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the variability in the outcomes of measuring instruments and statistical 
learning errors. More specifically, the decision stage pertains to the type 
and sequence of actions that are selected in order to optimize a pre
defined life-cycle objective. When the objective is to maximize long- 
term safety and resilience, and to effectuate preventive maintenance 
actions, SHM typically constitutes a natural choice, as it can be used to 
diagnose faults and even determine the root cause of performance and 
condition deterioration processes, e.g. [8]. However, to what measur
able extent is the acquired information able to support improved policy- 
planning in an engineering environment, and how can we objectively 
quantify the resulting gains? 

An important discussion in this direction, originating beyond infra
structure decision-making [9–11] is whether the benefits of the various 
observational strategies, e.g. SHM-aided plans or in situ visual and 
specialized non-destructive evaluation inspections, can be quantified in 
terms of life-cycle value-based metrics. The question that summarizes 
this discussion is how much is information worth or, similarly, how much is 
an SHM system worth investing in? [12–14]. In response, recent research 
efforts have systematically focused on describing an overarching risk- 
and reliability-based framework for quantifying the Value of Informa
tion (VoI) and, similarly, the Value of Structural Health Monitoring 
(VoSHM), which can universally accomodate different life-cycle phases 
and types of stressors and hazards [15,16]. Following the definitions in 
[6], this framework, equipped with selected or heuristically optimized 
decision rules (or policies) for inspection and maintenance actions, is 
traditionally devised along the lines of pre-posterior decision analysis 
[7,17,18]. The study of the properties of the various infomation metrics, 
as these ensue from the mathematical attributes and assumptions of the 
employed decision rule, has, however, lacked similar diligence. To this 
end, this work casts the optimization formulation within the context of 
stochastic optimal control, studying the properties induced to the above 
metrics by the optimality conditions of Partially Observable Markov 
Decision Processes (POMDPs). Regardless of the employed decision rule, 
the concept of VoI can be utilized to (i) evaluate the amount the 
decision-maker is willing to pay for information prior to a single decision 
step of the decision process, either considering the long- or short-term 
benefits, e.g. [19] or [20] respectively; or (ii) to quantify the overall 
gain that information may yield as per a fixed inspection/monitoring 
policy, applied over the entire service life of a system, e.g. [21]. The 
latter measure of VoI may be used to assess whether it is worth adopting 
a certain observational strategy over others from the beginning or the 
remainder of the system’s life. Similarly, within the context of SHM, VoI 
may be quantified as the difference between the expected cost of 
maintaining the system in absence of SHM information, and the cost 
given availability of monitoring information [13,22,12,23]. Along the 
same lines, POMDP-based VoI analysis and quantification approaches 
have been developed in [24–26]. VoSHM is herein examined as a more 
specialized definition of VoI, describing relative costs between inter
mittent/optional observational schemes, e.g. periodic or non-periodic 
inspection visits, and SHM-aided plans, where the flow of observations 
is typically continuous [27]. 

As already mentioned, structural health information metrics, such as 
VoI or VoSHM, may be quantified as per their impact on optimal 
infrastructure decisions. Key to the success of this optimization is (i) 
incorporation of environment stochasticity, (ii) long-term optimality of 
decisions, and (iii) integration of dynamic, real-time, noisy observations. 
Numerous formulations exist in the literature for this problem [28]. 
Dynamic Bayesian networks are utilized in [29] to describe structural 
deterioration. Based on the established dependencies, the cumulative 
service life cost is evaluated and the policy space can be subsequently 
searched through optimization heuristics [19,30,31], genetic algorithms 
[32], or other relevant optimization solvers. Renewal processes can also 
be utilized in this regard, accounting for multi-threshold and multi-level 
action plans, or even integrated resilience considerations [33–35]. 
Multi-criteria objectives have been also examined in [36,37], including 
quantification of risk within its socioeconomic and environmental 

constituents [38], with the optimization task carried out through heu
ristics, such as genetic algorithms. POMDPs provide an optimization 
framework built within dynamic Bayesian network premises, providing 
optimal control of the underlying Bayesian network-driven deteriora
tion process [39,40]. In [41,42] POMDPs are adopted for decision- 
making of highway pavements. The use of POMDPs has been also 
applied in [5,43] for bridge inspection planning, whereas point-based 
solutions for stochastic deteriorating systems using POMDPs have 
been presented in [44–47]. Formulations extending to mixed observ
ability, and continuous states combined with nonlinear action models 
have also been proposed in [48] and [49], respectively. Recent frame
works of deep reinforcement learning can address the curse of dimen
sionality and model unavailability issues in large-scale POMDP system 
applications, as presented in [50–52]. Such solutions have been shown 
to be particularly well-suited for decision-making formulations in 
infrastructure management, significantly outperforming conventional 
static inspection and maintenance policies [50,53,52]. This is particu
larly true in discrete state spaces, where exhaustive evaluation and 
search of policy subspaces, evolutionary approaches, or gradient 
methods may be ineffective, if at all applicable. 

In this work, in the context of POMDPs, detailed definitions of the 
above value-based information metrics are presented and discussed, 
their theoretical, mathematical properties are analyzed, and the un
derlying steps for their computation are demonstrated in numerical 
experiments of deteriorating engineering systems operating in partially 
observable stochastic environments. Quantification is based on point- 
based POMDP value iteration solutions of the respective service life 
inspection and maintenance optimization problems. Accordingly, the 
methodology for calculating VoI and VoSHM is primarily aimed at 
assessing their life-cycle aspects, thus targeting decision-making for the 
selection of long-term observational plans among various alternatives. 
Towards this, the relation of step-wise VoI with POMDPs is also 
analyzed, and it is shown that POMDPs inherently utilize the net value of 
observations at every step as the criterion to optimally choose obser
vational actions. It is also formally proven that VoI and a proxy of 
VoSHM are always non-negative under an optimal POMDP policy, thus 
the additional information that inspections and SHM provide can only 
improve decisions in the long-run, a property that is shown to not be 
necessarily present under standardly optimized inspection and mainte
nance decision rules. Upper-bounding properties for these metrics are 
also devised in relevance to perfect observability cases. The above 
theoretical outcomes and discussion are verified in the numerical 
investigation of an infinite horizon three-component POMDP system and 
a larger finite horizon POMDP problem of a corroding reinforced con
crete port deck structure, which are analyzed under different informa
tion scenarios, including no information, optional inspection visits, and 
continuous availability of observations resembling SHM systems. 
Overall, the described VoI and VoSHM analyses provide the expected 
gains in terms of a cumulative long-term metric of interest, e.g. service 
life cost, thus answering the question of how much is inspection or 
monitoring information eventually worth in each problem, as well as 
how information of increased precision can affect decisions. 

2. Partially observable Markov decision processes 

POMDPs provide an adept framework for stochastic optimal control. 
They are established within the premises of dynamic programming, thus 
providing strong global optimality guarantees for long-term decision 
problems described by stochastic environment dynamics with 
Markovian properties, noisy observations, and uncertain action out
comes. Markovian assumptions do not restrict the applicability of 
POMDPs in non-Markovian environments, as the latter can be properly 
transformed to fit Markovian assumptions through state augmentation, 
as discussed in [54,44,30]. POMDPs generalize Markov Decision Pro
cesses (MDPs) to partially observable environments, i.e., to cases where 
observations are unable to reveal the actual state of the system with 
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certainty. This generalization facilitates rational utilization of evidence 
for updating state and model parameters through Bayesian computa
tions, an essential framework for risk quantification and utility-based 
decision analysis for engineering systems exposed to uncertain exoge
nous stressors [55]. This evidence generated by inspection techniques 
and monitoring devices, typically provides incomplete information 
about the system condition (states), which is described by a latent un
derlying stochastic deterioration process. 

