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Abstract

We present a formulation for investigating quench dynamics across quantum phase tran-
sitions in the presence of decoherence. We formulate decoherent dynamics induced
by continuous quantum non-demolition measurements of the instantaneous Hamilto-
nian. We generalize the well-studied universal Kibble-Zurek behavior for linear tem-
poral drive across the critical point. We identify a strong decoherence regime wherein
the decoherence time is shorter than the standard correlation time, which varies as the
inverse gap above the groundstate. In this regime, we find that the freeze-out time
t ~ 72v2/(1+292) for when the system falls out of equilibrium and the associated freeze-out
length & ~ 7 7/(1+272) show power-law scaling with respect to the quench rate 1/7, where
the exponents depend on the correlation length exponent ¥ and the dynamical exponent
2 associated with the transition. The universal exponents differ from those of standard
Kibble-Zurek scaling. We explicitly demonstrate this scaling behavior in the instance of
a topological transition in a Chern insulator system. We show that the freeze-out time
scale can be probed from the relaxation of the Hall conductivity. Furthermore, on in-
troducing disorder to break translational invariance, we demonstrate how quenching
results in regions of imbalanced excitation density characterized by an emergent length
scale which also shows universal scaling. We perform numerical simulations to confirm
our analytical predictions and corroborate the scaling arguments that we postulate as
universal to a host of systems.
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1 Introduction

Nonequilibrium properties associated with quenches across a continuous phase transition are
exhibited in a range of physical systems, from quantum magnets at the nanoscale to the cos-
mos itself. Close to the critical point separating the two phases, the intrinsic relaxation time,
equivalently, the correlation time diverges. In this regime, no matter how slow the tuning
rate for the quench, the system is driven faster than it can respond, and thus plunges out of
equilibrium. Universal properties of the phase transition have powerful implications for the
nonequilibrium dynamics associated with the quench. A paradigm example is Kibble-Zurek
scaling [ 1-7], which states that both the time scale of the out-of-equilibrium dynamics and the
length scale of the post-quench nonequilibrium region scale as power laws with the quench
rate. The power law exponent depends only on universal properties of the equilibrium phase
transition and is independent of microscopic details of the system.

The combined effects of quantum measurement and decoherence on quantum critical
quenches largely remains uncharted ground, despite the growing research interest in open
quantum systems and measurement-impacted quantum dynamics [8-17]. Unitary evolution
combined with intermittent measurement can generate nontrivial quantum dynamics by re-
peatedly collapsing the quantum state to the measured basis, following Born’s rule. Such pro-
cesses generally modify the quantum state drastically and create high-energy excitations in
the system. However, if the measurement observable commutes with the system Hamiltonian,
while the system becomes entangled with its environment, no such high energy excitations
are produced, a state of affairs known as a quantum non-demolition measurement [18-24].
In particular, the quantum non-demolition measurement of the system Hamiltonian itself has
recently been proposed in Ref. [25, 26] for trapped-ion systems, as an indirect measurement
realized by coupling the system with an environment through the energy channel. The process
also can be interpreted as the environmental monitoring of the system energy, under which the
system will decohere in the energy basis. It was further demonstrated in Ref. [27-29] that re-
peatedly measuring local terms of the many-body Hamiltonian during the quantum dynamics
can stabilize different quantum phases in the final steady state. One can even drive quantum
phase transitions by varying the measurement strength of different Hamiltonian terms. This
provides us an opportunity to consider the critical quench dynamics driven by quantum non-
demolition measurement of the system energy, and to investigate its effect on universal scaling
behaviors.

In this work, we present a formulation for integrating the physics of quantum measurement
and decoherence with that of quantum critical quench dynamics. The formulation provides a
description of continuous measurement of the the system Hamiltonian, while the Hamiltonian
itself is dynamically driven across the quantum phase transition. Averaging over energy mea-
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surement outcomes leads to decoherence in the energy basis. The decoherence time enters
the dynamics as a time scale distinct from that set by the correlation time. As the system is
tuned through the critical point, both the decoherence time 74.. and the correlation time &,
diverge, such that the quantum dynamics slows down and the system is unable to equilibrate
in the face of the parameter tuning. As a result, the system is effectively frozen near the criti-
cal point and falls out of equilibrium after the quantum quench. The freeze-out time is set by
the choice of time scale between &, and 74, that remains shorter at the moment. As the two
time scales &; and 7 4. diverge with different exponents near the critical point, they lead to
different scaling behaviors of the freeze-out time (also known as the Kibbel-Zurek scaling in
the coherent limit). In the strong decoherence regime, we derive the critical quench scaling
exponents for both length and time scales, and demonstrate how they differ from the standard
Kibble-Zurek predictions.

We apply our formulation to topological transitions in Chern insulators and show how these
strong-decoherence scaling laws become manifest. Qur choice of system stems from the surge
of interest in these materials, the plethora of experiments, the ability to tune through these
transitions, and the straightforward theoretical formulation that enables adding the complex-
ity of the decoherent aspects. Given that much of Kibble-Zurek physics has focused on systems
having spontaneous-symmetry breaking and local order, we focus on an alternate set of ob-
servables for probing our predicted novel scaling behavior in the case of topological order. In
particular, we propose that the out-of-equilibrium time scale can be obtained from the relax-
ation of Hall conductivity across the topological transition. We also propose the extraction of
the post-quench correlation length from the autocorrelation function of excitation density in
the presence of weak disorder.

While this work offers a framework for describing decoherent quantum critical quenches
and applies it to a specific example, we believe its scope is very broad.! The formulation itself
can be applied to vast and diverse systems ranging from symmetry broken phase in cosmology,
solid state, and cold atomic gases to topological systems in the latter two settings. Almost
invariably, decoherence goes hand in hand with quenching, and in the case of ultracold gases,
it can even be engineered. In general, its effects can be murky. But for universal regimes
defined by critical points, not only are the effects much more clear-cut, the interplay between
the two distinct time scales allows demarcating a testable strong decoherence regime showing
entirely new scaling.

