An Efficient Hypergraph Approach to Robust Point
Cloud Resampling

Qinwen Deng, Student Member, IEEE, Songyang Zhang, and Zhi Ding, Fellow, IEEE

Abstract—Efficient processing and feature extraction of large-
scale point clouds are important in related computer vision
and cyber-physical systems. This work investigates point cloud
resampling based on hypergraph signal processing (HGSP) to
better explore the underlying relationship among different points
in the point cloud and to extract contour-enhanced features.
Specifically, we design hypergraph spectral filters to capture mul-
tilateral interactions among the signal nodes of point clouds and
to better preserve their surface outlines. Without the need and
the computation to first construct the underlying hypergraph, our
low complexity approach directly estimates hypergraph spectrum
of point clouds by leveraging hypergraph stationary processes
from the observed 3D coordinates. Evaluating the proposed
resampling methods with several metrics, our test results validate
the high efficacy of hypergraph characterization of point clouds
and demonstrate the robustness of hypergraph-based resampling
under noisy observations.

Index Terms—Hypergraph signal processing, compression,
point cloud resampling, virtual reality.

I. INTRODUCTION

3D perception plays an important role in the high growth
fields of robotics and cyber-physical systems and continues to
drive many progresses made in advanced point cloud process-
ing. 3D point clouds provide efficient exterior representation
for complex objects and their surroundings. Point clouds have
seen broad applications in many areas, such as computer
vision, autonomous driving and robotics. Notable examples of
point cloud processing include surface reconstruction [1], ren-
dering [2], feature extraction [3], shape classification [4], and
object detection/tracking [5]. When constructing point cloud
of a target object, however, modern laser scan systems can
generate millions of data points [6]. To achieve better storage
efficiency and lower point cloud processing complexity, point
cloud resampling aims to reduce the number of points in a
cloud to achieve data compression while preserving the vital
3D structural and surface features. Point cloud resampling
represents an important tool in various applications such as
point cloud segmentation, object classification and efficient
data representation. An example of point cloud resampling
proposed in [7] suggested a graph-based filter to downsample
point clouds and to capture the original object surface contour.

The literature already contains a variety of works on dif-
ferent aspects of point cloud resampling. For instance, a

This material is based upon work supported by the National Science
Foundation under Grant No. 1824553, Grant No. 2029027, and Grant No.
2029848.

Q. Deng, S. Zhang, and Z. Ding are with Department of Electrical and
Computer Engineering, University of California, Davis, CA, 95616. (E-mail:
mrdeng @ucdavis.edu, sydzhang@ucdavis.edu, and zding@ucdavis.edu).

centroidal Voronoi tessellation method in [8] can progressively
generate high-quality resampling results with isotropic or
anisotropic distributions from a given point cloud to form
compact representations of the underlying cloud surface. An-
other 3D filtering and downsampling technique [9] relies on
a growing neural gas network, to deal with noise and outliers
within data provided by Kinect sensors. Of particular inter-
est is graph-based resampling approach which has exhibited
desirable capability to capture the underlying structures of
point clouds [10]. The graph-based method of [12] applies
embedded binary trees to compress the dynamic point cloud
data. Another interesting work [7] proposes several graph-
based filters to capture the distribution of point data to achieve
computationally efficient resampling. In addition, a contour-
enhanced resampling method introduced in [11] utilizes graph-
based highpass filters.

In addition to the aforementioned class of graph-based
methods, a competing class of feature-based approaches via
edge detection and feature extraction has also been popular.
In [13], the authors presented a sharp feature detector via
Gaussian map clustering on local neighborhoods. Bazazian et
al. [14] extended this principle by leveraging principal compo-
nent analysis (PCA) to develop a new agglomerative clustering
method. The efficiency and accuracy of this work can further
benefit from spectral analysis of the covariance matrix defined
by k—nearest neighbors. Another typical approach represented
by [15] processes a noisy and possibly outlier-ridden point set
in an edge-aware manner.

Both graph-based and feature-based methods have clearly
achieved successes in point cloud resampling. However, some
limitations remain. Graph-based methods tend to focus on
pairwise relationship between different points, since each
graph edge only connects two signal nodes. However, it is clear
that multilateral interactions of data points could model the
more informative characteristics of 3D point clouds. Bilateral
graph node connections cannot even describe multilateral
relationship among points on the same surface (e.g. 3 points of
a triangle) directly [23]. Furthermore, in graph-based methods,
efficient construction of a suitable graph to represent an
arbitrary point cloud poses another challenge. Among feature-
based methods, performance would vary with respect to the
feature selection and filter designs. The open issues are the
adequate and robust selection of features and filter parameters
for practical point cloud processing.

More recently, hypergraphs have been successfully applied
in representing and characterizing the underlying multilateral
interactions among multimedia data points [16]. A hyper-
graph extends basic graph concept into higher dimensions,



(b) Resampled.

(a) Original.

Fig. 1. Example of Contour-Enhanced Resampling: (a) original point cloud
with 272705 points, and (b) resampled building based on the proposed local
hypergraph filtering with 20% samples.

in which each hyperedge can connect more than two nodes
[15]. Therefore for point clouds, hypergraph provides a more
general representation to characterize multilateral relationship
for points on object surfaces such that one hyperedge can
cover multiple nodes on the same surface. Furthermore, by
generalizing graph signal processing [19], hypergraph signal
processing (HGSP) [21] [20] provides a theoretical foundation
for spectral analysis in hypergraph-based point cloud process-
ing. Specifically, stationarity-based hypergraph estimation, in
conjunction with hypergraph-based filters, has demonstrated
notable successes in processing point clouds for various tasks
including segmentation, sampling, and denoising [22], [23].

In this paper, we investigate point cloud resampling based
on hypergraph spectral analysis. Instead of the traditional uni-
form resampling, we investigate contour-enhanced resampling
to select subset of points in the point cloud and to extract
distinct surface features. A heuristic example is illustrated in
Fig. 1 showing a point cloud successfully resampled with only
20% samples for the building. To briefly highlight the novelty
of our proposed approaches, we estimate the hypergraph
spectrum basis for point clouds under study by leveraging
the hypergraph stationary process. We propose three novel 3D
point cloud resampling methods:

1) Hypergraph kernel convolution method (HKC);
2) Hypergraph kernel filtering method (HKF);
3) Local hypergraph filtering method (LHF).

The kernel convolution method defines a local smooth-
ness among signals based on an operator and hypergraph
convolution. The kernel filtering method defines the local
smoothness with respect to highpass filtering in spectrum
domain. The local hypergraph filtering method utilizes a
local sharpness definition with respect to highpass filtering
in spectrum domain. In order to test the model preserving
property on complex point cloud models, we apply a simple
method for point cloud recovery based on alpha complex and
Poisson sampling. We then test the proposed methods under
several metrics to demonstrate the compression efficiency and
robustness of our proposed resampling methods with respect
to the general feature preservation of point clouds under study.