According to the POMDP problem statement, the decision-maker/ 
agent starts at a state, st = s ∈ S at every decision step, t, takes an ac
tion, at = a ∈ A, receives a reward, r = r(s,a), transitions to the next state, 
st+1 = s′, according to a Markovian transition probability model condi
tioned at the current state and action, p(s′|s,a), and receives an obser
vation, ot+1 = o ∈ Ω, based on its state and action, according to the 
probability defined by an observation model, p(o|s′,a). This process is 
schematically depicted in Fig. 1. More formally, a POMDP is a 7-tuple 
L = 〈S, A, P, Ω, O, R, γ〉 where S, A and Ω are finite sets of states, 
actions and possible observations, respectively. P, O are the 3-dimen
sional Markovian state transition and observation probability 
matrices, respectively, whereas R is the reward matrix, defined as: 

P = [Pa]a∈A = [p(s′|s, a) ]s,s′∈S,a∈A

O = [Oa]a∈A = [p(o|s′, a) ]o∈Ω,s′∈S,a∈A

R = [Ra]a∈A = [r(s, a) ]s∈S,a∈A

(1)  

As a result of partial observability, at every decision step t, the agent 
cannot be fully aware of its state, st (shaded nodes in Fig. 1), which may 
only be perceived through an observation ot that is a noisy indicator of 
that state [56]. 

Starting with an initial distribution of state s0 over S, the objective of 
the agent is to determine a sequence of actions that maximizes the ex
pected return, i.e., the expected total cumulative future reward. This is 
accomplished by executing an optimal policy π = π*, which maps the 
history of actions and observations up to time t, to the current action at, 
such that: 

π* = arg max
π

Est⩾0 , ot>0

[
∑∞

t=0
γt r(st, at)

⃒
⃒
⃒
⃒
⃒
at = π(a0:t−1, o1:t)

]

(2)  

where γ is the discount factor, a positive scalar less than 1, associated 
with the present value of future rewards. In the context of inspection and 
maintenance planning, rewards are typically negative quantities 
describing costs. It can also be noted that Eq. (2) describes an infinite 
horizon problem. Assumed operation over an infinite number of steps 
offers the advantage of not arbitrarily predefining the end of operational 
life. It is also not restrictive in terms of modeling, in cases where such 
analysis is not relevant, since finite horizon problems can be also 
formulated as infinite horizon ones, with proper consideration of time- 
related states and an introduced absorbing state at the final time step 
[54]. Relevant implementation aspects are also discussed in the 

numerical examples in Section 4.2.1. 
Although the agent cannot observe the exact state with certainty as a 

result of partial observability, it can form a belief bt = b ∈ B about its 
state, where b is a probability distribution over set, S, of all possible 
discrete states. Space B is a (|S|-1)-dimensional simplex. The new belief 
bt+1 = b′, i.e., the posterior state distribution for a given action and 
observation, can be readily computed through a Bayesian update [48]: 

b′(s′) = ba,o(s′) = p(s′|o, a, b) =
p(o|s′, a )

p(o|b, a )

∑

s∈S
p(s′|s, a )b(s)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
ba(s′)

(3)  

where p(o|b,a) is the standard normalizing constant, given as: 

p(o|b, a ) =
∑

s′
∈S

p(o|s′, a )
∑

s∈S
p(s′|s, a )b(s) (4)  

Following Eq. (3), beliefs can be updated as new actions are performed 
and new observations are collected, essentially encoding the informa
tion of the entire history of actions and observations up to the current 
time step t. As such, a new belief b′ is a sufficient statistic of the history of 
actions and observations up to t. Namely, by forming a belief about its 
state using Eq. (3), the agent has all the information required for 
deciding on an action. The policy in Eq. (2) can then be equivalently 
expressed as a mapping from beliefs to actions, π : B→A. 

It also follows from Eq. (3) that the agent moves from one belief to 
another based on the selected action and received observation. We can, 
thus, define the transition probability from belief b to belief b′ as [56]: 

p(b′|b, a) =
∑

o∈Ω

p(o|b, a) (5)  

where Ω⊆Ω is the subset of observations leading to b′, when starting at 
belief b and taking action a. Owing to Eq. (5), a POMDP can be seen as a 
belief-MDP, where transitions pertain to belief points, instead of states. 
For a given observation, which depends on the actual system state, the 
respective probabilistic graph is shown in Fig. 2. The belief-MDP reward 
rb = rb(b,a) is the expected reward at the current step, which in the 
context of inspection and maintenance planning can be defined as [45]: 

rb(b, a) =
∑

s∈S
b(s)r(s, a)

=
∑

s∈S
b(s)(rM + γrO + rD)

= b⋅RM,a
⏟̅̅̅ ⏞⏞̅̅̅ ⏟

rb,M
exp. mainten. cost

+ γ b⋅RO,a
⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟

rb,O
exp. observ. cost

+ b⋅RD⏟̅̅⏞⏞̅̅⏟
rb,D

exp. damage cost

(6)  

where reward r (reward matrix R) is decomposed into rM, rO and rD (RM, 
RO and RD), which are the maintenance action, observation action and 
damage state rewards (non-positive to reflect costs), respectively. These 
costs evolve and accrue over the service life of the system, and their 
inner product with the current belief quantifies the expected conse
quences at every step. Maintenance cost rewards pertain to 

Fig. 1. Probabilistic graphical model of a POMDP in time (shaded nodes denote 
hidden states). 

Fig. 2. Probabilistic graphical model of a POMDP as a belief-MDP in time 
(observations depend on states which are hidden). 
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interventions, such as retrofits, repairs, replacements, etc. Observation 
action rewards include the costs related to the type of data collection 
method and can, for example, refer to a visual inspection versus an ul
trasonic inspection, or the installation of a monitoring system. Obser
vations, o, are the outcomes of observation actions. An observation is 
assumed to convey information if it can change the posterior probability 
over the system states, as this is described by Eq. (3). An observation can 
thus be informative or uninformative, as defined below, and as also 
discussed in Section 3. 

Definition 1. An uninformative observation, o ∈ Ω, is an observation that 
does not change a prior belief, i.e., in a POMDP context, ba,o(s) = ba(s), for 
all s ∈ S. 

From Definition 1 and Eq. (3), it readily follows that if Ω is a unit set, i.e. 
|Ω|=1, observations are always uninformative, for all s ∈ S and a ∈ A. 

Expected damage cost in Eq. (6) depends merely on the current state 
distribution (belief), and may be decomposed into more components 
pertaining for example to economic losses due to system downtime or 
shutdown, or costs related to various societal and environmental metrics 
(casualties, energy consumption, CO2 equivalent emissions, or other 
direct and indirect consequences, e.g. in [36,55]). 

The expected return under any policy, π, defines the value function, 
Vπ, whereas the expected return under the optimal policy defines the 
optimal value function, V*. Exploiting the concept of belief-MDPs, we 
can use the Bellman equation [57] expressing the optimal value function 
as [48]: 

V*(b) = JV*(b)

= max
a∈A

[rb(b, a) + γEo[V*(b′) ] ]

= max
a∈A

[

rb(b, a) + γ
∑

o∈ Ω
p(o|b, a )V*(b′)

] (7)  

where J is the Bellman operator for the belief-MDP problem defined by 
tuple L , and b′ is the posterior state distribution at the next step given 
an action and an observation, as described by Eq. (3). J is a contraction 
operator with fixed point V* [58]. 

It should be noted that Eq. (7) is defined over the continuous space of 
the belief simplex, B, which essentially consists of an infinite number of 
beliefs. However, it has been proven that the optimal value function is 
piece-wise linear and convex, and can thus be described by a finite 
number of affine hyperplanes [59]. This important result reduces the 
decision problem to determining a finite set of vectors, also known as the 
α-vectors: 

V*(b) = max
α̂∈Γ

∑

s∈S
b(s)α̂(s) (8)  

where Γ is the set comprising all α-vectors. Substituting Eqs. (4), (8) in 
Eq. (7) we obtain the detailed expression of the POMDP optimal value 
function: 

V*(b) =max
a∈A

[
∑

s∈S
b(s)(rM +γrO +rD)

+γ
∑

o∈Ω
max
α̂∈Γ

∑

s∈S
b(s)

∑

s′∈S
p(o|s′,a)p(s′|s,a) α̂(s′)

] (9)  

Eq. (9) can be solved using value iteration on the space of α-vectors. 
However, performing exact value iteration on the vector space is 
generally impractical, except for small POMDP problems, since the new 
set of alpha vectors generated at every iteration step scales exponentially 
with the cardinality of the observation set, |Ω| [60]. 

