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Abstract—This paper proposes an effective and asymptotically
optimal framework for stochastic, adaptive codebook regener-
ation for sequential (“on the fly”) lossy coding of continuous
alphabet sources. Earlier work has shown that the rate-distortion
bound can be asymptotically achieved for discrete alphabet
sources, by a “natural type selection” (NTS) algorithm. At each
iteration n, a maximum-likelihood framework is used to estimate
the reproduction distribution most likely to generate the empiri-
cal types of a sequence of K length-` codewords that respectively
“d-match” (i.e., are within distortion d from) a sequence of K
length-` source words. The reproduction distribution estimated
at iteration n is used to regenerate the codebook for iteration
n + 1. The sequence of reproduction distributions was shown
to converge, asymptotically in K, n, and `, to the optimal
distribution that achieves the rate-distortion bound for discrete
alphabet sources. This work generalizes the NTS framework to
handle sources over more general (e.g., continuous) alphabet
spaces, which often preclude a natural interpretation of the
concept of “type”. We show, for continuous alphabet sources and
fixed block length `, that as K → ∞ and n → ∞, the sequence of
estimated reproduction distributions converges, in the weak con-
vergence sense, to a distribution that achieves the rate-distortion
bound, albeit for an auxiliary distortion measure introduced as
subterfuge to effectively impose a maximum distortion constraint
over K blocks. Leveraging this result, we establish that the
sequence of reproduction distributions converges, asymptotically
in `, to the optimal codebook reproduction distribution Q∗ that
achieves the rate-distortion bound, with respect to the original
distortion measure.

I. INTRODUCTION

Random codebook generation is a cornerstone of the theory
of source coding and serves to establish its performance
bounds. It also has had a significant impact on practical source
coding, especially in the context of lossless coding, most
notably due to the seminal contributions of Lempel and Ziv
[1] [2] [3], and extensive consequent contributions by others.
For example, in LZ78 [3], a tree of codewords is grown, as
source strings are encoded, in a way that ensures that the
frequency of typical source sequences among codewords in
the tree, asymptotically approaches one, without recourse to
any prior knowledge of the source statistics.

In the lossy coding setting, stochastic codebook generation
is fundamentally more challenging. Recall that in lossless
coding the optimal codebook must exhibit the same statistics
as the source, and hence the underlying problem is effectively
that of learning the source statistics from source examples, and
generating a codebook that exhibits such statistics. However,
in lossy coding, the optimal codebook-generating distribution

generally differs from the source distribution, and considerably
so at high distortion levels. Hence, it is not enough to simply
“mimic” the source, and thus, finding the optimal codebook
reproduction distribution represents a significant challenge.
This observation was recognized in [4], where codebook adap-
tation in the lossy settings (for discrete alphabet, memoryless
sources) is viewed as a sequential process of “type selec-
tion” rather than learning and matching the source statistics.
Ultimately, the codebook adaptation algorithm estimates the
optimal reproduction type for the source at a given distortion
constraint d. Most relevant to this work is the early NTS al-
gorithm, originally proposed for discrete-alphabet memoryless
sources in [4], practically improved (enabling most iterations
to be performed at short block lengths) in [5], and most
recently generalized to sources with memory in [6].

Consider a discrete memoryless source drawn from distri-
bution P . At each iteration n, NTS algorithm generates a
codebook of independent codewords from distribution Qn.
A set of K independently generated (`-length) source words
get “d-matched” by a respective set of K codewords in
the codebook. A Maximum Likelihood (ML) framework is
employed to find a new codebook reproduction distribution,
Qn+1, which is most likely to have generated the sequence
of d-matching codewords. NTS algorithm then uses Qn+1 to
regenerate a new codebook for iteration n+ 1. It was shown
that the sequence of codebook generating distributions {Qn}
converges, asymptotically in K, n, and `, to the optimal repro-
duction distribution Q∗(P, d) that achieves the rate-distortion
bound R(P, d). The recent extension to accommodate discrete
sources with memory [6], also establishes asymptotic optimal-
ity, but details are omitted here for brevity.