We summarize the major contributions of this manuscript:

o« We propose three novel hypergraph-based resampling

methods to preserve distinct and sharp point cloud fea-
tures;

e We provide novel definitions of hypergraph-based indi-
cators to evaluate the smoothness or sharpness over point
clouds;

o We apply different metrics to demonstrate the effective-
ness of our proposed methods.

We organize the rest of the manuscript as follows. Section
II briefly describe basic point cloud model and introduces the
fundamentals of hypergraph signal processing. We develop the
foundation of HGSP based point cloud resampling and derive
three new resampling methods in Section III. We provide the
test results of the proposed resampling methods in Section 1V,
before formalizing our conclusions in Section V.

II. FUNDAMENTALS AND BACKGROUND
A. Point Cloud

A point cloud is a collection of points on the surface of
a 3D target object. Each point consists of its 3D coordinates
and may contain further features, such as colors and normals
[28]. In this work, we focus on the coordinates of data points
and point cloud resampling. A point cloud can be represented
by the coordinates of N data points written as an N x 3 real-
valued location matrix
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where X, denotes a vector of the i-th coordinates of all NV
data points whereas 3 x 1 vector p; indicates the ¢-th point’s

coordinates.

B. Hypergraph Signal Processing

Hypergraph signal processing (HGSP) is an analytic frame-
work that uses hypergraph and tensor representation to
model high-order signal interactions [21]. Within this frame-
work, a Mth-order N-dimensional representation tensor A =
(@iyigin,) € RY™ models a hypergraph with N vertices in
each hyperedge, which is capable of connecting maximum of
M nodes. We may call the number of nodes connected by a
hyperedge as its length. Weights of hyperedges with length
less than M are normalized according to combinations and
permutations [18].

Orthogonal CANDECOMP/PARAFAC (CP) decomposition
[24]- [26] enables the (approximate) decomposition of a
representing tensor into

N
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where o denotes tensor outer product, {fj,---,fy} are or-

thonormal basis to represent spectrum components, and A, is
the r-th spectrum coefficient corresponding to the r-th basis.
Spectrum components {f;,--- ,fy} form the full hypergraph
spectral space.



Similar to GSP, hypergraph signals are attributes of nodes.
Intuitively, a signal is defined as s = [s; 59 syt €
RY. Since the adjacency tensor A describes high-dimensional
interactions of signals, we define a special form of the hyper-
graph signal to work with the representing tensor, i.e.,

sM-1 —go .. 0s. (3)
N——

M-1 times
Given the definitions of hypergraph spectrum and hypergraph
signals, hypergraph Fourier transform (HGFT) is given by

§=Fo(s) = [(fs)M 1 (fys)M 1T @)

From the graph specific HGFT, hypergraph spectral convo-
Iution can be generalized [16] as

xoy = F5 (Fo(x) © Fo(y)), (5)

where F¢ is the HGFT, ! denotes inverse HGFT (iHGFT),
and © denotes Hadamard product [21]. This definition ap-
plies the basic relationship between convolution and spectrum
product, and generalizes convolution in the vertex domain into
product in the hypergraph spectrum domain.

To be concise, we refrain from a full review of HGSP
here. Instead, we refer readers to [21] and related works for
a more extensive introduction of HGSP concepts, such as
filtering, hypergraph Fourier transform, and sampling theory,
among others. Equally important are concept and properties of
hypergraph stationary processes which can be found in, e.g.,
[23].

III. HGSP POINT CLOUD RESAMPLING

Within the HGSP framework, we now propose three novel
edge-preserving methods for point cloud resampling. First,
we develop a hypergraph kernel convolution (HKC) method
inspired by the convolution-based edge detection in image
processing. Next, we propose a hypergraph kernel filtering
(HKF) algorithm targeting local smoothness to reduce the
computational complexity of HKC. Finally, we design a local
hypergraph filter (LHF) to target point clouds with non-
uniformly distributed points over the surface of an object.

A. Hypergraph Kernel Convolution (HKC) based Method

In traditional image processing, kernel convolution methods
such as Sobel and Prewitt [27] have achieved notable successes
in edge detection. Inspired by these 2D kernel convolution
methods in 2D image processing, e.g. Fig. 2(a), we define a
square k x k x k 3D cube as the slicing block to define a local
signal s; € RVx and a convolution kernel G € R+ with
N}, = k? aimed at extracting sharp outliers of the point cloud
under study. An example of 3% cubic 3D convolution kernel
is shown in Fig. 2(b). Note that the hypergraph convolution
kernel can assume different shapes and sizes depending on the
datasets.

For the ¢-th point in an original point cloud, its corre-
sponding local signal s; € R™* is defined according to the
number of points in the voxel of kernel centered at i-th
point. An example of the local signal is shown in Fig. 3.
Although the idea behind the use of, e.g., 3D Sobel operator
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(a) 2D Sobel Kernel. (b) 3D Hypergraph Kernel.

Fig. 2. Example of Convolution Kernels.

is straightforward, technical obstacles arise mainly due to two
reasons: (1) nodes in 3D point cloud are not always on grid; (2)
two signals in graph/hypergraph based convolution must have
the same length. Thus, we let N be equal to the number of
voxels in the kernel. Let d be the distance between the centers
of two nearby voxels in the kernel. A proper selection of d
should allow s; to capture the local geometric information.
If d is too small, only a few neighbors of i-th point are
included in the s; and it is sensitive to measurement noise;
If d is too large, large number of neighbors are included in
each voxel, which may lead to the blurring of detailed local
geometric information. Since intrinsic resolution describes the
point cloud density and can be estimated by averaging all
distances between each point and its nearest neighbor, we set
d as the intrinsic resolution of a point cloud.
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Fig. 3. An example of local signal s;: Points in the middle layer are marked
by blue circles and points in the back layer are marked by red squares. The
voxels of slicing block are delineated by the dash black lines. There is at
most one point in each voxel in this example, such that s;(n) = 1 or 0,
respectively, depending on whether the n-th voxel contains a point.

Given the definition of signals, we now propose a new
hypergraph convolution based method. There are two main
steps in our kernel convolution based method: 1) estimation
of hypergraph spectrum; and 2) implementation of kernel
convolution.