2.1. Point-Based POMDP algorithms 

Point-based solvers adopt the concept of belief-MDPs and manage to 
alleviate the POMDP complexity by avoiding the exponential increase of 
α-vectors. The idea is to restrict value iteration operations to a 

meaningful collection of discrete belief points, i.e., to perform α-vector 
backups on a finite subset of the belief space, B = {b0, b1, ...}⊆B, which 
is considered to be able to sufficiently approximate the original 
continuous (|S|-1)-dimensional simplex. Point-based algorithmstake 
advantage of the fact that despite the continuity of the belief space, in 
practice there is only a finite number of belief points that are actually 
visited. These belief points lie in a reachable subset of the belief space, 
with respect to an initial (root) belief b0. At every iteration step, new 
α-vectors are generated merely based on these points, forming a set Γ⊆Γ 
that can efficiently recover the true value function over the entire belief 
space, with the aid of the max operator of Eq. (8). Of course, since the 
α-vectors in Γ cover the entire space, B, one can also compute an esti
mate of the value function for non-reachable beliefs, however, this es
timate may be expected to be of lower accuracy. At each iteration, Γ is 
updated through every b ∈ B, or a subset of it, based on the backup 
operator defined as: 

backup(Γ, b) = arg max
α̂

a
∈Γ

∑

s∈S
b(s) α̂a

(s) (10)  

α̂a
(s) = rM + γrO + rD + γ

∑

o∈ Ω

∑

s′∈S

p(o|s′, a )p(s′|s, a ) α̂a,o
(s′) (11)  

α̂a,o
= arg max

α̂∈Γ

∑

s∈S
b(s)

∑

s′∈S

p(o|s′, a )p(s′|s, a ) α̂(s′) (12) 

All point-based solvers maintain a lower bound on the value func
tion, which is updated throughout the iteration process, as described in 
Eqs. (10)–(12), e.g. [60–63]. This lower bound consists of the linear 
hyperplanes defined in Eq. (8), and is typically initiated by evaluating a 
simple policy. Modern point-based algorithms also compute, maintain 
and update an approximate upper bound on the value function. This 
bound allows these algorithms to employ more efficient strategies for 
belief space exploration, as well as to monitor convergence over the 
course of the iterative procedure. ZMDP with its Heuristic Value Itera
tion (HSVI) and Focused Real-Time Dynamic Programming (FRTDP) 
variants [62,64], as well as Successive Approximation of the Reachable 
Space under Optimal Policies (SARSOP) [63] belong to this class of al
gorithms. The upper bound is typically initiated with optimistic values 
and, similarly to the lower bound, should be constructed as a piece-wise 
linear and convex function. However, it is not possible to update or 
evaluate the upper bound over the entire belief simplex using Eqs. (10)– 
(12), due to the presence of the max operator. Thus, the upper bound can 
be maintained by point-wise value estimates at visited beliefs and the 
formed convex hull that they support, which is determined through 
linear programming. Point-based solvers avoid solving this expensive 
linear program however and, instead, determine the upper bound using 
a much faster sawtooth approximation, since as the number of beliefs 
supporting the upper bound estimates increases, the linear program 
becomes considerably difficult to solve [58]. 

The points of B are either collected through randomly sampled belief 
trajectories, i.e., based on random sequences of actions and observa
tions, or through more focused and informed search heuristics. The 
Point-Based Value Iteration (PBVI) algorithm [60], the first point-based 
algorithm, iterates between backup and belief space expansion steps. 
PBVI proposes an exploration strategy which expands over the existing 
points of B, at every iteration. For every existing belief point, its suc
cessor is added to B such that the new set spreads as sparsely as possible 
over B. PBVI updates α-vectors over all collected beliefs. The Perseus 
algorithm [61] traverses a series of path trials based on randomly 
sampled action and observation histories, in order to form B, at the 
beginning of the solution procedure. This set of collected points remains 
unchanged during the α-vector backups. Perseus also performs asyn
chronous randomized backups, i.e., it does not perform backups over all 
beliefs in B, but instead selects randomly which belief values to update at 
every iteration step. Beliefs whose value is improved by α-vectors 
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supporting previously selected beliefs, are not updated in the current 
step. ZMDP and SARSOP utilize both the lower and upper bounds to 
inform the exploration of the belief space, choosing actions based on the 
upper bound and observations based on the maximum lower–upper 
bound gap. Both algorithms perform asynchronous bound updates over 
the visited beliefs. 

In addition to their advanced exploration strategies, HSVI, FRTFP 
and SARSOP also apply pruning techniques to reduce the complexity 
and memory requirements related to the expansion of the α-vectors set, 
removing vectors from Γ that are considered to be suboptimal under 
certain criteria. HSVI and FRTDP prune vectors that do not support at 
least one of the collected belief points and their immediate successors. 
The above algorithms can also optionally implement a masking tech
nique which essentially tries to create compressed representations of the 
α-vectors, by maintaining and updating α-vector entries that are not zero 
or not close to zero. Similarly, SARSOP prunes vectors that either do not 
support at least one of the collected belief points or are dominated by 
other α-vectors within a predefined neighborhood. SARSOP also prunes 
beliefs that are considered to be suboptimal based on the current in
formation provided by the upper and lower bounds. Thereby, the entire 
tree of successors under these beliefs is pruned and exploration is 
restricted to more optimally reachable belief subspaces. 

A detailed overview on point-based solvers along with their appli
cation in various robotic tasks can be found in [58]. Their insights and 
application details in structural inspection and maintenance planning 
can be found in [48,47] where different point-based approaches are 
tested. Among them, the three most competitive are identified and used 
herein. Overall, it is demonstrated that point-based solvers can provide 
comprehensive and efficient near-optimal solutions in problems with 
thousands of states and a much lower number of actions and observa
tions. In cases featuring more complex POMDP settings, deep rein
forcement learning actor critic architectures have been shown to have 
significant success, as presented in [50]. The multi-agent actor critic 
approaches developed in [50] combine belief-MDPs with decentralized 
deep reinforcement learning concepts and are able to learn detailed non- 
stationary inspection and maintenance policies for engineering system 
settings with multiple components, operating in extremely large state, 
action, and observation spaces. 

3. Quantifying value-based information gains 

3.1. Step-wise value of information in POMDPs 

As described above, a POMDP can be defined through a tuple L =

〈S, A, P, Ω, O, R, γ〉. Based on the decomposable nature of the reward 
and the effects of different observational and intervention actions, the 
tuple can be re-written in a detailed form as L =
〈

S, AM × AO, [PaM ]aM∈AM
, Ωe × ΩO, [OaO ]aO∈AO

, RM + RO + RD, γ
〉

. AM 

is a set of maintenance actions aM; AO is a set of observation actions aO; 
PaM is the transition model for different maintenance actions aM; Ωe is a set 
of default observations; ΩO is a union set of observations of observation sets 
ΩaO of the different observation actions aO; OaO is the observation model 
for different observation actions aO; RM, RO, RD are the reward matrices as 
previously defined. Although for notational efficiency we assume the 
reward matrices to have the same dimensions|S| × |A|, the maintenance 
costs are independent of aO, the observation action costs are independent 
of aM, and the damage costs are independent of both. 

Definition 2. A default observation, oe ∈ Ωe, is an observation which the 
decision-maker always receives from the environment, regardless of the 
selected action, i.e. p(oe | s, a) = p(oe | s), for all s ∈ S and a ∈ A. 

Definition 3. A trivial observation action, aO ∈ AO, is an observation 
action with no cost, i.e. rO(s, aO) = 0, for all s ∈ S and aO ∈ AO, with its 
respective ΩaO being a unit set. 

According to Definitions 1–3, if the decision-maker chooses a trivial 
observation action, it will receive the default observation from Ωe plus 
an uninformative observation from ΩO. Thus, the decision-maker will 
overall receive the default observation, i.e., Ω ≡ Ωe. Default observations 
are not necessarily uninformative, hence the respective POMDPs do not 
necessarily imply that the trivial actions yield no information. In dete
riorating systems, failure or near-failure states, for example, are often 
self-announcing, meaning that they are “observable” regardless of the 
selected observation action. 

