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ABSTRACT

Efficient integration of uncertain obeervations with decizion-making optimization is key for prescribing informed
intervention actions, able to preserve stroctural safety of deteriorating engineering syztems. To thiz end, it iz
necessary that scheduling of inspection and monitoring strategies be objectively performed on the basiz of their
expected value-bazed gains that, among others, reflect guantitative metrics such as the Value of Information
(Vil) and the Value of Structural Health Monitoring (VoSHM). In thiz work, we introduce and study the theo-
retical and computational foundations of the above metrics within the context of Partially Obzervable Markowv
Decizion Proceszes (POMDPs), thus alluding to a broad class of decizion-making problems of partially observable
stochaste deteriorating environments that can be modeled az POMDPs. Step-wize and Life-cycle Vol and VoSHM
definitions are devized and their bounds are analyzed az per the properties stemming from the Bellman equation
and the resulting optimal value function. It iz shown that a POMDP policy inherently leverages the notion of Vol
to guide obzervational actions in an optimal way at every decizion step, and that the permanent or intermittent
information provided by SHM or inzpection vizits, respectively, can only improve the cost of thiz policy in the
long-term, something that iz not necessarily tue under locally optimal policies, typically adopted in decizion-
making of structures and infrastructure. POMDP zolutions are derived bazed on point-based value iteration
methods, and the varions definitions are quantified in stationary and non-stationary deteriorating environments,
with both infinite and Anite planning horizons, featuring single- or multi-component engineering Systems.

1. Introduction

nsks [4]. Quantfving the overall structural health information games 15

The development of new sensing techmologies, data acquisition
techmiques and information processing methodologies further encour-
ages the use of Structural Health Monitoring (SHM) in supporting
management of eritical infrastructure and deteriorating systems [1,2].
These new possibilibies come with relevant questions related to the
actual value and necessity of increased quality measurementz or
continuous structural health information in facilitating optimal actions.
SHM ie defined as the development of online and automated damage
detection capabilities for all types of acrospace, civil and mechanical
infrastructure [3] and these SHM aspects distinguish it from traditional
non-destructive evaluation or inspection-based approaches, often con-
ducted in a targeted and periodic manner. Along these lines, SHM
frameworks seck to determine appropriate mappings from raw response
measurements to condition and performance indicators, which camn,
subsequently, support decizion-making towards cost-effective
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thus a multi-stage process: the first stage includes instrumentation, data
preparation and feature extraction; the second stage i= concerned with
the development of proper deseriptive and predictive models that can
efficiently infer and propagate quantities of interest based on uncer-
tainty quantification and machine learming methods; and the third stage
integrates data and models with optimization and decision analyeis
schemes, g0 that long-term global response metrics can be quantified
and controlled. Only alluding to technical aspects of data collection
techniques and model learming, of primary focus to this work is the final
decizion stage, which uses extracted and post-processed values of con-
dition indicators and their dymamice. Under standard nomenclature (e.g
in [5-7]), these indicators can be treated as random obzervations, which
are considered to encapsulate information on the actual state of strue-
tural health. The uncertainty in observations naturally stems from un-
certainties in the estimation of those indicators, as these are induced by
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the variability in the outcomes of measuring instruments and statistical
learning errors. More specifically, the decision stage pertains to the type
and sequence of actions that are selected in order to optimize a pre-
defined life-cycle objective. When the objective is to maximize long-
term safety and resilience, and to effectuate preventive maintenance
actions, SHM typically constitutes a natural choice, as it can be used to
diagnose faults and even determine the root cause of performance and
condition deterioration processes, e.g. [8]. However, to what measur-
able extent is the acquired information able to support improved policy-
planning in an engineering environment, and how can we objectively
quantify the resulting gains?

An important discussion in this direction, originating beyond infra-
structure decision-making [9-11] is whether the benefits of the various
observational strategies, e.g. SHM-aided plans or in situ visual and
specialized non-destructive evaluation inspections, can be quantified in
terms of life-cycle value-based metrics. The question that summarizes
this discussion is how much is information worth or, similarly, how much is
an SHM system worth investing in? [12-14]. In response, recent research
efforts have systematically focused on describing an overarching risk-
and reliability-based framework for quantifying the Value of Informa-
tion (Vol) and, similarly, the Value of Structural Health Monitoring
(VoSHM), which can universally accomodate different life-cycle phases
and types of stressors and hazards [15,16]. Following the definitions in
[6], this framework, equipped with selected or heuristically optimized
decision rules (or policies) for inspection and maintenance actions, is
traditionally devised along the lines of pre-posterior decision analysis
[7,17,18]. The study of the properties of the various infomation metrics,
as these ensue from the mathematical attributes and assumptions of the
employed decision rule, has, however, lacked similar diligence. To this
end, this work casts the optimization formulation within the context of
stochastic optimal control, studying the properties induced to the above
metrics by the optimality conditions of Partially Observable Markov
Decision Processes (POMDPs). Regardless of the employed decision rule,
the concept of Vol can be utilized to (i) evaluate the amount the
decision-maker is willing to pay for information prior to a single decision
step of the decision process, either considering the long- or short-term
benefits, e.g. [19] or [20] respectively; or (ii) to quantify the overall
gain that information may yield as per a fixed inspection/monitoring
policy, applied over the entire service life of a system, e.g. [21]. The
latter measure of VoI may be used to assess whether it is worth adopting
a certain observational strategy over others from the beginning or the
remainder of the system’s life. Similarly, within the context of SHM, Vol
may be quantified as the difference between the expected cost of
maintaining the system in absence of SHM information, and the cost
given availability of monitoring information [13,22,12,23]. Along the
same lines, POMDP-based Vol analysis and quantification approaches
have been developed in [24-26]. VoSHM is herein examined as a more
specialized definition of Vol, describing relative costs between inter-
mittent/optional observational schemes, e.g. periodic or non-periodic
inspection visits, and SHM-aided plans, where the flow of observations
is typically continuous [27].

As already mentioned, structural health information metrics, such as
Vol or VoSHM, may be quantified as per their impact on optimal
infrastructure decisions. Key to the success of this optimization is (i)
incorporation of environment stochasticity, (ii) long-term optimality of
decisions, and (iii) integration of dynamic, real-time, noisy observations.
Numerous formulations exist in the literature for this problem [28].
Dynamic Bayesian networks are utilized in [29] to describe structural
deterioration. Based on the established dependencies, the cumulative
service life cost is evaluated and the policy space can be subsequently
searched through optimization heuristics [19,30,31], genetic algorithms
[32], or other relevant optimization solvers. Renewal processes can also
be utilized in this regard, accounting for multi-threshold and multi-level
action plans, or even integrated resilience considerations [33-35].
Multi-criteria objectives have been also examined in [36,37], including
quantification of risk within its socioeconomic and environmental
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constituents [38], with the optimization task carried out through heu-
ristics, such as genetic algorithms. POMDPs provide an optimization
framework built within dynamic Bayesian network premises, providing
optimal control of the underlying Bayesian network-driven deteriora-
tion process [39,40]. In [41,42] POMDPs are adopted for decision-
making of highway pavements. The use of POMDPs has been also
applied in [5,43] for bridge inspection planning, whereas point-based
solutions for stochastic deteriorating systems using POMDPs have
been presented in [44-47]. Formulations extending to mixed observ-
ability, and continuous states combined with nonlinear action models
have also been proposed in [48] and [49], respectively. Recent frame-
works of deep reinforcement learning can address the curse of dimen-
sionality and model unavailability issues in large-scale POMDP system
applications, as presented in [50-52]. Such solutions have been shown
to be particularly well-suited for decision-making formulations in
infrastructure management, significantly outperforming conventional
static inspection and maintenance policies [50,53,52]. This is particu-
larly true in discrete state spaces, where exhaustive evaluation and
search of policy subspaces, evolutionary approaches, or gradient
methods may be ineffective, if at all applicable.

