI(d) ∼ Exp[μ = 10]; and PoI(d) ∼ Exp[μ = 13]. 
The probability of observing each indicator is represented in Fig. 9b as a 
function of the crack size. 

Similar to the previous case, we solve a finite horizon POMDP with 
14,880 states to identify the optimal policy. However, in this setting, 
actions and observations are combined into seven groups: (1) do- 
nothing/no-inspection (DN-NI); (2) do-nothing/inspection-1 (DN-I1); 
(3) do-nothing/inspection-2 (DN-I2); (4) minor-repair/no-inspection 
(mRP-NI); (5) minor-repair/inspection-1 (mRP-I1); (6) minor-repair/ 
inspection-2 (mRP-I2); and (7) perfect-repair/ no-inspection (pRP-NI), 
and analyses are conducted for a modified version of experiment 
RR/I50 −RF/R20. The individual costs for this example are listed in 
Table 5. Inspection type-2 costs twice the cost of inspection type-1, as it 
is more accurate and provides more information about the deterioration. 

For this setting, heuristic inspection decision rules are prescribed 
considering again both equidistant inspections and annual failure 
probability ΔPF threshold schemes. All heuristics are evaluated in a 
simulation environment, computing the expected cost E[CT], as indi
cated in Eq. (11). Maintenance heuristic rules are accordingly defined 
considering the following two schemes: 

Fig. 8. Experiment RR/I50 −RF/R20 policy realizations. The failure probability is plotted in blue and the prescribed maintenance actions are represented by black 
bars. A detection outcome is marked by a cross, whereas a no-detection outcome is marked by a circle. 
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• Observation-based maintenance rules: a maintenance action is un
dertaken after an observation. For example, a minor repair is un
dertaken if a minor damage is observed. The number of potential 
observation-based maintenance rules scales to 

⃒
⃒
⃒AR|

|O| pairs, where, 
|O| and |AR| are the number of observations and maintenance actions, 
respectively. If we consider inspection type-2, the heuristic rules 
result in 35 combinations. Such combinatoric heuristic rules, 
together with failure probability thresholds or intervals for in
spections, have been evaluated against POMDPs in [60]. Due to the 
large computational cost of evaluating all possible decision rules, we 
evaluated only a subset of these combinations here. The most 
competitive set of heuristic rules for this case are listed in Table 5, e. 
g. the optimized equidistant inspection type-1 heuristic (EQ-INS1) 
prescribes an inspection every 11 years (ΔIns = 11), and a perfect 
repair after a detection observation (pRP-D1). 

• Threshold-based maintenance rules: a maintenance action is under
taken when a specific threshold is reached after an observation. The 
threshold can be prescribed in terms of failure probability PF or ex
pected damage size, as proposed in [46]. We consider both cases 
here, i.e. a failure probability threshold PFth and an expected damage 

size threshold, E[d]. Threshold-based maintenance rules based on 
expected damage have also been evaluated against POMDPs in [61]. 

The expected costs E[CT] resulting from both POMDP and heuristic- 
based policies are reported in Table 5. Additionally, we list the rela
tive difference between each policy and a finite horizon POMDP policy 
solved by SARSOP. In this detailed setting, POMDP-based policies 
outperform again heuristic-based ones. In terms of POMDP-based pol
icies, SARSOP and FRTDP achieve similar results. Results obtained from 
heuristic-based policies vary depending on their prescribed set of heu
ristics. For equidistant inspection planning, inspection type-1 is 
preferred rather than inspection type-2, because the inspections are 
fixed in time, and the additional information provided by inspection 
type-2 becomes too expensive. In contrast, inspection type-2 is the best 
scheme for annual failure probability threshold inspection planning. The 
threshold-based maintenance heuristics proved to be better than 
observation-based heuristics, yet threshold-based maintenance heuris
tics imply additional computational costs, as generally, more heuristic 
rules must be evaluated. Fig. 10 illustrates the expected cost E[CT] of 
each policy as a function of the computational time. We can see how the 
POMDP point-based solvers improve their low bounds in time, along 
with the computational cost incurred by evaluating the various heuristic 
rules. 