In what follows, in Sec. 2, we introduce the general formulation of quantum dynamics with
energy-basis decoherence, realized by quantum non-demolition measurement of the system
Hamiltonian. We derive the master equation that governs the decoherent dynamics. Based on
the master equation, having recapitulated standard Kibble-Zurek scaling in quantum quenches,
we analyze its behavior in the presence of decoherence.We discuss the regimes of weak ver-
sus strong decoherence and associated scaling. In Sec.3, we demonstrate our treatment for
quenches in Chern insulators tuned through topological phase transitions. We present the
corresponding non-interacting fermionic Hamiltonian and describe the dynamics in terms of
associated pseudo-spin degrees of freedom for each momentum sector. We next derive our
predicted scaling behavior in the relaxation of Hall conductivity. We adapt numerical tech-
niques to describe quenches and further corroborate our results. We introduce weak disorder
to break translational invariance and extract correlation lengths and related scaling behavior
via post-quench correlation of emergent regions having high excitation densities. In Sec. 4, we
summarize our work, consider ramifications, and make connections with possible experiments.

1The general behavior of quantum systems undergoing decoherence remains an open question. Our formalism
applies to any model so long as the decoherence mechanism can be modeled by continuously measuring the
system’s energy.
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2 Universal Scaling of Decoherent Critical Quench

We begin with the overarching set-up for describing the decoherent system at hand and its
dynamics. We then show how even in the simplest case of a two-level system, one can ex-
tract a decoherence time that it intimately tied to the gap between states. Our formulation
immediately enables us to study the general scenario of quenching through a quantum critical
point. We therefore then proceed to derive the universal argument for a competition between
three timescales—the inverse quench rate, the intrinsic coherent timescale of the system (the
correlation time), and the decoherence time. Based on the competition, we are able to iden-
tify strong and weak decoherence regimes and the different associated scaling behavior of the
critical quench.

2.1 Decoherent Quantum Dynamics

The decoherence of a quantum system in its energy eigenbasis can be effectively modeled by
an environment that monitors the energy of the quantum system through continuous measure-
ments [30,31]. Under this protocol, the dynamics of the quantum system is non-unitary and
can be formulated as a quantum channel [32]. The quantum channel formulation provides a
unified description of the effect of both unitary evolution and quantum measurement on the
density matrix p of an open quantum system,

p(t+58)= D K1) p(DK](2), (W
J

specified by a set of Kraus operators [33] K;(t) satisfying > j K;.r(t)K j(t) = 1. Unitary evolu-

tion corresponds to the presence of a single unitary Kraus operator K(t) = U(t) = e H(®)0t
(setting i = 1); in this case, one has the familiar behavior
p(t+6t)=p(t)—ist[H(t),p(t)]+0O(5t?), @)

where H(t) is the Hamiltonian of the quantum system that generates the coherent time-
evolution.

The environmental monitoring of the energy of a quantum system can be described by a set
of measurement operators K ;(t), where the index j labels the possible measurement outcomes.
We consider an indirect (or ancilla) weak measurement [34] scheme, in which the system cou-
ples to some ancilla qubits in the environment via the interaction term H;,(t) = H(t)®A. Here,
H(t) is the Hamiltonian of the quantum system and A is some Hermitian operator acting on the
ancilla qubits. Suppose the ancilla qubits start in a random initial state | ¢ > and evolve jointly
with the quantum system under H;,(t) for a short period of time, after which they collapse to
the measurement basis ’ j ) via a projective measurement. The effect on the quantum system
is described by the following Kraus operator

Ki(t)=(j|¢)I—ieH(t)(j|A|$)—3e*H()*(j|A*| ¢ )+O(e),

where € is proportional to the coupling time and can be viewed as a parameter controlling
the measurement strength. Here I is the identity operator acting on the Hilbert space of the
system. This procedure weakly measures the energy of the quantum system because the ob-
servable being measured in a quantum measurement is determined by the particular operator
that couples the system to the environment [35,36], which in this case is the system Hamilto-
nian H(t) itself. Such a measurement protocol will gradually decohere the system to disperse
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among different energy levels. Applying the Kraus operator to the density matrix, we obtain

D KD p(OK[(0) = p(t)—ie[H(t),p(D)]( ¢ |A| )
J

— 3 2[H(t), [H(1), p()]]( ¢ |[A*| ¢ ) + O(e). 3)

We assume that the ancilla state | ¢ ) and the ancilla operator A satisfy < o} |A{ o} > = 0, such
that the measurement process will not bias the energy of the system. Typically this is true if
| ¢ > and A are random, as we have no prior knowledge of how the environment will monitor
the energy. We also ignore the memory effect of the environment, and assume that the dynam-
ics is Markovian. With this assumption, the density matrix evolves under the environmental
measurement as

p(t+8t)=p(t)—y5t[H(e),[H(t), p(t)]]+O(5¢t?), (4)

where a new parameter y = (d) |A2 | ¢ >62 /(26t) is introduced to represent the quantum
non-demolition measurement strength (or the decoherence rate). To approach the limit of
continuous measurement, we should take the 5t — 0 limit keeping the ratio €2/5t held fixed
so as to respect the quadratic time scaling [37-39] required by the quantum Zeno effect.

Combining Eq. (2) with Eq. (4), and taking the continuum limit ¢t — 0, we arrive at the
master equation for decoherent quantum dynamics

op(t)
ot

This is the Lindblad equation (in double-commutator form) [40-42] for the Lindblad operator
being the Hamiltonian itself. Note that we derive this result from the time evolution of density
matrix (Eq. (2)) with continuum limit. It describes how an open quantum system evolves
under a time-dependent Hamiltonian as it continues to decohere among the instantaneous
energy eigenstates.

If H is time-independent, then it is easy to see that the off-diagonal elements of p(t) ex-
pressed in the eigenbasis of H all collapse to zero provided they are between states of different
energy, i.e. pmn(t) — 0 if E,, # E,,. For time-dependent H(t), however, as we shall see, the
dynamics is nontrivial.