We first estimate the hypergraph spectrum based on hyper-
graph stationary process. Introduced in [23], a stochastic signal
x is weak-sense hypergraph stationary if and only if it has
zero-mean and its covariance matrix has the same eigenvectors



as the hypergraph spectrum basis, i.e.,
E[x] =0, (6)

and
Exx"] = Vv, VH, (7

where V is the hypergraph spectrum basis. Since the 3D
coordinates can be viewed as three observations of the point
cloud from different projection directions, we can estimate
the hypergraph spectrum from the covariance matrix of three
coordinates based on assumption of signal stationarity. Note
that, since GSP is a special of HGSP when the number of
edges is reduced to two, HGSP-based stationary process is
also compatible with GSP-based stationarity. Here, we use the
same spectrum estimation strategy as [23], and consider the
adjacency tensor as a third-order tensor, which is the minimum
number of nodes to form a surface. Interested reader can refer
to [22], [23] for more detailed discussions on the spectrum
estimation based on HGSP-based stationary process

1) HKC Algorithm: Let P, = [X; Xg X3] € RV:X3 be
the coordinates of the total N}, voxel centers in the kernel. For
our 3 x 3 x 3 kernel example, N = 27. The distance d is set to
equal the intrinsic resolution of the point cloud, which can be
estimated by the average of distances between each point and
its nearest neighbor in the point cloud. We then normalize the
coordinates P to obtain a zero mean signal P.. By calculating
the eigenvectors {fy,--- ,fy,} for Rp, = P.P.", we can
estimate the hypergraph spectrum basis V = [f1,--- ,fy,].

Next, we implement convolution between the local signal
s; and the kernel G. Since we consider the third-order tensor
and are only interested in signal energies in the spectrum
domain, we can utilize the hypergraph spectrum to calculate
a simplified-form of HGFT §; and a corresponding inverse
HGFT (iHGFT) of original signals s;, instead of the HGFT
and iHGFT of the hypergraph signal SEM_l] in (4).

Recall from [21] that simplified HGFT and iHGFT of
original signal are, respectively,

F(si) =8 = Vs, (8)
F &) =s;= Vs, 9

Note that the hypergraph signal is a (M — 1)-fold tensor outer
product of the original signal in vertex domain, corresponding
to (M —1)-fold Hadamard product in spectrum domain, where
they share the same bandwidth.

Directly designing convolution kernel G in vertex domain
is challenging for two main reasons. First, since hypergraph
spectrum basis V would vary for different kernels, finding a
general G in vertex domain that performs equally well for
various different bases would be difficult. Second, since the
convolution result s,,; between the signal s; and the kernel G
can be expressed as

Soi = V(G ® él)
= V(diag(é)éi
= Vdiag(G)Vs;, (10)

it is convenient to design spectrum domain G directly.

Algorithm 1 Hypergraph Kernel Convolution (HKC)

Input: A point cloud of N nodes with coordinates P =
pT---p%]?, resampling ratio c.
1. Calculate the intrinsic resolution of point cloud;
2. Use intrinsic resolution d to find coordinates P, €
RNex3 of voxel centers in the kernel;
3. Use the coordinates P of voxel centers in the kernel to
estimate the hypergraph spectrum basis V = [f,- -, fi, ]
and corresponding eigenvalues A;
fori=1,2,--- ,N do
4. Use hypergraph spectrum basis V to calculate the
Fourier transform §; in (8);
5. Calculate the Hadamard product §,; = §; ©® G;
6. Calculate inverse Fourier transform s,; using (9);
7. Calculate local smoothness 3; in (11) ;
end for
8. Sort the local smoothness 3; in descending order and
select the bottom N, = aN nodes as the resampled point
cloud.

In order to preserve edges in the resampled point cloud,
we use a highpass filter defined in spectrum domain. Since
sharp features of point clouds correspond to high frequency
elements in the hypergraph spectral space [23], a highpass
filter is designed to preserve edges in resampled point clouds.
More specifically, in our experiments, we use a simple and
well known Haar-like highpass design [7], i.e., G=1- A,
where A = [A; A2+ Ay, |7 are eigenvalues corresponding
to eigenvectors {fi,---,fy,}. Since larger A\ corresponds
to lower frequency, Haar-like design could highlight high
frequency components in the signal [19]. Note that, here
we provide the Haar-like highpass filter as an example of
convolution kernels. Other elegant highpass filters can also be
used as the convolution kernel for the edge preserving purpose.
We use the ratio between the norm of the convolution output
So; and the norm of s; —s,; to measure smoothness 3; for the
i-th point, i.e.,

g, = sl
2

B llsi — Soill '

Y

In resampling, we would like to extract distinct and sharp
features by selecting points that exhibit lower (3; value from the
resampling output. Our algorithm is summarized as Algorithm
1, also known as the HKC resampling algorithm.

2) HKC Algorithm Complexity: In an unorganized point
cloud, the computational complexity of HKC amounts to
O(N?+N log N+ Ni(N,+1)N+N3), while in an organized
point cloud, the complexity order is O(N log N + (N7 + Ny, +
1)N + N?). Here are the details. First, for generating s; of all
points in an unorganized point cloud, the computation order is
O(N?) because of the need to search the point cloud to find
actual neighbors for each data point. In an organized point
cloud, such computation can be reduced to O(NN). Next, to
estimate the hypergraph spectrum basis V and V7, we need
to find eigenvectors of Rp/c, requiring computation order of
O(N}?). Because the same kernel is used for every point in the
point cloud, we only need to estimate hypergraph spectrum



Algorithm 2 Hypergraph Kernel Filtering (HKF)
Input: A point cloud with N nodes characterized by P =
[pT---p%]*, resampling ratio c.
1. Calculate the intrinsic resolution of point cloud;
2. Use the intrinsic resolution as d to get the coordinates
P, € RV:*3 of voxel centers in the kernel;
3. Use the coordinates P. of the voxel centers in the
kernel to estimate the hypergraph spectrum basis V =
[f17 . ,ka];
fori=1,2,--- ,N do
4. Use hypergraph spectrum basis V to calculate the
Fourier transform §; in (8);
5. Calculate the local smoothness o; in (12);
end for
6. Sort the local smoothness o; and select the bottom NV, =
aN points as the resampled point cloud.

basis once. In subsequent steps, computing all HGFT and
iHGFT pairs amounts to O(N N?). Finally, it takes O(N Nj,)
to calculate all 3;’s in (11), and additional O(N log N) to sort
them.

B. Hypergraph Kernel Filtering (HKF) Resampling

To present method, we still use the 3 x 3 x 3 cube as the
example kernel, and the same local signal s; in the Kernel
convolution based method.

1) HKF Algorithm: Consider convolution via Hadamard
product and inverse Fourier transform in the HKC resampling
algorithm, we need to transform the local signal s; from
vertex domain to spectrum domain. A simpler alternative is
to compute local smoothness directly for signals in spectrum
domain. The computational complexity of the algorithm is
reduced by eliminating the inverse transform.