While earlier NTS work was focused on discrete alphabet
sources, the prevalence of continuous sources in practical
compression applications provides strong motivation for this
paper. It is important to emphasize that the standard concept of
types, which was the cornerstone of the earlier NTS work on
discrete alphabet sources, and was specifically instrumental to
showing asymptotic convergence to the reconstruction distri-
bution that achieves the rate-distortion bound, does not apply
to continuous alphabet sources. Hence, the generalization
of the NTS algorithm to accommodate continuous alphabet
sources is not straightforward and is, in fact, fundamentally
more challenging. Important advances were made in [7], which
studied abstract alphabet spaces in the random codebook
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coding context of plain and entropy-constrained quantization,
and further generalized the conditional limit theorem, which is
at the heart of the NTS algorithm, to stationary ergodic sources
with abstract alphabet spaces. The current work generalizes the
NTS stochastic codebook generation algorithm and establishes
its asymptotic optimality for continuous sources and sources
over abstract alphabet spaces (specifically, Polish spaces).
Theorems 1 and 2 establish that, at fixed block length `, the
codebook reproduction probability measure converges asymp-
totically, in the weak convergence sense, as K → ∞, n →
∞, to the optimal probability measure that achieves the rate-
distortion function, albeit for an auxiliary distortion measure,
designed to capture a maximum distortion constraint over a set
of blocks. Theorem 3 proceeds to establish that the marginal
probability measure of the codebook reproduction distribution
converges weakly to the optimal distribution Q∗(P, d), as
`→∞ and n→∞.

The remainder of the paper is organized as follows: Section
II provides background; Section III reviews NTS algorithms
for discrete memoryless sources; The main results for contin-
uous (and abstract) alphabet sources are covered in Section
IV; with conclusions in Section V.

II. RELEVANT BACKGROUND

Let {Xu}u≥1 be a memoryless source, whose samples are
drawn from alphabet X according to probability distribution
P . Denote the source realizations, xu ∈ X . We assume that
the alphabet X is a complete separable metric space (often
called Polish space), equipped with its associated Borel σ-
field X ′. Similarly, we assume that the reproduction alphabet
Y is also a Polish space equipped with its associated Borel
σ-field Y ′. We denote the `-length source random vector
X`

1 = (X1, X2, . . . , X`), and its realizations x`1 ∈ X `.
We define an arbitrary non-negative (measurable) single-letter
distortion function ρ : X×Y → [0,∞). The distortion between
source vector x`1 and codevector y`1 = (y1, y2, . . . , y`) ∈ Y`,
is assumed additive:

ρ(x`1,y
`
1) =

1

`

∑̀
i=1

ρ(xi, yy). (1)

Given fidelity constraint d, we define a “d-match” event as
the event that ρ(x`1,y

`
1) ≤ d is satisfied. Suppose a random

codebook C` of infinite i.i.d. codewords Y`
1(i), with i ≥ 1,

such that the letters of any codeword Y`
1(i) are i.i.d. and drawn

from distribution Q over the reproduction alphabet Y . We call
Q the codebook reproduction distribution. Let N` be the index
of the first codeword in C` that d-matches the source word
realization x`1, i.e.,

N` = inf{i ≥ 1 : ρ(x`1,y
`
1(i)) ≤ d}, (2)

with the convention that the infimum of an empty set is +∞.
Shannon’s lossy source coding theorem states: if a random
codebook C` of size exp(`(R(P, d) + ε)) is generated using
an optimal codebook reproduction distribution Q∗P,d, then
the probability of finding a d-match in the codebook to an
independently generated source vector via P goes to one as `

goes to infinity, wherein R(P, d) is the rate-distortion function,
i.e., [8]

R(P, d) = inf
V :[V ]x=P,

EV (ρ(X,Y ))≤d

I(X,Y ). (3)

Here, I(X,Y ) is the mutual information between random
variables X and Y , and the infimum is taken over all joint
probability measure V such that the x-marginal of V , denoted
[V ]x, is P and the expected distortion EV (ρ(X,Y )) ≤ d. Let
V ∗P,d be the optimal joint distribution that realizes the infimum
in (3), then the optimal codebook reproduction distribution
Q∗P,d is the y-marginal of the optimal joint distribution V ∗P,d.
However, if a random codebook is generated from distribution
Q 6= Q∗P,d, then the minimum encoding rate to guarantee a
d-match in probability, as ` goes to infinity, was effectively
shown in [9], and extended to abstract alphabets in [7], to be