—i[H(t), p(t) ] =y [H(®),[H(t), p(t)]]. (5)

2.2 Decoherence Time and Excitation Energy

To gain more intuition regarding the decoherent quantum dynamics described by Eq. (5), we
consider a quantum system close to its ground state. As a toy model, we focus on the low-
energy subspace spanned by the ground state (energy E,) and the first-excited state (energy
E;), in which H and p can be represented as

Ey O Poo 901:|
H= , = . 6
[ 0 E1:| P [Plo P11 ©
Within this two-level subspace, Eq. (5) implies
po1 _ .
—2% =i(E1—Eo)por — v(E1 —Eo)*por (7)

at

which indicates that the off-diagonal density matrix element (i.e. the quantum coherence be-
tween the ground state and the excited state) decays exponentially in time as
|01l o< exp(—t/T4ec)- Here, the decoherence time is given by

1

W s (8

Tdec =


https://scipost.org
https://scipost.org/SciPostPhys.11.4.084

Scil SciPost Phys. 11, 084 (2021)

where A = E; — E; denotes the excitation energy. This demonstrates that Eq. (5) indeed
describes the energy level decoherence in which the decoherence time 7 4. is set by the energy
A (or more generally, the level spacing).

2.3 Kibble-Zurek Scaling under Decoherent Quench

With the general formulation of the decoherent quantum dynamics now in place, captured
by the master equation in Eq. Eq.(5), we can now investigate quenches in the presence of
decoherence. Specifically, we analyze the effect of introducing decoherence to the universal
behavior exhibited by quantum systems dynamically tuned between two phases through a con-
tinuous quantum phase transition. Quantum quenches, in general, form a fertile and currently
active field of study (see e.g., Ref. [43]), encompassing condensed matter physics AMO, cos-
mology, and quantum information. Quenches near quantum and thermal critical points exhibit
Kibble-Zurek behavior [1-4], which reflects the universal non-equilibrium power-law scaling
of several quantities, such as quench-induced density of defect. Note that here we focus on
quantum quenches, as opposed to thermal. The source of the non-equilibrium behavior is that
the intrinsic relaxational timescale of the system diverges as a universal power-law close to
the critical point, and thus, not matter how slow the quench rate, the system cannot relax fast
enough in a certain window. The size € of the local equilibrium domain after the quench scales
with the quench rate 1/ as

<‘f~ ,L_v/(l-i—vz)’ 9)

where v and z are the correlation length exponent and dynamic critical exponent associated
with the quantum critical point. We will show that the same scaling holds under decoherence
as long as the decoherence rate y scales together with the quench rate as y ~ 7%/,
However, in the strong decoherence limit (y — o0), we find a new combined scaling

E ~ (yr)¥/0F2), (10)

which is unique to the decoherent dynamics.

These trends in scaling behavior can be derived from an analysis of the dynamic equation
Eq. (5). Here, we generalize the standard approach for Kibble-Zurek physics in absence of
dissipation to include and pinpoint its effects. We assume the quantum critical point can be
describe by a critical Hamiltonian H_;.,- Quenching through the critical point corresponds to
tuning the relevant perturbation Hpe,; (Which drives the phase transition) through zero, which
can be formally described by

H(t)= H itical + 6(t)Hpert > (11)

where 6(t) = a(t) — a. measures the deviation of the driving parameter a away from its
critical point a.. In the vicinity of the critical point, we focus on the most general quench
case where the deviation is tuned linearly with time §(t) = t/7, which introduces the quench
rate 1/7 (or equivalently the quench time scale 7). However, the linear tuning of the driving
parameter does not tune the excitation energy linearly. Near the quantum critical point, low-
energy collective properties of the system, such as the correlation length & or the excitation
energy A, scale with the deviation 6 according to power laws set by universal relations

E~oT~(t/T), A~ETE~(t/T)". (12)

The many-body excitation energy A will be the only relevant energy scale that enters Eq. (5)
in the replacement of H(t) near the critical point.
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(a) ¥y < y. (quantum) (b) v > vy, (classical)
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Figure 1: The divergent correlation time &, and decoherence time 7 4. near the criti-
cal point under (a) weak decoherence (quantum regime) and (b) strong decoherence
(classical regime). The first intersection point marks the freeze-out time t when the
system loses/restores adiabaticity. Thus, during the quench process, the freeze-out
time in (a) is determined by &, and in (b) by 74 -

Following the form of Eq. (7), we ignore all the level-specific details, which are secondary
to universal behavior, and put forth a heuristic dynamic equation for the purpose of scaling
analysis, viz.

ap . 2 Ltz t\2vz
Efv(lA—yA )p~{1(;) —y(;) }p. (13)
We can eliminate the T-dependence in Eq. (13) by rescaling t and vy jointly as follows:
t— ,L_vz/(1+vz) t/, y — Tvz/(1+vz) Y/: (14)

implying that the quantum quench dynamics is universal if the time t and the decoherence rate
y scale accordingly. In the large y regime, Eq. (13) is dominated by the decoherence dynamics
(i.e. the y-term only), viz.

t \2vz

d.p~—ra2p~—r(=) p. (15)
T

It is then possible to simultaneously eliminate both the y- and the 7-dependences in Eq. (15)

by the following rescaling of time:

t— (Y—172v2)1/(1+2vz) t/, (16)

which gives a different, but consistent, scaling of time in the strong decoherence limit as com-
pared to Eq. (14), which holds for all decoherence rates.

Underlying the different scaling behaviors is the competition between two distinct time
scales: the correlation time &, and the decoherence time 7 4.. (defined in Eq. (8)),

1 [ty 1 1,ty2w
&NK’V(;) , TdecNWN;(;) : a7
As we quench through a quantum critical point, the many-body excitation energy A closes
and reopens. As the critical point is approached, namely A — 0, both the correlation time &,
and the decoherence time 7 4.. diverge, as shown in Fig. 1. The system effectively freezes due
to the critical slowing down and falls out of equilibrium. The freeze-out time ¢ is set by the
smaller time scale min(&,, T4e.)- These time scales correspond to two different mechanisms to
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maintain adiabaticity: beyond the correlation time &, the system can respond to the parameter
tuning by unitary evolution, while beyond the decoherence time 7 4., the system can follow
the energy level by the quantum Zeno effect (the effect that frequent measurements can slow
down the quantum evolution).

