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ARTICLEINFO ABSTRACT

Eeywords: Civil and maritime engineering systems, amonyg others, from bridges to offshore platforms and wind turbines,
I“ﬁ"mmmmm must be efficiently managed, as they are exposed to deterioration mechanizms throughout their operational life,
Inzpection amd maintenance such as fatigue and/or corrosion. Identifying optimal inspection and maintenance policies demands the solution
Partially Oboervahle Maskor Decidon of 3 complex sequential decizion-making problem under i i in objects i
pro uncertainty, with the main objective of efficiently
Deteriorati controlling the rizk associated with structural failures. Addressing this complexity, risk-based inspection planning
o ic Bayesi ks methodologies, supported often by dynamic Bayesian networks, evaluate a set of pre-defined heuristic decizsion
Decizion anahyziz rules to reazonably simplify the decizion problem. Howewer, the resulting policies may be compromized by the

limited space considered in the definition of the decizion miles. Avoiding thiz limitation, Partally Observable
Markov Decizsion Proceszes (POMDPz) provide a principled mathematical methodology for stochastic optimal
control under uncertain action ootcomes and observations, in which the optimal actions are prescribed az a
function of the entire, dynamically updated, state probability disoibution. In thiz paper, we combine dynamic
Bayesian networks with POMDPs in a joint framework for optimal inzpection and maintenance planning, and we
provide the relevant formulation for developing both infinite and fnite horizon POMDP:z in a structural reli-
ability context. The proposed methodology is implemented and tested for the caze of a souctural component
subject to fatigue deterioration, demonstrating the capability of state-of-the-art point-bazed POMDP solvers of
solving the underlying planning stochastic optimization problem. Within the numerical experiments, POMDP
and heuriztic-based policies are thoroughly compared, and rezults showease that POMDPz achieve substantially
lower costz az compared to their counterpartz, even for traditional problem settings.

1. Introduction Information about the condition of structural components can be

gathered during their operational life through inspections or moni-

Preserving infrastructures in a good condition, degpite their exposure
to diverse deterioration mechanieme throughout their operational life,
enables, In most countries, a stable economic growth and societal
development [1]. For instanes, a brnidge structural component may
experience a thickness reduction due to corrosion effects [2-5]; or a
surface crack at an offshore platform might drastically propagate due to
fatigue deterioration [6-2]; or the structural resistance of an offshore
welded joint can be reduced due to the combined evelic actions of wind
and ocean waves [9-1 1]. The prediction of such deterioration processes
involves a probabilistie analyeis in which all relevant uncertainties are
properly quantified.
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toring, allowing the decision maker to take more informed and rational
actions [12,13]. However, both maintenanece actions and observations
are associated with certain costs which must be optimally balanced
against the rigk of etructural failure. Az suggested by [14,15] and others,
inspections amd/or maintenance actions should be planned with the
objective of optimizing the structural life-eyele cost. Besides economic
consequences associated with structural failures or maintenance in-
terventions, societal and environmental aspects can also be meluded
within a decision-making context in terms of utilities, defined in mon-
etary units. A decision maker should, therefore, identify the decisions
that result in the mimmization of the total expected costz over the
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Fig. 1. (Top) Inspection and Maintenance (I&M) planning decision tree. Maintenance actions and observation decisions are represented by blue boxes and chance
nodes are depicted by white circles. At every time step, the cost C; depends on the action a, observation decision e, and state s of the component. (Bottom) An I&M
POMDP sequence is represented where at each step t, the cost C; depends on the action a, observation decision e, and state s of the component. In both repre-
sentations, an observation outcome o is collected according to the current state, taken action and observation decision.

lifetime of the structure [16,17].

In the context of Inspection and Maintenance (I&M) planning, the
decision maker faces a complex sequential decision-making problem
under uncertainty. This sequential decision-making problem is illus-
trated in Fig. 1, showcasing the involved random events and decision
points, and can be formulated either from the perspective of the classical
applied statistical decision theory [18], or through artificial intelligence
[19] conceptions, or a combination thereof. In all cases, the main
objective of a decision maker, or an intelligent agent, is to identify the
optimal policy that minimizes the total expected costs.

With the aim of addressing this complex decision-making problem,
Risk-Based Inspection (RBI) planning methodologies have been tradi-
tionally proposed [20] and have often also been applied to the I&M
planning of offshore structures [21,22]. By imposing a set of heuristic
decision rules, RBI methodologies are able to simplify and solve the
decision-making problem within a reasonable computational time,
while structural reliability methods are often employed within this
framework, to quantify and update the reliability and risk metrics.

More recently, RBI methodologies have also been integrated with
Dynamic Bayesian Networks (DBNs) [23-27]. DBNs provide an intuitive
and robust inference approach to Bayesian updating; however, they do
not tackle the decision optimization problem by themselves. In the
proposed methodologies, heuristic decision rules, usually based on en-
gineering principles and understanding of the problem, are still utilized
to simplify the decision problem. Albeit their practical advantages, the
main shortcoming of heuristic-based policies is the limited policy space
exploration due to the prior, ad hoc prescription of decision rules. In this
paper, we thus present how DBNs describing deterioration processes can
be instead combined with Markov decision processes and dynamic
programming [28], and be used to define transition and emission
probabilities in such settings.

Partially Observable Markov Decision Processes (POMDPs) provide a
principled mathematical methodology for planning in stochastic envi-
ronments under partial observability. In the past, POMDPs were only
applicable for small state space problems due to the difficulty of finding
appropriate solutions in a reasonable computation time. However,
starting with the development of point-based solvers [29], which
managed to efficiently alleviate the inherent complexities of the solution
process, POMDPs have been increasingly used for planning problems,

especially, in the field of computer science and robot navigation [30,31].
POMDPs have also been proposed for I&M of engineering systems
[32-36]. In the reported POMDP methodologies, either the condition of
the structural component has been modeled with less than five discrete
states or the rewards have not been defined in a structural reliability
context. This different POMDP approach to the I&M problem, as
compared with typical RBI applications, has raised some misconceptions
in the literature about their use, which we formally rectify herein.

In this work, POMDPs are successfully combined with dynamic
Bayesian networks in a joint framework, for optimal inspection and
maintenance planning, in order to take advantage of both the modeling
flexibility of DBNs and the advanced optimization capabilities of
POMDPs. In particular, this paper originally derives the POMDP dy-
namics from DBNs, enabling optimal control of physically-based sto-
chastic deterioration processes, modeled either through a conditional set
of time-invariant parameters or as a function of the deterioration rate.
We further provide all relevant formulations for deriving both infinite
and finite horizon POMDPs within a structural reliability context. The
proposed framework is analyzed, implemented, and tested for the case
of a structural component subject to a fatigue deterioration process, and
the capability of state-of-the-art point-based POMDP value iteration
methods to efficiently solve challenging I&M optimization problems is
verified. POMDP and typical heuristic risk-based and/or periodic pol-
icies are thoroughly analyzed and compared, in a variety of problem
settings, and results demonstrate that POMDP solutions achieve sub-
stantially lower costs in all cases, as compared to their counterparts.

2. Background: Risk-based inspection planning

A typical Inspection and Maintenance (I&M) sequential decision
problem under uncertainty is illustrated in Fig. 1. The optimal strategy
can be theoretically identified by means of a pre-posterior decision
analysis [18]. Assuming the costs at different times to be additive in-
dependent, the pre-posterior analysis prescribes the observation de-
cisions e € E and actions a € A that minimize the total expected cost
Cr(a,e) = Cyl(e,a,s), + ... + Cyle,a,s), ™, i.e. the sum over the life-
time ty of the discounted costs received at each time step t, with y being
the discount factor. Note that societal and environmental consequences,
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specified in monetary units, can also be included within the definition of
the total expected cost.

If the probabilities associated with the random events, as well as the
costs, are assigned to each branch of the decision tree, then the branch
corresponding to the optimal cost Cy(a,e) can be identified. This anal-
ysis is denoted backwards induction or extensive analysis. Alternatively,
a normal analysis can also be conducted by identifying the optimal de-

cision rule, h,,, from all possible decision rules. In any case, the exact

a.e’
solution of a pre-posterior analysis very quickly becomes computation-
ally intractable for practical problems because the number of branches
increases exponentially with the number of time steps, actions, and

observations.

2.1. RBI assumptions and heuristic rules

Risk-Based Inspection (RBI) planning methodologies [37] introduce
simplifications to the I&M decision-making problem in order to be able
to identify strategies in a reasonable computational time. To simplify the
problem, the expected cost is computed only for a limited set of pre-
defined decision rules hq,.. The best strategy among them is then iden-
tified as the decision rule with the minimum cost.