In this work, in the context of POMDPs, detailed definitions of the
above value-based information metrics are presented and discussed,
their theoretical, mathematical properties are analyzed, and the un-
derlying steps for their computation are demonstrated in numerical
experiments of deteriorating engineering systems operating in partially
observable stochastic environments. Quantification is based on point-
based POMDP value iteration solutions of the respective service life
inspection and maintenance optimization problems. Accordingly, the
methodology for calculating Vol and VoSHM is primarily aimed at
assessing their life-cycle aspects, thus targeting decision-making for the
selection of long-term observational plans among various alternatives.
Towards this, the relation of step-wise Vol with POMDPs is also
analyzed, and it is shown that POMDPs inherently utilize the net value of
observations at every step as the criterion to optimally choose obser-
vational actions. It is also formally proven that Vol and a proxy of
VoSHM are always non-negative under an optimal POMDP policy, thus
the additional information that inspections and SHM provide can only
improve decisions in the long-run, a property that is shown to not be
necessarily present under standardly optimized inspection and mainte-
nance decision rules. Upper-bounding properties for these metrics are
also devised in relevance to perfect observability cases. The above
theoretical outcomes and discussion are verified in the numerical
investigation of an infinite horizon three-component POMDP system and
a larger finite horizon POMDP problem of a corroding reinforced con-
crete port deck structure, which are analyzed under different informa-
tion scenarios, including no information, optional inspection visits, and
continuous availability of observations resembling SHM systems.
Overall, the described Vol and VoSHM analyses provide the expected
gains in terms of a cumulative long-term metric of interest, e.g. service
life cost, thus answering the question of how much is inspection or
monitoring information eventually worth in each problem, as well as
how information of increased precision can affect decisions.

2. Partially observable Markov decision processes

POMDPs provide an adept framework for stochastic optimal control.
They are established within the premises of dynamic programming, thus
providing strong global optimality guarantees for long-term decision
problems described by stochastic environment dynamics with
Markovian properties, noisy observations, and uncertain action out-
comes. Markovian assumptions do not restrict the applicability of
POMDPs in non-Markovian environments, as the latter can be properly
transformed to fit Markovian assumptions through state augmentation,
as discussed in [54,44,30]. POMDPs generalize Markov Decision Pro-
cesses (MDPs) to partially observable environments, i.e., to cases where
observations are unable to reveal the actual state of the system with
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Fig. 1. Probabilistic graphical model of a POMDP in time (shaded nodes denote
hidden states).

certainty. This generalization facilitates rational utilization of evidence
for updating state and model parameters through Bayesian computa-
tions, an essential framework for risk quantification and utility-based
decision analysis for engineering systems exposed to uncertain exoge-
nous stressors [55]. This evidence generated by inspection techniques
and monitoring devices, typically provides incomplete information
about the system condition (states), which is described by a latent un-
derlying stochastic deterioration process.

According to the POMDP problem statement, the decision-maker/
agent starts at a state, sy = s € S at every decision step, t, takes an ac-
tion, a; = a € A, receives a reward, r = r(s,a), transitions to the next state,
ser1 = §', according to a Markovian transition probability model condi-
tioned at the current state and action, p(s'|s,a), and receives an obser-
vation, 0., 7 = 0 € Q, based on its state and action, according to the
probability defined by an observation model, p(o|s’,a). This process is
schematically depicted in Fig. 1. More formally, a POMDP is a 7-tuple
' =(S,A, P, Q O, R,y) where S, A and Q are finite sets of states,
actions and possible observations, respectively. P, O are the 3-dimen-
sional Markovian state transition and observation probability
matrices, respectively, whereas R is the reward matrix, defined as:

P= [Pll]aeA = Ll)(s/l‘g?a)]s,:’es,aéf‘x
0= [Oa}aeA = [p(o\s',a) ]ug.(z,x’eSAaeA (€)]
R= [Rd]ae/\ = [F(S, a) ]SES‘aE/\

As a result of partial observability, at every decision step t, the agent
cannot be fully aware of its state, s; (shaded nodes in Fig. 1), which may
only be perceived through an observation o, that is a noisy indicator of
that state [56].

Starting with an initial distribution of state sy over S, the objective of
the agent is to determine a sequence of actions that maximizes the ex-
pected return, i.e., the expected total cumulative future reward. This is
accomplished by executing an optimal policy # = z*, which maps the
history of actions and observations up to time ¢, to the current action a,
such that:

o0

* 1
n = argmaxk, ., |: E v r(se,ar)
ﬂ

=0

a, = 7[(00:1—1 , 01;;):| (2)

where y is the discount factor, a positive scalar less than 1, associated
with the present value of future rewards. In the context of inspection and
maintenance planning, rewards are typically negative quantities
describing costs. It can also be noted that Eq. (2) describes an infinite
horizon problem. Assumed operation over an infinite number of steps
offers the advantage of not arbitrarily predefining the end of operational
life. It is also not restrictive in terms of modeling, in cases where such
analysis is not relevant, since finite horizon problems can be also
formulated as infinite horizon ones, with proper consideration of time-
related states and an introduced absorbing state at the final time step
[54]. Relevant implementation aspects are also discussed in the

Fig. 2. Probabilistic graphical model of a POMDP as a belief-MDP in time
(observations depend on states which are hidden).

numerical examples in Section 4.2.1.

Although the agent cannot observe the exact state with certainty as a
result of partial observability, it can form a belief b; = b € B about its
state, where b is a probability distribution over set, S, of all possible
discrete states. Space B is a (|S|-1)-dimensional simplex. The new belief
b, 1 = b/, i.e., the posterior state distribution for a given action and
observation, can be readily computed through a Bayesian update [48]:

H(6) = () =l lo.a.b) = L ) ot ®
’ sES ~

where p(o|b,a) is the standard normalizing constant, given as:

plolb.a) = 3 p(ols'.a)> p(s'ls,a)b(s) @

s'es s€S

Following Eq. (3), beliefs can be updated as new actions are performed
and new observations are collected, essentially encoding the informa-
tion of the entire history of actions and observations up to the current
time step t. As such, a new belief b’ is a sufficient statistic of the history of
actions and observations up to t. Namely, by forming a belief about its
state using Eq. (3), the agent has all the information required for
deciding on an action. The policy in Eq. (2) can then be equivalently
expressed as a mapping from beliefs to actions, 7 : B>A.

It also follows from Eq. (3) that the agent moves from one belief to
another based on the selected action and received observation. We can,
thus, define the transition probability from belief b to belief b’ as [56]:

p('[b.a) =3 _plolb.a) ®)

0eQ

where QCQ is the subset of observations leading to b’, when starting at
belief b and taking action a. Owing to Eq. (5), a POMDP can be seen as a
belief-MDP, where transitions pertain to belief points, instead of states.
For a given observation, which depends on the actual system state, the
respective probabilistic graph is shown in Fig. 2. The belief-MDP reward
rp, = rp(b,a) is the expected reward at the current step, which in the
context of inspection and maintenance planning can be defined as [45]:

rp(b,a) = z;b(s)r(s,a)
SE
= >"b(s)(ru +yro+1rp)
5es ©)
= bRy, + ybRp, + DbRp
—— —— N——"
o.M b0 "b.0

exp. mainten. cost exp. observ. cost exp. damage cost

where reward r (reward matrix R) is decomposed into ry, ro and rp (Ryy,
Ro and Rp), which are the maintenance action, observation action and
damage state rewards (non-positive to reflect costs), respectively. These
costs evolve and accrue over the service life of the system, and their
inner product with the current belief quantifies the expected conse-
quences at every step. Maintenance cost rewards pertain to
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interventions, such as retrofits, repairs, replacements, etc. Observation
action rewards include the costs related to the type of data collection
method and can, for example, refer to a visual inspection versus an ul-
trasonic inspection, or the installation of a monitoring system. Obser-
vations, o, are the outcomes of observation actions. An observation is
assumed to convey information if it can change the posterior probability
over the system states, as this is described by Eq. (3). An observation can
thus be informative or uninformative, as defined below, and as also
discussed in Section 3.

Definition 1. An uninformative observation, o € Q, is an observation that
does not change a prior belief, i.e., in a POMDP context, b*°(s) = b%(s), for
alseS.

From Definition 1 and Eq. (3), it readily follows that if Q is a unit set, i.e.
|©|=1, observations are always uninformative, for all s € S and a € A.