The competition between &, and 7,4, is dependent upon the decoherence rate y, as can
be seen from Eq.(17). When the decoherence rate y is small, the system is in the coher-
ent quantum regime, where &, is the shorter time scale, and the freeze-out time t is set by
t ~ &,(t) ~ (t/T)7". The solution then conforms to standard Kibble-Zurek behavior and
reads

P~ Tvz/(1+vz) , E ~ (E/T)—v ~ Tv/(l-H)z) , (18)

which is consistent with Eq. (14) and Eq. (9). When the decoherence rate y is large, the system
is in the decoherent "classical" regime, where 7 4. is the shorter time scale, and the freeze-out
time £ is set by f &~ T40.(£) ~ y71(£/7)"2"*. The term "classical" here means that the density
matrix is diagonal in the energy basis. The off-diagonal terms vanish in the strong decoherence
regime, and information about the relative phase is washed out. Thus, we called this strong
decoherence limit as “classical”" limit. The solution then reads

P~ (Y—1T2VZ)1/(1+2VZ) , g ~ (E/T)—v ~ (YT)V/(1+2vz)’ (19)

which is consistent with Eq. (16) and Eq. (10). The crossover between the two regimes occurs
at a decoherence rate y. = 7"?/(0%"%) when all the time scales meet t ~ &, ~ T 4., as indicated
by Eq. (14).

Regarding the new scaling found in the strong decoherence regime (Eq. (19)), we wish
to stress the following: The exponent in the strong decoherence regime can be obtained by
replacing the dynamical exponent z in conventional Kibble-Zurek scaling (Eq. (18)) with 2z.
This simple replacement results from the peculiar excitation energy dependence in decoher-
ence time (7 gec ~ A~2in Eq. (8)). Note that the time scale £, in standard Kibble-Zurek scaling
is inversely proportional to the excitation energy &, ~ A™!. This crucial difference leads to a
doubling of the conventional KZ dynamical exponent in strong decoherence regime.

This new scaling is expected to emerge due to the introduction of decoherence rate y. Sim-
ilar change of scaling by introducing new parameter can be achieved by coupling the system
with thermal bath with tuning parameter temperature [44]. The main difference between
our decoherent formulation and regular thermal coupling is the interaction term, in that we
choose an interaction which commutes with the system Hamiltonian. In the strong deco-
herence regime, the final density matrix becomes diagonal in the energy basis, but does not
belong to any thermal ensemble. This leads to the new scaling form in this regime of strong
decoherence.

In conclusion, our analysis shows that, depending on the ratio y/y. = /7t~ "*/(+") the
quench dynamics can cross over from the quantum limit (y/y. < 1) to the "classical" limit
(r/y.>1). A combined scaling behavior Eq. (19) emerges in the strong decoherence "classi-
cal" regime, which is different from (but consistent with) the Kibble-Zurek behavior of Eq. (18).

3 Decoherent Quench through Topological Transitions

In order to demonstrate our arguments and explore new terrains in decoherent dynamics, we
now apply the general framework developed above to investigate quantum quenches in topo-
logical insulators. We focus mainly on quenches across the topological transition separating a
Chern insulator from a trivial insulator. Most of our results can be easily generalized to topo-
logical insulators in other dimensions and they demonstrate the principles behind a diverse
range of systems, both topological and non-topological.

8
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In what follows, we first introduce the model Hamiltonian parametrized by a pseudo-
magnetic field in momentum space. We then formulate the related density matrix in terms of
the pseudo-spin vector. By applying the master equation for decoherent quantum dynamics
developed in the previous section, we obtain the effective dynamical equation for the pseudo-
spin, based on which we analyze the universal scaling behavior for the topological transition.

3.1 Model Hamiltonian and Band Topology

Consider a two-band Hamiltonian of spinless fermions in (2+1) dimensions having a time-
dependent band structure
1< s

H(t) = 5;% h () o, (20)
where ¢ is the fermion annihilation operator in momentum space, o = (0,0, 0;) repre-
sents the pseudo-spin operators as Pauli matrices, and h;(t) is the time-dependent pseudo-
magnetic field defined for each momentum k = (k,, k,). As opposed to actual spins in mag-
netic fields, the pseudo-spin describes orbital degrees of freedom of spinless fermions. The
(instantaneous) band dispersions are given by %|h;|. The two bands are separated by a gap
so long as |hy | # 0 throughout the Brillouin zone. We assume that the number of fermions is
such that they can fully fill a single band, and that the fermion number does not change with
the ensuing quantum dynamics.

Depending on the winding number of flk = h; / |h; | in momentum space

1 . 0h, 0h
= — | &k hy, - =K x =k 21
v 4nJ k 8kxx3ky’ 21

the band structure can be classified as trivial (if w = 0) or topological (if w # 0). Our quench
consists of tuning the band structure between the trivial and the topological phases. Such
quenches have been studied extensively in the literature [45-64 ], but the effect of decoherence
is still largely not understood. Our goal is thus to examine the interplay between critical quench
dynamics and quantum decoherence in topological insulators.

To analyze the critical behavior, we invoke the linearized band structure near the Dirac
point,

hi(0) = (ky, ky, t/7), (22)

which describes the low-energy Dirac Hamiltonian with linearly tuned mass term. We assume
that the mass term m = t/7 is tuned linearly across the phase transition.