Within an I&M planning context, the total expected cost E[Cr(h, ty)]
is the combination of expected costs from inspections E[C;(h,ty)], repairs
E[Cr(h,ty)], and failures E[Cr(h, ty)], as a function of the imposed deci-
sion rules h, .. This expectation for a structural component designed for
a lifetime of ty years is simply computed as:

E[Cr(h,ty)] = E[C;(h, ty)] + E[Cr(h, tx)] + E[Cr (h, tx)] (@)

The simplifications introduced to the I&M decision-making problem by
pre-defining a set of decision rules are listed below:

i) Observations (inspections) are planned according to a pre-
defined heuristic rule. Two heuristic rules are commonly
employed in the literature [38]:

e Equidistant inspections: inspections are planned at constant
intervals of time At.

e Failure probability threshold: inspections are planned just
before a pre-defined annual failure probability APp threshold is
reached.

ii) If the outcome of an inspection indicates damage detection
(d > dger), a repair action is immediately performed. In that
case, the repair probability is equal to the probability of
detection Pg = P(d > dg.). Alternatively, other heuristic rules
can also be imposed (adding computational complexity), such
as that a repair is performed if an inspection indicates detection
(d > dg) and a pre-defined failure probability threshold P is
simultaneously exceeded.

iii) After a component is repaired, it is assumed that it behaves like a
component with no damage detection, i.e. the remaining life can
be computed as if the inspection at the time of repair indicates
no damage detection. With these assumptions, the decision tree
represented in Fig. 1 can be simplified to a single branch.
Alternatively, if a repair is performed at time t and it is assumed
to be perfect, the component returns to its initial damage state at
the beginning of a new decision tree with a lifetime equal to
ty =ty —t.

Summarizing, one can simplify the problem to one decision tree
branch by assuming that: (i) inspections are to be planned according to a
heuristic rule, (ii) a repair is to be performed if an inspection indicates
detection, and (iii) after a repair is performed, the inspection at that time
is considered as a no detection event. In this case, the individual con-
tributions to the total expected cost in Eq. (1) can be computed
analytically.

The expected inspection cost E[C;(h, ty)] is computed as the sum of all
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conducted inspections I,, with individual inspection cost C;, and dis-
counted by the factor y € [0,1]:

EC/(h )] = 3. G @

=iy,

The expected repair cost E[Cr(h,ty)] corresponding to a heuristic
scheme h is calculated as the repair cost C, multiplied by the probability
of repair Py at each inspection year t;:

T

E[Ck(h7 [N)} = Z CrPR(h7 l)]/“ (3)

=ty

The expected risk of failure E[Cr(h, ty)] is computed as the sum of dis-
counted annual failure risks, in which AP is the annual failure proba-
bility and Cy is the cost of failure:

E[Cr(h,ty)] = CAPr(h, 1)y @

=1

2.2. Probabilistic deterioration model and reliability updating

Structural reliability methods and general sampling based methods
[39] can be used to compute the probabilities associated with the
random events represented in the I&M decision tree (Fig. 1). In a
simplified decision tree, the main random events are the damage de-
tections during inspections and the structural failure.

The failure event is defined through a limit state gr(t) = d. —d(t), in
which d, represents the failure criteria, such as the critical crack size,
and d(t) is related to the temporal deterioration evolution. Uncertainties
involved in the deterioration process are incorporated by defining d(t) as
a function of a group of random variables or random processes. The
probability of failure Pr(t) can be then computed as the probability of
the limit state being negative Pr = P{gr(t) < 0}, and the reliability index
is inversely related to the failure probability, usually defined in the
standard normal space as f(t) = —® 1{Pg(t)}, in which @ is the stan-
dard normal cumulative distribution function. The probability of the
failure event can also be defined over a reference period, e.g. the annual
failure probability can be computed as APg(t) = {Pr(t) —Pr(t—1)}.

The measurement uncertainty of the available observations (in-
spections) is often quantified by means of Probability of Detection
(PoD) curves. A PoD indicates the probability of detection as a function
of the damage size d and depends on the employed inspection method,
i.e. the function of the detectable damage size can be modeled by an
exponential distribution F(d4) = Fo[1 — exp(—d/4)], where F; and 4 are
parameters determined by experiments. The event of no detection at
time ¢; is then modeled by the limit state function g;, (t;) = d(t;) —da(t7).
Similarly, the event of detection at time t; is modeled by the limit state
g1, (tr) = dqg(t;) —d(t;). Both detection and no detection events are
evaluated as inequalities, for instance, the probability of no detection
is assessed as the probability of the limit state being negative P;, =
P{g;,(t;) < 0}. Alternatively, a discrete damage measurement d,, can
be collected and the limit state is modeled in this case as gm(t;) =
d(t;) —(dm —€m), where €, is a random variable that represents the
measurement uncertainty, and the equality event P, = P{gn(t) = 0}
can be estimated equal to some limit, as explained in [39-41].

The additional information gained by observations can be used to
update the structural reliability or failure probability Pr by computing a
failure event conditional on inspection events [42], as:

1) <0

]

The conditional failure probability introduced in Eq. (5) can be
computed by structural reliability methods (FORM, SORM) or by Monte
Carlo sampling methods [39].

_ Pler SOﬂgz.(t)gorw...tr)w -

1) 8y (
P[g,,(t)SOﬂ...ﬂglN( <0
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3. Stochastic deterioration processes via dynamic Bayesian
networks

A brief overview on the adoption of dynamic Bayesian networks
(DBNs) for structural deterioration and reliability problems is presented
here, with the objective of demonstrating that the main principles un-
derlying BNs inference tasks are fundamentally invariant to those
employed by POMDPs. Bayesian networks (BNs) are directed acyclic
graphical models particularly suited for inference tasks in probabilistic
environments. A DBN is a template model of a Bayesian network
evolving over time and in the context of structural reliability and related
problems, DBNs have played an important role [23,24,43]. For a
detailed background of probabilistic graphical models and BNs, the
reader is directed to [44].

To allow DBNs based inference within a reasonable computational
time for practical problems, the following assumptions are often
imposed:

i) Discrete state space: Exact inference algorithms are limited to
discrete random variables [45]. A discretization operation must thus
be performed to convert the original continuous random variables to
the discrete space. The unknown error introduced by the dis-
cretization operation converges to zero in the limit of an infinitesimal
interval size. However, the computational complexity of the infer-
ence task grows linearly with the number of states and exponentially
with the number of random variables.

ii) Markovian assumption: The state space S is the domain of all random
variables involved in the description of the deterioration process,
and the conditional probabilities P(s;.1|s;) associated with the
random variables at time step t+1 depend only on the random
variables at the current time step t, and are independent of all past
states.

The transition probability matrix P(s.;1|s;) can also be assumed as sta-
tionary for some applications, thus facilitating the formulation of the
problem. This can however be easily relaxed without entailing addi-
tional computational efforts [46].

3.1. Parametric DBN

A stochastic deterioration process can be represented by the DBN
shown in Fig. 2. The deterioration is represented through the damage
node d; which is influenced by a set of time-invariant random variables
6;. The model is denoted as parametric DBN as the damage d; is influ-
enced by the parameters 6. Imperfect observations are added into the
DBNs by means of the node o,. This DBN can be extended by incorpo-
rating time-variant random variables as proposed by [23]; yet, we
consider only time-invariant random variables here as they are widely
used in the literature and to avoid unnecessary presentation complica-
tions. Finally, the binary node F; provides an indication of the failure
and survivability.

Within the context of structural reliability and related problems,
DBNs are often employed to propagate and update the uncertainty
related to a deterioration process, incorporating evidence from in-
spections or monitoring. Filtering becomes the preferred inference task
for inspection and maintenance planning problems, as a decision is
taken at time t supported by evidence gathered from the initial time step
tp up to time t. The belief state, defined as the probability distribution
over states, can be propagated and updated by applying the forward
operation from the forward-backward algorithm [45]. The transition
algorithmic step of the forward operation is assumed to be Markovian,
being therefore equivalent to the underlying transition model of a
POMDP. More details on the formulation of POMDP transition models
are introduced in Section 4.1.