Expected damage cost in Eq. (6) depends merely on the current state
distribution (belief), and may be decomposed into more components
pertaining for example to economic losses due to system downtime or
shutdown, or costs related to various societal and environmental metrics
(casualties, energy consumption, CO5 equivalent emissions, or other
direct and indirect consequences, e.g. in [36,55]).

The expected return under any policy, r, defines the value function,
V", whereas the expected return under the optimal policy defines the
optimal value function, V*. Exploiting the concept of belief-MDPs, we
can use the Bellman equation [57] expressing the optimal value function
as [48]:

Vi(b) =JV'(b)
~ max{r(b.a) + 75,V ()] ”
= max {rb(b7 a) + }/Zp(()|b, a )V*(b’)}

o€ Q

where J is the Bellman operator for the belief-MDP problem defined by
tuple .7, and b’ is the posterior state distribution at the next step given
an action and an observation, as described by Eq. (3). J is a contraction
operator with fixed point V* [58].

It should be noted that Eq. (7) is defined over the continuous space of
the belief simplex, B, which essentially consists of an infinite number of
beliefs. However, it has been proven that the optimal value function is
piece-wise linear and convex, and can thus be described by a finite
number of affine hyperplanes [59]. This important result reduces the
decision problem to determining a finite set of vectors, also known as the
a-vectors:

V'(b) = max» b(s)a(s) ®

acll se§

where I' is the set comprising all a-vectors. Substituting Egs. (4), (8) in
Eq. (7) we obtain the detailed expression of the POMDP optimal value
function:

V' (b) =max |:Zb(s)(rM+yr0+rD)
SES (9)
+r 3o max3-b(s) 3op(ols',a)p(s'ls,a)a(s")

0€Q qerl sES ses

Eqg. (9) can be solved using value iteration on the space of a-vectors.
However, performing exact value iteration on the vector space is
generally impractical, except for small POMDP problems, since the new
set of alpha vectors generated at every iteration step scales exponentially
with the cardinality of the observation set, |Q| [60].

2.1. Point-Based POMDP algorithms
Point-based solvers adopt the concept of belief-MDPs and manage to

alleviate the POMDP complexity by avoiding the exponential increase of
a-vectors. The idea is to restrict value iteration operations to a
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meaningful collection of discrete belief points, i.e., to perform a-vector
backups on a finite subset of the belief space, B = {bg, by, ...}CB, which
is considered to be able to sufficiently approximate the original
continuous (|S|-1)-dimensional simplex. Point-based algorithmstake
advantage of the fact that despite the continuity of the belief space, in
practice there is only a finite number of belief points that are actually
visited. These belief points lie in a reachable subset of the belief space,
with respect to an initial (root) belief by. At every iteration step, new
a-vectors are generated merely based on these points, forming a set TCI"
that can efficiently recover the true value function over the entire belief
space, with the aid of the max operator of Eq. (8). Of course, since the
a-vectors in T cover the entire space, B, one can also compute an esti-
mate of the value function for non-reachable beliefs, however, this es-
timate may be expected to be of lower accuracy. At each iteration, T is
updated through every b € B, or a subset of it, based on the backup
operator defined as:

backup(T, b) = arg max Zb(s) a‘(s) 10)
a'cF ses
a'(s)=ru+yro+m+ yz E p(ols',a)p(s'|s,a)a*’(s") an
o€ Qs'es
a*’ = arg max Zb(s) E p(ols',a)p(s'|s,a)a(s) 12)
acF s€S s'es

All point-based solvers maintain a lower bound on the value func-
tion, which is updated throughout the iteration process, as described in
Egs. (10)-(12), e.g. [60-63]. This lower bound consists of the linear
hyperplanes defined in Eq. (8), and is typically initiated by evaluating a
simple policy. Modern point-based algorithms also compute, maintain
and update an approximate upper bound on the value function. This
bound allows these algorithms to employ more efficient strategies for
belief space exploration, as well as to monitor convergence over the
course of the iterative procedure. ZMDP with its Heuristic Value Itera-
tion (HSVI) and Focused Real-Time Dynamic Programming (FRTDP)
variants [62,64], as well as Successive Approximation of the Reachable
Space under Optimal Policies (SARSOP) [63] belong to this class of al-
gorithms. The upper bound is typically initiated with optimistic values
and, similarly to the lower bound, should be constructed as a piece-wise
linear and convex function. However, it is not possible to update or
evaluate the upper bound over the entire belief simplex using Egs. (10)—
(12), due to the presence of the max operator. Thus, the upper bound can
be maintained by point-wise value estimates at visited beliefs and the
formed convex hull that they support, which is determined through
linear programming. Point-based solvers avoid solving this expensive
linear program however and, instead, determine the upper bound using
a much faster sawtooth approximation, since as the number of beliefs
supporting the upper bound estimates increases, the linear program
becomes considerably difficult to solve [58].

The points of B are either collected through randomly sampled belief
trajectories, i.e., based on random sequences of actions and observa-
tions, or through more focused and informed search heuristics. The
Point-Based Value Iteration (PBVI) algorithm [60], the first point-based
algorithm, iterates between backup and belief space expansion steps.
PBVI proposes an exploration strategy which expands over the existing
points of B, at every iteration. For every existing belief point, its suc-
cessor is added to B such that the new set spreads as sparsely as possible
over B. PBVI updates a-vectors over all collected beliefs. The Perseus
algorithm [61] traverses a series of path trials based on randomly
sampled action and observation histories, in order to form B, at the
beginning of the solution procedure. This set of collected points remains
unchanged during the a-vector backups. Perseus also performs asyn-
chronous randomized backups, i.e., it does not perform backups over all
beliefs in B, but instead selects randomly which belief values to update at
every iteration step. Beliefs whose value is improved by a-vectors
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supporting previously selected beliefs, are not updated in the current
step. ZMDP and SARSOP utilize both the lower and upper bounds to
inform the exploration of the belief space, choosing actions based on the
upper bound and observations based on the maximum lower—upper
bound gap. Both algorithms perform asynchronous bound updates over
the visited beliefs.

In addition to their advanced exploration strategies, HSVI, FRTFP
and SARSOP also apply pruning techniques to reduce the complexity
and memory requirements related to the expansion of the a-vectors set,
removing vectors from T that are considered to be suboptimal under
certain criteria. HSVI and FRTDP prune vectors that do not support at
least one of the collected belief points and their immediate successors.
The above algorithms can also optionally implement a masking tech-
nique which essentially tries to create compressed representations of the
a-vectors, by maintaining and updating a-vector entries that are not zero
or not close to zero. Similarly, SARSOP prunes vectors that either do not
support at least one of the collected belief points or are dominated by
other a-vectors within a predefined neighborhood. SARSOP also prunes
beliefs that are considered to be suboptimal based on the current in-
formation provided by the upper and lower bounds. Thereby, the entire
tree of successors under these beliefs is pruned and exploration is
restricted to more optimally reachable belief subspaces.

A detailed overview on point-based solvers along with their appli-
cation in various robotic tasks can be found in [58]. Their insights and
application details in structural inspection and maintenance planning
can be found in [48,47] where different point-based approaches are
tested. Among them, the three most competitive are identified and used
herein. Overall, it is demonstrated that point-based solvers can provide
comprehensive and efficient near-optimal solutions in problems with
thousands of states and a much lower number of actions and observa-
tions. In cases featuring more complex POMDP settings, deep rein-
forcement learning actor critic architectures have been shown to have
significant success, as presented in [50]. The multi-agent actor critic
approaches developed in [50] combine belief-MDPs with decentralized
deep reinforcement learning concepts and are able to learn detailed non-
stationary inspection and maintenance policies for engineering system
settings with multiple components, operating in extremely large state,
action, and observation spaces.