3.2 Quench Protocol and Density Matrix

For the quench protocol, we start with the ground state of an initial Hamiltonian H(t,) (t, < 0),
where the bottom band is filled and the upper band is empty. We then tune the band structure
through a topological transition, where the band gap closes and reopens. We define our time
origin such that the critical point is always reached at t = 0. The time evolution of the system
is governed by the dynamical equation Eq. (5). True to a free fermion system, the quantum dy-
namics takes place at each momentum point independently. Since the initial state is a product
state over momentum states, the density matrix of the system continues to take the product
form throughout the evolution

p(t)zl_[c;|0>pk(t)<0|ck, (23)

k
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where p;(t) is the single-particle density matrix at momentum k,

pr(t) = %(1 +n(t) o). (24)

The pseudo-spin vector n(t) = Trp(t) c,'c O ¢ is introduced in momentum space to parame-
terize the density matrix. The "purity" of the density matrix is given by Tr(p2)= I« %(1+ Ing|?),
such that the system is pure if and only if |n;|> = 1 for all k, i.e. when the pseudo-spin vec-
tor lies on the unit sphere. Due to the non-unitary decoherent dynamics, the density matrix
in general becomes mixed under the time-evolution such that the pseudo-spin vectors shrink
toward the origin, i.e. nj, — 0. In this limit, the density matrix for each k is proportional to
the identity, corresponding to ‘infinite temperature’.

3.3 Dynamics of Pseudo-Spin Vectors

To describe the pseudo-spin dynamics, we substitute the Hamiltonian H(t) from Eq. (20) and
the density matrix p(t) from Eq. (23) into the master equation Eq. (5). Note that each mo-
mentum sector is decoupled in the free fermion model. In terms of the pseudo-magnetic field
h;(t) and the pseudo-spin n(t), the dynamic equation reads

ad n;
at
Note that Eq. (25) is different from the Landau-Lifshitz-Gilbert (LLG) equation,

=hy xni +yh x (h xng). (25)

%zhxn+7mx(hxn), (26)
used to describe the damping of spin precession in a magnetic field. The LLG equation is non-
linear in n and preserves the norm of n. In contrast, Eq. (25) is linear in n;, with the norm of
n; generally decreasing under evolution, which reflects the non-unitary nature of the deco-
herent dynamics. Their differences are clearly demonstrated in Fig. 2. Under the decoherent
dynamics, the pseudo-spin n; tends to be projected onto the direction of the pseudo-magnetic
field h;., which precisely describes the decoherence of off-diagonal density matrix elements in
the diagonal basis set by the Hamiltonian hy, - o. Similar decoherence term was also studied
in Ref. [65].

As the system equilibrates to the ground state, the pseudo-spin n; anti-aligns with the
pseudo-magnetic field hy, i.e. n; — —flk, so as to minimize the energy

E=Tr(Hp)=3 > hy-ny. 27)
k

When the pseudo-magnetic field h;. flips between topological and trivial configurations, there
are two mechanisms to maintain the pseudo-spin in alignment with the field. In the weak
deoherence regime (y < y.), as the pseudo-spin precesses about the pseudo-magnetic field
it is also driven by the damping towards its new equilibrium position, as shown in Fig. 3(a).
In the strong decoherence regime (y > y.), the pseudo-spin is driven by the quantum Zeno
effect to follow the field, as shown in Fig. 3(b), since it is constantly being measured by the
environment along the field direction. The crossover decoherence rate y, scales as y, ~ 7/
with the quench rate 1/7.

In the vicinity the Dirac point at k = 0, where the band gap closes, the pseudo-magnetic
field vanishes as the system is driven through criticality. In this case, the pseudo-magnetic
field ceases to provide the alignment impetus to the pseudo-spin. Therefore, both alignment
mechanisms fail in this region, and the system falls out of equilibrium as the pseudo-spin loses
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(a) (b)

Figure 2: Comparison of the effects of (a) the damping term A in the LLG equation
and (b) the decoherence term y in Eq. (25).The contribution to the rate of change of
the pseudo-vector is denoted by the green arrow. The dynamics in (a) preserves the
norm of the pseudo-vector but it does not in (b).

track of the pseudo-magnetic field. The above argument can be confirmed by the numerical
simulation of the pseudo-spin dynamics Eq. (25) using the linearized model Eq. (22),

5 |m 0 —t/t k, | [m K+ (/) —keky  —ket/T] [
PP n, | = | t/v 0 k| [na| —7 —kyk, k}zc +(t/7)? —kyt/T| |ny|. (28)
ns -k, ky 0 ns —k,t/T —k,t/T ki + k}z, ns

A typical result (at y = y. ~ 7/2) is shown in Fig. 4. As k. flips across the critical point, n}
is expected to follow the sign change if the dynamics were the adiabatic. However, due to the
gap closing at the Dirac point k = 0, the system can not maintain adiabaticity in the vicinity
of the Dirac point, no matter how slow the driving parameter is tuned. As a result, a portion
of the pseudo-spins fails to flip after the quench, which leads to an emergent nonequilibrium
region in the momentum space within the momentum range k in Fig. 4(e).

Figure 3: Pseudo-spin dynamics under (a) weak decoherence y = 0.17/? and (b)
strong decoherence y = 1072, The rainbow colors (from blue to red) trace the time
evolution.
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3.4 Universal Scaling for Topological Transition

To understand how the nonequilibrium momentum range k scales with the quench rate 1/7,
we perform a scaling analysis of the dynamic equation Eq.(28). It is straightforward to
check that rescaling variables t — t/2¢/, k — t7/2k’, and y — 72y’ eliminates the 7-
dependence in the equation entirely. This 1mp11es that the quench dynamlcs is universal if the
time t, the momentum k and the decoherent rate y scale with the quench time 7 accordingly.
Therefore, we conclude that the freeze-out time £, the nonequilibrium momentum range k
and the local equilibrium domain size & scale as

E~Tl2) k~rl2) éNTl/Z, (29)

which is consistent with the Kibble-Zurek scaling given in Eq. (18), with v =1 and z = 1 for the
topological transition of Dirac fermions. The scales k and & are dual to each other: the system
falls out of equilibrium within k in momentum space, which translates to the non-adiabaticity
beyond £ in the real space.