At time step ty, the initial belief corresponds to the joint probability
of the initial damage and time-invariant parameters P(dy, ,6;, ). The for-
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Fig. 2. Parametric dynamic Bayesian network, adapted from [23]. The evolu-
tion of a stochastic deterioration process is represented by the nodes d; influ-
enced by a set of time-invariant random variables ;. Imperfect observations are
added through the nodes o, and F; binary node indicates the probability of
failure and survival events.

ward operation is then applied for the subsequent time steps, comprised
of the following steps:

1. Transition step: the belief propagates in time according to a pre-
defined conditional probability distribution or transition matrix
P(dt+1;0t+1 ‘drﬁt), as:

P(d11,0,11]0, ..., 0;)
=" "P(di11,0,11d,,0,) P(d;, 0,0, ..., 0,) (6)

di 0

2. Estimation step: the belief is now updated based on the obtained
evidence by means of Bayes’ rule, as:

P(dii1,0:11100, -, 0011) & P(0r11]di1)P(dii1,0:11]00, ..., 00) @)

The quality of the observation is quantified by the likelihood
P(0447|d;11). This likelihood can be directly obtained from probabil-
ity of detection curves or by discretizing a direct measurement. Since
the random variables are discrete, a normalization of P(d;1,60:.1]00,
...,0411) can be easily implemented.

The failure probability assigned to the node F, corresponds to the
probability of being in a failure state. As the failure states are defined
based on the damage condition d;, the time invariant parameters 6, can
be marginalized out to compute the failure probability. Disregarding the
discretization error, the resulting structural reliability is equivalent to
the one computed in Eq. (5).

In terms of computational complexity, note that the belief is
composed of (|01 |-...-|0k| |d|) states, defined by the damage d along with k
time-invariant random variables. Thus, the transition matrix includes
(161]-...-|6k| |d])* elements. Since P(6,,1|6;) is defined by an identity
matrix, the transition is prescribed by a very sparse, block-diagonal
matrix with a maximum density of pp, = 1/(|61]-...-|60k])-

3.2. Deterioration rate DBN

We present herein an alternative DBN in which a stochastic deteri-
oration process is represented as a function of the deterioration rate.
This model is adopted from [47] and denoted here as deterioration rate
DBN. Fig. 3 graphically illustrates the model. In this case, the stochastic
deterioration process is described in time t by the nodes d;, conditional
on the deterioration rate 7. If the stochastic process is stationary, the
deterioration evolution will vary equally over time, and thus the dete-
rioration rate 7, is not utilized. The deterioration does not, however,
progress equally over time in a non-stationary process, and in that case,
the parameter 7, needs to be incorporated to effectively model the
varying deterioration effects over time. After collecting experimental or
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Fig. 3. Deterioration rate dynamic Bayesian network, derived from [47]. The
evolution of a stochastic deterioration process is represented by the nodes d;
dependent on the deterioration rate 7,. Imperfect observations are included
through the nodes o;, and F; binary node indicates the probability of failure and
survival events.

physically-based simulated data (e.g. Monte Carlo simulations) from a
non-stationary deterioration process, the transition probabilities can be
calculated, for each deterioration rate 7;, by counting the number of
transitions from d, to d;,; over the total data available in d;. Additional
methods to compute the transition model are described in [47]. As
illustrated in Fig. 3, imperfect observations are added through the nodes
o, and the structural reliability is indicated through the node F;.

To ensure compliance with the DBNs time invariant property, the
belief incorporates both the damage condition and deterioration rate
through the joint probability P(d,, 7;). Yet, the node 7, is a zero-one
vector (one-hot) that transitions each time step from one deterioration
rate 7; to the next 7;;,. The deterioration evolution is computed by a
forward operation in a similar manner as for the parametric DBN.
Initially, the belief corresponds to the joint probability P(dy, 7o). Sub-
sequently, the belief experiences a transition according to the transition
matrix P(dei1,7e41|de, 7e):

P(d11,7141]00, ..., 00)

= ZZP(dHIaTzH ‘d,,T,)P(d,,T,‘Oo, ---70t) (8)

d 1

Based on the gathered observations, the beliefs are then updated by
applying Bayes’ rule. The likelihood P(0,.;|d.+1) can be directly defined
from probability of detection curves or other observation uncertainty
measures:

P(dis1, 74100, -, 0011) & P(0s11|di1)P(dyii1,Tii1]00, ..., 01) (C))

The computational complexity is influenced by the belief size. For
the case of a deterioration rate DBN, the belief P(d,, ;) is composed of
|7|-|d| states and its sparse transition matrix P(d;:1,71|d:, 7c) accounts
for (|z/|d|)* elements. Since the only non-zero probabilities of the
transition matrix P(z.1|7;) are the ones to define the transition from
deterioration rate 7, to the next deterioration rate t,,;, the maximum
density of P(d;1,7es1|de, 7¢) 1S ppr = 1/|1].

Advantages between a parametric DBN and a deterioration rate one
are case dependent. If the deterioration process can be modeled by just
few parameters or it evolves over a long time span, the parametric DBN
is recommended. However, if the deterioration modeling involves many
parameters or complex random processes spanning over a short time
horizon, the deterioration rate DBN should be preferred. If both DBN
models are applied for the same problem, the results should be equiv-
alent and differences are only affected by the discretization error.

3.3. Risk-based inspection planning and DBNs

While DBNs can be successfully used for reliability updating, they do
not possess by themselves intrinsic optimization capabilities. To this
end, modern RBI methodologies include a combination of DBNs and
heuristic rules to identify the optimal strategy [43,48]. The
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methodologies often follow a similar logic as the theoretical scheme
presented in Section 2, where the decision tree is simplified.

Alternatively, the optimal I&M strategy among different alternatives
can be identified with the support of DBNs in a simulation environment.
Any of the proposed DBN types (Sections 3.1 and 3.2) can be generalized
to an influence diagram by adding utility and decision nodes [24]. The
total cost Cr for a set of pre-defined heuristic rules hy, can be computed
by simulating one episode ep of length ty as:

N

Cr, (h) =Y _[Ci(t)y' + C.(0)' + APr(1)Cry'] (10)

=ty

The total expected cost E[Cr(h)] is then computed with a Monte Carlo
simulation of ng, episodes (policy realizations):

Sy [Cr, ()]

Tep

E[Cr(h)] = 11

One can compute the costs of all pre-defined heuristic rules and identify
the strategy with the minimum expected cost as the optimal policy.
However, the resulting optimal policies might be compromised due to
the limited space covered by the imposed heuristic rules, out of all
possible decision rules.

4. Optimal I&M planning through POMDPs

We propose herein a methodology for optimal I&M planning of
deteriorating structures under uncertainty based on Partially Observable
Markov Decision Processes (POMDPs). The methodology is adopted by
similar frameworks, as studied in [49]. While the damage evolution was
modeled in [49] as function of its deterioration rate, following the
formulation presented in Section 3.2, we extend here the methodology
to deterioration mechanisms modeled as functions of time-invariant
parameters, formulated according to Section 3.1. In addition, the user
penalty is defined in this work as a consequence of the annual failure
probability experienced by the component.

A Markov decision process (MDP) is a 5-tuple (S,A, T, R, y) controlled
stochastic process in which an intelligent agent acts in a stochastic
environment. The agent observes the component at state s € S and takes
an action a € A, then the state randomly transitions to state s € S ac-
cording to a transition probability model T(s,a,s ) = P(s'|s,a), and finally
the agent receives a relevant reward R;(s,a), where t is the current de-
cision step.

As described in Section 1, the optimal decisions result in a mini-
mum expected cost. The expected cost, or value function, is expressed
for a finite horizon MDP as the summation of the decomposed rewards
V(so) =Ry, + ... + Ry, ,y™', from time step o up to the final time step
ty_1. For an infinite or unbounded horizon MDP, the rewards are
infinitely summed up (ty = oo). Note that the rewards are discounted
by the factor y. From an economic perspective, the discount factor
converts future rewards into their present value. Computationally,
discounting is also necessary to guarantee convergence in infinite
horizon problems.