Similarly, the trivial maintenance action is an action with no cost, i.e 
rM = 0, and yields a natural (uncontrolled) environment transition. As 
denoted by the respective subscripts, state transitions PaM merely 
depend on maintenance actions, meaning that only maintenance actions 
aM can change the state of the system, whereas observation actions aO 
can only change the agent’s perception about the state of the system, 
thus perfectly sufficing to define the observation model OaO. Based on 
the above, we can define the step-wise VoI associated with a certain 
policy π as: 

VoIπ
step(aO) = Eoe ,oO [Vπ(baM ,aO ,oe ,oO ) ] − Eoe [Vπ(baM ,oe ) ] (13)  

Eq. (13) describes the gain the decision-maker expects when taking an 
observation action at a certain time step t, following a policy π in the 
future. Subtracting the actual cost of the observation action from this 
gain, we obtain the net step VoI under a policy π as: 

netVoIπ
step(aO) = VoIπ

step −
⃒
⃒rb,O

⃒
⃒ (14)  

Net step VoI expresses the net gain at step t as a result of additional 
information, also considering the cost to acquire this information 
(e.g. inspection cost). If nontrivial observation actions reveal the actual 
state of the system with certainty, i.e. Onontrivial = I (identity matrix), 
we can similarly define the step-wise Value of Perfect Information 
(step-wise VoPI), VoPIπ

step, and net step-wise VoPI, netVoPIπ
step, similarly 

to Eqs. (13) and (14). In such a case, in the term Eoe ,oO [Vπ(baM ,aO ,oe ,oO ) ] of 
Eq. (13), uncertainty is only attributed to the state transition, 
which is controlled by the chosen maintenance, VoPIπ

step(aO) =

Es′∼baM [Vπ(s′) ] − Eoe [Vπ(baM ,oe ) ]. 

Lemma 1. Any policy with convex value function on the belief simplex, B, 
has VoPIπ

step⩾VoIπ
step⩾0. 

Proof. Using basic probability definitions, Jensen’s inequality, Eq. (3), and 
the fact that observation actions do not affect state transitions we can get: 

Es′∼baM [Vπ(s′) ] = baM ⋅[Vπ(s′) ]s′∈S = Eoe ,oO [b′]⋅[Vπ(s′) ]s′∈S

= Eoe ,oO

[
b′⋅[Vπ(s′) ]s′∈S

]
⩾Eoe ,oO

[[
Vπ(

[Es′∼b′ [δs′x] ]x∈S

) ] ]

= Eoe ,oO [Vπ(b′) ] = Eoe ,oO [Vπ(baM ,aO ,oe ,oO ) ]

For the last expression, we further have: 

Eoe ,oO [Vπ(baM ,aO ,oe ,oO ) ] ⩾Eoe [V
π(EoO [baM ,aO ,oe ,oO ] ) ]

= Eoe

[
Vπ(

EoO

[
[p(s|aM , aO, oe, oO, b) ]s∈S

] ) ]

= Eoe [V
π(baM ,aO ,oe ) ]

= Eoe [V
π(baM ,oe ) ]

From the above, it immediately follows that inequalities Es′∼b′ [Vπ(s′) ]⩾ 
Eoe ,oO [Vπ(baM ,aO ,oe ,oO ) ]⩾Eoe [Vπ(baM ,oe ) ] hold, thus VoPIπ

step⩾VoIπ
step⩾0. 

Equality VoIπ
step = 0 holds if ΩaO is a unit set, i.e. nontrivial observation 

actions also yield uninformative observations. Equality VoPIπ
step = VoIπ

step 

holds if Onontrivial = I, i.e. nontrivial observation actions reveal the actual 
system state with certainty. 

Corollary 1. Under the optimal POMDP policy, π = π*, 
VoPI*

step⩾VoI*
step⩾0. 
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Proof. The POMDP optimal value function is convex [59] so Lemma 1 
holds. 

The above result can be also straightforwardly proven by using the 
specific piece-wise linear form of the optimal value function, V*(b) =

max
α̂∈Γ

{α̂⋅b}, and the fact that 
∑

max(⋅)⩾max
∑

(⋅) [65]. Elaborating on 

Eq. (9), using Eqs. (13) and (14), we have: 

V*(b) = max
aM ∈AM

{

rb,O− + γEoe [V(baM ,oe ) ] + γ max
aO∈AO

{
netVol*step(aO)

} }

(15)  

where rb,O
- = rb,M + rb,D, i.e. combining any costs other than the expected 

inspection cost. The alternative statement of Bellman optimality in the 
belief space, as this is expressed by Eq. (15), is illustrative of how the 
notion of information and its respective value is leveraged by a POMDP 
policy to guide inspections. Namely, for all possible maintenance ac
tions, the decision-maker will take that observation action that maxi
mizes the net VoI at this certain step. 

Corollary 2. Under the optimal POMDP policy, π = π*, if nontrivial 
observation actions are cost-free and informative then the decision-maker 
always observes. 

Proof. Inspections are cost-free, i.e. rb,O = 0 for all aO ∊ AO. Without loss of 
generality, we assume that AO={0,1,…,|AO|−1}, with aO = 0 denoting the 
trivial observation action. Then, using Eqs. (14), (15) and Corollary 1 we 
obtain: 

argmax
aO∈AO

{
netVoI*

step(aO)
}

= argmax
aO∈{0,1,...}

{
VoI*

step(0) − 0, VoI*
step(1) − 0, ...

}

= argmax
aO∈{0,1,...}

{

0, VoI*
step(1)
>0

, ...

}

∕= 0  

Corollary 3. Under the optimal POMDP policy, π = π*, 

max
aO∈AO

{
netVoI*

step

}
⩾0. 

Proof. Using Corollary 1, and Eq. (14), and assuming, without loss of 
generality, that AO = {0,1,…,|AO|−1}, we can prove: 

max
aO∈AO

{
netVoI*

step(aO)
}

= max
aO∈{0,1,...}

{
VoI*

step(0), VoI*
step(1) −

⃒
⃒rb,O(1)

⃒
⃒, ...

}

= max
aO∈{0,1,...}

{
0, VoI*

step(1) −
⃒
⃒rb,O(1)

⃒
⃒, ...

}
⩾0  

3.2. Life-cycle gain from changing control setting 

The expected life-cycle gain of one control setting versus another can 
be expressed as the value difference between the two settings, when 
different control action sets are available for each setting, but these 
apply to the same system, i.e., the two settings have the same state space 
and the same deterioration dynamics (transition model for the uncon
trolled case), as well as the same discounted horizon. To quantify the 
value of expected cumulative reward (or cost) of these two settings, we 
consider two tuples that define the following distinct POMDP problems: 

L 1 =

〈

S, A1
M × A1

O,
[
P1

aM

]

aM ∈A1
M

,Ωe × Ω1
O,

[
O1

aO

]

aO∈A1
O

,R1
M + R1

O + RD,γ
〉

L 2 =

〈

S,A2
M × A2

O,
[
P2

aM

]

aM ∈A2
M

,Ωe × Ω2
O,

[
O2

aO

]

aO∈A2
O

,R2
M + R2

O + RD,γ
〉

(16)  

Then, the expected life-cycle gain, GL 1 ,L 2 , from following the optimal 
policy in L 2 versus L 1, starting at any belief b ∈ B, is computed as: 

GL 1 ,L 2 (b) = V*
2 (b) − V*

1 (b) (17)  

where V*
1, V*

2 are the optimal value functions of each tuple, L 1,L 2,

respectively. Equivalently, Eq. (17) describes the expected benefit from 
changing a control scheme from L 1 to L 2 at belief b. 

