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ARTICLE INFO ABSTRACT

Keywords: Wrought magnesium (Mg) alloys display pronounced anisotropy in their room-temperature mechanical re-

Ma.gnesmm alloy sponses. The fracture behavior of Mg alloys, especially its reliance of material orientation, has not been well

I?mSOtrOpy explored. The current work is an investigation of the anisotropic fracture behavior in a rolled AZ31B Mg alloy by
racture

carrying out monotonic tension experiments of specimens taken from the rolled Mg plate with five different
material orientations (¢ = 0°, 22.5°, 45°, 67.5° and 90°) with respect to the rolled direction (RD). Significant
anisotropy is exhibited in the tensile fracture of the rolled Mg alloy. At the macroscopic scale, shear fracture
displaying relatively flat fracture surface is exhibited from tension at § = 22.5° and 45°. Microstructural analysis
reveals that fracture at these two material orientations is a result of localized shearing accommodated by basal
slips from which both crack initiation and propagation are originated. In contrast, under tension at 6 = 0°, 67.5°
and 90°, brittle-like fracture is shown where irregular-shaped surfaces composed by ridges and islands are
observed. For € = 0°, microstructural analysis in the vicinity of microcracks confirms that crack forms at the tip
and/or boundary of compression and compression-tension double twins. For the cases of # = 67.5° and 90°,
microcrack initiation is due to high-angle grain boundary cracking, which is likely caused by stress concentration
due to impingements of none co-zone twin-twin boundaries and tertiary tension-compression-tension twins on
the high-angle grain boundaries.

Double twins
Twin-twin interaction

1. Introduction extensively documented with a concentration on the monotonic re-

sponses [8-21] and fatigue properties [22-41].

Magnesium (Mg) alloys are potential lightweight structural materials
in automobile and aerospace industries to improve energy efficiency
[1-7]. However, their application for load-bearing components is
limited by the poor ductility and formability at ambient temperature due
to the limited number of slip/twin systems in the hexagonal close packed
(hcp) crystal structure of the materials. Plastic deformation resolved
along the a-axis can be accommodated by basal <a>, prismatic <a>,
and 1st order pyramidal <a> slips, whereas only {1012} tension twin
(or {1011} compression twin) and 2nd order pyramidal <a + c¢> slips
can accommodate plastic deformation along the c-axis. For wrought Mg
alloys, a strong basal texture is often resulted from the rolling and
extrusion processes. The basal texture, coupled with the pronounced
variation in the critical resolved shear stresses (CRSSs) for different
deformation modes, leads to significant mechanical anisotropy of Mg
alloys. The anisotropic mechanical properties of Mg alloys have been
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Few studies have been conducted on the fracture of Mg alloys under
different loading directions with respect to the material texture [42-51].
Most of the prior work focused on studying the fracture behavior under
monotonic or cyclic loading with the specimen oriented either along the
rolled direction (RD), the extruded direction (ED), or the transverse
direction (TD). Various fracture failures were reported depending on the
specific material system and the loading direction. For instance, brittle
fracture features with fine microscopic voids distributed on the fracture
surface were reported in an AZ31B Mg alloy with tension along the RD
[51] and in a Mg-5.72A1-2.96Zn-6.05Nd Mg alloy under tension along
the ED [43]. However, for a pure Mg under tensile loading, the final
fracture tends to show a shearing feature [47]. Similarly, typical shear
fracture with different shearing angles was observed under in-plane
compression applied to the AZ31B Mg specimens processed with
various routes such as rolling, extrusion, and equal channel angular
pressing (ECAP) [50].
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Pertaining to the fracture mechanisms, {1011}-{1012} compression-
tension (C-T) double twinning was regularly recognized as the potential
sites of failure initiation [50-52] due to the large shear localization
within the double twins, which is evidenced by the observation of
obvious surface steps [51]. The lack of stress relaxation for the large
local shear in the C-T double twinning causes micro-crack formation,
usually leading to brittle fracture features [53]. However, certain shear
fracture features formed in fine grains were also found to be originated
from double twinning [54]. Other than C-T double twinning, fracture in
Mg alloys is affected by other microstructural features. For example, the
deformation incompatibilities caused by basal slip/tension twin blocked
at twin and grain boundaries were considered to nucleate microvoids
[47]. In addition, second-phase particle was reported to play a detri-
mental role on the final fracture [46]. As a grain-scale factor, grain
refinement can lead to reduced twinning activity and may result in a
lower microvoid growth rate [48].