An MDP policy (7 : S>A) prescribes an action as a function of the
current state. The main goal of an MDP is the identification of the
optimal policy z”(s) which maximizes the value function V"(s). There
exist efficient algorithms that compute the optimal policy using the
principles of dynamic programming and invoking Bellman’s equation.
Both value and policy iteration algorithms can be implemented to
identify the optimal policy z"(s) [50]. While the state of the component
in an MDP is known at each time step, imperfect observations are usually
obtained in real situations, e.g. noise in the sensor of a robot, mea-
surement uncertainty of an inspection, etc. POMDPs are a generalization
of MDPs in which the states are perceived by the agent through imper-
fect observations. The POMDP becomes a 7-tuple (S,A,0,T,Z,R,y). While
the dynamics of the environment are the same as for an MDP, an agent
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S » S

t t+1

Fig. 4. Graphical representation of a Partially Observable Markov Decision
Process (POMDP). The states S; are modeled as the joint distribution of the
time-invariant parameters 6, and the damage size d;. The imperfect observa-
tions are modeled by the node o,. Actions a, are represented by rectangular
decision nodes and rewards R, are drawn with diamond shape nodes. A dete-
rioration rate POMDP can be graphically modeled by adding a deterioration
rate variable 7, instead of the time-invariant parameters 6,.

collects an observation o € O in the state s’ € S with emission probability
Z(o,s',a) = P(o|s , a), after an action a € A is taken. Fig. 4 shows the
dynamic decision network of a POMDP, which is built based on a
parametric model. A deterioration rate POMDP can be equally repre-
sented if one replaces the time-invariant parameters 6 by a deterioration
rate variable 7.

Since an agent is uncertain about the current state, the decisions
should in principle be planned based on the full history of observations
01 : 0;, Up to the current decision step t. Instead, a belief state b(s) is
tracked to plan the decisions. A belief state b(s) is a probability distri-
bution over states and it is updated as a function of the transition T(s , a, s)
and collected observation Z(o,s ,a):

b'(s) « P(ols’,a)» _P(s'|s,a)b(s) 12)

seS

The normalizing constant P(o|b,a) is the probability of collecting an
observation o € O given the belief state b and action a € A.

One can see in Eq. (12) that for a specific action a € A, updating a
belief is equivalent to the forward operation described for DBNs in Egs.
(6)-(9). Yet, the main objective of a POMDP is to identify the optimal
policy z”(b) as a function of the belief state b. Since the belief state is a
sufficient statistic equivalent to the history of all taken actions and
gathered observations, a policy z*(b) as function of b will always be
optimal, as compared to a policy z(h) constrained by a limited set of
heuristic rules hy . This is also demonstrated through numerical exper-
iments in Section 5. In Section 4.1, POMDP implementation details are
provided and in Section 4.2, we explain how point-based solvers are able
to solve high-dimensional state space POMDPs and find the optimal
strategies.

4.1. POMDP model implementation

A systematic scheme for building a POMDP model in the context of
optimal inspection and maintenance planning is provided in this section.
A POMDP is built by defining all the elements of the tuple (S,A,0,T.Z,R ).
While most of the reported applications of POMDPs for infrastructure
planning employed a deterioration rate model [49], a parametric model
as presented in Section 3.1 is originally implemented here.

4.1.1. States
For the typical discrete state MDP/POMDP cases, a discretization
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should be first performed for continuous random variables, transforming
them to the discrete state space. As mentioned in Section 3, an efficient
discretization has to balance model fidelity and computational
complexity.

To construct an infinite horizon POMDP equivalent to the DBN
parametric model presented in Section 3.1, the states S; = S4, x Sy are
assigned as the domain instances of the joint probability P(d;, 6).
POMDPs are often represented in robotics applications by Markov hid-
den models containing only one hidden random variable. This has
induced some confusion in the literature, where it is reported that
POMDPs cannot handle deterioration mechanisms as function of time-
invariant parameters [51]. However, a deterioration represented by
time-invariant parameters can be easily modeled with POMDPs by
augmenting the state space to include the joint probability distribution
P(d;, 0). While state-augmentation techniques have been already pro-
posed in the literature [49,52,53], we particularly augment the state
space here in order to specify the POMDP dynamics based on deterio-
ration processes modeled as parametric DBNs that also include time-
invariant parameters. This approach can also accommodate formula-
tions with model updating. Naturally, augmenting the state space im-
plies an increase of computational complexity, as is the case for both
DBNs and POMDPs.

If the deterioration rate model (Section 3.2) is instead preferred, the
states S; = Sq, X S;, are defined directly from the domain of the joint
probability P(d,, ;). The implementation for this case is documented in
[49]. At the initial time step, one can prescribe the initial belief by as the
joint probability P(d;—o,8) or P(d;—o,70)-

4.1.2. Action-observation combinations

Actions a € A correspond to maintenance actions, such as “do-
nothing”, “perfect-repair” or “minor-repair”’, and observation action
e € E are defined based on the available inspection or monitoring
techniques, such as “no-observation”, “visual-inspection” or “Nonde-
structive Evaluation (NDE)-inspection”.

Since rewards are assigned as a result of an agent who takes an action
and perceives an observation, it is recommended to combine actions and
observations into groups [49]. For instance, one can combine the action
“do-nothing” with two inspections, resulting in the two combinations:
“do-nothing/visual-inspection” or “do-nothing/NDE-inspection” and a
relevant reward will be assigned to each combination.

4.1.3. Transition probabilities

A transition matrix T(s, a, s ) models the transition probability P(s |s, a)
of a component from state s € Sto states € S after taking an action a € A.
Therefore, the transition matrix is constructed as a function of the main-
tenance actions:

e Do-nothing (DN) action: there is no maintenance action planned in
this case and the state evolves according to the stochastic deterio-
ration process. For an infinite horizon POMDP, the transition prob-
ability T(s, aDN,s/) is equal to the transition matrix P(d;;1,0.:1|d:, 6;)
or P(dey1,7¢41]de, ), derived in Section 3.

Perfect repair (PR) action: a maintenance action is performed and the
component returns from its current damage belief by, at time step t, to
the belief by, associated with an intact status. In a belief space
environment, a perfect repair transition matrix is defined as:

bo(so) bo(sy) bo(si)
P(s |5, ape) — by (;SO) by (:Sl) by (ESk) (13)
bo(so)  bo(s1) bo(sk)

Since the belief state is a probability distribution, the summation
over all the states is equal to one (3>~ b;(s) = 1). If one multiplies a
belief state by the transition matrix defined in Eq. 13, the current
belief returns to the belief by, independently of its current condition
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as:
bo(s) = bi(s)P(s |s, apg) 14

If the states are fully observable, the belief state becomes a zero-one
vector and a perfect repair matrix can be formulated as P(so|s;,apr) =
1, transferring any state s; to the intact state sg.

Imperfect repair (IR) action: a maintenance action is performed and
the component returns from a damage belief b, to a healthier damage
state or more benign deterioration rate. The definition of the repair
transition matrix P(s..1[s¢, air) is thus case dependent. Some exam-
ples can be found in [49].

4.1.4. Observation probabilities

An observation matrix Z(0,s , a) quantifies the probability P(o|s , a) of
perceiving an observation o € O in state s’ € S after taking action a € A.
Note that we denote the observation action as a to be coherent with
usual POMDP formulation; yet the observation action could be also
named as e to be consistent with the nomenclature used in Section 2.1.
The relevant observation actions considered here are:

e No observation (NO): the belief state should remain unchanged after
the transition as no additional information is gathered. The emission
probability P(o|s , ayo) can be modeled as a uniform distribution over
all observations. Alternatively, it can be modeled as P(oo \s/ ,ano) = 1.
The former is recommended as it will speed up the computation [49].
Discrete indication (DI): the likelihood P(ols’, ap;) is modeled as a
discrete event, for instance, a binary indication: detection or no-
detection. The likelihood is usually quantified for the binary case

by a Probability of Detection (PoD) curve. A PoD(s) is equivalent to
the probability P(opls') of collecting an observation op € O as func-
tion of the state s' € s, and the emission probability can be directly
implemented as P(opls ,ap;) = PoD(s ). The implementation can be
equally applied for a higher dimensional discrete observation space.
Continuous indication (CI): the likelihood P(os , ac;) is modeled as a
continuous distribution, for example, a direct measure of a crack. In
this case, the observation space must be discretized into a finite set of
observations.