To assess the expected life-cycle gain of one observational scheme 
versus another (e.g. SHM, inspection visits, etc.), the tuple elements 
related to maintenance actions have to be the same, thus one has to 
apply Eq. (17), considering the following POMDP problems: 

L 1 =

〈

S, AM × A1
O, [PaM ]aM ∈AM

,Ωe × Ω1
O,

[
O1

aO

]

aO∈A1
O

,RM + R1
O + RD,γ

〉

L 2 =

〈

S,AM × A2
O, [PaM ]aM ∈AM

,Ωe × Ω2
O,

[
O2

aO

]

aO∈A2
O

,RM + R2
O + RD,γ

〉

(18)  

For Eqs. (17), (18), GL 1 ,L 2 is the expected life-cycle gain of two control 
settings which are merely discerned by their observation actions. In this 
case, Eq. (17) quantifies potential benefits as a result of different sources 
and/or accuracy of information. In the remainder of this section, we 
elaborate on special cases of Eqs. (17), (18) to derive the gains related to 
different observational schemes and their relation to VoI and VoSHM. 

3.3. Value of information 

Considering Eq. (18), suppose A1
O is a unit set, containing only a 

trivial observation action. Then, R1
O = 0. This technically means that Ω1

O 
is defined by a unit set as well. As such, overall, from all states, only one 
observation is possible, which is the default observation, i.e. Ω1 ≡ Ωe. In 
this case, tuple L 1 defines the default control problem (or otherwise 
often also called prior in the literature) of L 2, i.e., L 1≐L def and L 2≐ 
L , thus Eq. (17) gives the VoI of the observational scheme adopted in 
L 2 [21]: 

GL def ,L (b) = VoIL (b) = V*(b) − V*
def (b) (19) 

In addition to the previous assumption, let us now assume that A2
O is a 

unit set with only a nontrivial action available at no cost, and 
⃒
⃒Ω2

O

⃒
⃒ = |S|

with O2
nontrivial = I (identity matrix). In this case, the agent operates under 

perfect information at every decision step of L . This reduces the 
POMDP defined by L to an MDP problem, i.e. L ≐L MDP. Under these 
assumptions, using Eq. (17) we obtain the Value of Perfect Information 
(VoPI): 

GL def ,L MDP (b) = VoPIL (b) = V*
MDP(b) − V*

def (b) (20) 

If the value functions in Eqs. (19) and (20) include the cost related to 
observational actions, then, according to [14] they can also be associ
ated with the net VoI, as explained in the previous section. As intuitively 
understood and also formally proven below, VoPI is an upper bound of 
VoI, and both information gains should be non-negative, in the sense 
that information should not be expected to hurt decisions. Notwith
standing its intuitive nature, it is also showcased later that this remark is 
not necessarily true if the decision-maker is following an inspection and 
maintenance policy other than the optimal policy prescribed by the 
solution of Eq. (9). This is shown by a counterexample in Section 4.1.3. 

Theorem 1. Let J1 and J2 be two value function mappings defined on V 1 
and V 2, such that:  

• J1 and J2 are contractions with fixed points V*
1 and V*

2, respectively  

• V*
1 ∈ V 2 and J2V*

1⩾J1V*
1 = V*

1  

• J2 is an isotone mapping 

Then V*
2⩾V*

1 is true. 

Proof. See [65] page 87. 

Proposition 1. Under the optimal policies of the POMDPs defined by 
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tuples L , L MDP, L def , then VoPIL ⩾VoIL ⩾0. 

Proof. Following the results of Corollary 3, and Eq. (15), we obtain: 

JV*(b) = max
aM ∈AM

{

rb,O− + γEoe [V*(baM ,oe ) ] + γ max
aO∈AO

{
netVoI*

step(aO)
} }

⩾ max
aM ∈AM

{
rb,O− + γEoe [V*(baM ,oe ) ]

}
= Jdef V*(b)

Following the results of Corollaries 1 and 2, and using Eq. (15) we obtain: 

V*(b) =

{

rb,O− + γEoe [V(baM ,oe ) ] + γ max
aO∈AO

{
netVoI*

step(aO)
} }

⩽ max
aM ∈AM

{

rb,O− + γEoe [V(baM ,oe ) ] + γ max
aO∈AO

{
netVoPI*

step(aO)
} }

= max
aM ∈AM

{
rb,O− + γbaM ⋅[Vπ(s

′

) ]s′
∈S

}

= b⋅ max
aM ∈AM

{
RM,aM + RD + γPT

aM
⋅[Vπ(s

′

) ]s′
∈S

}

= JMDPV*(b)

J, Jdef, JMDP are all contraction operators with fixed points V*, V*
MDP, V*

def , i.e. 
the maximum expected discounted rewards (minimum cost) of the POMDPs 
defined by tuples L , L MDP, L def . It can also be readily noticed that these 
operators describe isotone mappings, i.e. for V1⩾V2 it holds that JV1⩾JV2. 
Using Theorem 1, we then have that: 

V*
def (b)⩽V*(b)⩽V*

MDP(b)

It immediately follows that inequalities VoPIL ⩾VoIL ⩾0 hold. 

Proposition 2. VoIL and VoPIL reach their highest values when default 
observations are always uninformative. 

Proof. This result can be shown if one marginalizes out oe in Eq. (13), and 
similarly proceeds with the steps delineated in Lemma 1 and Proposition 1, 
for the step-wise and life-cycle metrics, respectively, noting that 
Eoe [V*(baM ,oe ) ]⩾V*(baM ). 

3.4. Value of structural health monitoring 

The VoSHM refers to the possible gains from investing in life-long 
SHM devices and practices, instead of, or in addition to, planning in
spection visits at distinct times during the structural service life. As such, 
the VoSHM relates to the critical decision, either at the design stage or 
later, of whether a monitoring scheme is worth to be adopted, and if so, 
of which type. VoSHM quantifies essentially the benefits of continuous 
data collection and information inflow in the decision-support system. 

In this work, to quantify the VoSHM, we examine another special 
case of Eq. (18). We assume that A1

O contains at least one nontrivial 
available action. Conversely, A2

O contains only one available observation 
action which is, however, not the trivial one and is costless, i.e., R2

O = 0. 
For the two POMDP settings, the nontrivial observation actions may 
follow different observation models. Thereby, L 1≐L 1,opt corresponds 
to the scenario of optional inspection visits, whereas L 2≐L 2,perm cor
responds to an alternative observational scheme with permanent char
acteristics, as this provided by an SHM system. Along these lines, the 
VoSHM is defined as: 

GL 1,opt ,L 2,perm (b) = VoSHML 1,opt ,L 2,perm (b) = V*
2,perm(b) − V*

1,opt(b) (21)  

It should be noted that the expected VoSHM life-cycle gain defined in Eq. 
(21) cannot be strictly seen as VoI as it can also take negative values. 
This may happen, for example, if the state information provided by an 
optional inspection visit is more accurate than the outcome of the per
manent monitoring system, for any possible reason. A VoSHM value 
lower than the cost of a SHM system (including acquirement, installa
tion, maintenance, and operation costs, etc.) simply suggests that there 

is no benefit for the decision-maker to invest in SHM but, instead, 
optimal planning with selected inspection visits should be preferred. 

Using Eq. (21) we can compute the VoSHM at every possible belief 
point that the system can visit throughout the planning horizon. Typi
cally, the belief of foremost interest is the root belief, b0, which reflects 
the probability distribution over all possible states at the initial condi
tions, i.e., for the defined time step t = 0. In this case, the VoSHM 
quantifies the life-cycle value of the monitoring system. For t > 0, which 
usually corresponds to bt ∕= b0, Eq. (21) describes the remaining VoSHM 
from that time onward. The notion of remaining VoSHM can be of 
particular practical importance in cases where the optimal salvage time 
of the SHM system needs to be determined. 

If the nontrivial observation actions in L 1,opt, L 2,perm share the same 
observation probability model, i.e., with the respective settings denoted 
as L 1,opt≐L , L 2,perm≐L perm, we obtain a non-negative value in Eq. (21). 
This can technically refer to a case where both inspections and SHM are 
based on the same sensing units. Thus the VoSHM can be seen in this 
case as the Relative Value of Continuous Information (RVoCI), since it 
quantifies the possible gain if the nontrivial observation is continuously 
and freely available: 

VoSHML ,L perm (b) = RVoCIL (b)

= VoIL perm (b) − VoIL (b)

= V*
perm(b) − V*(b)

(22)  

Proposition 3. Under the optimal policies of the POMDPs defined by 
tuples L , L perm, then RVoCIL ⩾0. 