3. Quantifying value-based information gains
3.1. Step-wise value of information in POMDPs

As described above, a POMDP can be defined through a tuple ¥ =
(S, A, P, Q, O, R,y). Based on the decomposable nature of the reward
and the effects of different observational and intervention actions, the
tuple can be re-written in a detailed form as ¥ =
<S,AM X A0, [Paylayen, Qe X 90, [Oaolayenys Ru + Ro + RD,y>. Ay
is a set of maintenance actions ay;; Ao is a set of observation actions ap;
Py is the transition model for different maintenance actions ayy; €2, is a set
of default observations; Qo is a union set of observations of observation sets
Qqo of the different observation actions ap; O is the observation model
for different observation actions ap; Ry, Ro, Rp are the reward matrices as
previously defined. Although for notational efficiency we assume the
reward matrices to have the same dimensions|S| x |A|, the maintenance
costs are independent of ap, the observation action costs are independent
of ap, and the damage costs are independent of both.

Definition 2. A default observation, o, € ., is an observation which the
decision-maker always receives from the environment, regardless of the
selected action, i.e. p(o. | s, @) = p(o, | s), for all s € S and a € A.

Definition 3. A trivial observation action, ap € Ao, is an observation
action with no cost, i.e. ro(s, ap) = 0, for all s € S and ap € Ao, with its
respective Qap being a unit set.
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According to Definitions 1-3, if the decision-maker chooses a trivial
observation action, it will receive the default observation from Q, plus
an uninformative observation from Qq. Thus, the decision-maker will
overall receive the default observation, i.e., Q = Q.. Default observations
are not necessarily uninformative, hence the respective POMDPs do not
necessarily imply that the trivial actions yield no information. In dete-
riorating systems, failure or near-failure states, for example, are often
self-announcing, meaning that they are “observable” regardless of the
selected observation action.

Similarly, the trivial maintenance action is an action with no cost, i.e
ry = 0, and yields a natural (uncontrolled) environment transition. As
denoted by the respective subscripts, state transitions Pgy merely
depend on maintenance actions, meaning that only maintenance actions
apyr can change the state of the system, whereas observation actions ap
can only change the agent’s perception about the state of the system,
thus perfectly sufficing to define the observation model Og4o. Based on
the above, we can define the step-wise Vol associated with a certain
policy 7 as:

VoI (a()) — |E0(».0() [Vn (buM ,a0 0, .110) ] _ [Ew [V;r(bu,w ,1)(,> ] (13)

n
step
Eq. (13) describes the gain the decision-maker expects when taking an
observation action at a certain time step t, following a policy 7 in the
future. Subtracting the actual cost of the observation action from this
gain, we obtain the net step Vol under a policy r as:

netVol?,,(ao) = VoI, — |rso 14

Net step Vol expresses the net gain at step t as a result of additional
information, also considering the cost to acquire this information
(e.g. inspection cost). If nontrivial observation actions reveal the actual
state of the system with certainty, i.e. Opontrivial = I (identity matrix),
we can similarly define the step-wise Value of Perfect Information
(step-wise VoPI), VoP. ;’mp, and net step-wise VoPI, netVoP. ;’mp, similarly
to Egs. (13) and (14). In such a case, in the term E,_ o, [V* (™% %) ] of
Eq. (13), uncertainty is only attributed to the state transition,
which is controlled by the chosen maintenance, VoPIj,,(ao) =

Eg e [V7(5") | — Eo, [V (b®%) ]

Lemma 1. Any policy with convex value function on the belief simplex, B,
has VoPIZ,, >VoI%, >0.

step” step”

Proof. Using basic probability definitions, Jensen’s inequality, Eq. (3), and
the fact that observation actions do not affect state transitions we can get:
Eyepon [V7(s) ] = B [V7(5) Jyes = Eorp D[V (5) Jyes

= Eppop [ [V(5') lyes | 2Eoroo [V ([Evaw [8v] Tucs ) ] ]
= Bovoo V(D) ] = Egp o0 [V (D10 %%) |

For the last expression, we further have:

o, [VE(B™07%0) | 3E,, [V (Eyq (b 00] )|
= |Eoe [V”([EOO [LD(S|L1M, a0, 0¢,00, b) ]xeS] ) }

— |E,,(‘ [Vn (b“Mv“O-"e) }

— IEOU [V![(bilM,Oy) ]
From the above, it immediately follows that inequalities Ey._y [V*(s') ]>
Eop 00 [VF (bH900%) |2y, [VF(b™%) ] hold,  thus  VoPIg,,>VoIg, >O0.

Equality VoI, = 0 holds if Qao is a unit set, ie. nontrivial observation
actions also yield uninformative observations. Equality VoPI},, = VoIj,,
holds if Onongriviat = L i.e. nontrivial observation actions reveal the actual

system state with certainty.

Corollary 1. Under the
VoPL,,, >VoI,, >O0.

step” step”

optimal POMDP policy, = = =%,
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Proof. The POMDP optimal value function is convex [59] so Lemma 1
holds.

The above result can be also straightforwardly proven by using the
specific piece-wise linear form of the optimal value function, V*(b) =

max{@-b}, and the fact that > max(-)>max " (-) [65]. Elaborating on

acl

Eq. (9), using Egs. (13) and (14), we have:

V*(b) = max {rb_o— +7E, [V(b™°)] + y max {netVolgtep(ao) } } (15)
ap€Ap

ay €Ay

where rj, o = rpm + p,p, i.€. combining any costs other than the expected
inspection cost. The alternative statement of Bellman optimality in the
belief space, as this is expressed by Eq. (15), is illustrative of how the
notion of information and its respective value is leveraged by a POMDP
policy to guide inspections. Namely, for all possible maintenance ac-
tions, the decision-maker will take that observation action that maxi-
mizes the net Vol at this certain step.

Corollary 2. Under the optimal POMDP policy, n = z*, if nontrivial
observation actions are cost-free and informative then the decision-maker
always observes.

Proof. Inspections are cost-free, i.e. 1 0 = 0 for all ap € Ap. Without loss of
generality, we assume that Ap={0,1,...,|Ao|—1}, with ap = 0 denoting the
trivial observation action. Then, using Egs. (14), (15) and Corollary 1 we
obtain:

= argmax {Vol* (0) — 0, VoI, (1) -0, ... }

step step
ape{0,1,...}

argmaX{netVoI:@ (ao) }

ap€Aop

= argmax {O, VoI, (1), ... } #0
>0

ape{0,1,...}

Corollary 3. Under the
max {netVoI;ep } >0.

ap€Ao

optimal POMDP policy, = = =%

Proof. Using Corollary 1, and Eq. (14), and assuming, without loss of
generdlity, that Ag = {0,1,...,|Ao|—1}, we can prove:

max {netVol,,, (a0) } = max ){vO1;ep(0),vOzj,q,(1)—|rb_0(1)|,...}

ap€Ap ap€e{0,1....

= max }{o, VoI, (1) = [ryo(1)] .. };o

ape{0,1....

3.2. Life-cycle gain from changing control setting

The expected life-cycle gain of one control setting versus another can
be expressed as the value difference between the two settings, when
different control action sets are available for each setting, but these
apply to the same system, i.e., the two settings have the same state space
and the same deterioration dynamics (transition model for the uncon-
trolled case), as well as the same discounted horizon. To quantify the
value of expected cumulative reward (or cost) of these two settings, we
consider two tuples that define the following distinct POMDP problems:
ao

7= <s7 Al x AL [P;M} Q. x QL [0‘ ]“Ml R, + R, + RD,y>
o0

ay eA}w

L= <S,A12w x A2, {PﬁM] X9, [030}
ao

au €Ay,

o -,R,Zw + Ré + RD-,}’>
0
16)

Then, the expected life-cycle gain, G, +,, from following the optimal
policy in /5 versus .1, starting at any belief b € B,is computed as:

G, 7, (b) = V,(b) — V| (b) an
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where V7, V, are the optimal value functions of each tuple, ¥, 7%,
respectively. Equivalently, Eq. (17) describes the expected benefit from
changing a control scheme from ¥; to ¥, at belief b.

To assess the expected life-cycle gain of one observational scheme
versus another (e.g. SHM, inspection visits, etc.), the tuple elements
related to maintenance actions have to be the same, thus one has to
apply Eq. (17), considering the following POMDP problems:

7= <s, At X AL [Py eny s Qe X Qb {ogo] R R+ RD,y>

= <S,AM XA Payluyen, QX 2. [OF,] Ry 4R+ Rn7y>
o
as)

For Egs. (17), (18), G, +, is the expected life-cycle gain of two control
settings which are merely discerned by their observation actions. In this
case, Eq. (17) quantifies potential benefits as a result of different sources
and/or accuracy of information. In the remainder of this section, we
elaborate on special cases of Egs. (17), (18) to derive the gains related to
different observational schemes and their relation to Vol and VoSHM.