R(P,Q, d) = inf
V :[V ]x=P,

EV (ρ(X,Y ))≤d

D(V ||P ×Q), (4)

R(P,Q, d) = inf
Q′
{Imin(P ||Q′, d) +D(Q′||Q)}, (5)

where D(·||·) is the Kullback-Leibler (KL) divergence, and
Imin(P ||Q′, d) is the usual minimum mutual information but
with an additional constraint on the output distribution, i.e.,

Imin(P ||Q′, d) = inf
V :[V ]x=P, [V ]y=Q

′,
EV (ρ(X,Y ))≤d

I(X,Y ). (6)

Here the infimum is taken over all joint distributions V ,
whose x-marginal is P , and y-marginal is Q′, and such that
the expected distortion does not exceed d. In [10, Th. 2],
it was shown that, under these assumptions, R(P,Q, d) is
finite, strictly positive, and that the infimum in its definition
in (4) is always achieved by some joint distribution V ∗P,Q,d.
Moreover, since the set of V over which the infimum is
taken is convex, from [11] it can be concluded that V ∗P,Q,d
is the unique minimizer. Hence, a unique minimizer to (5)
also exists, i.e.,

Q∗P,Q,d = argmin
Q′
{Imin(P ||Q′, d) +D(Q′||Q)}. (7)

III. NATURAL TYPE SELECTION

The results summarized in the next section build on and ex-
pand the NTS random lossy codebook generation approach for
discrete memoryless sources, which was originally proposed
in [4] and practically enhanced in [5], [12]. Let the source be
memoryless and drawn from discrete alphabet X̃ according to
P̃ = {P̃ (x) : x ∈ X̃}. Additionally, let Ỹ be the discrete
codebook reproduction alphabet, and consider a codebook
generated according to distribution Q̃ = {Q̃(y) : y ∈ Ỹ}. In
[4], it was shown that the empirical type of the codeword that
d-matches an independently generated source word, converges
in probability to Q∗P,Q,d as the string length ` goes to infinity.
Note that Q∗

P̃ ,Q̃,d
is more efficient in coding the source

than Q̃. This immediately suggests an iterative codebook
generation algorithm. Let n be the iteration index, N` be
the first codeword index that d-matches the source, and QN`

n,`
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be the d-matching code-word type. Starting with a strictly
positive initial codebook reproduction distribution denoted
Q0,`, the type of the d-matching codeword at the current
iteration is used to generate the codebook of the next iteration.
In other words, the next iteration’s codebook reproduction
distribution is naturally selected by the source through a d-
match event, hence the name “natural type selection” (with a
nod to Darwin’s theory of evolution). This recursion results in
a sequence of reproduction distributions,

Qn,` = QN`

n−1,`, (8)

Qn= lim
`→∞

Qn,`=Q
∗
P,Qn−1,d, n = 1, 2, . . . (9)

Additionally, it is shown that the recursion in (9) converges
to the optimal codebook distribution Q∗

P̃ ,d
that achieves the

rate-distortion function R(P, d) in (3), i.e., [4]
Q∗(P̃ , d) = lim

n→∞
lim
`→∞

Qn,`, (10)

R(P̃ , d) = lim
n→∞

lim
`→∞

R(P̃ , Qn,`, d). (11)

While ensuring optimality, the original NTS algorithm suffers
from a fundamental practical flaw. In order to converge to the
optimal distribution, first the string length is sent to infinity,
and only then can NTS iterations be run. In other words, the
limit as n → ∞ assumes that the string length ` is already
very large. Unfortunately, the probability of finding a d-match
decreases exponentially with the string length, resulting in
an intractable d-search complexity even at the early NTS
iterations. Hence, in practice it is the reversed order of limits
that would be desirable. This shortcoming was eliminated
in [5], by devising a practically-effective and asymptotically
optimal NTS algorithm, where a finite string length ` is
considered. Instead of “naively” using the restricted type of
the first d-matching codeword, i.e., the “favourite type” as
the next iteration’s codebook reproduction distribution, an ML
framework is leveraged to identify the general distribution that
most likely generates a set of d-matching codewords for a set
of independently generated source words. Let the size of the
d-matching codewords set be K. Lemma 1 of [5] shows that
the codebook reproduction distribution obtained through the
ML framework for iteration n, is computed as,