Proof. Using, Eq. (7) and Corollary 2 and the fact that rb,O⩽0 for all 
observation actions, we obtain: 

JV*(b) = max
aM ,aO

{
rb,O− + γrb,O + γEoe ,oO [V*(b′) ]

}

⩽max
aM ,aO

{
rb,O− + γEoe ,oO [V*(b′) ]

}

= max
aM

{
rb,O− + γEoe ,oO [V*(b′) ]

}

= JpermV*(b)

As for Proposition 1, using Theorem 1, we have: 

V*(b)⩽V*
perm(b)

and it immediately follows that the inequality RVoCIL ⩾0 holds. 

4. Numerical applications 

We consider two inspection and maintenance problems and assess 
VoI, VoSHM and their specialized cases, for the underlying systems as 
discussed in Section 3. For both problems, the analysis only includes the 
service life phase, e.g. without that of initial design and construction. 
Equivalently, the costs related to the latter, or other phases, are assumed 
to be fixed and equal for the various observability cases considered in 
the quantification of the various structural health information metrics, 
thus not affecting the outcome of the optimization process. The first 
problem pertains to a stationary three component system, whereas the 
second to a single-component structure, deteriorating according to a 
non-stationary corrosion model. For the reported results the point-based 
algorithms of FRTDP, SARSOP and Perseus have been implemented to 
solve the POMDP problems and to determine the optimal service life 
strategies. 

4.1. Three-component deteriorating system 

4.1.1. Environment and description of control settings 
For the purposes of a parametric numerical investigation in the 

presence of various observability accuracy levels, we consider a small 
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three-component system. An infinite horizon case with γ = 0.95 is 
analyzed. The discount factor, γ, reflects the current value of future 
costs, thus largely depending on economic features, such as interest rate 
and inflation. In management of deteriorating infrastructure systems, 
annual values of discount factors typically range between 0.95 and 0.98 
[41,43,36]. Stochastic deterioration of the components, for all i 
∈{1,2,3}, is defined by independent transition matrices, P(i),0, whereas 
whenever a repair action is taken the components share the same 
transition matrix P(i=1,2,3),rep: 

P(1),0 =

⎡

⎣
0.82 0.13 0.05

0.87 0.13
1.00

⎤

⎦, P(2),0 =

⎡

⎣
0.72 0.19 0.09

0.78 0.22
1.00

⎤

⎦,

P(3),0 =

⎡

⎣
0.79 0.17 0.04

0.85 0.15
1.00

⎤

⎦, P(i=1,2,3), rep =

⎡

⎣
0.90 0.10
0.80 0.20

0.70 0.30

⎤

⎦

(23) 

As indicated by Eq. (23), each component is described by three 
condition levels with stationary transition dynamics, i.e., transition from 
condition level k to j is independent of time, component age or deteri
oration rate. For example, for component 3, the transition probability 
from state 1 to state 3 is 0.04. Overall, the examined system can be fully 
specified by 27 states. Markovian transition probabilities of structural 
systems can be constructed based on simulated or real data of longitu
dinal responses, system conditions, rankings, etc., e.g. in [39,66,67] 
either through maximum likelihood estimation, or expect
ation–maximization schemes in the presence of latent state variables. 

In order to quantify the VoSHM for this three-component system, two 
POMDP control settings are evaluated. For Setting 1, 4 observation and 
maintenance control actions are available for each component, 
including the possibility of inspection visits at belief points suggested by 
the POMDP solution. These actions are ‘no observation and no repair’, 
‘observation and no repair’, ‘no observation and repair’, and ‘observation 
and repair’. The ‘no observation’ observation action is the trivial obser
vation action, and the default observation is considered uninformative. 
As such, the default control problem is here called blind, L def ≐L blind. 
The total number of system actions is 64. For Setting 2, observations of 
nontrivial actions are available at no cost at every decision step, corre
sponding to a permanent monitoring observational scheme. Accord
ingly, only 2 maintenance control actions need to be considered, i.e., ‘no- 
repair’, and ‘repair’. Based on the possible action combinations, 8 system 
actions are available for Setting 2. Observation matrices, for all com
ponents, are given as: 

O(i=1,2,3) =

⎡

⎣
p (1 − p)/2 (1 − p)/2

(1 − p)/2 p (1 − p)/2
(1 − p)/2 (1 − p)/2 p

⎤

⎦ (24)  

Eq. (24) assigns an observation accuracy of 0⩽p⩽1 every time an 
‘observation’ is taken, meaning that the correct state is observed with 
probability p, whereas either one of the other states is observed uni
formly at random with probability 1−p. Negative rewards (or costs) for 
individual components are given in Table 1 for different states and ac
tions. Observation actions are considered to cost 1/12, 1/18, and 1/30 
of the repair cost for condition levels 1,2,3 respectively. Observation 
actions have constant costs with respect to states, whereas repair costs 
are considered to increase with damage severity. These values establish 

representative proportions between inspection and repair costs [43,30] 
and can vary as per the specific nature of the studied engineering system. 
System level interdependence among components is established though 
the reward function, with certain penalties added to the cumulative 
component costs at different system state configurations. That is, for 
system states {(2,2,1)}, {(2,2,2),(1,2,3),(2,2,3)}, {(3,3,1),(3,3,2)}, and 
{(3,3,3)}, penalties are −5.0, −10.0, −14.0, and −18.0, respectively, 
where vector (i,j,k) denotes component condition level combinations, i. 
e., (3,3,1) indicates that there are 2 components in condition level 3 and 
one component in condition level 1. These system-level state rewards 
are combined with the rewards of the individual components, shown in 
Table 1. 

4.1.2. Evaluation of optimal policies 
For both POMDP settings, FRTDP, SARSOP and Perseus point-based 

algorithms are implemented. As shown in the analysis results presented 
in Figs. 3 and 4, for p = 0.90, Setting 1 practically converges after 1000 s, 
whereas Setting 2 after 110 s for all algorithms. It can be seen that the 
precision of the solution of Setting 1 is somewhat lower that the preci
sion of Setting 2, for FRTDP and SARSOP. This can be attributed to the 
fact that the system in Setting 1 operates in a much more challenging 
POMDP environment with more actions and, consequently, larger 
reachable belief space. Apart from that, low precision can also be trig
gered by a rough approximation of the upper bound. As discussed in 
Section 2.1, FRTDP and SARSOP utilize approximate upper bounds, 

Table 1 
Individual component costs (negative rewards) of maintenance and observation 
actions for three-component deteriorating system POMDP.  

Condition levels  1 2 3 

Maintenance rewards (rM) 1: Do nothing 0 0 0  
2: Repair −12 −18 −30 

Observation rewards (rO) 1: No observation 0 0 0  
2: Observation −1 −1 −1 

Damage rewards (rD)  0 −5 −12  

Fig. 3. Performance of different point-based POMDP algorithms in the three- 
component system problem, with p = 0.90, for Setting 1 (optional moni
toring setting). 

Fig. 4. Performance of different point-based POMDP algorithms in the three- 
component system problem, with p = 0.90, for Setting 2 (permanent moni
toring setting). 
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determined by a sawtooth approximation. The bound that actually 
contains all the information of the optimal policy is the lower bound and 
this is shown to be reached with great agreement among the different 
algorithms. Overall, in Fig. 3 SARSOP converges faster, thus exhibiting a 
better anytime performance, as also discussed in [48]. Perseus, although 
starting from a cruder initial lower bound, eventually reaches the best 
value, slightly outperforming its counterparts. The same features are 
also noticed in Fig. 4, where the overall convergence is much faster for 
all algorithms, due to the simpler nature of the decision problem. 
SARSOP demonstrates considerable strengths in early convergence, 
practically converging before 10 s. Perseus has an anytime performance 
advantage compared to FRTDP, whereas all solvers reach identical 
lower bounds after 3,600 s. 