4.1.5. Rewards

An agent having a belief b, receives a reward R(b, a) after taking an
action a € A and collecting an observation o € O. In a MDP, the reward
R(s, a) is defined as a function of the state, while in a POMDP, the reward
R(s,a) is weighted over the belief state b to finally obtain R(b,a):

R(b,a) = Zb(x)R(s,a) (15)

SES

For ease of notation, the reward model is formulated hereafter based on
the same notation used for the definition of the RBI cost model in Section
2. If desired, societal, environmental, and other consequences can also
be incorporated to the reward model. In the context of infrastructure
planning, the state cost C(s,a,s) is defined depending on the action-
observation combination. Some recommendations are listed below:

e Do-nothing/no-observation (DN/NO): this case corresponds to
computing the failure risk. Once the failure state subspace SpCS is
defined, the annual failure probability is the probability P(S;,!S) of
reaching any state in the failure state subspace S/F from the state space
S. Alternatively, Eq. 16 defines the cost Cr(s, apy—no) only asa function
of the initial state s € S, if the transition matrix P(s'|s, a) is implicitly
considered. This option leads to a faster computation with a point-
based solver, as explained subsequently. The cost value C(s, apy_no)
is equal to the failure cost Cy if s € Sy, and equal to 0, otherwise:
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CF(S;aDN—NO) = Z {P(S,|SyaDN—N0) Cf} *E(S, aDN—NO) (16)

s €Sy

Do-nothing/observation (DN/O): the cost is equal in this case to the
one related failure risk plus one inspection cost. Both discrete and
continuous indications can be included in this category. One can
therefore compute the cost Co(s, apy—o) just by further considering
the inspection cost C;:

Co (S; aDN—()) = CF(S-, aDN—N()) +G aa7)

Repair/no-observation (R/NO): the cost Cg(s, ar-no) is equal to the
repair cost C;:

CR(S7 akao) =C, (18)

The cost Cg(s,ar-o) for a repair/inspection combination can be
similarly defined by including also the inspection cost C; along with
the repair cost Cr(s,ar-no)-

4.2. Point-based POMDP solvers

In principle, one could apply a value iteration algorithm [54] to solve
a POMDP. While value updates are computed in a |S|-dimensional
discrete space for an MDP, value updates for POMDPs should be instead
computed in a (|S| —1)-dimensional continuous space. The computation
thus scales up considerably with the number of dimensions, increasing
the computational complexity. This fact is denoted as the curse of
dimensionality. Moreover, planning in a horizon ty also suffers from the
curse of history, as the number of potential action-observation histories
scales exponentially with the number of time steps. Hence, solving
POMDPs by applying a value iteration algorithm to the whole belief
state space B, or even to a discretized belief space grid, becomes
computationally intractable for practical problems.

Relatively recent, however, point-based solvers have emerged able to
solve high-dimensional state space POMDPs. Point-based solvers
compute value updates only based on a representative set of belief
points. Several point-based solvers [30,31,55] have been presented in
the literature. Their main difference is their basis for selecting the set of
representative belief points. The reader is directed to [56] for a detailed
analysis of point-based solvers applied to infrastructure planning
problems.

In an I&M planning context, the main objective is to identify the
optimal policy, as explained in Section 2. Instead of constraining the
policy space with pre-defined decision rules, POMDPs’ main objective is
to find the sequence of actions ay, ..., a; that maximizes the expected sum
of rewards for each belief b € B. The value function is then formulated
as a function of beliefs:

V'(b) = max| > "b(s)R(s,a) + 7 _P(o[b,a)V"(by) 19)

A
e SES 0e0

It is demonstrated in [57] that the value function is piece-wise linear and
convex when it is solved exactly. The piece-wise linearity property is
related to an effective value function parametrization by a set of hyper-
planes or a-vectors € I', each of them associated with an action a € A.
The optimal policy z” (b) can be selected by identifying the a-vectors that
maximize the value function V*(b):

V'(b) = max » a(s)b(s) (20)

The convexity property now is associated with the value of information
theory [58], i.e. lower-entropy states result in better decisions and as
such have higher expected values than higher-entropy states. Both of
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these properties of piece-wise linearity and convexity can be easily
visualized in up to 4D state spaces, e.g. in [34]. Naturally, in applica-
tions where the state space is augmented, as explained in Section 4.1, the
belief still remains a probability over states and the value function
preserves its piece-wise linearity and convexity at this newly defined,
enhanced state space.

4.2.1. Finite horizon POMDPs

Existing point-based solvers are mostly able to solve large state space
problems for infinite horizon POMDPs [59]. However, an infinite hori-
zon POMDP can be transformed to a finite horizon one by augmenting
the state space, as proposed by [12,34,49]. In this case, the time must be
encoded in the state space and a terminal state is required. Note that the
resulting transition, observation and reward matrices will be very
sparse. Yet, it remains essential to augment the space efficiently by
taking into consideration the nature of the decision-making problem.
Some recommendations are listed below:

e Parametric model: the transition model is stationary. Then, the same
transition matrix built for an infinite horizon POMDP can be reused
for any time step of the augmented, finite horizon POMDP. To ensure
a finite horizon, the last time step must include an absorbing state.
An infinite horizon POMDP with |S| states and |A| actions can be
augmented to a |A| |S|ty +|S| +1 finite horizon one with horizon ty.
Deterioration rate model: the state space can be efficiently formatted
if the component experiences only one deterioration rate per time
step. This way, one deterioration rate is considered at the first time
step, two deterioration rates at the second time step, and so on,
incorporating one additional deterioration rate per step until the last
time step is reached. An absorbing state must also be included at the
end. A deterioration rate model with |S4| states, spanning over a ty
horizon and two actions (do-nothing and one maintenance action)
becomes a finite horizon POMDP with

{(tw +1)|Sq| +(ty +1)|Sq|} /2 +1 states. Additional maintenance
actions can be included without an increase of the state space if they
do not introduce additional/new deterioration rates.

5. Numerical experiments: Crack growth represented by time-
invariant parameters

With the main objectives of providing implementation details for the
two presented POMDP formulations, as well as quantifying the differ-
ences in policies and costs between POMDP and heuristic-based 1&M
approaches, a set of numerical experiments is performed in this section.
All computations are conducted on an Intel Core {9 —7900X processor
with a clock speed of 3.30 GHz. The experiments consist in identifying
the optimal I&M strategy for a structural component subjected to fatigue
deterioration. In particular, the first presented I&M planning setting (in
Section 5.2) is inspired by an earlier investigation of risk-based main-
tenance planning methods [51]. In that study, the fatigue deterioration
model was approximated by a 2-parameter Weibull distribution,
whereas a physically-based crack growth model is directly utilized here.
According to this fracture mechanics model, the crack size d;; is
computed as a function of the crack size at the previous time step d;:

m 12l
doy = [(1=5) CruSpzn + a2

(2D

This Markovian model is derived from Paris’ law, as shown in [39].
The process uncertainty is incorporated through the random variables
listed in Table 1, where Sy stands for stress range, Cry corresponds to a
crack growth parameter, and d, represents the initial crack size. While
the crack distribution evolves over time, the parameters Cpy, and Sk are
time-invariant random variables. The remaining parameters, i.e. the
crack growth parameter m and the number of cycles n are considered
deterministic. The component fails once the crack exceeds the plate
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Table 1
Random variables and deterministic parameters utilized to model fatigue
deterioration.

Variable Distribution Mean Standard Deviation
In(Cru) Normal —35.2 0.5

Sg(N/mm?) Normal 70 10

do(mm) Exponential 1 1

m Deterministic 3.5 -

n(cycles) Deterministic 106 -

tn(yr) Deterministic 30 -

d.(mm) Deterministic 20 -

thickness d. and its considered life spans over a finite horizon ty of 30
years.

5.1. Discretization analysis

A discretization analysis is performed to select an appropriate state
space for this application. As explained in Section 3, either a parametric
model or a deterioration rate model can be used to track the deterio-
ration. The transition models are calculated, for both DBN models, based
on data collected from simulations of the fracture mechanics model in
Eq. (21). The POMDPs associated with these models are graphically
represented in Fig. 5. Note that the parameters Cry and Sk are grouped
together for the parametric model, resulting in a new parameter K. By
combining two random variables into one, we alleviate computational
efforts [23]. K thus corresponds to CFMSQH'"/ 2n.

The main purpose of a proper discretization is to allocate the relevant
intervals so that a high accuracy is achieved, without hindering
computational tractability. Although several simulations were run, the
reported results are mainly related to the case in which two inspections
are planned at years 18 and 25, resulting in a no-detection outcome. The
inspection quality is quantified with a probability of detection curve
PoD(d) ~ Exp[u = 8]. A crude Monte Carlo Simulation (MCS), contain-
ing 107 samples, was run to estimate the cumulative failure probability
Pr,s (Eq. (5)). The accuracy is quantified here as the squared difference
between Pp, and the cumulative failure probability Pr retrieved by
each discretized state space model. Pr was obtained by unrolling a DBN
over time. Note that Pr can be calculated directly through a DBN, as the
probability of being in the failure states of d. Both Py, and Py are
normalized to Ps = (Pp —fip, )/ OPsycs» Where pip_ and op, ., are the
mean and standard deviation of the failure probabilities computed by
MCS, respectively. The error ¢ is computed as the squared difference of
Py, and Py for each time step:

[Prucs (1) = (1)] 22)

Table 2 lists the discretization intervals for both parametric and
deterioration rate models. Since the discretization is arbitrary, the in-
terval boundaries were selected by trial and error, according to the
recommendations proposed in [23], i.e. a logarithmic transformation is
applied to both S; and S; spaces. Different state spaces were also tested
by varying the number of states for |K| and |d|. Table 3 reports the error &
for each considered state space. While the deterioration rate model of
930 overall states results in an error of magnitude less than 1073, the
state space of the parametric model is increased up to 16,000 overall
states to achieve an error of magnitude less than 102. To illustrate the
differences between the analyzed models, Fig. 6 shows the unnormal-
ized error |Pg,,; —Pp,,,| for each case. The error of the deterioration rate

E=

N
=0

model is negligible before the first inspection update at 18 years, while
the parametric model accumulates error throughout the whole analysis.