3.3. Value of information

Considering Eq. (18), suppose A}, is a unit set, containing only a
trivial observation action. Then, R}, = 0. This technically means that Q},
is defined by a unit set as well. As such, overall, from all states, only one
observation is possible, which is the default observation, i.e. Q! = Q,. In
this case, tuple .1 defines the default control problem (or otherwise
often also called prior in the literature) of /5, i.e., 1= and o=
7, thus Eq. (17) gives the VoI of the observational scheme adopted in
L [21]:

Gy .z (b) = Vol (b) = V' (b) — V,,.(b) 19)

In addition to the previous assumption, let us now assume that A is a
unit set with only a nontrivial action available at no cost, and Q3| = ||
with 02, ... = I (identity matrix). In this case, the agent operates under
perfect information at every decision step of .. This reduces the
POMDP defined by ¥ to an MDP problem, i.e. /=% ypp. Under these
assumptions, using Eq. (17) we obtain the Value of Perfect Information
(VoPI):

G4y 2uon (b) = VOPIL(b) = Vyypp(b) — Vs (b) (20)

If the value functions in Egs. (19) and (20) include the cost related to
observational actions, then, according to [14] they can also be associ-
ated with the net Vol, as explained in the previous section. As intuitively
understood and also formally proven below, VoPI is an upper bound of
Vol, and both information gains should be non-negative, in the sense
that information should not be expected to hurt decisions. Notwith-
standing its intuitive nature, it is also showcased later that this remark is
not necessarily true if the decision-maker is following an inspection and
maintenance policy other than the optimal policy prescribed by the
solution of Eq. (9). This is shown by a counterexample in Section 4.1.3.

Theorem 1. Let J, and Jo be two value function mappings defined on 7
and 7, such that:

e J; and J, are contractions with fixed points V, and V., respectively

e Vi € 75 and JV 21V =V,

e J, is an isotone mapping
Then V,>V] is true.
Proof. See [65] page 87.

Proposition 1. Under the optimal policies of the POMDPs defined by
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tuples /', ' vmpp, L gef, then VoPI4>Vol 4 >0.

Proof. Following the results of Corollary 3, and Eq. (15), we obtain:

JV'(b) = max {rb,o— + 7By, [V' (™) ] 4 y max {netVol;ep(ag) } }
ap€Ao

apyE€AM

> max {rb_o, + }/[Eoe [V* (bzxM.oy)} } _ JderW (b)
apy€AM
Following the results of Corollaries 1 and 2, and using Eq. (15) we obtain:

V'(b) = {rb,o— + 7B, [V(b™ )] + y max {"etvo,;mf’(ao) } }

ao€Ao

ay €Ay

< max {r,,_(,f + 7B, [V(b™*) ]+ max {netVﬂP ey (@0) } }
ap€Aop
= max {r,o + ™[V (s) Jyes }
apy €Ay
— b max {RM,UM Ry 7P V() ]y g }

ay €Ay

= TuppV" (b)

J, Jaefs Jmpp are all contraction operators with fixed points V", Vypp, V;ef, ie.
the maximum expected discounted rewards (minimum cost) of the POMDPs
defined by tuples -, /'vipp,-Z qef- It can also be readily noticed that these
operators describe isotone mappings, i.e. for V1=V, it holds that JV;>JV>.
Using Theorem 1, we then have that:

Vaer D)V (b)<V3y(b)

It immediately follows that inequalities VoPI ,>Vol >0 hold.

Proposition 2. VoI, and VoPI , reach their highest values when default
observations are always uninformative.

Proof. This result can be shown if one marginalizes out o in Eq. (13), and
similarly proceeds with the steps delineated in Lemma 1 and Proposition 1,
for the step-wise and life-cycle metrics, respectively, noting that
Eo. [V" (b™%) |2V (b™).

3.4. Value of structural health monitoring

The VoSHM refers to the possible gains from investing in life-long
SHM devices and practices, instead of, or in addition to, planning in-
spection visits at distinct times during the structural service life. As such,
the VoSHM relates to the critical decision, either at the design stage or
later, of whether a monitoring scheme is worth to be adopted, and if so,
of which type. VoSHM quantifies essentially the benefits of continuous
data collection and information inflow in the decision-support system.

In this work, to quantify the VoSHM, we examine another special
case of Eq. (18). We assume that A}, contains at least one nontrivial
available action. Conversely, A2 contains only one available observation
action which is, however, not the trivial one and is costless, i.e., Rf) =0.
For the two POMDP settings, the nontrivial observation actions may
follow different observation models. Thereby, #"1=%"1 o corresponds
to the scenario of optional inspection visits, whereas /'=%"5 per, cor-
responds to an alternative observational scheme with permanent char-
acteristics, as this provided by an SHM system. Along these lines, the
VoSHM is defined as:

o

GJI opt =L 2 perm (b) = VOSHMJ'I.”W L2 perm (b) =V

2,perm

(b) = Vi, (b) (1)

It should be noted that the expected VoSHM life-cycle gain defined in Eq.
(21) cannot be strictly seen as Vol as it can also take negative values.
This may happen, for example, if the state information provided by an
optional inspection visit is more accurate than the outcome of the per-
manent monitoring system, for any possible reason. A VoSHM value
lower than the cost of a SHM system (including acquirement, installa-
tion, maintenance, and operation costs, etc.) simply suggests that there

Structural Safety 93 (2021) 102072

is no benefit for the decision-maker to invest in SHM but, instead,
optimal planning with selected inspection visits should be preferred.

Using Eq. (21) we can compute the VoSHM at every possible belief
point that the system can visit throughout the planning horizon. Typi-
cally, the belief of foremost interest is the root belief, by, which reflects
the probability distribution over all possible states at the initial condi-
tions, i.e., for the defined time step t = 0. In this case, the VoSHM
quantifies the life-cycle value of the monitoring system. For t > 0, which
usually corresponds to b; # by, Eq. (21) describes the remaining VoSHM
from that time onward. The notion of remaining VoSHM can be of
particular practical importance in cases where the optimal salvage time
of the SHM system needs to be determined.

If the nontrivial observation actions in /"1 gp;, -Z’2 perm share the same
observation probability model, i.e., with the respective settings denoted
as L1 ope=", L 2 perm=-L perm, We Obtain a non-negative value in Eq. (21).
This can technically refer to a case where both inspections and SHM are
based on the same sensing units. Thus the VoSHM can be seen in this
case as the Relative Value of Continuous Information (RVoCI), since it
quantifies the possible gain if the nontrivial observation is continuously
and freely available:

VoSHM , .., (b) = RVoCI., (b)
= VOI_/MW (b) — V()IJ (b) (22)

V. (b)—=V"(b)

= Y perm

Proposition 3. Under the optimal policies of the POMDPs defined by
tuples &,/ perm, then RVoCI 4 >0.

Proof. Using, Eq. (7) and Corollary 2 and the fact that r, o<0 for all
observation actions, we obtain:

IV (b) =max{r,o- +7m0-+7Es0,[V ()]}
ggiﬁ{m,(r +7Es, 00 [V*(b/)] }
= n}‘ﬁx{"b.of +7Eo, 00 [V* ()] }
=Jpern V" (b)

As for Proposition 1, using Theorem 1, we have:

s

V' (b)<V.,. (b)

XY perm

and it immediately follows that the inequality RVoCI >0 holds.

4. Numerical applications

We consider two inspection and maintenance problems and assess
VoI, VoSHM and their specialized cases, for the underlying systems as
discussed in Section 3. For both problems, the analysis only includes the
service life phase, e.g. without that of initial design and construction.
Equivalently, the costs related to the latter, or other phases, are assumed
to be fixed and equal for the various observability cases considered in
the quantification of the various structural health information metrics,
thus not affecting the outcome of the optimization process. The first
problem pertains to a stationary three component system, whereas the
second to a single-component structure, deteriorating according to a
non-stationary corrosion model. For the reported results the point-based
algorithms of FRTDP, SARSOP and Perseus have been implemented to
solve the POMDP problems and to determine the optimal service life
strategies.