To visualize the actions prescribed by each approach, Fig. 11 displays 
a frequency histogram of the actions taken over 104 policy realizations. 
The action do-nothing/no-inspecion (DN-NI) predominates over all 
other actions. While heuristic policies conduct either inspection type-1 
(DN-I1) or inspection type-2 (DN-I2), the POMDP-based policy utilizes 
both inspection types. This is also true for the maintenance actions, in 
which heuristic policies prescribe only perfect repairs, whereas POMDP 
policies choose sometimes to undertake minor-repairs (mRP) as well. 

6. Discussion 

The results of this investigation show that POMDPs are able to 
identify optimal I&M policies for deteriorating structures and offer 
substantially lower costs than heuristic-based policies, as is theoretically 
explained and justified, and as it has also been demonstrated through 
numerical examples in Sections 5.2 and 5.3. The policy optimization 
based on heuristic-based approaches may be constrained by the limited 
number of decision rules assessed, out of all possible decision rules. 
Avoiding these limitations, POMDPs prescribe actions as a function of 

Fig. 9. Quantification of the inspection uncertainty. The probability of retrieving each indicator is represented as a function of the crack size. For inspection type-1, 
the observation model includes two indicators: “detection” D1 and “no-detection” ND1. For inspection type-2, the observation model is composed of five indicators: 
“no-detection” ND2, “low damage” LD2, “minor damage” mD2, “major damage” MD2, and “extensive damage” D2. 

Table 5 
Comparison between POMDP and optimized heuristic-based policies in a 
detailed setting. E[CT ] is the total expected cost and Δ%[POMDP FH] indicates 
the relative difference between each method and SARSOP finite horizon POMDP 
results. Confidence intervals on the expected costs, assuming Gaussian estima
tors, are also listed.  

Detailed setting E[CT](95%C.I) Δ%[POMDP 
FH]  

Ci1 = 1, Ci2 = 2,CmRP = 10,CpRP = 50,Cf = 103, γ = 0.95  
POMDP Finite Horizon (FH). SARSOP - Lower 

Bound 
12.26 – 

POMDP Finite Horizon (FH). FRTDP - Lower 
Bound 

12.30 <1%  

Heur. EQ-INS1 ΔIns = 11; pRP-D1  16.23 (±0.19)  +32% 
Heur. EQ-INS2 ΔIns = 11; pRP-D2  18.08 (±0.31)  +47% 

Heur. THR-INS1 ΔPFth = 1.5⋅10−3; pRP-D1  16.40 (±0.20)  +33% 

Heur. THR-INS2 ΔPFth = 1.1⋅10−3; pRP-D2  15.55 (±0.21)  +26% 

Heur. THR-INS2 ΔPFth = 5.0⋅10−4; pRP-PFth =

2.2⋅10−2  

13.88 (±0.29)  +13% 

Heur. THR-INS2 ΔPFth =

1.0⋅10−3; pRP-E[d] > 4  
13.66 (±0.24)  +11%  
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the belief state, which is a sufficient statistic of the whole, dynamically 
updated, action-observation history. This implies that the actions are 
taken according to the whole history of actions and observations, rather 
than as a result of an immediate inspection outcome or pre-defined static 
policies. 

As demonstrated in Section 5.3, POMDPs can be applied to detailed 
I&M decision settings, in which multiple actions and inspection methods 
are available. In terms of computational efficiency, state-of-the-art 
point-based solvers are able to solve high-dimensional state space 
POMDPs within a reasonable computational time. In particular, SARSOP 
point-based solver very quickly improves its policy at the beginning of 
the solution process and employs an approximate upper bound to 

gradually reach a converged solution. For both traditional and detailed 
settings, both SARSOP and FRTDP point-based solvers outperform 
heuristic-based policies after only few seconds of computational time. 