Qn+1,`,K = Q̂ML
n+1,`,K =

1

K

K∑
i=1

Qy`
1(j(i))

, (12)

where y`1(j(i)) is the `-length code-word, of index j(i),
that achieves a d-match event to the i-th source string, and
Qy`

1(j(i))
is its corresponding type. Next, Theorem 1 and Theo-

rem 2 of [5] establish that the recursive codebook reproduction
distribution in (12) tends to the optimum codebook repro-
duction distribution Q∗

P̃ ,d
in probability through a practically-

effective order of limits, i.e.,
Q∗
P̃ ,d

= lim
`→∞

lim
n→∞

lim
K→∞

Qn,`,K . (13)

Additionally, for a fixed string length `, the codebook repro-
duction distribution converges to the optimal achievable distri-
bution in a set defined by the string length `. While resolving
the main practical shortcoming of the original NTS algorithm,

TABLE I
SUMMARY OF THE NTS PARAMETERS DEFINITIONS.

n NTS iteration index.
` Number of super symbols encoded together.
K Statistical depth for ML codebook distribution estimation.

the main limitation is the fact that NTS is still restricted to
discrete alphabets, and the importance of lossy coding for
continuous alphabet sources provides strong motivation for
this work and the results provided next.

IV. MAIN RESULTS: GENERALIZATION TO CONTINUOUS
ALPHABET SOURCES

This section generalizes the NTS algorithm to abstract
alphabet memoryless sources. It is worth noting that this gen-
eralization is fundamentally challenging because the concept
of types, which is the heart of earlier work NTS theorems
in [4]–[6] that establish the asymptotic algorithm convergence
behavior, does not immediately apply to continuous alphabets
sources. Let n denote the iteration index, and let Qn,` be
the codebook reproduction distribution (probability measure)
for generating `-length codewords in Y`. A summary of
the parameter definitions is given in Table I. The algorithm
considers a sequence of d-match events for a sequence of
independently generated source words (or vectors) x`1(1),
x`1(2), . . . , x`1(K). Let y`1(j(1)), y

`
1(j(2)), . . . , y`1(j(K)) be

the sequence of codewords, each generated according to Qn,`,
which d-matches the respective sequence of source words.
The ML estimation framework in (12) can be extended to the
general case of abstract alphabets. Hence, the ML codebook
reproduction distribution that would have generated these d-
matching code-words is equal to the average of the codeword
empirical distributions, i.e.,

Qn+1,`,K =
1

K

K∑
i=1

Qy`
1(j(i))

, (14)

Qn+1,` = lim
K→∞

Qn+1,`,K , (15)

Qn+1 = lim
`→∞

Qn+1,`, (16)

where Qy`
1(j(i))

is the empirical distribution of the d-matching
codeword y`1(j(i)) on Y`,i.e.,

Qn+1,`,K =
1

K

K∑
i=1

δy`
1(j(i))

, (17)

with δy`
1(j(i))

denoting a Dirac delta function located at
y`1(j(i)). Next consider a sequence of K concatenated (not
necessarily sequentially generated) source and code vec-
tors, i.e., let the K`-length source and code blocks be
denotes as x = [x`1(i1) x`1(i2) . . .x`1(iK)], and y =
[y`1(j1) y

`
1(j2) . . .y

`
1(jK)], respectively. Define the following

auxiliary distortion measure
(
ρd : X ` × Y` → {0, 1}

)
, which

is additive across the K `-length blocks, i.e.,

ρd
(
x`1(ir),y

`
1(jr)

)
=

{
0 if ρ

(
x`1(ir),y

`
1(jr)

)
≤ d

1 if ρ
(
x`1(ir),y

`
1(jr)

)
> d

(18)

ρd(x,y) =
1

K

K∑
i=1

ρd
(
x`1(ir),y

`
1(jr)

)
, (19)
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Note that by setting ρd(x,y) = 0, we impose a requirement
of maximum distortion d per block, over the K blocks. Thus,
the auxiliary distortion measure ρd is a subterfuge to impose
maximum distortion while maintaining the additive property
over the K blocks.