Different observations of fracture mechanisms were made in
wrought Mg alloys subjected to monotonic loading. A lack of consistency
is likely caused by the microstructural diversity of different Mg alloys as
well as the dissimilarity of the loading direction with respect to the
texture. To seek a comprehensive understanding of the anisotropic
fracture behavior of Mg alloy, we carried out monotonic tension ex-
periments on a rolled AZ31B Mg alloy with specimens oriented in five
material orientations with respect to the RD. Examinations into the
micro-mechanisms associated with the anisotropic fracture behavior are
discussed.

2. Experimental
2.1. Material and specimen

The material used in the current work is a commercially acquired
hot-rolled plate of AZ31B Mg alloy with a thickness of 76.2 mm. The
rolled direction, normal direction, and transverse direction are referred
to as RD, ND, and TD, respectively. The three-dimensional (3-D) stere-
ography of the as-rolled microstructure as shown in Fig. la is recon-
structed from electron backscatter diffraction (EBSD) scans on three
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orthotropic planes perpendicular to RD, ND, and TD, respectively. The
average grain size is approximately 50 pm. The material displays an
intense basal texture with the c-axes of most grains aligning parallel to
the ND (Fig. 1b). No tension twins are present in the initial
microstructure.

Solid cylindrical dog-bone shaped specimens were machined from
the rolled plate with their loading axes (Z-axes) aligning, respectively, to
the directions with 8 = 0° (RD), 22.5°, 45°, 67.5° and 90° (ND) with
respect to the RD (Fig. 1c) on the ND-RD plane. To facilitate discussion,
the coordinate system XYZ is embedded with the testing specimen
following the convention that the YZ plane is parallel to the ND-RD
plane and the Z axis is along the axial direction of the specimen. The
X-axis is along the TD. The dog-bone shaped specimen used for tension
experiment has a gage section length of 14 mm and a cross-sectional
diameter of 8.0 mm. Before mechanical testing, the surface of the gage
section was polished by using silicon carbide papers with grit No. from
P400 up to P1200.

2.2. Mechanical experiments

Monotonic tension experiments were carried out in ambient air using
a servo-hydraulic load frame. The engineering strain was measured by a
clip-on extensometer attached to the specimen surface within the gage
section. Monotonic tension was applied by the displacement control
corresponding to an approximate strain rate of 8 x 10~*s~1. For each
loading case, two specimens were tested to ensure the reliability of the
stress-strain responses as well as the similarity of the featured fracture
behavior.

2.3. Material characterization

After a specimen was broken into two parts, the macroscopic profile
of the fracture surface was reconstructed by stacking multiple optical
images captured at different focus heights using a Keyence 3-D digital
microscope VHX-5000. To discern the crack initiation and early-stage
growth mechanisms, microstructure in the vicinity of the microcracks
was characterized in the region near the macroscopic fracture surface

(b)

(0002) ND

0501 MAX:14.22

TD

Fig. 1. Microstructure of the rolled AZ31B Mg alloy and testing specimens. (a) Three-dimensional stereograph of the as-rolled microstructure; (b) {0001} pole figure;
(c) Cylindrical dog-bone shaped specimen with loading axes aligned at five different orientations with & = 0° (RD), 22.5°, 45°, 67.5° and 90° (ND) relative to the