4.1. Three-component deteriorating system

4.1.1. Environment and description of control settings
For the purposes of a parametric numerical investigation in the
presence of various observability accuracy levels, we consider a small
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three-component system. An infinite horizon case with y = 0.95 is
analyzed. The discount factor, y, reflects the current value of future
costs, thus largely depending on economic features, such as interest rate
and inflation. In management of deteriorating infrastructure systems,
annual values of discount factors typically range between 0.95 and 0.98
[41,43,36]. Stochastic deterioration of the components, for all i
€{1,2,3}, is defined by independent transition matrices, P; o, whereas
whenever a repair action is taken the components share the same
transition matrix P(i—1,2,3) rep:

0.82 0.13 0.05 0.72 0.19 0.09

Pyo = 0.87 0.13 |, Pp)o = 0.78 0.22
1.00 1.00
0.79 0.17 0.04 0.90 0.10 @3
Pao = 0.85 0.15 [, Py_iz3) op = | 0.80 0.20
1.00 0.70 0.30

As indicated by Eq. (23), each component is described by three
condition levels with stationary transition dynamics, i.e., transition from
condition level k to j is independent of time, component age or deteri-
oration rate. For example, for component 3, the transition probability
from state 1 to state 3 is 0.04. Overall, the examined system can be fully
specified by 27 states. Markovian transition probabilities of structural
systems can be constructed based on simulated or real data of longitu-
dinal responses, system conditions, rankings, etc., e.g. in [39,66,67]
either through maximum likelihood estimation, or expect-
ation-maximization schemes in the presence of latent state variables.

In order to quantify the VoSHM for this three-component system, two
POMDP control settings are evaluated. For Setting 1, 4 observation and
maintenance control actions are available for each component,
including the possibility of inspection visits at belief points suggested by
the POMDP solution. These actions are ‘no observation and no repair’,
‘observation and no repair’, ‘no observation and repair’, and ‘observation
and repair’. The ‘no observation’ observation action is the trivial obser-
vation action, and the default observation is considered uninformative.
As such, the default control problem is here called blind, -7’ ger=-7pjing-
The total number of system actions is 64. For Setting 2, observations of
nontrivial actions are available at no cost at every decision step, corre-
sponding to a permanent monitoring observational scheme. Accord-
ingly, only 2 maintenance control actions need to be considered, i.e., ‘no-
repair’, and ‘repair’. Based on the possible action combinations, 8 system
actions are available for Setting 2. Observation matrices, for all com-
ponents, are given as:

P (1-p)2

(1-p)/2 p (1-p)/2 24)
(1-p)/2 (1-p)/2 p

0i=123) _

Eq. (24) assigns an observation accuracy of 0<p<l every time an
‘observation’ is taken, meaning that the correct state is observed with
probability p, whereas either one of the other states is observed uni-
formly at random with probability 1—p. Negative rewards (or costs) for
individual components are given in Table 1 for different states and ac-
tions. Observation actions are considered to cost 1/12, 1/18, and 1/30
of the repair cost for condition levels 1,2,3 respectively. Observation
actions have constant costs with respect to states, whereas repair costs
are considered to increase with damage severity. These values establish

Table 1
Individual component costs (negative rewards) of maintenance and observation
actions for three-component deteriorating system POMDP.

Condition levels 1 2 3
Maintenance rewards (ry) 1: Do nothing 0 0 0

2: Repair -12 —-18 -30
Observation rewards (rp) 1: No observation 0 0 0

2: Observation -1 -1 -1
Damage rewards (rp) 0 -5 -12
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representative proportions between inspection and repair costs [43,30]
and can vary as per the specific nature of the studied engineering system.
System level interdependence among components is established though
the reward function, with certain penalties added to the cumulative
component costs at different system state configurations. That is, for
system states {(2,2,1)}, {(2,2,2),(1,2,3),(2,2,3)}, {(3,3,1),(3,3,2)}, and
{(3,3,3)}, penalties are —5.0, —10.0, —14.0, and —18.0, respectively,
where vector (i,j,k) denotes component condition level combinations, i.
e., (3,3,1) indicates that there are 2 components in condition level 3 and
one component in condition level 1. These system-level state rewards
are combined with the rewards of the individual components, shown in
Table 1.

4.1.2. Evaluation of optimal policies

For both POMDP settings, FRTDP, SARSOP and Perseus point-based
algorithms are implemented. As shown in the analysis results presented
in Figs. 3 and 4, for p = 0.90, Setting 1 practically converges after 1000,
whereas Setting 2 after 110 s for all algorithms. It can be seen that the
precision of the solution of Setting 1 is somewhat lower that the preci-
sion of Setting 2, for FRTDP and SARSOP. This can be attributed to the
fact that the system in Setting 1 operates in a much more challenging
POMDP environment with more actions and, consequently, larger
reachable belief space. Apart from that, low precision can also be trig-
gered by a rough approximation of the upper bound. As discussed in
Section 2.1, FRTDP and SARSOP utilize approximate upper bounds,

400 1 ‘ .

Value function

/ ——FRTDP
= SARSOP
== Perseus

-1200° : : :
10' 102 108
Time (sec)

Fig. 3. Performance of different point-based POMDP algorithms in the three-
component system problem, with p = 0.90, for Setting 1 (optional moni-
toring setting).
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Fig. 4. Performance of different point-based POMDP algorithms in the three-
component system problem, with p = 0.90, for Setting 2 (permanent moni-
toring setting).
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determined by a sawtooth approximation. The bound that actually
contains all the information of the optimal policy is the lower bound and
this is shown to be reached with great agreement among the different
algorithms. Overall, in Fig. 3 SARSOP converges faster, thus exhibiting a
better anytime performance, as also discussed in [48]. Perseus, although
starting from a cruder initial lower bound, eventually reaches the best
value, slightly outperforming its counterparts. The same features are
also noticed in Fig. 4, where the overall convergence is much faster for
all algorithms, due to the simpler nature of the decision problem.
SARSOP demonstrates considerable strengths in early convergence,
practically converging before 10 s. Perseus has an anytime performance
advantage compared to FRTDP, whereas all solvers reach identical
lower bounds after 3,600 s.

A realization of the converged policy is shown in Figs. 5 and 6. For
Settings 1 and 2, each component needs to perform different policies in
order for their combined behavior to collectively minimize the total
expected cost of the system. In Fig. 5, depicting a policy realization for
the case of optional inspections, component 1 requires an inspection
visit roughly every two years, whereas its ‘repair’ actions are mostly
taken at the inspection times. Component 2 requires inspections at
almost every decision step (all time steps except t = 10) in the realization

component 1
F— T X e ]
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Y ¥ ¥ v ¥ V¥ ¥

State
N
T
%
«
«

¥ WYY ¥ ¥

TE OO X XXX XXX XXX XXX X X X X P XX XX X X

0 10 20 30 40 50 60 70 80 90 100
component 2

3F x  w x| x ! x ¥ ¥ %

5}
829 %Y V Y ¥ Y x v ¥ ¥ VYYY ¥ XgW WYY ¥ W
2]

1E X500 3000 X7 300 X X000 30000 XK 30000K X X XKK JOOIOGX XK 300X XX XK 300K 300X 300K
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T T T T
3 Xy ¥ ¥ Y w x % v

Q
S2- ¥ ¥ ¥ x¥y ¥ ¥ x ¥ ¥ ¥¥ ¥ W ¥¥ ¥
(2]

1 [-300006 2000¢ XX 300G0X XX | X (pOODOOOK THO0X 000K X | X 300X X 30X,
0 10 20 30 40 50 60 70 80 90 100

Control time step (-) hidden state ¥/ repair action X observed state

X 30X X000 XX00C X7

Fig. 5. Policy realization of three-component system for Setting 1 (optional
inspection setting), with p = 0.90, for all components.
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Fig. 6. Policy realization of three-component system for Setting 2 (permanent
monitoring setting), with p = 0.90, for all components.