Theorem 1: For a memoryless source {Xu}u≥1, the proba-
bility measure Qn,`,K on Y` converges as K goes to infinity,
to the optimal distribution Q

∗
P `,Q`,d′ that achieves the bound

R(P `, Q`, d′), for the auxiliary distortion measure ρd, with
the extreme distortion constraint d′ = 0, i.e.,

Qn,`,K =⇒ Q
∗
P `,Q`,d′ , d

′ = 0, as K →∞, (20)

where “=⇒” denotes weak convergence of probability mea-
sures.

Proof: Let x`1(i) and y`1(j(i)), i = 1, 2, . . . ,K, be
a sequence of d-matching `-length words that are gen-
erated with the product probability measure P ` over
X `, and Qn−1,` over Y`, respectively. For the ease
of notations, denote Qn−1,` as Q`. In other words,
ρ(x`1(i),y

`
1(j(i))) ≤ d,∀i ∈ {1, 2, . . . ,K}. Now let us

consider the realizations of the concatenated source and
code vectors x = [x`1(1) x`1(2) . . .x`1(K)], and y =
[y`1(j(1)) y`1(j(2)) . . .y`1(j(K))]. The set of conditions
ρ
(
x`1(i),y

`
1(j(i))

)
≤ d,∀i ∈ {1, 2, . . . ,K} implies that

ρd(x,y) = 0, or in other words, the auxiliary distortion
function ρd is satisfied between x and y with zero distortion
constraint. Next define Q

∗
P `,Q`,d′ as the optimal distribution

that minimize the coding rate for a given codebook reproduc-
tion distribution Q`, and for the auxiliary distortion measure
ρd, as in (7), i.e.,

Q
∗
P `,Q`,d′ = arg inf

Q′

{
Imin(P

`||Q′, d′) +D(Q′||Q`)
}
, (21)

Imin(P
`||Q′, d′) = inf

V :[V ]x=P
`, [V ]y=Q

′,

EV (ρ(X`
1,Y

`
1))≤d

′

I(X`
1,Y

`
1), (22)

Now consider the codewords’ empirical distributions obtained
by the following algorithms:
1) At iteration n, the algorithm independently finds a se-

quence of d′-matching codewords y`1(j(i)) of length `
(considering distortion measure ρd) to a respective se-
quence of independently generated source-words x`1(i),
with i ∈ 1, 2, . . . ,K. We say a source word “d′-matches”
a codeword if ρd

(
x`1(i),y

`
1(j(i))

)
≤ d′. The codewords

y`1(j(i)) belongs to random codebook C` generated by
distribution Qn−1,`. Let y = [y`1(j(1)), . . . ,y

`
1(j(K))] be

a realization of the concatenated d′-matching code vectors
and let QY be its empirical distribution on Y`. Note that
by definition QY = Qn,`,K in (17).

2) At iteration n, the algorithm finds a single long d′-matching
codeword yK`1 of length K` (considering distortion mea-
sure ρd) to a respective long source-word xK`1 , such that
every respective `-length source word and codeword jointly
d′-matches. In other words, if xK`1 = [x`1(1), . . . ,x

`
1(K)],

and yK`1 = [y`1(1), . . . ,y
`
1(K)], then ρd(x

`
1(i),y

`
1(i)) ≤

d′, ∀i ∈ {1, . . . ,K}. The d′-matching codeword yK`1

belongs to random codebook CK` generated by K-th
product probability measure of Qn−1,`, i.e., QKn−1,` on
YK`. Let QY

′ be the marginal empirical distribution of
the d′-matching codeword on Y .

By the independent generation of every `-length part of the
source blocks, code blocks, and the definition of the distortion
measure ρd for d′ = 0, we show that for every (measurable)
set E ⊂ Y`, QY(E) = QY

′(E) for d′ = 0. In view of (18)
and (19) we have,

P
(
ρd(X,Y) = 0

∣∣ X = x
)
=

K∏
i=1

P
(
ρd
(
X`

1(i),Y
`
1(j(i))

)
= 0

∣∣ X`
1(i) = x`1(i)

)
.

(23)

P
(
ρd(X,Y) = 0

∣∣ X = x
)
=

K∏
i=1

P
(
ρ
(
X`

1(i),Y
`
1(j(i))

)
≤ d

∣∣ X`
1(i) = x`1(i)

)
.