rolled direction.
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using a field emission scanning electron microscope (SEM) and EBSD
scanning. The samples for EBSD analysis were cut along the diametral
direction within the region approximately 500 pm away from the frac-
ture surface. The scan plane of the EBSD sample is parallel to the YZ
plane, which is perpendicular to the TD (Fig. 1c). The samples were
mechanically ground using silicon carbide papers with grit No. from
P500 to P1500, followed by polishing using diamond suspension with
particle sizes of 6 pm and 1 pm. After a final polishing using alumina
with particle size of 0.05 pm, the sample surface was etched with 3%
Nital for 8s. The EBSD scans were taken by Joel 7100 F SEM equipped
with an Oxford HKL Channel 5 EBSD detector at an acceleration voltage
of 25 kV. The working distance was 24 mm. The step size for large scans
of 250 x 250 pm? was 0.5 pm. Two large scans with an area of 250 pm x
250 pm were obtained to derive the average twin volume fraction (TVF)
for each loading condition. A smaller step size of 0.25 pm was used for
high resolution scans specifically to capture the microstructure feature
surrounding microcracks.

3. Results and discussion
3.1. Deformation features under tension

The engineering stress-strain responses of the specimens obtained
under monotonic tension in five different orientations are shown in
Fig. 2. The {0001} pole figures along with the tension twin volume
fractions (TVFs) corresponding to different testing specimens after ten-
sile fracture are indicated in Fig. 2.

As shown in Fig. 2a, tensile stress-strain curves for § < 45° exhibit an
overall concave-down shape. The plastic deformation is accommodated
mostly by dislocation slips with limited tension twinning. As evidenced
in the deformation pole figures and TVFs, the change of texture due to
twinning is trivial: TVF = 2.5% at = 0° and TVF = 13% at 0 = 22.5%.
For the § = 45° material orientation, the stress-strain curve displays a
concave-down shape (up to ~10%) followed by a concave-down shape.
Due to the high Schmid factors (SFs) and the low CRSS values, basal slips
act as the major deformation mechanism during the whole plastic
deformation in this material orientation [55]. As the strain increases,
tension twins gradually form, while the pyramidal <a+c> slips as well

90°(ND)

4009 polled AZ31B
at RT
13 0 %
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as the basal slips are activated in twinned grains to accommodate the
plastic deformation [55]. The TVF of tension twins at fracture is 62%.

When the orientation angle () is larger than 45°, the stress-strain
curve displays a sigmodal shape, where tension twinning plays a
dominating role in the plastic deformation. The TVFs of tension twins at
fracture can attain as high as 80.3% and 96%, respectively, for § = 67.5°
and 90° (ND). The transformation in the stress-strain curve from a
concave-up shape in the initial stage to a later concave-down shape
signifies the exhaustion of tension twinning as well as the involvement
of non-basal dislocation slips [56,57]. Prismatic slips contribute signif-
icantly to the plastic deformation for the 8 = 67.5° and 90° (ND) under
tension at the later deformation stage [55]. The overall tendency of the
stress-strain curves under tension at & = 0°, 45° and 90° is consistent
with the results obtained from a rolled AZ31 Mg alloy under the same
tensile directions [42].

3.2. Macroscopic fracture surface

Fig. 3 shows the macroscopic profiles of the fracture surfaces. The
fracture surfaces exhibit two macroscopic features: (1) flat-surfaced
shear fracture and (2) irregular-shaped brittle-like fracture. For the
material orientations at § = 45° and 22.5°, a flat shear surface is
observed (Fig. 3). The loading axis (Z-axis) and the projected trace of the
fracture surface on the YZ plane form angles of 40° and 30° for 6 = 45°
and 22.5°, respectively (Fig. 3). The macroscopic fracture surfaces under
tension at § = 0°, 67.5°, and 90° show irregular-shaped brittle-like
features composed of ridges and islands.