In general, the selection of the discretized model will depend on the
available computational resources and required accuracy. For this
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(a) Parametric POMDP
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(b) Deterioration rate POMDP

Fig. 5. Graphical representation of the POMDPs utilized for the numerical experiments. A parametric POMDP and a deterioration rate POMDP are created from the
DBNs displayed in Figs. 2 and 3, respectively. Note that the random variables Cpy and Sk are combined into the variable K.

application, the deterioration rate model with 930 states is utilized for
the numerical experiments, due to its reduced state space as compared to
the parametric models.

5.2. Case 1. Traditional I&M planning setting

The fatigue deterioration is modeled according to the time-invariant
crack growth described at the beginning of Section 5. In this traditional
setting, the decision maker is only allowed to control the deterioration
by undertaking a perfect repair and is able to collect observations
through one inspection technique type. The perfect repair returns the
component to its initial condition dy and the quality of the inspection
technique is quantified with a PoD(d) ~ Exp[u = 8]. This I&M decision-

Table 2
Description of the discretization schemes considered in the sensitivity analysis,
for both parametric and deterioration rate POMDP models.

Variable Interval boundaries
Parametric model
Sa O,exp{ln (10’1) :41n(dc|)5;‘ 12(3071) . ln(dc> }‘00
S Otexp{ln<10’5) :W:ln(l)},m
Deterioration rate model
Sa 0,exp{31n<10’4) : ln(dcl)s;‘ilf(;m : ln(dC) },oo
S: 0:1:30

Table 3
Accuracy of the considered discretization schemes. The normalized error ¢ and
state spaces corresponding to each parameter are reported.

Model Sk [S:] |S4l S| ¢

Deterioration rate (DRg;5) - 31 15 465 8.6:10°3
Deterioration rate (DRgso) - 31 30 930 2110~
Parametric (PARgso-d40) 50 - 40 2,000 7.1.1072
Parametric (PARgso_dso) 50 - 80 4,000 7.2.1073
Parametric (PARks0-d160) 50 - 160 8,000 3.4.10°3
Parametric (PARg100-dso) 100 - 80 8,000 251073
Parametric (PARk100-d160) 100 - 160 16,000 431074

making problem is solved here by both POMDPs and heuristics. For the
case of POMDPs, point-based solvers provide a theoretical guarantee to
optimality, whereas RBI approaches can analytically compute the E[Cr]
from a simplified decision tree, as explained in Section 2. Alternatively,
the computation of the E[Cr| can be performed in a simulation envi-
ronment, in which the deterioration process is modeled by DBNs and the
costs are evaluated according to the predefined heuristic policies, as
shown in Eq. (11). To equally compare the policies generated by POMDP
and heuristics, the total expected costs E[Cr| are computed both on an
analytical basis and in a simulation environment.

5.2.1. Analytical comparison

Following the results of the discretization analysis, a finite horizon
(FH) POMDP is derived from the deterioration rate model with 930
states (|S4| = 30 and |S;| = 31). Since the horizon spans over 30 years,
the state space is augmented from 930 to 14,880 states, as explained in
Section 4.2. Actions and observations are combined into three action-
observation groups: (1) do-nothing/no-inspection, (2) do-nothing/
inspection, and (3) perfect-repair/no-inspection. The fourth combina-
tion (repair/inspection) is not included as it will hardly be the optimal
action at any time step. A total of three representative experiments are
conducted, assigning different inspection, repair and failure costs to
each of them. Each experiment is characterized by a different ratio be-
tween repair and inspection costs Rg/;, as well as the ratio between
failure and repair costs Rg/z. Since these ratios are of relevance in this
work, analyzing the problem from an optimization perspective, an
explicit separation of economic, societal, and environmental conse-
quences and their scaling to monetary units is not considered. The
SARSOP point-based POMDP solver [30] is used for the computation of
the optimal I&M policies. Additionally, the policies from FRTDP [31]
and Perseus [55] point-based solvers are computed specifically for
experiment Rg/;50 —Ry/20. In this theoretical comparison, the expected
costs are computed based on the lower bound alpha vectors, as
explained in Section 4.2.

In contrast, the optimal RBI policies are determined based on the best
identified heuristic decision rules. For this theoretical comparison, the
decision tree is simplified to a single branch with two schemes consid-
ered here: equidistant inspections (EQ-INS) and annual failure proba-
bility APp threshold (THR-INS). For the maintenance actions, the
component is perfectly repaired after a detection indication, behaving
thereafter as if a crack was not detected at that inspection. The opti-
mized heuristics for each experiment are listed in Table 4, e.g. an
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Fig. 6. Error |Pg, ., —Pr,,, | between the continuous deterioration model and the considered discrete space models. The continuous model is computed by a Monte
Carlo simulation of 10 million samples and is compared with discrete state-space DBN models. The circles in the graph represent the error from deterioration rate

models and the squares represent the error from parametric models.

Table 4

Analytical (AN) and simulation-based (SIM) comparison between POMDPs and optimized heuristic-based policies in a traditional setting. E[Cr] is the total expected
cost and A%[POMDP FH] indicates the relative difference between each method and SARSOP finite horizon POMDP. Confidence intervals on the expected costs,

assuming Gaussian estimators, are listed for the simulation-based cases.

Traditional setting

E[Cr] (95%C.I)

A%[POMDP FH]

Experiment Rg 120 —Ry/g 100

Ci =5,C =10%,C; =10%y =0.95

AN: POMDP Finite horizon. SARSOP — Lower bound
AN: Heur.” EQ-INS Aps =4

AN: Heur.* THR-INS APy, =3-10*

SIM: POMDP Infinite horizon. SARSOP — 30 years**
SIM: Heur. EQ-INS Aps = 4

SIM: Heur. THR-INS APy, = 31074

Experiment Rg 110 —Rg /g 10

Ci =1,C, =10,G =10%,y =0.95

AN: POMDP Finite horizon. SARSOP — Lower Bound
AN: Heur.” EQ-INS no inspections

AN: Heur.* THR-INS no inspections

SIM: POMDP Infinite horizon. SARSOP — 30 years**

SIM: Heur. EQ-INS no inspections
SIM: Heur. THR-INS no inspections

Experiment Rg ;50 —Rg/r20

C; =1,C, =50,C; =10%,y =0.95

AN: POMDP Finite horizon. SARSOP — Lower Bound

AN: POMDP Finite horizon. FRTDP - Lower Bound

AN: POMDP Finite horizon. PERSEUS - Lower Bound
AN: Heur.” EQ-INS Ap,s =11

AN: Heur.” THR-INS APy, =1-10 3

SIM: POMDP Infinite horizon (DR). SARSOP - 30 years**
SIM: POMDP Infinite horizon (PAR). SARSOP - 30 years**
SIM: Heur. EQ-INS A,y =11

SIM: Heur. THR-INS APg, =1.5-10"3

SIM: Heur. EQ-INS*** Ap,g =5

SIM: Heur. THR-INS*** APy, = 810~

58.35
69.17

65.62

60.23 (+0.76)
69.02 (40.83)
64.81 (£+0.75)

2.25
2.25
2.25
2.50 (£0.02)

2.25 (£0.00)
2.25 (£0.00)

12.45
12.45
12.96
17.06

16.69

12.99 (£0.24)
13.08 (£0.23)
16.28 (+£0.19)
16.43 (£0.20)
14.17 (£0.26)
13.29 (+£0.23)

+18%
+12%
+3%

+18%
+11%

+0%
+0%
+11%
+0%
+0%

+0%
+4%
+37%
+34%
+4%
+5%
+31%
+32%
+14%
+7%

" The decision tree is simplified to one single branch, as explained in Section 2.1.
** simulation of an infinite horizon POMDP policy over a horizon of 30 years.
""" Perfect repair actions are undertaken after two consecutive ‘detection’ observations

10
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inspection every 4 years (Ap; = 4) is identified as the optimal equidis-
tant inspection heuristic (EQ-INS) for Experiment Rg/;20 —Rp/z100.