To quantify the nonequilibrium region in the momentum space, we define the excitation
density

Pexe(k) = lim 3(1+ R (6) - me (1)), (30)
and the von Neumann entropy density
g 1+s|ng(0)] 1+s|ng(0)]
Sw(k) = —tl_lgloz 5 logz( 5 ), (31)

in the late time limit. The late time limit is defined to be long enough for the energy-basis
decoherence to have effect but short enough for other possible relaxation mechanism to in-
fluence the system. The excitation density p., (k) measures the probability that the fermion
at momentum k is found to be excited in the upper band after quench. The von Neumann
entropy density S (k) reflects the distribution of the von Neumann entropy in momentum
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space after the quench. Our results are shown in Fig.5 for different decoherernce rates y.
Separated by a crossover decoherence rate y. ~ 71/2, the weak decoherence (y < y.) and the
strong decoherence (y > v.) regimes clearly exhibit different behaviors. In the coherent limit
(y — 0), the nonequilibrium momentum range k ~ t~%/2 is simply set by the quench rate 1/7.
As decoherence sets in, k will continue to shrink with Y, because decoherence helps drive the
system back to equilibrium. In the strong decoherence regime, a new set of scaling emerges,

which describes how the momentum range k shrinks with the decoherence rate y (see the
dashed curves in Fig.5). These scaling behaviors are consistent with the general result in
Eq. (19) with v = 1 and z = 1. They may also be obtained by a scaling analysis of the dynamical
equation Eq. (28). In the limit y — 00, Eq. (28) is dominated by its second term, which allows
us to simultaneously remove both y and 7 dependences by rescaling t — y~/37%/3¢’ and
k— (yr)_l/ 3k’, which in turn leads to the scaling as claimed above.

3.5 Numerical Demonstration of Temporal Scaling

To test the above universal scaling behaviors, we propose to monitor the topological response
of the fermion system as it is tuned between the topological and trivial phases. The topological
response that typically characterizes Chern insulators is the Hall conductivity, which can be

measured in transport experiments.
To define the instantaneous Hall conductivity for nonequilibrium systems, we consider
perturbing the system by a weak electric field E(t) cranked up over a short time scale T,

{E e=t/T fort <t
E(t)= (33)
0 fort > ¢g.

We assume that the probe time scale T is much smaller than the quench time 7, i.e. T < 7, so
that H(t) remains almost unchanged during this period, and can be approximated by H(¢t;). In

0 0.5 1 0 0.5 1
Lo ] Dexc B 1SN
,‘ . . . N . . . .
103 .\"ﬁz (a) “'gi (b)
~ 102 | ‘\\ QA y >> yc \\\ QA ’y >> yc
T N N
& 1Y R We T e
1071}
ool R YSh@
00 0.5 1.0 1.5 2.00.0 05 1.0 1.5 2.0
k12 krl/2

Figure 5: (a) Excitation density and (b) Von Neumann entropy distribution in mo-
mentum space for different decoherence rates y. The line y, demarcates the weak
versus strong decoherence regimes in both plots. The dashed black lines indicate
emergent new scaling in the strong decoherence limit.
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Figure 6: Hall conductivity across the quench (from topological to trivial phase) with
the decoherence rate (a) y = 0, (b) y = 7%/2, (¢) ¥ = 107/2. The arrows indicate
the time scale t;, at which the Hall conductivity relax to halfway between the initial
and final quantized values.

response to the perturbation, the current can be calculated from the current-current correlation
function II(tq, t), using —3 ,A(t) = E(t), viz.

to 0
(J(to)) = f dt TI(ty, t)A(t) = —E Tf dt’ T(tg, to+t) et /7. (34)
o —oo
II(t,, t) is given by standard linear response theory as
M(to, 1) = —iTr ([J(t), J(D)] (o)), (35)
where J(ty) = d 4,H(ty) and at a later time, we have
J()=UT(t—tg)J(to) U(t—t,), (36)

with U(t — t,) ~ e H{)t=t)  The Hall conductivity oy(to) can be read off from Eq. (34),

0

oulte) = iTJ de’et/T Tr(l:Jx(to), Jy (to + t/)]P(to))-

—00

(37)

Here, we assume that p(t,) does not significantly vary during the short time scale T. Employ-
ing H(ty) and p(t,) from Eq. (20) and Eq. (23), we obtain the instantaneous Hall conductivity
ou(ty) in terms of the pseudo-spin vector ny(t,) and pseudo-magnetic field hy (),

1 ng- (ﬁkxhk X 3k hk)
O-H - = dzk S . (38)
2 hy + T2
As a special case, when the system equilibrates to the ground state, i.e. nj; = —flk, Eq. (38)
then reduces to oy = —27tw in the static limit T — 0o, where w € Z is the band winding

number defined in Eq. (21), as expected in the quantum Hall effect. However, away from
equilibrium, the Hall conductivity does not need to be quantized.
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Figure 7: The Hall conductivity oy is calculated under different quench rate 1/7,
from which the halfway time t;, is extracted. This timescale, t,, exhibits two different
scaling behaviors, consistent with Eq. (41).

From Eq. (38), we calculate the behavior of the Hall conductivity as the system is quenched
from a topological band structure (w = —1) to a trivial band structure (w = 0). The result is
shown in Fig. 6. The Hall conductivity deviates from the original quantized value and relaxes
to a new quantized value after the quench. It is worth mentioning that several prior studies
[46,51] have stressed that the Chern number of the fermion state, which is defined only for
pure states under coherent evolution, and is given by

C_i dzknk

3nk ank
 4n

X 3
ok, ok,

(39

remains unchanged across the quantum quench, simply because the continuous time evolution
of n; is a smooth deformation that can not change the topological index. While this is a
correct statement, its meaning may be misinterpreted. The conservation of Chern number
does not imply that the system remains in the original phase, because the Chern number is
not a physical observable and can not be used to characterize the topological property of
a system. Topological properties must be characterized by physical responses, such as the
Hall conductivity, which does switch between different quantized values across the quench (as
shown in Fig. 6(a)), even if the Chern number remains the same under coherent evolution.
To further understand the relaxation of Hall conductivity and its associated universal scal-
ing near the critical point, we evoke the linearized model Eq. (22), for which the Hall conduc-

tivity becomes?
1 g (£)
oy(t)= > J d%k k (40)

k2+(t/7t)2+T-2"

After the quence, in the long time limit, the denominator is dominated by the (t/7)? term,
and the numerator n; becomes concentrated about the Dirac point within the momentum
range k, as shown in Fig. 4(e). So the integral scales as o4(t) ~ k?/(t/7)? ~ (t/t)~2, where
the time scale ¢ ~ k7 is introduced according to Eq. (29) and Eq. (32) in both weak and
strong decoherence regimes. Thus we conclude that the Hall conductivity relaxes to the new
equilibrium with a power-law tail behaving as (t/t)™2.