A realization of the converged policy is shown in Figs. 5 and 6. For 
Settings 1 and 2, each component needs to perform different policies in 
order for their combined behavior to collectively minimize the total 
expected cost of the system. In Fig. 5, depicting a policy realization for 
the case of optional inspections, component 1 requires an inspection 
visit roughly every two years, whereas its ‘repair’ actions are mostly 
taken at the inspection times. Component 2 requires inspections at 
almost every decision step (all time steps except t = 10) in the realization of Fig. 5. Component 3 policy combines features of the other two pol

icies, choosing frequent inspections, with a few ‘no observation and no 
repair’ actions. These policy patterns are intuitively anticipated as the 
transition dynamics of component 3 are in-between the other two cases 
defined by components 1, 2. Fig. 6 illustrates a service life policy real
ization for the case of permanent monitoring (Setting 2). In this POMDP 
setting, observations are always available at no cost due to the perma
nent monitoring system assumption, as explained in Section 3.2. 

The converged value functions and VoI for each setting, as well as the 
VoSHM are shown as functions of the observability accuracy level, p, in 
Fig. 7. VoSHM equals the RVoCI, as Settings 1 and 2 share in this case the 
same observation matrices for their observation actions. It can be 
observed that as the observation accuracy increases, the VoSHM in
creases and is concave down, reaching a plateau at higher levels of ac
curacy. The VoSHM of the system ranges from ~ 3% to ~ 11% of the 
value of Setting 1, for p = 0.50 to p = 1.00, respectively. This means that 
any permanent monitoring system with lifetime cost lower than these 
amounts should be preferred, in place of any inspection plan, including 
the optimal one. The VoI also increases with increased observability, for 
both settings, however it is concave up. This pattern is more prominent 
for the value function of Setting 1, where a plateau is practically reached 
for p < 0.60. This indicates that the observation quality is quite poor at 
this region, so the decision-maker does not choose to pay for inspection 
and, consequently, the value of Setting 1 becomes equal to the value of 
the optimal blind policy. The VoPI is ~ 25% of the optimal blind policy 
cost and, by definition, is reached by the VoI of Setting 2, for p = 1.00. 

4.1.3. Can better information hurt? 
As briefly discussed and proven in Sections 3.3 and 3.4, VoI, VoPI 

and RVoCI describe non-negative gains under the optimal policy 
provided by Eq. (7). This practically implies that if the decision- 
maker follows the optimal POMDP policy, which is also the glob
ally optimal policy as long as the problem adheres to the dynamic 
programming principle of optimality, there is no possibility that 
more and/or better information can lead to worse decisions, thus to a 
higher life-cycle cost. However, this fundamental, intuitive property 
that “information never hurts” does not necessarily hold true for 
policies that are only locally optimal at certain subsets of the policy 
space, or otherwise suboptimal. 

To further illustrate this remark, we again consider the same dete
riorating system examined in this section and we now focus, out of all 
possible policies, on the locally optimal solutions corresponding to the 
policy subspace of some condition-based maintenance policies. 
Accordingly, repairs are now decided based on the condition observa
tion outcomes (and not the belief), and the same condition-repair pairs 
are optimized for all components. We further consider that the default 

Fig. 5. Policy realization of three-component system for Setting 1 (optional 
inspection setting), with p = 0.90, for all components. 

Fig. 6. Policy realization of three-component system for Setting 2 (permanent 
monitoring setting), with p = 0.90, for all components. 

Fig. 7. Optimal value functions of three-component system for settings 1 and 2 
and respective VoSHM, for different observability levels. 
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observation of the environment follows the observation model of Eq. 
(24) with p = 0.96, and there is also a cost-free nontrivial observation 
following the same model with p = 1.0. Thus, p = 0.96 characterizes the 
default control setting, whereas p = 1.0 characterizes a perfectly 
observable setting. Note that in this case VoI≡VoPI, since the nontrivial 
observation action will be always chosen in the latter setting. In both 
settings, the optimal condition-based maintenance policies are “repair if 
state 3 is observed, do nothing otherwise”. After quantifying the relevant 
optimal condition-based maintenance policies for the two scenarios, it is 
found that the service life cost of the default setting is 665.09, and that of 
the perfectly observable setting is 665.94, with their 99% confidence 
intervals in the order of 0.22. VoI and VoPI are thus negative here. This 
showcases that better information does possibly hurt, if it is not inte
grated within an efficient decision optimization framework. 

4.2. Corroding deck structure 

4.2.1. Environment and description of control settings 
The reinforced concrete port structure under corrosion presented in 

[39,48] is studied in this example. The original deteriorating environ
ment for this system is described by 4 condition levels. The non- 
Markovian characteristics of this corroding environment are addressed 
by combining the 4 condition levels with 83 corrosion rates [39]. The 
discount rate for this problem is set γ = 0.95. The Markovian deterio
ration of the system, corresponding to the uncontrolled system evolu
tion, is computed by a physically-based corrosion model [68] and is of 
the following form: 

P0 = [p(xt+1 = j, τt+1= τ + 1|xt = i, τt = τ) ] i, j ∈ {1, ..., 4}

τ ∈ {1, ..., 83}

=

⎡

⎢
⎢
⎣

pτ,11 pτ,12
pτ,22 pτ,23

pτ,33 pτ,34
pτ,44

⎤

⎥
⎥
⎦

(25)  

where x is the condition level and τ is the deterioration rate. The values 
of the probabilities in Eq. (25) are shown in Fig. 8. To account for finite 
horizon policies we appropriately augment the state space with respect 
to different time steps, thus finally the structure is defined by 14,009 
states in total. There are 4 available actions related to maintenance in
terventions or replacements, namely ‘no repair’, ‘minor repair’, ‘major 
repair’ and ‘replace’. The transition for the ‘no repair’ action follows Eq. 
(25). The ‘minor repair’ action influences only the condition level tran
sition of the system, whereas the ‘major repair’ action influences both the 
condition level and the deterioration rate transition (deterioration rate is 
reduced by 3 steps). The full transition probability matrices for all 
maintenance actions can be found in [39]. 

For Setting 1 (optional inspections), the decision maker has 3 
available inspection actions, ‘no observation’, ‘visual observation’ and 
‘monitoring observation’. For the complete action set, including the 
maintenance and the observations, we form 10 actions, instead of 12, 
since due to the nature of transition probabilities of the ‘replace’ action, 
possible replacements do not need to be combined with observations. 
The observation matrices for the two nontrivial observations are: 

Ovis. =

⎡

⎢
⎢
⎣

0.63 0.37
0.10 0.63 0.27

0.10 0.63 0.27
0.20 0.80

⎤

⎥
⎥
⎦ (26)  

Omon. =

⎡

⎢
⎢
⎣

0.80 0.20
0.05 0.80 0.15

0.05 0.80 0.15
0.10 0.90

⎤

⎥
⎥
⎦ (27)  

The values of the observation matrices reflect the probability (likeli
hood) of receiving an observation (columns), given a state (rows). It 
should be noted that the number of observations is not necessarily equal 
to the number of states. The typically used probability of detection 
(PoD), for example, e.g. [29,30] can be given by a n-by-2 observation 
matrix, where n is the number of states and 2 is the number of obser
vations, e.g. defect detection or not. The relevant negative rewards 
(costs) are shown in Table 2. For a detailed presentation of costs and 
other model assumptions the interested reader is referred to [45,39]. For 
Setting 2 we consider a permanent observational scheme, which is 
assumed to capture the flow of structural health information provided 
by an SHM system. The respective observation matrix is also described 
by Eq. (27). As discussed in Section 3.4, this is a default observation at 
no cost for the purposes of evaluating the VoSHM. As such, the 
assumption is adopted herein, for the purposes of this illustrative 
example, that the outcome of a non-destructive evaluation inspection 
has the same state updating effect as the SHM system outcome. This can 
also technically refer to a case where both inspections and SHM share 
the same type of sensors. For example, for this particular case of 
corroding reinforced concrete structure, relevant electrochemical 
sensing units can be either mobile (operated by an inspector) or 
permanently installed and embedded in the concrete. 