The total expected cost E[Cr| resulting from finite horizon POMDPs
and the best identified heuristics are listed in Table 4. Along with the
E[Cr], the relative difference between each method and the finite hori-
zon POMDP is also reported, and Table 4 demonstrates that finite ho-
rizon POMDP policies outperform heuristic-based policies. Even for this
traditional 1&M decision-making problem, POMDPs provide a signifi-
cant cost reduction ranging from 11% in Experiment Rg/;20 —Rr/z100 to
37% reduction in Experiment Rg/;50 —Rpz20. Experiment
Rg/110 —Rp/g10 is merely conducted to validate the comparative results
by checking that all the methods provide the same results for the case in
which repairs and inspections are very expensive relatively to the failure
cost.

As pointed out in Section 4.2, point-based solvers are able to rapidly
solve large state-space POMDPs. This is demonstrated in Fig. 7, where
SARSOP outperforms heuristic-based schemes in less than one second of
computational time. Note that POMDP policies are based on the lower
bound, whereas the upper bound, when provided, is just an approxi-
mation, to optimally sample reachable belief points [56].

5.2.2. Comparison in a simulation environment

In this case, the total expected cost E[Cy] is evaluated in a simulation
environment. Since the horizon can be controlled in a policy evaluation,
infinite horizon POMDPs are also included in this comparison. The
infinite horizon POMDP is directly derived from the deterioration rate
model, and while the action-observation combinations remain the same
as for the finite horizon POMDP, the belief space is now reduced to 930
states, offering a substantial reduction in computational cost, as
explained before. Note that even though policies generated by infinite
horizon POMDPs can be evaluated over a finite horizon, the policies are
truly optimal only in an infinite horizon setting.

In this comparison, the best heuristic-based I&M policy is also
identified by analyzing two inspection planning heuristics, as previ-
ously, either based on equidistant inspections (EQ-INS) or based on an
annual failure probability threshold (THR-INS). However, in this simu-
lation setting, the component naturally returns to its initial condition
after a repair, instead of modeling its evolution as a no-detection event.
This operation might add a significant computational expense for
analytical computations, if the decision tree is explicitly modeled;
however, it can be easily modeled in a simulation-based environment.
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The expected utility E[C7] is estimated according to Eq. (11).

Table 4 lists the results of the comparison and given that the expected
cost E[C7] is estimated through simulations, the numerical confidence
bounds are also reported, assuming a Gaussian estimator. All the
methods are compared relatively to the finite horizon POMDP that again
outperforms the heuristic-based policies. The reduced state-space
infinite horizon POMDP policy results in only a slight increment to the
total expected cost obtained by the finite horizon POMDP, in this finite
horizon problem. The optimal policy for an infinite horizon in experi-
ment Rg/;20 —Rp/z100 includes the possibility of maintenance actions,
whereas the policy for a finite horizon prescribes only the action do-
nothing/no-inspection. This explains the slight difference of expected
costs for the infinite horizon POMDP. The infinite horizon POMDP for a
parametric model of 16,000 states is also computed and listed in Table 4
for the experiment Rg/;50 —Ry/r20. As expected,the E[Cr] for the para-
metric (PAR) model results in good agreement with the deterioration
rate (DR) model and the small difference is attributed to the dis-
cretization quality.

Finally, we showcase policy realizations to visualize the difference
between POMDPs and heuristic-based policies over an episode, related
to the experiment Rg/;50 —Rp/20. Fig. 8a and b represent realizations of
POMDP policies, whereas, Fig. 8c and d represent the realizations of
heuristic-based policies. While heuristic-based policies prescribe a
repair action immediately after a detection, POMDP-based policies
might also consider a second inspection after a detection outcome. If the
second inspection results in a no-detection outcome, a repair action may
not be prescribed; however, if the second inspection also results in
detection, a perfect repair is planned. POMDP-based policies provide,
therefore, more flexibility, in general, and can reveal interesting pat-
terns, such that it might be worthy, in certain cases, to conduct a second
inspection before prescribing an expensive repair action. As such, based
on analyzed POMDP policy patterns, heuristic rules can be informed and
defined anew. As reported in Table 4, two additional heuristic rules are
thus examined, where perfect repair actions are undertaken after two
consecutive ‘detection’ observations. These modified heuristics yield
results closer to those provided by POMDP policies, with POMDP pol-
icies surpassing now the two heuristic ones by 7% and 14%, respec-
tively. While an experienced operator might have initially guessed these
more sophisticated heuristic decision rules, based on the imperfect and
cheap observation model specified in this setting, in more complex
settings, e.g. an I&M planning scenario with inspections that provide
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Fig. 8. Experiment Rg/;50 —Rp/z20 policy realizations. The failure probability is plotted in blue and the prescribed maintenance actions are represented by black
bars. A detection outcome is marked by a cross, whereas a no-detection outcome is marked by a circle.

more than two indications (as shown in Section 5.3), decision makers
might guide their choices for the selection of more advanced heuristic
rules through an investigation of the patterns exposed by POMDP policy
realizations.

5.3. Case 2. Detailed I&M planning setting

While only a perfect repair and one inspection technique have been
available for the traditional setting applications, two repair actions and
two inspection techniques are now available in this more complex case.
Fatigue deterioration in this setting can be controlled by either per-
forming a perfect or a minor repair. The perfect repair returns the
component to its initial condition and the minor repair transfers the
component two deterioration rates back. The two inspection techniques
considered are inspection 1 (I1) with only 2 indicators: detection (D) or
no-detection (ND); and inspection 2 (I2) with 5 indicators: no-detection
(ND), low damage (LD), minor damage (mD), major damage (MD) and
extensive damage (D). The quality of each inspection technique is
quantified through probability of indication (Pol) curves. Fig. 9a cor-
responds to the first inspection type with a PoD(d) ~ Exp[u = 8]. This
inspection method is the same as the one used in the traditional I&M
planning setting. The second inspection method includes, however, the
following detection boundaries: PoI(d) ~ Explu = 4];
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PoI(d) ~ Explu = 7]; Pol(d) ~ Exp[u = 10]; and PoI(d) ~ Expu = 13].
The probability of observing each indicator is represented in Fig. 9b as a
function of the crack size.

Similar to the previous case, we solve a finite horizon POMDP with
14,880 states to identify the optimal policy. However, in this setting,
actions and observations are combined into seven groups: (1) do-
nothing/no-inspection (DN-NI); (2) do-nothing/inspection-1 (DN-I1);
(3) do-nothing/inspection-2 (DN-12); (4) minor-repair/no-inspection
(mRP-NI); (5) minor-repair/inspection-1 (mRP-I1); (6) minor-repair/
inspection-2 (mRP-12); and (7) perfect-repair/ no-inspection (pRP-NI),
and analyses are conducted for a modified version of experiment
Rg/150 —Rp/g20. The individual costs for this example are listed in
Table 5. Inspection type-2 costs twice the cost of inspection type-1, as it
is more accurate and provides more information about the deterioration.

For this setting, heuristic inspection decision rules are prescribed
considering again both equidistant inspections and annual failure
probability APy threshold schemes. All heuristics are evaluated in a
simulation environment, computing the expected cost E[Cr|, as indi-
cated in Eq. (11). Maintenance heuristic rules are accordingly defined
considering the following two schemes:
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Fig. 9. Quantification of the inspection uncertainty. The probability of retrieving each indicator is represented as a function of the crack size. For inspection type-1,
the observation model includes two indicators: “detection” D1 and “no-detection” ND1. For inspection type-2, the observation model is composed of five indicators:
“no-detection” ND2, “low damage” LD2, “minor damage” mD2, “major damage” MD2, and “extensive damage” D2.

e Observation-based maintenance rules: a maintenance action is un-
dertaken after an observation. For example, a minor repair is un-
dertaken if a minor damage is observed. The number of potential
observation-based maintenance rules scales to ‘ARUO‘ pairs, where,
|O] and |Ag| are the number of observations and maintenance actions,
respectively. If we consider inspection type-2, the heuristic rules
result in 3% combinations. Such combinatoric heuristic rules,
together with failure probability thresholds or intervals for in-
spections, have been evaluated against POMDPs in [60]. Due to the
large computational cost of evaluating all possible decision rules, we
evaluated only a subset of these combinations here. The most
competitive set of heuristic rules for this case are listed in Table 5, e.
g. the optimized equidistant inspection type-1 heuristic (EQ-INS1)
prescribes an inspection every 11 years (A, = 11), and a perfect
repair after a detection observation (pRP-D1).