We can estimate the time scale t from the Hall conductivity data. One possibility is to
consider the time t;, at which the Hall conductivity relaxes to halfway between the initial and

2The Hall conductivity should be regularized by an additional factor of % in the case of the linearized model.
We ignore the regularization here, as it does not affect any scaling analysis.
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final value, i.e. oy(ty,) = % (see Fig. 6). Because f is the only time scale governing the critical
quench, the halfway time ty, is expected to scale in the same way as t. If we fix the decoherence
rate y by controlling the temperature and the environmental coupling and perform the quench
experiment with different quench rates 1/7, we should expect the following scaling behavior
of t:

) 2/3 ¢ 2
tN{T or T yY, (41)

12 for v > y2.

This behavior is verified in Fig. 7 by our numerical simulations. It provides a testable prediction
for the scaling behavior of the decoherent critical quench. Observation of the crossover from
the % to the % power laws will then serve as an indicator of decoherence in quantum quench
dynamics.

3.6 Numerical Demonstration of Spatial Scaling

To demonstrate the universal scaling of the length scale £ after the quench, we break space-
translational symmetry by weak disorder, and investigate the disorder-induced inhomoge-
neous spatial distribution of the excitation density in the final state. For this purpose, we study
the spinless Bernevig-Hughes-Zhang (BHZ) model [66] with bond disorder. Following a sim-
ilar quench protocol to that described above, we can elicit the decoherence-driven crossover
of scaling behaviors in real space.

Our purpose of introducing disorder is merely to provide some randomness to seed the
spatial inhomogeneity after the critical quench. However, introducing disorder at a quantum
critical point can sometimes alter the universal properties, as the disorder can be relevant,
which then drives the system to a strong disorder fixed point that is distinct from the clean
limit [67]. To avoid the disorder from affecting the universality, we add irrelevant disorder,
such as bond disorder (i.e. random modulation of bond strengths).3 We consider the following
lattice model, with static randomness in the hopping amplitude and the time-dependent on-
site potential:

HD =25 20 {trel,y (07 =io")e +hef+(m0-2) Dl 0%, (4

T opei{x,y} r

where ¢, = (¢;1, ¢,2)7, ¢, annihilates a fermion at site r in orbital a, and &, is a unit vec-
tor in the u € (x,y) direction. The mass term m(t) = t/7 is linear in time. The hopping
term t, = 1+ 6t, fluctuates with &t,, independently drawn from uniform distribution over
[—6t, +6t]. The disorder strength &t is irrelevant to the critical behavior and fixed at 6t = 0.1
in our simulation.

The quench dynamics is described by the master equation of Eq. (5). Although a Gaussian
state does not remain Gaussian under this evolution in general, we make the approximation
to project the density matrix to the single particle subspace P,;, = Tr (c b cZ p). Then, given the
quadratic Hamiltonian H = Y| ab Mab CZ cp , one can derive the equation

aP .

<7 =-ilHP1=y [H.[HP]]. (43)
Our quench protocol starts with the disordered spinless BHZ Hamiltonian H(t,) given in
Eq. (42) having m(ty) = —0.5 and a random profile of &t,.. We use 30 x 30 site square lattice
in which the chemical potential is chosen to yield a half-filled band. The initial density matrix

3Although mass disorder is marginally irrelevant for (2+1)D Dirac fermions, given the finite system size in our
numerics, mass disorder would still have a considerable effect. For this reason, we do not consider it.
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in its first quantization form can be expressed as the projection operator onto the states below
the Fermi level, viz.

Pto) = 2 [1alte) {1alte) |O(—En(to)), (44)

where |1/)n(t0)> is the instantaneous eigenstate of H(t,) with the eigenenergy E,(t,), and
©(x) is a step function guaranteeing that only negative energy states are included in the sum.
The time of evolution of the density matrix P follows Eq. (43) until ¢t such that m(t;) = 0.5.
The spatial distribution of any physical observable O can be computed as
o(r)=>,, ( r,a | OP(te) | r, a> for each random realization. We average the disorder over
50 different random realizations.

Following the recent study of Kibble-Zurek behavior in disordered Chern insulators [68],
we utilize the spatial excitation density as a physical observable and extract the correlation
length scale from the spatial autocorrelation function. The operator for the excitation density
is the projector onto the positive energy bands of the final Hamiltonian H(t¢), viz.

Pexi = 2| Waltd) X walt) | O(E,(tf)), (45)
and the spatial excitation density is given by

fex(r)=Z<r:O-|Pex,f7>(tf)|rza>- (46)

The time evolution of the spatial excitation density in a specific random realization is shown
in Fig. 8. Initially, the spatial excitation pattern is determined by the bond disorder. In the ear-
liest stage of the evolution, the system evolves adiabatically, and the spatial excitation pattern
remains almost unchanged until the freeze-out time t/7 = —0.2. After t/7 = —0.2, the evo-
lution becomes diabatic and the spatial excitation pattern reshapes significantly. After passing
the second freeze-out time t/7 = +0.2, the evolution is again quasi-adiabatic and the pattern
of the spatial excitation density again remains mostly unchanged.