4.2.2. Evaluation of optimal policies 
The analysis results during the value iteration are shown for Settings 

1 and 2 in Figs. 9 and 10, respectively. In Fig. 9, where the optional 
inspection setting is considered, we can observe that SARSOP has very 
good early performance, however FRTDP eventually converges after 
about 24 h. This can be attributed to the masking technique of FRTDP 
which exploits the sparsity of α-vectors, thus accommodating better a 
sparse environment like the one considered in this example. Fig. 10, 
shows the convergence of the point-based solvers for the permanent 
monitoring case (Setting 2). Similar performance is observed regarding 
the solvers comparison, however, a very good near-optimal solution is 
discovered much faster. Indicatively, FRTDP converges after about 300 

Fig. 8. Transition probabilities between adjacent structural conditions as 
functions of the deterioration rate. 

Table 2 
Costs (negative rewards) of maintenance and observation actions for corroding 
deck structure POMDP.  

Condition levels 1 2 3 4 

Maintenance rewards (rM) 1: Do nothing 0 0 0 0 
2: Repair −60 −110 −160 −280 
3: Major repair −105 −195 −290 −390 
4: Replace −820 −820 −820 −820  

Inspection rewards (rO) 1: No observation 0 0 0 0 
2: Visual obser. −4.5 −4.5 −4.5 −4.5 
3:Monitoring obser. −7.5 −7.5 −7.5 −7.5 

Damage rewards (rD) −5 −40 −120 −250  
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s. Fast convergence in Setting 2 is anticipated, since the problem com
prises only 4 actions, compared to 10 in Setting 1, so the overall 
reachable belief space is less extensive. 

Using the converged lower bound, we also show two realizations of 
the optimal policies of Settings 1 and 2, in Figs. 11 and 12, respectively. 
In both Settings 1 and 2, the decision-maker starts taking nontrivial 

maintenance and observation actions after ~ 30 time steps. This hap
pens because severe deterioration has not typically started until these 
time steps. In Setting 1, the agent mostly takes ‘visual observation’ actions 
and a few ‘monitoring observation’ actions, which are combined with ‘no 
repair’ actions. Regarding maintenance actions, ‘minor repair’ actions are 
shown to suffice for optimal control, along with a sparse selection of 
‘major repair’ actions. In Setting 2, the agent has a better understanding 
of its state, due to the presence of the permanent monitoring system. 
This gives the agent the opportunity to avoid taking any maintenance 
actions unless it is necessary due to expectation of high cost states. When 
this time comes, after ~ 30 time steps, it starts with ‘major repair’ actions 
and then it proceeds with ‘minor repairs’, until stopping taking actions, 
after ~ 90 time steps. At the final steps of the realizations, in both set
tings, no maintenance and observation actions are selected. This hap
pens as a result of the finite horizon policy, which means that the agent 
knows its exact time step before taking an action, in addition to the 
belief over condition levels and the exact deterioration rate. As such, 
when approaching the final zero-valued absorbing state, which signifies 
end of the planning horizon, future cumulative state costs start 
becoming less significant, so no state corrections or better understanding 
of the system condition is required. 

The simulation-based results of the cost estimates based on the policy 
described by the lower bound of the converged value functions, along 
with the respective VoSHM estimates, are shown in Table 3. Results of all 
the utilized point-based POMDP algorithms are shown with a maximum 
analysis time of 24 h. It can be seen that the VoSHM is in the order of ~ 8% 
of the cost estimate of Setting 1. As mentioned in the example of Section 
4.1, this amount indicates the maximum cost the decision-maker should 
plan to invest at the beginning of the control horizon, in order to acquire, 
install, operate and maintain a SHM system. In cases where inspection 
and maintenance planning is not the only phase contributing to the 
optimized life-cycle cost, these values must also factor in, and/or be 
valued against, other relevant costs as well (e.g. one-time initial design 
costs, final decomissioning costs, etc. [15]). The methodology analyzed in 

Fig. 10. Performance of different point-based POMDP algorithms in the 
corroding slab structure problem, for Setting 2 (permanent monitoring setting). 

Fig. 11. Two policy realizations of corroding deck structure, for Setting 1 
(optional inspection setting). 

Fig. 12. Two policy realizations of corroding deck structure, for Setting 2 
(permanent monitoring setting). 

Table 3 
Life-cycle cost (negative reward) estimates with 95% confidence bounds and 
corresponding value of structural health monitoring, for three point-based 
algorithms.  

Algorithm Setting 1 Setting 2 VoSHM 

FRTDP −198.253 ± 1.042 −181.126 ± 3.830 17.127 ± 4.872 
SARSOP −198.549 ± 2.512 −184.437 ± 2.187 14.112 ± 4.699 
Perseus −199.015 ± 2.829 −183.043 ± 2.168 15.972 ± 4.997  

Fig. 9. Performance of different point-based POMDP algorithms in the 
corroding slab structure problem, for Setting 1 (optional inspection setting). 
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the previous sections straightforwardly accommodates such extensions 
without loss of generality. 

5. Conclusions 

A study on the Value of Information (VoI) and the Value of Structural 
Health Monitoring (VoSHM) within the context of POMDPs is presented 
in this work. Respective step-wise and long-term value-based informa
tion metrics are analyzed, their relations and inherent links to the 
POMDP optimality equations are provided, and it is shown that their 
non-negativity is necessarily satisfied under optimal POMDP policies, a 
property that may elude standard inspection and maintenance decision 
rules. The above theoretical findings along with the key methodological 
points and practical outcomes of this work are succinctly outlined 
below:  

• For the quantification of VoI, the first setting evaluated involves 
optimization of maintenance actions for the default decision problem 
(no observation actions available), whereas the second setting opti
mizes both maintenance and observation actions. This process 
complies with standard VoI definitions. For the quantification of 
VoSHM, the first setting corresponds to an observational scheme 
with optimal optional inspections, whereas the second setting 
operates under the assumption of continuously available observa
tions, resembling the presence of a permanent monitoring system.  

• The two metrics are defined over the operational life of the system, 
quantifying the expected long-term cumulative gains upon avail
ability of inspection- or monitoring-based structural health infor
mation. A step-wise definition of VoI is also introduced and studied, 
showcasing that the notion of VoI naturally emerges in the Bellman 
optimality equation, thus being optimally utilized under a POMDP 
policy for the selection of observational actions at every decision 
step. Step-wise VoI is non-negative for any policy (optimal or 
otherwise) with convex value over the space of all possible posterior 
state probability distributions.  

• Based on the latter result, the properties ensuing from the Bellman 
contraction operator, and the respective optimal value function, 
relevant theoretical analysis of the above value-based information 
gains shows that, under a policy regulated by an optimal POMDP 
decision rule, availability of information cannot increase the overall 
life-cycle cost of the system, thus necessarily improving decisions 
over the planning horizon. That is, the decision-maker will opt to pay 
for an observation only if this is expected to lead to a value change 
greater than the sheer observation collection cost, if any. Specif
ically, VoI and the Relative Value of Continuous Information 
(RVoCI), introduced as a special case and proxy of VoSHM, neces
sarily assume non-negative values under POMDPs, whereas both are 
upper bounded by their respective values when information is per
fect. These properties do not necessarily hold true for other locally 
optimal or otherwise suboptimal policies, often used in inspection 
and maintenance planning.  

• Details for formulating the underlying POMDP problem settings and 
quantifying the possible gains related to structural health informa
tion (either obtained by inspections or SHM) are presented, along 
with relevant implementation details with emphasis on point-based 
value iteration algorithmic approaches.  

• Numerical investigation of a three-component deteriorating system 
and a reinforced concrete structure under corrosion verifies the 
theoretical discussion and results. The effect of observational un
certainty on the introduced metrics is also assessed against the 
emerged theoretical implications. The overall outcome of this anal
ysis is a quantitative answer to the question of how much is structural 
health information from inspections and/or monitoring worth, as 
well as how information of increased precision can affect decisions. 

Potential extensions of the present work include, among others, 
consideration of different types of inspection and monitoring observa
tion models directly calibrated based on real data, integration of 
advanced learning techniques with the decision-making process for 
online extraction of efficient damage and condition indicators from 
high-dimensional and heterogeneous SHM data, as well as VoSHM uti
lization for design of SHM systems and sensor placement. 
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