(24)

Hence, the d′-match event (for ρd with d′ = 0) between
the K`-length random source word XK`

1 and codeword YK`
1

implies a sequence of d′-match events for every `-length part.
This implies that for any (measurable) set E ⊂ Y`, we have,

P
(
QY(E) = q

∣∣ ρd (XK`
1 ,YK`

1

)
= 0, XK`

1 = xK`1

)
=

P
(
QY(E) = q

∣∣ ρd (X`
1(i),Y

`
1(i)
)
= 0, X`

1(i) = x`1(i)
)

(25)
This, together with the independent generation of source words
and codewords for every `-length part, immediately shows that
for every (measurable) E ⊂ Y`, QY(E) = QY

′(E).
Next by [7, Th. 3], for every (measurable) E ⊂ Y`, the

probability,

P
(∣∣Q̂Y(E)−Q∗P `,Q`,d′(E)

∣∣ >δ ∣∣ ρd(X,Y)=0,X=x
)

→ 0,
(26)

as K → ∞, exponentially fast, where Q̂Y is the empirical
distribution of the random concatenated code vector Y on
Y`. Thus conditioning on the P-almost every realization x
(as K → ∞) and the d′-match event ρd(X,Y) = 0, the
probability that the difference between empirical distributions
QY

′ and Q
∗
P `,Q`,d′ over any (measurable) E ⊂ Y` is larger

than δ, with δ > 0, goes to zero asymptotically in K. Note
that the effective length of the concatenated vectors is ` , K`,
hence sending K → ∞, obviously implies that ` → ∞.
Furthermore, by [7], we have,

P
(∣∣Q̂Y(E)−Q∗P `,Q`,d′(E)

∣∣ >δ ∣∣ ρd(X,Y)=0,X=x
)

= P
(∣∣QY

′(E)−Q∗P `,Q`,d′(E)
∣∣ >δ ∣∣X=x

)
.

(27)

This together with Borel-Cantelli lemma, we conclude that for
any measurable set E ⊂ Y`,

QY
′(E)→ Q

∗
P `,Q`,d′(E), as K →∞, w.p. 1. (28)

Since Y` is a Polish space, then there exists a countable
convergence determining class E = {Ei} ⊂ Y`. Therefore
with probability one we have,

QY
′(Ei)→ Q

∗
P `,Q`,d′(Ei), as K →∞, ∀i, (29)
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which subsequently implies Theorem 1.
Theorem 2: For an initial distribution Q0,` having strictly

positive density everywhere over Y`, the recursion in (15)
achieves,

Qn,` =⇒ Q
∗
P `,d′ , for d′ = 0, as n→∞ , (30)

where Q
∗
P `,d′ is the optimal reproduction distribution that

achieves the rate distortion function R(P `, d′) for the auxiliary
distortion measure ρd, i.e.,

R(P `, d′) = inf
Q`

inf
V `:[V `]

x
=P `,

E
V `(ρd(X`

1,Y
`
1))≤d

′

D
(
V `||P ` ×Q`

)
, (31)

where the inner infimum is taken over all joint distributions V `

of the random vectors (X`
1,Y

`
1) such that the x-marginal of

V ` is P `, and the expected distortion EV `(ρd
(
X`

1,Y
`
1)
)
≤ d′.

Proof: It is straightforward to verify that the sets of joint
distributions {P ` × Q` : any Q`}, and {V ` :

[
V `
]
x

=

P `, EV `(ρd
(
X`

1,Y
`
1)
)
≤ d′} are convex sets. Furthermore, it

should be noted that for a fixed V `, the reproduction distribu-
tion which minimizes D(V `||P `×Q`) is the y-marginal of V `

on Y`. On the other hand, for a fixed Q` and distortion con-
straint d′, the joint distribution which minimizes D(V `||P ` ×
Q`) over {V ` :

[
V `
]
x
= P `, EV `(ρd

(
X`

1,Y
`
1)
)
≤ d′} will

induce Q
∗
P `,Q`,d′ . Hence, by Theorem 1, the recursion in (15),

achieves a sequence of alternating minimization across convex
sets.

V
∗
P `,Q0,`,d′

→ (P ` ×Q∗P `,Q0,`,d′
)→

V
∗
P `,Q1,`,d′

→ (P ` ×Q∗P `,Q1,`,d′
) . . . ,

(32)

where,

V
∗
P `,Qn,`,d′

, arg min
V `:[V `]

x
=P `,

E
V `(ρd(X`

1,Y
`
1))≤d

′

D
(
V `||P ` ×Qn,`

)
.