Structural Safety 93 (2021) 102072

160
-600 ~ Viing (o observations)
Y B = 155
5801 : :
I VoSHM=RVoCI . !
H ? ? ; ' 150
560 : ’
I ' 45
§-540- Volgy Viet 1 .
3 : A~ (optional . 40 =
c ! ; orvations i I
3 520 ' ' observations) ' 5
3 : VoSHM=RVoC| : {35 8
S 500+ '
' 430
\)
-480
125
-460 -
420
-440 -
. . . . . . 115
1.00 0.90 0.80 0.70 0.60 0.50

Observation accuracy, p

Fig. 7. Optimal value functions of three-component system for settings 1 and 2
and respective VoSHM, for different observability levels.

of Fig. 5. Component 3 policy combines features of the other two pol-
icies, choosing frequent inspections, with a few ‘no observation and no
repair’ actions. These policy patterns are intuitively anticipated as the
transition dynamics of component 3 are in-between the other two cases
defined by components 1, 2. Fig. 6 illustrates a service life policy real-
ization for the case of permanent monitoring (Setting 2). In this POMDP
setting, observations are always available at no cost due to the perma-
nent monitoring system assumption, as explained in Section 3.2.

The converged value functions and Vol for each setting, as well as the
VoSHM are shown as functions of the observability accuracy level, p, in
Fig. 7. VoSHM equals the RVoClI, as Settings 1 and 2 share in this case the
same observation matrices for their observation actions. It can be
observed that as the observation accuracy increases, the VoSHM in-
creases and is concave down, reaching a plateau at higher levels of ac-
curacy. The VoSHM of the system ranges from ~ 3% to ~ 11% of the
value of Setting 1, for p = 0.50 to p = 1.00, respectively. This means that
any permanent monitoring system with lifetime cost lower than these
amounts should be preferred, in place of any inspection plan, including
the optimal one. The Vol also increases with increased observability, for
both settings, however it is concave up. This pattern is more prominent
for the value function of Setting 1, where a plateau is practically reached
for p < 0.60. This indicates that the observation quality is quite poor at
this region, so the decision-maker does not choose to pay for inspection
and, consequently, the value of Setting 1 becomes equal to the value of
the optimal blind policy. The VoPI is ~ 25% of the optimal blind policy
cost and, by definition, is reached by the Vol of Setting 2, for p = 1.00.

4.1.3. Can better information hurt?

As briefly discussed and proven in Sections 3.3 and 3.4, Vol, VoPI
and RVoCI describe non-negative gains under the optimal policy
provided by Eq. (7). This practically implies that if the decision-
maker follows the optimal POMDP policy, which is also the glob-
ally optimal policy as long as the problem adheres to the dynamic
programming principle of optimality, there is no possibility that
more and/or better information can lead to worse decisions, thus to a
higher life-cycle cost. However, this fundamental, intuitive property
that “information never hurts” does not necessarily hold true for
policies that are only locally optimal at certain subsets of the policy
space, or otherwise suboptimal.

To further illustrate this remark, we again consider the same dete-
riorating system examined in this section and we now focus, out of all
possible policies, on the locally optimal solutions corresponding to the
policy subspace of some condition-based maintenance policies.
Accordingly, repairs are now decided based on the condition observa-
tion outcomes (and not the belief), and the same condition-repair pairs
are optimized for all components. We further consider that the default
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observation of the environment follows the observation model of Eq.
(24) with p = 0.96, and there is also a cost-free nontrivial observation
following the same model with p = 1.0. Thus, p = 0.96 characterizes the
default control setting, whereas p = 1.0 characterizes a perfectly
observable setting. Note that in this case VoI=VoP], since the nontrivial
observation action will be always chosen in the latter setting. In both
settings, the optimal condition-based maintenance policies are “repair if
state 3 is observed, do nothing otherwise”. After quantifying the relevant
optimal condition-based maintenance policies for the two scenarios, it is
found that the service life cost of the default setting is 665.09, and that of
the perfectly observable setting is 665.94, with their 99% confidence
intervals in the order of 0.22. VoI and VoPI are thus negative here. This
showcases that better information does possibly hurt, if it is not inte-
grated within an efficient decision optimization framework.

4.2. Corroding deck structure

4.2.1. Environment and description of control settings

The reinforced concrete port structure under corrosion presented in
[39,48] is studied in this example. The original deteriorating environ-
ment for this system is described by 4 condition levels. The non-
Markovian characteristics of this corroding environment are addressed
by combining the 4 condition levels with 83 corrosion rates [39]. The
discount rate for this problem is set y = 0.95. The Markovian deterio-
ration of the system, corresponding to the uncontrolled system evolu-
tion, is computed by a physically-based corrosion model [68] and is of
the following form:

Py = LD(XH»I =/, =7+ l\x, =17, = 7)] i,j€ {17 ”,74}
re{l,..,83}
P11 P2

P22

(25)

P23
P33 P34

Pra4

where x is the condition level and 7 is the deterioration rate. The values
of the probabilities in Eq. (25) are shown in Fig. 8. To account for finite
horizon policies we appropriately augment the state space with respect
to different time steps, thus finally the structure is defined by 14,009
states in total. There are 4 available actions related to maintenance in-
terventions or replacements, namely ‘no repair’, ‘minor repair’, ‘major
repair’ and ‘replace’. The transition for the ‘no repair’ action follows Eq.
(25). The ‘minor repair’ action influences only the condition level tran-
sition of the system, whereas the ‘major repair’ action influences both the
condition level and the deterioration rate transition (deterioration rate is
reduced by 3 steps). The full transition probability matrices for all
maintenance actions can be found in [39].

Transition probabilities

50
Deterioration rate

60 70

Fig. 8. Transition probabilities between adjacent structural conditions as
functions of the deterioration rate.
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Table 2
Costs (negative rewards) of maintenance and observation actions for corroding
deck structure POMDP.

Condition levels 1 2 3 4
Maintenance rewards (ry)  1: Do nothing 0 0 0 0
2: Repair -60 -110 -160 —280
3: Major repair —-105 -195 -290 -390
4: Replace —-820 —-820 820 —820
Inspection rewards (rp) 1: No observation 0 0 0 0
2: Visual obser. —45 —45 —45 45
3:Monitoring obser. -7.5 -75 -7.5 -7.5
Damage rewards (rp) -5 —40 -120 -250

For Setting 1 (optional inspections), the decision maker has 3
available inspection actions, ‘no observation’, ‘visual observation’ and
‘monitoring observation’. For the complete action set, including the
maintenance and the observations, we form 10 actions, instead of 12,
since due to the nature of transition probabilities of the ‘replace’ action,
possible replacements do not need to be combined with observations.
The observation matrices for the two nontrivial observations are:

0.63 0.37
0.10 0.63 0.27

0.is. = 0.10 0.63 027 (26)
0.20 0.80
0.80 0.20
0, — 005 080 015 @7

0.05 0.80 0.15
0.10 0.90

The values of the observation matrices reflect the probability (likeli-
hood) of receiving an observation (columns), given a state (rows). It
should be noted that the number of observations is not necessarily equal
to the number of states. The typically used probability of detection
(PoD), for example, e.g. [29,30] can be given by a n-by-2 observation
matrix, where n is the number of states and 2 is the number of obser-
vations, e.g. defect detection or not. The relevant negative rewards
(costs) are shown in Table 2. For a detailed presentation of costs and
other model assumptions the interested reader is referred to [45,39]. For
Setting 2 we consider a permanent observational scheme, which is
assumed to capture the flow of structural health information provided
by an SHM system. The respective observation matrix is also described
by Eq. (27). As discussed in Section 3.4, this is a default observation at
no cost for the purposes of evaluating the VoSHM. As such, the
assumption is adopted herein, for the purposes of this illustrative
example, that the outcome of a non-destructive evaluation inspection
has the same state updating effect as the SHM system outcome. This can
also technically refer to a case where both inspections and SHM share
the same type of sensors. For example, for this particular case of
corroding reinforced concrete structure, relevant electrochemical
sensing units can be either mobile (operated by an inspector) or
permanently installed and embedded in the concrete.