Threshold-based maintenance rules: a maintenance action is under-
taken when a specific threshold is reached after an observation. The
threshold can be prescribed in terms of failure probability Pr or ex-
pected damage size, as proposed in [46]. We consider both cases
here, i.e. a failure probability threshold Py, and an expected damage

Table 5

Comparison between POMDP and optimized heuristic-based policies in a
detailed setting. E[Cr] is the total expected cost and A%[POMDP FH] indicates
the relative difference between each method and SARSOP finite horizon POMDP
results. Confidence intervals on the expected costs, assuming Gaussian estima-
tors, are also listed.

Detailed setting E[Cr|(95%C.I)  A%[POMDP
FH]

Cy, =1,C, =2,Corp = 10,Cprp = 50,C; = 10%,y = 0.95

POMDP Finite Horizon (FH). SARSOP - Lower 12.26 -
Bound

POMDP Finite Horizon (FH). FRTDP - Lower 12.30 <1%
Bound

Heur. EQ-INS1 Ay = 11;pRP-D1 16.23 (£0.19) +32%

Heur. EQ-INS2 A,y = 11;pRP-D2 18.08 (£0.31) +47%

Heur. THR-INS1 APy, = 1.5.10"%;pRP-D1 16.40 (£0.20)  +33%

Heur. THR-INS2 APy, = 1.1-1073;pRP-D2 15.55 (£0.21) +26%

Heur. THR-INS2 APy, =5.0-10"%;pRP-Ps, = 13.88 (+0.29)  +13%
2.2.1072

Heur. THR-INS2 APg, = 13.66 (£0.24)  +11%

1.0-1073;pRP-E[d] > 4
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size threshold, E[d]. Threshold-based maintenance rules based on
expected damage have also been evaluated against POMDPs in [61].

The expected costs E[Cr| resulting from both POMDP and heuristic-
based policies are reported in Table 5. Additionally, we list the rela-
tive difference between each policy and a finite horizon POMDP policy
solved by SARSOP. In this detailed setting, POMDP-based policies
outperform again heuristic-based ones. In terms of POMDP-based pol-
icies, SARSOP and FRTDP achieve similar results. Results obtained from
heuristic-based policies vary depending on their prescribed set of heu-
ristics. For equidistant inspection planning, inspection type-1 is
preferred rather than inspection type-2, because the inspections are
fixed in time, and the additional information provided by inspection
type-2 becomes too expensive. In contrast, inspection type-2 is the best
scheme for annual failure probability threshold inspection planning. The
threshold-based maintenance heuristics proved to be better than
observation-based heuristics, yet threshold-based maintenance heuris-
tics imply additional computational costs, as generally, more heuristic
rules must be evaluated. Fig. 10 illustrates the expected cost E[Cr] of
each policy as a function of the computational time. We can see how the
POMDP point-based solvers improve their low bounds in time, along
with the computational cost incurred by evaluating the various heuristic
rules.

To visualize the actions prescribed by each approach, Fig. 11 displays
a frequency histogram of the actions taken over 10* policy realizations.
The action do-nothing/no-inspecion (DN-NI) predominates over all
other actions. While heuristic policies conduct either inspection type-1
(DN-I1) or inspection type-2 (DN-12), the POMDP-based policy utilizes
both inspection types. This is also true for the maintenance actions, in
which heuristic policies prescribe only perfect repairs, whereas POMDP
policies choose sometimes to undertake minor-repairs (mRP) as well.

6. Discussion

The results of this investigation show that POMDPs are able to
identify optimal I&M policies for deteriorating structures and offer
substantially lower costs than heuristic-based policies, as is theoretically
explained and justified, and as it has also been demonstrated through
numerical examples in Sections 5.2 and 5.3. The policy optimization
based on heuristic-based approaches may be constrained by the limited
number of decision rules assessed, out of all possible decision rules.
Avoiding these limitations, POMDPs prescribe actions as a function of
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Fig. 10. Computational details of POMDP and simulation-based heuristic schemes in a detailed setting. The expected total costs E[Cr| are represented over the
computational time. Results of SARSOP and FRTDP point-based POMDP solvers are plotted, with a continuous line for the low bound and a dashed line for the upper
bound. Optimized heuristic policies results are reported by markers and are directly linked to the schemes shown in Table 5.
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Fig. 11. Frequency histogram of the actions prescribed by each considered approach over 10* policy realizations. The policies presented here are linked to those

listed in Table 5.

the belief state, which is a sufficient statistic of the whole, dynamically
updated, action-observation history. This implies that the actions are
taken according to the whole history of actions and observations, rather
than as a result of an immediate inspection outcome or pre-defined static
policies.

As demonstrated in Section 5.3, POMDPs can be applied to detailed
I&M decision settings, in which multiple actions and inspection methods
are available. In terms of computational efficiency, state-of-the-art
point-based solvers are able to solve high-dimensional state space
POMDPs within a reasonable computational time. In particular, SARSOP
point-based solver very quickly improves its policy at the beginning of
the solution process and employs an approximate upper bound to
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gradually reach a converged solution. For both traditional and detailed
settings, both SARSOP and FRTDP point-based solvers outperform
heuristic-based policies after only few seconds of computational time.
For modeling the deterioration process, one can utilize either a
parametric or a deterioration rate model, as explained in Section 2. A
deterioration rate model generally results in a smaller state space than a
parametric model, except for very long horizons. In this latter case, a
parametric model might lead to a smaller state space, due to its sta-
tionary nature. In any case, a discretization analysis must be conducted
to select the appropriate state model for the problem at hand. More ef-
forts are worth being made in the future towards continuous state space
POMDPs and optimal discretization schemes for discrete state spaces.
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7. Concluding remarks

In this paper, we examine the effectiveness of Partially Observable
Markov Decision Processes (POMDPs) to identify optimal Inspection and
Maintenance (I&M) strategies for deteriorating structures, and we
clarify that Dynamic Bayesian Networks (DBNs) can be combined with
POMDPs, providing a joint framework for efficient inspection and
maintenance planning. The formulation for deriving POMDPs in a
structural reliability context is also presented, and two alternative DBN
formulations for deterioration modeling are described, together with
their POMDP implementations.

Modern Risk Based Inspection (RBI) planning methodologies are
often supported by DBNs, and a pre-defined set of decision rules is
evaluated. These policies can on occasions diverge significantly from
globally optimal solutions, because of the limited domain space of
searched policies that may not include the global optimum. In contrast,
POMDP policies prescribe an action as a function of the belief state,
which is a sufficient statistic of the whole action-observation history.

I&M policies generated by finite horizon POMDPs are compared with
heuristic-based policies, for the case of a structural component subjected
to fatigue deterioration. In the first example, the stochastic deterioration
is modeled as a function of time-invariant parameters, with only one
inspection type and one perfect repair available. Our numerical findings
verify that POMDP-based policies can approximate the global solution
better than heuristic-based policies, thus being more efficient even for
typical RBI applications. The 14,880 states finite-horizon POMDP out-
performs heuristic-based policies in less than a second of computational
time. For the second numerical example, we consider an I&M decision-
making problem in a more detailed setting, including two inspection
methods and two repair actions. Whereas the outcome of the first in-
spection type is set up as a binary indicator, the second inspection
technique indicates the damage level through five alarms. With this
application, we demonstrate the capabilities of POMDPs in efficiently
handling complex decision problems, outperforming again heuristic-
based polices.

The main limitation of the presented approaches, including POMDPs,
is the increase of computational complexity for very large state and
action spaces, such as the ones for a system of multiple components.
Dynamic Bayesian networks with large state spaces are similarly con-
strained by the curse of dimensionality. To overcome this limitation, we
suggest further research efforts toward the development of POMDP-
based Deep Reinforcement Learning (DRL) methodologies. As demon-
strated in [60,61], a multi-agent actor-critic DRL approach is able to
identify optimal strategies for multi-component systems with large state,
action and observation spaces. In particular, POMDP-based actor-critic
DRL methods approximate the policy and the value function with neural
networks, alleviating therefore the curse of dimensionality through the
deep networks parametrizations, and the curse of history through the
reliance on dynamic programming MDP principles, the full advantages
of which may be compromised if heuristic rules are instead considered.
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