3.3. Fracture mechanisms

To identify the fracture mechanisms, we examined the microcracks
and microstructural features in the region near the fracture surface on
the YZ plane cut along the diametral direction in the cylindrical testing
specimen. Specifically, short microcracks with lengths in tens of microns
are used to infer the crack initiation mechanism. Intermediate-sized
microcracks spanning across several grains with lengths in hundreds
of microns are used to identify early-stage crack growth. For those final
fracture surfaces showing flat shear plane (0 = 22.5° and 45°), we

22.5°

0°(RD)

0
300 = -560%
= /L TVE
- " (tension twin)
D“_, - X =25%
=
o 200 — Monotonic
g Tension
)
X(TD
100 — )
0 -
I I I | [ |
0.00 0.05 0.10 0.15 0.20 0.25
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Fig. 2. Monotonic tension stress-strain curves of rolled AZ31B Mg alloy obtained from specimens taken along 6 = 0°, 22.5°, 45°, 67.5° and 90° with respect to the
rolled direction. The {0001} pole figures and tension twin volume fractions after tensile fracture are included in the figure.
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Fig. 3. Macroscopic fracture surfaces of rolled AZ31B Mg alloy tested under monotonic tension along different material orientations at # = 0°, 22.5°, 45°, 67.5° and

90° with respect to the rolled direction.

further carried out trace analysis for the fracture surface to infer the
macro-crack propagation mode.

3.3.1. Tension at 6 = 45°

Fig. 4a shows the fracture surface resulted from tension at § = 45°.
The trace of fracture surface projected on the YZ plane forms an angle, a,
of 40° with respective to the Z-axis. It is noticeable that the bulk shear
stress resolved on the fracture surface is close to the maximum shear
stress in the uniaxial tensile stress state. Therefore, it is hypothesized
that the final fracture at § = 45° is proceeded by shear cracking
accommodated by localized shear deformation operated via certain
dislocation slip/twinning modes.

To discern a slip/twinning system responsible for the shear cracking,
we characterized the grain orientations in a relatively large area near the
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(b) Infer the shear cracking mode by Schmid factor analysis

fracture surface on the YZ plane, which is exposed by cutting the cy-
lindrical specimen along its diameter (Fig. 4a). We first carried out SF
analysis to determine what slip/twinning systems are most likely oper-
ative. In the case of tension at § = 45°, basal slip is the dominant
deformation mechanism due to its extremely low CRSS and their high SF
values, most of which is higher than 0.3 (Fig. 4b). We further plot all the
traces corresponding to the basal plane by projecting the basal plane at
every crystal orientation onto the YZ plane. By comparing the histogram
of the orientation () of the basal-plane traces with the orientation (@) of
the fracture-surface trace (Fig. 4b), we find that the basal-slip plane
traces match well with that of the fracture surface, which indicates shear
cracking is accommodated by basal slips. In fact, we have ruled out other
less active slip/twinning systems, including prismatic slip, pyramidal
<a-+c> slip, tension twinning and compression twining. None of them

Fig. 4. Fracture mechanisms under tension at 6 =
45°. (a) Trace of shear fracture surface forming
orientation angles of a = 40° to the Z-axis on the YZ

Basal-plane o plane. (b) Inference of shear cracking mode by
trace Schmid factor analysis and trace analysis of the
7 distribution shear fracture surface. (c) Probing of the crack

initiation mode by characterizing the microcrack.
(d) Identification of the early-stage crack growth
mode by characterizing intermediate-sized micro-
crack. The left, middle, and right images in (c,d) are
SEM micrograph, inverse pole figure (IPF) map and
image quality (IQ) map, respectively. In the IQ map,
grain boundaries are denoted by black lines. Ten-
sion, compression, and T-C double twin boundaries
are colored in blue, red, and light blue respectively.
Co-zone and none co-zone twin-twin boundaries are
delineated in yellow and green colors. (For inter-
pretation of the references to color in this figure
legend, the reader is referred to the Web version of
this article.)

-40
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shows a good agreement of the slip/twin plane traces with the fracture
surface trace.

To clarify the crack initiation mode, we characterized the micro-
structure in the vicinity of short microcracks sized in tens of microns.
Fig. 4c shows a short microcrack sized approximately 20 pm observed in
a single grain. As viewed in the IPF and IQ maps, pronounced tension
twins are developed in the grain. However, it is interesting to find that
the microcrack persistently resides on the basal-slip plane of the matrix
area in the grain. Our observation in Fig. 4c indicates that crack initia-
tion under tension at § = 45° might originate from the local damages
induced by impingement of tension twins on the basal slip bands.