For edge-preserving, we wish to separate the high frequency
coefficients from the low frequency coefficients in spectrum
domain. Recall that the spectrum bases corresponding to
smaller A represent higher frequency components [21]. Thus,
we sort the eigenvalues of Ry as 0 < A < g < ... < Ay,
with corresponding eigenvectors {fi, - - - , fy, }. We can devise
a threshold 6 to separate the high frequency components from
the low frequency components according to a sharp rise of
successive eigenvalues.

Given a threshold selection of 6, we could further define a
local smoothness o; to select the resampled points:
_ Zk€{1,2,---,6} |§z(k’)‘

Dke(12, Ny 18R]
which is the fraction of high frequency energy within total
signal energy. Finally, we resample the point cloud by select-
ing the points with smaller o;, which correspond to points
containing larger amount of higher-frequency components in
the hypergraph. We summarize our algorithm as Algorithm 2,
also known as HKF resampling algorithm. The general steps of
HKEF are similar to those of HKC, while the major differences
lie in the definition of smoothness as shown in Eq. (12). Since
the resampled point clouds favor high-frequency points, they
tend to contain more sharp features and are less smooth.

(12)

T4

2) HKF Algorithm Complexity: Algorithm 2 (HKF) and
HKC have a similar order of computational complexity, while
the runtime of HKF would be shorter than HKC by eliminating
the iHGFT. Similar to HKC resampling, in an unorganized
point cloud, the complexity for generating s; for all points
is O(N?), whereas this complexity is reduced to O(N) for
an organized point cloud. The complexity of estimating the
hypergraph spectrum basis V and V# is O(N}). The cost of
requisite Fourier transforms amounts to O(NN?). The total
complexity for computing 5; in (12) is O(N Ny). It further
requires O(N log N) to sort the o;.

C. Local Hypergraph Filtering (LHF) Algorithm

In the aforementioned HKC and HKF algorithms, we use
the same kernel to define all the local signals for points in
the point cloud. If distribution of the points are highly non-
uniform on the surface of an object, it is difficult to find a value
of d suitable for every local signal. The distance parameter
may either be too small for the low density part or too large
for the high density part. As the result, the performance of
HKC and HKF algorithms may be erratic for such highly
uneven point distribution. To mitigate this problem, we further
propose another HGSP approach to model the local signal by
incorporating the vector between the i-th point and each of
its (INV; — 1) closest neighbors. In particular, we define a local
signal for the ¢-th node of order N; as

Sp.i = [07 (Pny, —P1)" -+ (Pan, o —Pi)"]" € RND, (13)
where nj,--- ,ny,—1 are the indices of its (/V; — 1) nearest
neighbors.

We then build hypergraphs over these points and use hy-
peredge to connect point ¢ and its (N; — 1) nearest neighbors.
Similar to the HKF algorithm, we also devise a filter defined
in spectrum domain to process the local signal. Although,
strictly speaking, we could define a unique N; for each of
the ¢-th point, we find it more convenient to consider some
fixed selections for all points to avoid comparing hyperedges
of different length.

Fig. 4 provides an example to show the effect of IV;
selection. When N; is small, s,, ; describes the local geometric
information in a smaller region. Consequently, the filtered
results tend to vary more and captures sharp features of the
point cloud in Fig. 4a. When N; is large, s, ; characterize
the local geometry of a larger region around the ¢-th point.
As a result, its local information is blurred with other local
information from its neighbors such that the filtered results
tend to be smoother and tend to highlight the contour of the
point cloud as seen from Fig. 4b.

1) Local Hypergraph Filtering (LHF) Algorithm: Because
we would like to preserve both the sharp features and the
surface contour of the point cloud to achieve consistently good
performance across different point clouds, we propose to apply
several values of NV; for all points. In particular, we consider
two different lengths N,, N}, to construct two different sets of
local signals. We would then integrate the filtered results.

Our local hypergraph filtering (LHF) based resampling con-
sists of two main steps: i) hypergraph spectrum construction,



(a) Resampled results of “dragon” using local hypergraph filtering based
method with signal length /NV; = 3. Details in the body part are kept.

(b) Resampled results of “dragon” using local hypergraph filtering based
method with signal length N; = 6. Details in the body part are ignored.

Fig. 4. Resampled Results of Dragon Using Local Hypergraph Filtering based Method.

ii) spectrum domain filtering. We first estimate hypergraph
spectrum by applying the same process used in HKC and HKF
algorithms. In this new LHF method, each point has its own
(small-scale) hypergraph. We should estimate the hypergraph
spectrum for each point using two different local signals
Spia € RVa*3 and s, ;, € RM>3, Once the estimation of
the corresponding hypergraph spectrum bases V; , and V; 3 is
completed, we apply (8) to derive the Fourier transform Sy, ; ,
and §,, ; », respectively.

Similar to spectrum filter in the HKF method, we define
two thresholds 0; , and 6, ;, respectively, for 8, ; , and 8y, ; p.
Two local sharpness metrics are further defined as

3 ~ .
(3 ) Zje{Lz,.“ 0iat Zkzl |8p,i,a (4, K|
p,i,a) = 3 N .
Zje{1,2,~~ N} > ke 8piia(ds F)l
3 A .
Zje{l,Z,--- 0i} > k=1 [8p,in(d, k)]
3 A ;
Zje{l,?,--- N} 2 k=1 18p.i,0 (4, F)]
where 0; , and 0;; correspond to the thresholds for §,; ,
and S, ;, respectively, with N, and N, as the respective
corresponding lengths.
Upon completion of sharpness evaluation, for each signal

point, we apply a weighted average of v(S,.;q) and v(§,,:p)
to form a combined sharpness result

, (14a)

V(8p,in) = ; (14b)

Yi = 57(§p,i,a) + (1 - 6)7(§p,i7b)’ (15)

where € denotes the weight.

To balance the effect of two local sharpness metrics, we sort
both v(8,.;.) and v(§,;) and design the weight e according
to the top « fraction of v(8,;,) and (8, ), denoted by I',
and I, respectively. We can define node-specific weights

B Fa + Fb .
Finally, we sort the ~; of (15) and select the top N, = alNV
points as the resampled point cloud. The whole algorithm is

summarized as Algorithm 3, also known as the LHF algo-
rithm. In Algorithm 3, steps 1-3 correspond to the hypergraph

€ (16)

spectrum estimation, while steps 4-6 describe the process of
sharpness-based filtering as Eq. (15).