(33)
It should be noted that the distance in the alternating mini-
mization is measured by divergence. Hence, by [13, Th. 3],
the sequences of divergences and distributions will converge to
the minimum divergence, i.e., R(P `, 0), and the corresponding
optimum reproduction distribution Q

∗
P `,0 on Y` asymptotically

in K and n.
Theorem 3: The marginal probability measure of Qn,` on

Y , denoted by Q(1)
n,`, converges in the weak convergence sense

to the optimal probability measure Q∗P,d that achieves the rate-
distortion function R(P, d) as ` and n go to infinity.

Proof: Let x`1(i) and y`1(j(i)), i = 1, 2, . . . ,K, be a
sequence of d-matching `-length words that are generated
with the product probability measures P ` and Qn−1,` over
the alphabets X ` and Y`, respectively. In other words,
ρ(x`1(i),y

`
1(j(i))) ≤ d,∀i ∈ {1, 2, . . . ,K}. Theorem 3 of

[7] showed that the marginal probability measure of the d-
matching codewords converges in the weak convergence sense
to Q∗

P,Q
(1)
n−1,`,d

, defined in (7), as ` goes to infinity, i.e.,

z`1 , y`1(j(i)), Q
(1)

y`
1(j(i))

=
1

`

∑̀
m=1

δzm , ∀i, (34)

Q
(1)

y`
1(j(i))

=⇒ Q∗
P,Q

(1)
n−1,`,d

, as `→∞, (35)

where zm is the m-th sample in the vector z`1, and Q(1)

y`
1(j(i))

is the marginal empirical probability measure of y`1(j(i)) on
the alphabet Y . Hence, by the definition of Qn,` in (15),
the marginal probability measure Q

(1)
n,` converges weakly to

Q∗
P,Q

(1)
n−1,`,d

as ` → ∞, as well. The rate-distortion function

in (3) can be rewritten as [4], [7]

R(P, d) = inf
Q

inf
V :[V ]x=P,

EV (ρ(X,Y ))≤d

D (V ||P ×Q) , (36)

here the inner infimum is taken over all joint distributions V
of the random variables (X,Y ) such that the x-marginal of V
is P , and the expected distortion EV (ρ (X,Y )) ≤ d. Finally,
similar to Theorem 2, the marginal distributions obtained by
the recursion in (15), as ` → ∞, result in a sequence of
alternating minimization across convex sets, i.e.,

V ∗
P,Q

(1)
0 ,d
→ (P ×Q∗

P,Q
(1)
0 ,d

)→

V ∗
P,Q

(1)
1 ,d
→ (P ×Q∗

P,Q
(1)
1 ,d

) . . . ,
(37)

where, Q(1)
n is the marginal probability measure of Qn, and,

V ∗
P,Q

(1)
n ,d

, arg min
V :[V ]x=P,

EV (ρ(X,Y ))≤d

D
(
V ||P ×Q(1)

n

)
. (38)

The sequence of divergences will converge to the minimum
divergence, i.e., R(P, d), and the marginal probability measure
Q

(1)
n,` will converge to the corresponding optimum reproduction

distribution Q∗P,d asymptotically in n and `.

V. CONCLUSION

This paper generalizes the practically-effective and
asymptotically-optimal iterative NTS lossy codebook
generating algorithm in [5] to sources with more general
alphabet spaces. We assume that the source and reproduction
alphabets are complete separable metric spaces (often
called Polish spaces). Similar to [5], an ML framework is
leveraged to identify the next iteration codebook reproduction
distribution after observing sequence of K d-matching
events. We show that for finite code-word length `, the
codebook reproduction distribution on Y` converges to the
optimal distribution Q

∗
P `,d′ , in the weak convergence sense,

as K → ∞ and n → ∞, that achieves the rate distortion
function R(P `, d′) albeit for an auxiliary distortion measure
ρd, and distortion constraint d′ = 0. Additionally, we show
that asymptotically in `, the marginal codebook reproduction
distribution on Y converges to the optimal distribution Q∗P,d
that achieves the rate-distortion R(P, d) function for the
original distortion measure ρ.
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