To extract the length scale from the spatial excitation density f.,(r), we compute the auto-
correlation function A(r),

AT = 0518551 | D (65 47)

r,r’ r

where f,, = V! .. fex(r) is the average excitation density and & fo, (1) = fer (r)— fox . We col-
lect the auto-correlation A(r) for each random realization separately, which typically exhibits
an exponentially decaying behavior in r. We define the correlation length & as the length
scale when A(£) — 0. For each quench rate 1/7, we compute the disorder-averaged correla-
tion length £. From the scaling behavior mentioned above, we expect the following scaling
behavior of &:

(48)

£ T3 for T < y?,
T2 for v > y2.

This behavior is supported by our numerical simulations, as shown in Fig.9. Thus we have
demonstrated that the scaling of the freeze-out length scale £ can be extracted from the exci-
tation density profiles after the quench, which provides another experimental scheme to test
the proposed scaling behavior.
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Figure 8: Time evolution of the excitation density distribution f ..(r) across the crit-
ical quench.

4 Summary and Outlook

In conclusion, we have offered a framework for studying the quantum critical quench dynamics
in the presence of decoherence in the energy basis, corresponding to the system energy being
continuously monitored by its environment. In the strong decoherence limit, we have found
a cross-over to a scaling regime (Eq. Eq. (19)) that differs from that on the standard Kibble-
Zurek form and is governed by the freeze-out time  ~ 72"*/(1%27%) and the freeze-out length
& ~ 72v/(1+2v2) Thjs scaling behavior would be universal and manifest in a slew of observables,
such as defect densities. We have applied our formulation to the case of quenching through a
topological phase transition in a Chern insulating system and shown scaling in the relaxation
of the Hall conductivity and in post-quench autocorrelations of post-quench spatial domains
of excitation densities.

Immediate further work would involve analyses of scaling behavior in other measurable
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Figure 9: The correlation length scale &, in each trial is defined by the spatial decay
of auto-correlation function A(&,) defined inEq. (47). The disorder averaged &, is
obtained from 50 trials. The critical exponents in the strong and weak decoherence
limits are consistent with Eq. (48).

quantities, such as residual energies and entanglement entropy. While this work has been con-
fined to global quenches, it can also provide a starting point for local quenches across topo-
logical transitions. In this case, we expect a highly interesting interplay between propagation
of boundary modes and decoherence. As another direction of study, while the topological sys-
tem in consideration here is two-dimensional, the analysis for such free fermionic models is
very easily extendable to other dimensions. In three-dimensions, scaling analyses can be ap-
plied and contrasted for observables that target the bulk versus the surface. In one-dimension,
the Kitaev chain would offer a beautiful prototype for studying much sought-after Majorana
fermion physics and the crucial role of decoherence in topological qubits.

Our results apply to decoherent quench dynamics through generic quantum phase transi-
tions, and is not limited to the topological transition examined in this work. For example, our
analysis could be applied to symmetry breaking transitions in spin models of different dimen-
sions, where the post-quench magnetic domain size will follow the scaling behavior of £. In
superconductors and Bose-Einstein condensates, our analyses would apply to the generation
and dynamics of vortices, now with the twist of having decoherence present. In the presence
of more complex order parameters, Kibble-Zurek physics has probed more exotic defects; here
too, dissipation effects would give rise to new dynamics and possibly even stabilization of some
of these defects.

The discussion of critical quench dynamics in open systems has also been emphasized
within other scenarios [69-78]. Specifically, Ref. [72] studied a critical quench as the sys-
tem weakly couples to a thermal bath. Ref. [74] studied a critical quench in the presence of
dissipation due to the system-environment interaction. The coherent unitary dynamics will
compete with dissipative dynamics to determine the time scale when the system falls out of
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equilibrium. The scaling behavior will cross over from the weak dissipation to the strong dis-
sipation regimes in the vicinity of a crossover temperature T, [72] or a crossover dissipation
rate u, [74] which scale with the quench rate 1/7 as

kBTc ~ ,L_—vz/(1+vz) or u, ~ T—vz/(1+vz) ) (49)

In these cases, the system-environment coupling term generally does not commute with the
system Hamiltonian, which allows the system to exchange both energy and quantum informa-
tion with its environment (in the static limit). However, in this work, we considered a different
class of system-environment interaction, where the interaction term commutes with the system
Hamiltonian, such that the system only exchanges quantum information with the environment,
with energy preserved (again in the static limit). In particular, we focused on decoherence in
the energy eigenbasis, which can be realized by a quantum non-demolition measurement of
the system Hamiltonian. In this case, the coherent dynamics will compete with the decoherent
dynamics. Because the correlation time and the decoherence time scale differently with the
excitation energy as the system approaches the critical point, their competition leads to the
crossover from weak to strong decoherences regimes at a crossover decoherence rate (quan-
tum non-demolition measurement strength) v, that scales as y, ~ 7"*/1**) which resembles
the case of dissipation in Eq. (49).

Finally, turning to experiments, the range of systems in which quantum Kibble-Zurek
physics has been explored provides a very fertile arena for studying the effect of decoherence,
both in terms of it being integral to physics systems as well as in accessing the new strong
decoherence regime predicted in this work. Controlled tuning and state-of-the-art probes are
enabling access to rich non-equilibrium regimes. Critical quantum quench dynamics and as-
sociated Kibble-Zurek behavior have been actively studied in superconductors [79-81] and
a variety of ultracold atomic [82-86] and ionic systems [87-89]. Kibble-Zurek scaling has
been recently applied to identify universality classes of quantum critical points in experi-
ments [90-92]. While any of these systems could perhaps form candidates for probing de-
coherence effects, the specific instance of Chern insulators studied here could potentially be
realized in cold atom systems [51, 52, 93] and Moire superlattice systems [94-100]. With
regards to settings where decoherence is naturally present, perhaps the most germane situa-
tions involve qubits, and quantum simulators and annealers [101-105]; with the increasing
focus on quantum information and computation, and the need to harness speed and efficient
switching of quantum states, understanding the interplay between quantum quenching and
decoherence is now crucial.
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