2) LHF Algorithm Complexity: The computational com-
plexity of LHF is O(N?+ N log N + Ny, (N2 + Ny +1)N) for
an unorganized point cloud, and O(N log N+(NZ+NZ+Nj+
1)N) for an organized point cloud. First, the complexity for
generating s,,; for all points is O(N?) and O(N)) for an un-
organized point cloud and organized point cloud, respectively.
Second, unlike HKC and HKF, the hypergraph spectrum bases
would differ for each point and its corresponding local signals.
Thus, one needs to estimate hypergraph spectrum basis V; s
and V; s for each of point. Consequently, the total compu-
tational complexity is of O(NN}). Next, Fourier transforms
and inverse Fourier transforms further require computation of
O(NN?). Finally, the total complexity of computing ~; is
O(NNy,), plus O(N log N) for sort the resulting ;.

Algorithm 3 Local Hypergraph Filtering (LHF)
Input: A point cloud with N nodes characterized by P =
[pT .- - p%]?, resampling ratio o, local lengths N, Np.
fori=1,2,--- ,N do
1. Find the nearest (N, — 1) and (N, — 1) neighbors of
point 7;
2. Use coordinates of point ¢ and its (/N, — 1) and (N, —
1) neighbors to estimate the hypergraph spectrum bases
Vi.a> Vip, respectively;
3. Use hypergraph spectrum basis V; , and V, ; to cal-
culate the Fourier transform §,, ; , and §, ; 5, respectively;
4. Calculate the local sharpness (8, ;) and (8, ;5) in
(14a) and (14b);
end for
5. Calculate the weighted average of v;(8,,:.4) and v; (8.5 5)
using (15) and (16).
6. Sort the local sharpness 7; and select the top N, = aN
points as the resampled point cloud.




D. Discussion

To conclude, HKC and HKF are more suitable for evenly
distributed point clouds, while LHF exhibits more robust
performance over unevenly distributed point clouds. All three
algorithms have comparable complexity. The HKC algorithm
has the complexity of O(N?+ N log N + Ny, (N +1)N+N3)
for an unorganized point cloud, while in an organized point
cloud, the computational complexity is only O(Nlog N +
(N2 + Nj, + 1)N 4+ N?). The runtime of HKF is shorter
than HKC by eliminating the iHGFT. Such difference is more
significant when applying a large Ny, in the convolution kernel.
The runtime of LHF is higher than both HKC and HKF
because of the need to estimate hypergraph spectrum basis
for every local signal.

IV. EXPERIMENTAL RESULTS

We now describe our experiment setup and present test
results of the three proposed new resampling algorithms.

A. Edge Preservation of Simple Synthetic Point Clouds

As we described in Section III, one important resampling
objective is to preserve sharp features in a point cloud such as
edges and corners. In this part, we study the edge preserving
capability of our proposed algorithms by testing over several
simple synthetic point clouds. The reason for selecting syn-
thetic point clouds in this test is to take advantage of the known
ground truth regarding edges and our ability to label them. We
generate these synthetic point clouds by uniformly sampling
the external surface of models constructed from combinations
of cubes, cylinder and pyramid of various sizes. Examples of
synthetic point clouds are shown in Fig. 5, where the points
on edges are marked in red while the remaining points are in
blue.

To measure the accuracy of the preserved edges, we evaluate
the F} score, defined by

Fi—2 Precision - Recall
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where precision denotes the fraction of edge points correctly
preserved among all (false or correct) edge points for a
resampling algorithm while the recall is the ratio of correctly
preserved edge points versus all ground truth edge points. We
also calculate the mean distance to their closest ground truth
edge point respectively to show the ability of the algorithms
in capturing the model surface.

We compare the three proposed algorithms with graph-based
resampling and traditional edge detection methods. For graph-
based resampling, we use the graph-based fast resampling
(GFR) method with the Haar-like highpass graph filter intro-
duced in [7] for comparison to show the strength of hypergraph
in capturing multilateral features by generalizing traditional
GSP and the advantage of applying hypergraph analysis in
point cloud resampling over graph based methods. In addi-
tion, we also consider an edge detection method based on
eigenvalues analysis (EA) and another edge detection scheme
using Principal Component Analysis (PCA) and agglomerative
clustering (PCA-AC) [14]. The parameters of GFR method are

Fig. 5. Synthetic Point Clouds with Labeled Edge.

set to the typical values suggested by [7]. For EA and PCA-
AC, we retain the points with higher cluster numbers or larger
surface variation in the resampled point cloud to yield the same
resampling ratio. Here, we set the resampling ratio o = 0.2
for all point clouds as an example. Additional results with
different resampling ratios will be further presented in Section
IV-C. In order to study the robustness of algorithms, we also
add 10% to 30% of Gaussian measurement noises, i.e., noises
of N(0,(0.1d™)?) to N(0,(0.3d™)?), to point coordinates
of the cloud. Here d*) denotes the intrinsic resolution of
point clouds. Table. I summarizes our test results. To better
illustrate test results, we mark the best results among HGSP
and GSP methods in bold font and underlined best results of all
methods. We also mark results with different colors from warm
to cold to demonstrate poor to good performance (i.e. red
marks poor performance and green marks good performance).

Compared with the GSP based GFR method, the newly
proposed HKC algorithm performs robustly for point clouds
under larger measurement noises. Since the local signals in
HKC are defined by the number of points in the voxel of
kernel, weaker noises on a single point with perturbation below
d/2 would not affect local signals. In addition, the hypergraph-
based methods exhibits a smaller mean distance than GFR
in all the shapes, which indicates that our proposed methods
generate more robust edges than the graph-based method.

On the other hand, LHF algorithm does not perform well
against noisy point clouds because sizable noises directly dis-
tort the local hypergraph and neighbors. Overall, our proposed
HGSP-based methods demonstrate stronger robustness than
the traditional graph-based GFR algorithm for noisy data.
Using a generic signal processing approach they also deliver
competitive performance against non-graph based EA and
PCA-AC methods that were designed specifically for edge
detection.

B. Edge Preservation Results on Real-Life Point Clouds

To test our proposed algorithm in a more general setting, we
also implement edge-detection based on our resampled data in
more complex and practical point clouds. For these datasets,
there is no explicit ground truth edges to provide quantitative
results. Therefore, we present these results as visible point
cloud pictures to illustrate the test performance in Fig. 6,
where the left column shows original point clouds and the right
columns are the resampled point clouds for our proposed meth-
ods and methods under comparison, respectively. From Fig. 6,
all methods can detect the edges of the model. Hypergraph
and graph based methods tends to contain some points on a



TABLE I
NUMERICAL RESULTS OF METHODS USING POINT CLOUDS OF ALL SHAPES.