4.2.2. Evaluation of optimal policies

The analysis results during the value iteration are shown for Settings
1 and 2 in Figs. 9 and 10, respectively. In Fig. 9, where the optional
inspection setting is considered, we can observe that SARSOP has very
good early performance, however FRTDP eventually converges after
about 24 h. This can be attributed to the masking technique of FRTDP
which exploits the sparsity of a-vectors, thus accommodating better a
sparse environment like the one considered in this example. Fig. 10,
shows the convergence of the point-based solvers for the permanent
monitoring case (Setting 2). Similar performance is observed regarding
the solvers comparison, however, a very good near-optimal solution is
discovered much faster. Indicatively, FRTDP converges after about 300
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Fig. 9. Performance of different point-based POMDP algorithms in the
corroding slab structure problem, for Setting 1 (optional inspection setting).

-170 T T T il

-180

-190

-200

-210

Value function

—FRTDP
= SARSOP
== Perseus

-220

-230

-240

i |

10°

~

=250 bt e -
10' 102 10°
Time (sec)

10*

Fig. 10. Performance of different point-based POMDP algorithms in the
corroding slab structure problem, for Setting 2 (permanent monitoring setting).

s. Fast convergence in Setting 2 is anticipated, since the problem com-
prises only 4 actions, compared to 10 in Setting 1, so the overall
reachable belief space is less extensive.

Using the converged lower bound, we also show two realizations of
the optimal policies of Settings 1 and 2, in Figs. 11 and 12, respectively.
In both Settings 1 and 2, the decision-maker starts taking nontrivial

replace - T T E|
no inspection policy realization 1
. . =® policy realization 2
major repair | i
monitoring inspection
major repair
visual inspection
major repair
no inspection
minor repair
monitoring inspection

minor repair
visual inspection

minor repair
no inspection

no repair
monitoring inspection

-

no repair
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T
permanent monitoring policy realization 1
=0 policy realization 2

Hill

permanent monitoring
] r .

0 20 40 60 80
Control time step (-)

minor repair
permanent monitoring

no repair
permanent monitoring

100

Fig. 12. Two policy realizations of corroding deck structure, for Setting 2
(permanent monitoring setting).

maintenance and observation actions after ~ 30 time steps. This hap-
pens because severe deterioration has not typically started until these
time steps. In Setting 1, the agent mostly takes ‘visual observation’ actions
and a few ‘monitoring observation’ actions, which are combined with ‘no
repair’ actions. Regarding maintenance actions, ‘minor repair’ actions are
shown to suffice for optimal control, along with a sparse selection of
‘major repair’ actions. In Setting 2, the agent has a better understanding
of its state, due to the presence of the permanent monitoring system.
This gives the agent the opportunity to avoid taking any maintenance
actions unless it is necessary due to expectation of high cost states. When
this time comes, after ~ 30 time steps, it starts with ‘major repair’ actions
and then it proceeds with ‘minor repairs’, until stopping taking actions,
after ~ 90 time steps. At the final steps of the realizations, in both set-
tings, no maintenance and observation actions are selected. This hap-
pens as a result of the finite horizon policy, which means that the agent
knows its exact time step before taking an action, in addition to the
belief over condition levels and the exact deterioration rate. As such,
when approaching the final zero-valued absorbing state, which signifies
end of the planning horizon, future cumulative state costs start
becoming less significant, so no state corrections or better understanding
of the system condition is required.

The simulation-based results of the cost estimates based on the policy
described by the lower bound of the converged value functions, along
with the respective VoSHM estimates, are shown in Table 3. Results of all
the utilized point-based POMDP algorithms are shown with a maximum
analysis time of 24 h. It can be seen that the VoSHM is in the order of ~ 8%
of the cost estimate of Setting 1. As mentioned in the example of Section
4.1, this amount indicates the maximum cost the decision-maker should
plan to invest at the beginning of the control horizon, in order to acquire,
install, operate and maintain a SHM system. In cases where inspection
and maintenance planning is not the only phase contributing to the
optimized life-cycle cost, these values must also factor in, and/or be
valued against, other relevant costs as well (e.g. one-time initial design
costs, final decomissioning costs, etc. [15]). The methodology analyzed in

Table 3

Life-cycle cost (negative reward) estimates with 95% confidence bounds and
corresponding value of structural health monitoring, for three point-based
algorithms.

visual inspection [ ] ] [ [
no repair
40

no inspection 0

Algorithm Setting 1 Setting 2 VoSHM
20 60 80 100 FRTDP —198.253 + 1.042 —181.126 + 3.830 17.127 + 4.872
Control time step (-) SARSOP —198.549 + 2.512 —184.437 + 2.187 14.112 + 4.699
Perseus —199.015 + 2.829 —183.043 + 2.168 15.972 + 4.997

Fig. 11. Two policy realizations of corroding deck structure, for Setting 1
(optional inspection setting).
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the previous sections straightforwardly accommodates such extensions
without loss of generality.

5. Conclusions

A study on the Value of Information (VoI) and the Value of Structural
Health Monitoring (VoSHM) within the context of POMDPs is presented
in this work. Respective step-wise and long-term value-based informa-
tion metrics are analyzed, their relations and inherent links to the
POMDP optimality equations are provided, and it is shown that their
non-negativity is necessarily satisfied under optimal POMDP policies, a
property that may elude standard inspection and maintenance decision
rules. The above theoretical findings along with the key methodological
points and practical outcomes of this work are succinctly outlined
below:

e For the quantification of Vol, the first setting evaluated involves
optimization of maintenance actions for the default decision problem
(no observation actions available), whereas the second setting opti-
mizes both maintenance and observation actions. This process
complies with standard Vol definitions. For the quantification of
VoSHM, the first setting corresponds to an observational scheme
with optimal optional inspections, whereas the second setting
operates under the assumption of continuously available observa-
tions, resembling the presence of a permanent monitoring system.
The two metrics are defined over the operational life of the system,
quantifying the expected long-term cumulative gains upon avail-
ability of inspection- or monitoring-based structural health infor-
mation. A step-wise definition of Vol is also introduced and studied,
showecasing that the notion of VoI naturally emerges in the Bellman
optimality equation, thus being optimally utilized under a POMDP
policy for the selection of observational actions at every decision
step. Step-wise Vol is non-negative for any policy (optimal or
otherwise) with convex value over the space of all possible posterior
state probability distributions.

Based on the latter result, the properties ensuing from the Bellman
contraction operator, and the respective optimal value function,
relevant theoretical analysis of the above value-based information
gains shows that, under a policy regulated by an optimal POMDP
decision rule, availability of information cannot increase the overall
life-cycle cost of the system, thus necessarily improving decisions
over the planning horizon. That is, the decision-maker will opt to pay
for an observation only if this is expected to lead to a value change
greater than the sheer observation collection cost, if any. Specif-
ically, Vol and the Relative Value of Continuous Information
(RVoCI), introduced as a special case and proxy of VoSHM, neces-
sarily assume non-negative values under POMDPs, whereas both are
upper bounded by their respective values when information is per-
fect. These properties do not necessarily hold true for other locally
optimal or otherwise suboptimal policies, often used in inspection
and maintenance planning.

Details for formulating the underlying POMDP problem settings and
quantifying the possible gains related to structural health informa-
tion (either obtained by inspections or SHM) are presented, along
with relevant implementation details with emphasis on point-based
value iteration algorithmic approaches.

Numerical investigation of a three-component deteriorating system
and a reinforced concrete structure under corrosion verifies the
theoretical discussion and results. The effect of observational un-
certainty on the introduced metrics is also assessed against the
emerged theoretical implications. The overall outcome of this anal-
ysis is a quantitative answer to the question of how much is structural
health information from inspections and/or monitoring worth, as
well as how information of increased precision can affect decisions.
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Potential extensions of the present work include, among others,
consideration of different types of inspection and monitoring observa-
tion models directly calibrated based on real data, integration of
advanced learning techniques with the decision-making process for
online extraction of efficient damage and condition indicators from
high-dimensional and heterogeneous SHM data, as well as VoSHM uti-
lization for design of SHM systems and sensor placement.
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