To further elucidate the crack propagation mode, in particular dur-
ing the early-growth stage, we characterized the microstructure in the
vicinity of intermediate-sized microcrack which spans across several
grains, as shown in Fig. 4d. It is revealed that the microcrack (inclined
~40° to the Z-axis) propagates in transgranular mode through grain G1
and grain G2. The propagation route is followed by intergranular
cracking on grain boundary (GB) formed between grain G3 and grain
G4. This result indicates that the early-stage crack growth is actually
proceeded by alternative routes via transgranular cracking along the
basal-slip planes and intergranular cracking at GBs.

3.3.2. Tension at § = 22.5°

The fracture surface under tension at § = 22.5° shows similar flat
shear plane to that of § = 45° (Fig. 5a). However, the trace of the fracture
surface forms an angle of 30° to the Z-axis on the YZ plane. Therefore,
we applied the same procedures using Schmid analysis and trace anal-
ysis to infer the cracking mechanism. As shown in Fig. 5b, the trace of
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fracture surface and trace analysis
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the fracture surface matches well with the basal-slip plane, implying that
cracking is mainly driven by the shear deformation localized in basal slip
bands.

When we further examine the small microcrack within one grain
(Fig. 5¢), compression twins and C-T double twins are clearly developed
in connection to the microcrack. However, it is interesting to find that
the habit plane of the microcrack is persistently the basal plane. We
conclude that the microcrack observed on the basal slip band in Fig. 5c is
likely nucleated from the local damage induced by the impingement of
compression and/or double twinning. This is unlike the case of tension
at § = 45° (Fig. 4c), where cracking in the basal slip band is likely to be
nucleated from the impingement damage by twinning. The observation
of compression and C-T double twins in Fig. 5c is reasonable as tension
at @ = 22.5° leads to a higher favorability of compression twin and C-T
double twinning than tension at 6 = 45°.

In Fig. 5d, we examine the microcrack size in lengths spanning from
several grains (Fig. 5d). The crack propagation path persistently aligns
well with the basal slip traces, confirming that the crack extension is
dominated by cracking along basal slip bands. Similar to the case of
tension at § = 45° (Fig. 4c), GB cracking can be found in the propagation
route of the microcrack. Moreover, more compression twins and C-T
double twins are found in the vicinity of microcrack (see the red and
light blue TBs in the image quality map in Fig. 5c).

3.3.3. Tension at @ = 0° (RD)

Different from the cases of tension at § = 45° and 22.5°, tension at 6
= 0° (RD), 67.5° and 90° (ND) exhibits brittle fracture surfaces showing
irregular-shaped ridge and island features (Fig. 3). As a result, the trace

Fig. 5. Fracture mechanisms under tension at =
22.5°. (a) Trace of shear fracture surface forming
orientation angles of o = 30° to the Z-axis on the YZ
plane. (b) Inference of the shear cracking mode by
Schmid factor analysis and trace analysis of the
shear fracture surface. (c) Probing the crack initia-
tion mode by characterizing the short microcrack.
(d) Identification of the early-stage crack growth
mode by characterizing intermediate-sized micro-
crack. The left, middle, and right images in (c,d) are
SEM micrograph, inverse pole figure (IPF) map and
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image quality (IQ) map, respectively. In the IQ map,
grain boundaries are denoted by black lines. Ten-
sion, compression, and double C-T twin boundaries
are colored in blue, red, and light blue respectively.
Co-zone and none co-zone twin-twin boundaries are
delineated in yellow and green colors. (For inter-
pretation of the references to color in this figure
legend, the reader is referred to the Web version of
this article.)
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analysis cannot be applied to the fracture surface for inferring the crack
propagation mode. However, we can still characterize the microcrack in
the local area near (within a distance of ~0.5 mm) the fracture surface to
investigate the early-stage crack growth mode as well as the crack
initiation mechanism.