HKC HKF
Noise Level Precision | Recall | F1-Score | Mean Distance Precision | Recall | FI-Score | Mean Distance
No Noise 0.3701 0.8558 0.4824 1.3731 0.3470 0.8581 0.4734 1.5441
10% 0.3502 0.8217 0.4579 1.5003 0.3265 0.7818 0.4308 1.5773
15% 0.3344 0.7722 0.4337 1.6691 0.3211 0.7480 0.4178 1.7409
20% 0.2686 0.6035 0.3436 1.9078 0.2452 0.5539 0.3116 2.0004
25% 0.2105 0.4577 0.2656 2.3482 0.2153 0.4615 0.2695 2.4392
30% 0.1774 0.3635 0.2181 2.8434 0.1795 0.3623 0.2190 2.9141
LHF GFR
Noise Level Precision | Recall F1-Score | Mean Distance Precision | Recall | F1-Score | Mean Distance
No Noise 0.3265 0.8069 0.4345 1.6662 0.4254 0.9168 0.5324 1.0931
10% 0.2017 0.5079 0.2670 1.9891 0.3917 0.8903 0.5015 2.7102
15% 0.1719 0.4252 0.2262 2.2813 0.3306 0.7198 0.4214 3.1772
20% 0.1492 0.3514 0.1915 2.5181 0.2407 0.5411 0.3068 3.6121
25% 0.1431 0.3339 0.1838 2.7349 0.1959 0.4182 0.2450 3.9423
30% 0.1317 0.2990 0.1677 2.9003 0.1624 0.3333 0.1994 4.1074
EA PCA-AC
Noise Level || Precision | Recall | F1-Score | Mean Distance Precision | Recall | FI-Score | Mean Distance
No Noise 0.3269 0.8417 0.4471 2.0033 0.3417 0.8605 0.4594 2.2471
10% 0.3264 0.8534 0.4487 1.7571 0.3451 0.8517 0.4592 1.8261
15% 0.3211 0.8429 0.4418 1.8173 0.3364 0.8379 0.4498 1.7489
20% 0.3099 0.8097 0.4251 1.9690 0.3226 0.8182 0.4349 1.7061
25% 0.2770 0.7245 0.3798 2.3033 0.3126 0.7966 0.4223 1.6027
30% 0.2377 0.6156 0.3241 2.6570 0.2945 0.7447 0.3966 1.8527

surface, while EA and PCA-AC methods tends to emphasize
points closer to edges for point clouds of sofa and bookshelf
in the first and second rows. We also test the algorithms on
both the Boxer point cloud in 8i Voxelized Surface Light
Field (8iVSLF) Dataset [32] and the Bi-plane point cloud in
ScanLLAB Projects [33]. We considered resampling ratio « of
0.001 and 0.005, respectively. The results are shown in Fig. 7
and Fig. 8. As shown in Fig. 7, the HKC and HKF methods
can detect continuous edges and textures on the clothes of
Boxer point cloud, similar to results from EA and PCA-AC.
However, GFR method fails to detect continuous textures. It
tends to keep more points on the entire surface. Furthermore,
as shown in Fig. 8, both HKC and HKF methods are able to
capture clear edges and preserve the shape of the cabin on
the biplane better than other methods. We also note that the
LHF method captures more clear feature of the wheels. These
results show that our resampling method effectively detect 3D
object contours (outlines) in real scenarios.

C. Point Cloud Recovery from Resampling

In the next test, we investigate the new algorithms’ ability
to preserve high degree of point cloud information after
resampling. In particular, we shall attempt to recover the dense
point cloud after resampling and assess the similarity between
the original point cloud and the recovered point cloud from
resampling.

1) Dense Point Cloud Recovery: A typical method for
dense point cloud recovery consists two steps: a) reconstruct-
ing the surface of object from the resampled point cloud;
and b) sampling the reconstructed object surface to generate
a recovered point cloud. Since points of edge preserving
resampled point clouds tend to concentrate near areas of high

local variations, e.g., edges/corners, points of these resampled
point clouds are not uniformly distributed, as shown in Fig. 9b.
For this reason, some generic surface reconstruction methods
such as Poisson reconstruction [29] may perform poorly on
such sparse point clouds. We must pay special attention
to surface reconstruction methods chosen for such type of
resampled point cloud data.

In order to reconstruct surfaces from edge preserving and
sparsely resampled point clouds, we propose to first construct
the alpha complex [30] from the resampled point cloud, since
this approach is well known and widely-used method for
surface reconstruction based on 3D coordinates of points,
and is also quite robust when handling unevenly distributed
point clouds. To mitigate the potentially degrading impact of
imperfect reconstruction, we decide to reconstruct six different
surface models for each resampled point cloud by applying
different parameters. We then apply Poisson-disk resampling
to sample the alpha complex to form a recovered point cloud.
To further mitigate the effect due to the possible construction
of extraneous surfaces absent from the original object, we se-
lect a threshold distance dy three times the intrinsic resolution
of the original point cloud. Using the threshold distance, we
only retain the best recovered point cloud which contains the
largest number of points that are within the threshold distance
dg from the original point cloud.

2) Distance Between Point Clouds: To assess the quality
of point cloud recovery, we need to define distances between
the original and the recovered point clouds. Let p; denote a
point in the original and p. ; denote a point in the recovered
point cloud. When computing our distance between two point
clouds, we neglect any distances between point p; in the origi-
nal point cloud and p. ; in the recovered point cloud such that
the minimum distances min; ||p; — p ;|| and min; ||p; — pe; ||




TABLE I
EXAMPLE OF ORIGINAL AND RESAMPLED POINT CLOUDS WITH RESAMPLING RATIO o = 0.2.

Original HKC HKF LHF GFR EA PCA-AC

TABLE III
EXAMPLE OF ORIGINAL AND RECOVERED POINT CLOUDS WITH RESAMPLING RATIO v = 0.2.

Original HKC HKF LHF GFR EA PCA-AC




(a) Original Point (b) HKC (c) HKF

Cloud
Fig. 6. Examples of Edge Detection for Realistic Practical Point Clouds.

(a) Original Point (b) HKC (c) HKF

Cloud

Fig. 7. Examples of Edge Detection for Boxer Point Cloud in 8iVSLF Dataset

are greater than dp.
We define a distance and a dual distance between the
original and the recovered point cloud as

N1y

1
Do = — min o A, (18)
M ;jzupiipcyjkdg Ipi = pej
1 Qe
Do=1x, min ;= Peill, 19
0 N2 Zi:‘lpifpc,j\|<dg le ch” ( )

j=1
where N; is the number of points in the original point cloud
that satisfy ||p; — pc ;|| < dg for some p.; and N, is the
number of points in the recovered point cloud that satisfy ||p; —
Pe,jll < dg for some p;. In other words, Dy is the average
distance for points that are in the original point cloud within

(d) LHF

(d) LHF

(e) GFR (g) PCA-AC

(2) PCA-AC

(e) GFR

dg from the closest points in the best recovered point cloud.
The dual distance Dy is the average distance for points in the
best recovered point cloud that are within dy from their closest
points in the original point cloud.