For modeling the deterioration process, one can utilize either a 
parametric or a deterioration rate model, as explained in Section 2. A 
deterioration rate model generally results in a smaller state space than a 
parametric model, except for very long horizons. In this latter case, a 
parametric model might lead to a smaller state space, due to its sta
tionary nature. In any case, a discretization analysis must be conducted 
to select the appropriate state model for the problem at hand. More ef
forts are worth being made in the future towards continuous state space 
POMDPs and optimal discretization schemes for discrete state spaces. 

Fig. 10. Computational details of POMDP and simulation-based heuristic schemes in a detailed setting. The expected total costs E[CT ] are represented over the 
computational time. Results of SARSOP and FRTDP point-based POMDP solvers are plotted, with a continuous line for the low bound and a dashed line for the upper 
bound. Optimized heuristic policies results are reported by markers and are directly linked to the schemes shown in Table 5. 

Fig. 11. Frequency histogram of the actions prescribed by each considered approach over 104 policy realizations. The policies presented here are linked to those 
listed in Table 5. 
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7. Concluding remarks 

In this paper, we examine the effectiveness of Partially Observable 
Markov Decision Processes (POMDPs) to identify optimal Inspection and 
Maintenance (I&M) strategies for deteriorating structures, and we 
clarify that Dynamic Bayesian Networks (DBNs) can be combined with 
POMDPs, providing a joint framework for efficient inspection and 
maintenance planning. The formulation for deriving POMDPs in a 
structural reliability context is also presented, and two alternative DBN 
formulations for deterioration modeling are described, together with 
their POMDP implementations. 

Modern Risk Based Inspection (RBI) planning methodologies are 
often supported by DBNs, and a pre-defined set of decision rules is 
evaluated. These policies can on occasions diverge significantly from 
globally optimal solutions, because of the limited domain space of 
searched policies that may not include the global optimum. In contrast, 
POMDP policies prescribe an action as a function of the belief state, 
which is a sufficient statistic of the whole action-observation history. 

I&M policies generated by finite horizon POMDPs are compared with 
heuristic-based policies, for the case of a structural component subjected 
to fatigue deterioration. In the first example, the stochastic deterioration 
is modeled as a function of time-invariant parameters, with only one 
inspection type and one perfect repair available. Our numerical findings 
verify that POMDP-based policies can approximate the global solution 
better than heuristic-based policies, thus being more efficient even for 
typical RBI applications. The 14,880 states finite-horizon POMDP out
performs heuristic-based policies in less than a second of computational 
time. For the second numerical example, we consider an I&M decision- 
making problem in a more detailed setting, including two inspection 
methods and two repair actions. Whereas the outcome of the first in
spection type is set up as a binary indicator, the second inspection 
technique indicates the damage level through five alarms. With this 
application, we demonstrate the capabilities of POMDPs in efficiently 
handling complex decision problems, outperforming again heuristic- 
based polices. 

The main limitation of the presented approaches, including POMDPs, 
is the increase of computational complexity for very large state and 
action spaces, such as the ones for a system of multiple components. 
Dynamic Bayesian networks with large state spaces are similarly con
strained by the curse of dimensionality. To overcome this limitation, we 
suggest further research efforts toward the development of POMDP- 
based Deep Reinforcement Learning (DRL) methodologies. As demon
strated in [60,61], a multi-agent actor-critic DRL approach is able to 
identify optimal strategies for multi-component systems with large state, 
action and observation spaces. In particular, POMDP-based actor-critic 
DRL methods approximate the policy and the value function with neural 
networks, alleviating therefore the curse of dimensionality through the 
deep networks parametrizations, and the curse of history through the 
reliance on dynamic programming MDP principles, the full advantages 
of which may be compromised if heuristic rules are instead considered. 
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