3) Visual and Numerical Results: We use six different
categories of point clouds from ShapeNet [31] in our exper-
iments. Similar to experiments discussed earlier, we test our
HKF method together with the GSP-based GFR method in
[7] plus the EA and PCA-AC methods from [14]. We also test
each method using downsampled Boxer point cloud in 8iVSLF
dataset [32]. We first uniformly downsample the Boxer point
cloud with 10% points remains in the output point cloud,
before sending the resulting point cloud as the input for each
method. We use the downsampled point cloud for memory
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(a) Original

(b) HKC (c) HKF (d) LHF

(g) PCA-AC

(e) GFR

Fig. 8. Resampled results using ScanLAB Projects: Bi-plane point cloud data set

(a) Original Point Cloud of a Cap.

(b) Resampled Result with o« = 0.2.

(c) Recovered Point Cloud.

Fig. 9. Example of original point cloud, resampled point cloud and the
recovered point cloud for HKC method.

and transport efficiency because the original Boxer point cloud
has nearly 3,500,000 points. For fairness, we use the same
resampling ratio for all the methods.

Our experiments follow the following steps. First, we apply
resampling and edge detection methods to calculate the re-
sampled point clouds with resampling ratio «. Next, we apply
our proposed recovery method to generate recovered point
clouds. Based on the resampled point clouds, we compute
the numerical performance metrics for different algorithms in
comparison. We measure the performance under three metrics:
1) distance defined in (18); 2) average of distance and dual

TABLE IV
MEAN DISTANCE BETWEEN THE BEST RECOVERED POINT CLOUD AND
THE ORIGINAL POINT CLOUD FOR RESAMPLING RATIO a = 0.2 USING
SHAPENET DATASET.

Categories HKC HKF LHF GFR EA PCA-AC
Cap 0.0111 | 0.0101 | 0.0117 | 0.0102 | 0.0087 0.0115
Chair 0.0111 | 0.0113 | 0.0116 | 0.0118 | 0.0125 0.0126
Laptop 0.0106 | 0.0106 | 0.0103 | 0.0105 | 0.0110 0.0110
Mug 0.0134 | 0.0134 | 0.0150 | 0.0141 | 0.0150 0.0147
Rocket 0.0069 | 0.0069 | 0.0078 | 0.0070 | 0.0070 0.0073
Skateboard 0.0079 | 0.0080 | 0.0080 | 0.0079 | 0.0082 0.0083
Average 0.0102 | 0.0101 | 0.0107 | 0.0103 | 0.0104 0.0109
TABLE V

AVERAGE NUMBER OF POINTS WITHIN dg BETWEEN THE BEST
RECOVERED POINT CLOUD AND THE ORIGINAL POINT CLOUD FOR
RESAMPLING RATIO v = 0.2 USING SHAPENET DATASET.

Categories HKC HKF LHF GFR EA PCA-AC
Cap 2628.3 | 2632.4 2315.7 2635 1427.5 2160.4
Chair 2656.1 2657.9 2658 2653.9 2458.2 2469.9
Laptop 2754.4 | 2784.4 2785.6 2774.3 2626.4 2584.6
Mug 2818.6 | 2819.9 2716.6 2810.7 2633.7 2418.2
Rocket 2364.4 2361 2317.4 2360.6 1904.4 2004.5
Skateboard 2559.8 2562 2568.2 2563.1 2409.9 2381.2
Average 2630.3 | 2636.3 | 2560.25 | 2632.93 | 2243.35 2336.47

distance as defined in (18) and (19), respectively; and 3)
average number N7 of points within the threshold dy between
the original and recovered point cloud. Smaller distance and
larger number of points within the threshold indicate better
performance.

To start, Table. II and Table. III provides a set of the
resampled point clouds and their corresponding recovered ones
from different methods of ShapeNet dataset. Visual inspection
shows that our proposed HKC, HKF, and LHF algorithms
generally deliver consistently strong results in resampling and
recovery of point clouds, regardless of the dataset under study.

To quantitatively illustrate the performance comparison,
Table. IV and Table. V presents the numerical results for
a = 0.2. From the test results, we observe that our HKF
algorithm exhibits the best performance in terms of both
mean distance and number of matched points versus the tradi-
tional GFR graph method and two edge detection methods.
Compared with the edge detection methods, our proposed
algorithms consistently retain larger numbers of points within
the threshold dy in most point cloud categories.
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Fig. 10. Plots of recovered accuracy against resampling ratio o of all methods in ShapeNet Dataset

(a) Original Point
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Fig. 11. Example of resampled results of EA with different c.

(a) a=0.1 (b) a=0.2

Fig. 12. Example of resampled results of PCA-AC with different «.

TABLE VI
MEAN DISTANCE BETWEEN THE BEST RECOVERED POINT CLOUD AND
THE ORIGINAL POINT CLOUD FOR DIFFERENT RESAMPLING RATIOS USING
DOWNSAMPLED BOXER POINT CLOUD IN 81VSLF DATASET.

(c)a=04

«a HKC HKF LHF GFR EA PCA-AC
0.1 2.7889 | 2.7942 | 2.6646 | 2.7705 | 2.7656 | 2.3536
0.2 2.4446 | 2.1716 | 2.8015 | 2.4362 | 2.7639 | 2.2698
0.4 1.9837 | 1.9841 | 2.4528 | 1.9747 | 2.7877 | 2.3825
0.6 1.8525 | 1.8522 | 1.9854 | 1.8522 | 2.8042 | 2.5412
0.8 1.7802 | 1.7790 | 1.8574 | 1.8598 | 2.8128 | 2.6750
Average 2.1700 | 2.1162 | 2.3523 | 2.1787 | 2.7868 | 2.4444
TABLE VII

AVERAGE OF DISTANCE AND DUAL DISTANCE BETWEEN THE BEST
RECOVERED POINT CLOUD AND THE ORIGINAL POINT CLOUD FOR
DIFFERENT RESAMPLING RATIOS USING DOWNSAMPLED BOXER POINT
CLOUD IN 81VSLF DATASET.

o HKC HKF LHF GFR EA PCA-AC
0.1 2.5368 | 2.5450 | 2.4381 | 2.4859 | 2.5660 | 4.9831
0.2 22974 | 2.1641 | 2.4492 | 2.3440 | 2.5225 | 2.3647
0.4 2.1475 | 2.0771 | 2.3687 | 2.0614 | 2.5381 | 5.2107
0.6 2.0890 | 2.0892 | 2.0752 | 2.0856 | 2.5576 | 5.2772
0.8 1.9825 | 1.9816 | 2.0204 | 2.0196 | 2.5703 | 2.5087
Average 22160 | 2.1714 | 2.2703 | 2.1993 | 2.5509 | 4.0689

The comparison also demonstrates a potential issue of
the specialized edge detection based methods. In particular,
resampled point cloud of edge detection methods may over-

) =038
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(d)a=0.6 (e) a =10.8

emphasize only part of the original point cloud, as shows in
Fig. 11 and Fig. 12. The points in the middle to top of the
rocket are kept only for « larger than or equal to 0.6. As a
result, substantial number of points may not be retained by
the generic edge detection methods during resampling.

We also examine the effect of sampling ratio o and
graphically illustrate the variation of mean distance, average
of distance and dual distance, and average number within
threshold against different sampling ratios in Fig. 10, Table. VI
and Table. VII. Here we use the same set of point clouds
in the numerical results of ShapeNet dataset for o = 0.2.
Note that the behavior of PCA-AC is more erratic because it
could over-emphasize certain part of the original point cloud,
as shown in Fig. 13. It is clear and intuitive that higher
resampling ratio leads to better performance of all methods
under study. It is important to note that our proposed methods
exhibit performances superior to the traditional EA and PCA-
AC methods in terms of mean distance for various resampling
ratios. This result indicates that our proposed hypergraph-
based methods tend to preserve the geometric information
more efficiently in resampling. The hypergraph-based methods
also exhibits better results with respect to the number of
corresponding nodes between reconstructed and original point
clouds.



Fig. 13. Resampling result of PCA-AC method using resampled Boxer Point
cloud.

D. Runtime of all methods

To compare the complexity of the proposed methods with
traditional graph-based and PCA-based methods, we record
the runtime of all methods using the downsampled Boxer point
clouds in 8iVSLF dataset [32] with different number of points.
The resampling ratio « is 0.2 for all methods and the result
is as Fig. 14. We also record the average runtime of biplane
point cloud with the resampling ratio of 0.005. The result is
summarized in Table VIIIL.

Number of points

. Runtime of all methods

TABLE VIII
COMPARISON OF AVERAGE RUNNING TIME (IN SECONDS) FOR POINT
CLOUDS IN DIFFERENT DATASETS.

Boxer (s) | Bi-plane (s)
HKC 54.603 1501.288
HKF 50.880 1445.801
LHF 82.243 2225.681
GFR 56.815 6277.067
EA 67.840 1937.953
PCA-AC | 776.976 4793.139

The runtime result shows that our HKC and HKF algorithms
require shorter runtime than GFR method. The runtime of the
LHF method is longer than GFR method because we used two
different local signal lengths N, and N, such that the entire
progress is calculated twice, unlike for HKC and HKF.

Note that the computational time of GFR increases dras-
tically for the biplane point cloud. This happens because it
is nearly impossible to store the entire adjacency matrix in
memory and implement the GFR processing for such a large

point cloud. To make the GFR method feasible, we modified
GFR by calculating the optimal resampling distribution for
each point directly without forming the adjacency matrix.
Unlike GFR, our proposed HKC and HKF algorithms are more
efficient and do not require the formation of hypergraphs for
the whole point cloud.

In summary, our test results demonstrate the efficiency
of the proposed resampling while preserving the underlying
structural features and geometric information among point
cloud data. They further demonstrate that hypergraph presents
a promising alternative beyond regular graph for modeling
point clouds in some point cloud related applications.

E. Parameter selection

TABLE IX
MEAN DISTANCE OF DIFFERENT METHODS.

Noise Level

[ No Noise | 10% | 15% | 20% | 25% | 30% |

HKC

Basic (d) 1.915 2.176 | 3.412 | 4.027 | 4.291 | 4.374
Noise-dependent T 2.071 | 2.399 | 2.574 | 2.679 | 2.843
Optimized 1.373 1.500 | 1.669 | 1.908 | 2.348 | 2.843
HKF

Basic (d) 1.910 2.370 | 3.533 | 4.088 | 4.308 | 4.376
Noise-dependent T 2.090 | 2.498 | 2.671 | 2.757 | 2.914
Optimized 1.492 1.577 | 1.741 | 2.000 | 2.439 | 2.914
LHF

Basic (6) 3.090 3.808 | 4.050 | 4.209 | 4.281 | 4.331
Noise-dependent T 2.807 | 3.043 | 3.119 | 3.147 | 3.147
Optimized 1.666 1.989 | 2281 | 2.518 | 2.735 | 2.900
GFR

Optimized 1.093 2710 | 3.177 | 3.612 | 3.942 | 4.107

TABLE X

ROBUSTNESS OVER DIFFERENT PARAMETERS: EDGE DETECTION FOR
SYNTHETIC DATASET AND RECOVERY FOR REALISTIC DATASET.

HKC HKF LHF GFR
Variation of Mean Distance
(Synthetic Dataset) 1.2321 1.1906 0.5416 1.4154
Variation of Average Distance
(ShapeNet Dataset) 3.04E-07 | 2.25E-07 | 6.29E-06 | 6.97E-07

In this part, we provide guidelines for the parameter selec-
tion. Given a point cloud without prior knowledge of overall
measurement error (noise), we suggest setting the kernel
size as the resolution d and NN; = 6 as baseline values.
When the measurement accuracy is known (i.e., the level of
noise is given in practice), we recommend to increase 30%
of the kernel size each time the noise grows by 10% for
HKC and HKF. For LHEF, we increase N; by 4 for every
10% noise increase. We compare the mean distance of edge
detection with GFR in the synthetic datasets under different
guidelines as Table IX. From the results, we can see that
our proposed methods deliver better performance under some
simple guidelines without exhaustive tuning or hindsight.

V. CONCLUSION

This work investigates new ways for efficient and feature
preserving resampling of 3D point cloud based on hypergraph
signal processing (HGSP). We establish HGSP as an efficient



tool to model multilateral point relationship and to extract
features in point cloud applications. We propose three new
methods based on HGSP kernel convolution and spectrum
filtering. Although typical HGSP tools tend to require high
computational complexity, our proposed algorithms bypass
certain steps for hypergraph construction and only require
modest complexity to implement. Our experimental results
demonstrated that the proposed hypergraph resampling al-
gorithms can outperform traditional graph-based methods in
terms of feature preservation and robustness to measurement
noises.

Future works should consider the integration of HGSP
methods with feature-based edge detection approaches to
further enhance the edge preserving property of resampling
algorithms. Another interesting direction of exploration is the
design of different techniques including HGSP-based algo-
rithms to capture multi-resolution local features and color
information from point cloud data. Furthermore, we also plan
to investigate HGSP extension into dynamic hypergraphs to
process dynamic point clouds and videos.
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