Fig. 6 shows the SEM and EBSD characterization area near the
fracture surface on the YZ plane. Fig. 6b and c presents two microcracks
located beneath the fracture surface, both of which are sized approxi-
mately 12 pm in length. These microcracks appear to be of lenticular
shape and have sharp crack tips. This microcrack morphology is likely to
result from TB cracking [42,58]. EBSD characterization of the micro-
structure surrounding the microcrack reveals clear development of
compression twins and C-T double twins. In Grain A (Fig. 6b), a double
twin trace shows the same alignment with the microcrack. This indicates
the microcrack in Grain A is likely a result of TB cracking by the same
C-T double twin variant. Similarly, a compression twin (C5) along with a
connected double twin C5-T1 are found in the vicinity of a microcrack in
Grain B (Fig. 6¢). Although there is no direct connection between the
occurrence of a microcrack and compression/double twins, the large
local shear by compression and C-T double twinning may result in
incompatible deformation and may potentially lead to initiation of
microcracks. In fact, the results evidenced in our work under tension at
6 = 0° (RD) are consistent with those regularly reported in prior studies,
confirming that the detrimental role of compression/double twinning on
crack initiation [50-54].

3.3.4. Tension at @ = 90° (ND) and 67.5°

As shown in Fig. 3, the fracture surfaces obtained from tension at 6 =
90° (ND) and 67.5° share similar brittle-like features as that under
tension at § = 0°. This macroscopic fracture feature is consistent with the
observation from a previous study on the same material that a serrated
brittle-like fracture surface is exhibited under tension along the ND [42].
However, as discussed in Section 3.1, pronounced tension twins are
developed after tensile fracture. The TVFs after fracture attain as high as
80.3% and 96% for & = 67.5° and 90° (ND), respectively. It would be
interesting to see whether the fracture mechanisms, in particular the
crack initiation mode, are still ascribed to double-twinning induced
damage.

Fig. 7 shows the microcracks characterized in the local area near the
fracture surface for tension at & = 90° (ND) and 67.5°. Unlike the pre-
dominant lenticular-shaped microcracks due to TB cracking under ten-
sion at § = 0°, the microcracks developed in tension at = 90° (ND) and
67.5° are much shorter in length spanning only ~5-20 pm (see the SEM

(b) Microcrack in Gain A

Label Angel

Tension TB 86°<1-210>
Compression TB  56°<1-210>
C-Tdouble TB  37.5°<1-210>
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Materials Science & Engineering A 831 (2022) 142193

images in Fig. 7b and d) and show relatively blunted crack tips. Further
EBSD characterization reveals that the short microcracks are located at
triple joints and grain boundaries. For instance, under tension 6§ = 90°
(ND) (Fig. 7b), the microcrack is developed mainly at the GB between
grain G2 and grain G3 where a triple joint met by grains G1, G2, and G3
is adjoined. The misorientation angles between the neighboring grains
are 59°, 58°, and 88° for G1-G2 pair, G2 and G3 pair, G3-G1 pair,
respectively. This indicates that the GB cracking is favorable to be
initiated from the high angle grain boundaries (HAGBs). Interestingly,
significant none co-zone twin-twin boundaries (TTBs) are developed in
G2 and G3 due to the coalescence of fully-expanded tension twins.
Moreover, a tension-compression-tension (T-C-T) tertiary twin is
observed in G3 with its tip connected to the microcrack. These obser-
vations shed lights that the GB impingement of dislocations from the
formation of both none co-zone TTBs and T-C-T tertiary twins can lead to
local stress concentration, causing twinning-induced GB damage and
triggering GB cracking subsequently. As shown in Fig. 7d, the micro-
crack found in tension at § = 67.5° is also resulted from GB cracking at
the high angle grain boundaries where a triple joint is detected. Like-
wise, the none co-zone TTBs are frequently connected to the microcrack
and considered as the major driving force for GB cracking.

4. Further discussion

C-T double twins are commonly considered as a detrimental factor
that causes the microcrack nucleation that leads to final failure [50-54].
Such an understanding reflects one facet of the anisotropic nature of
fracture in wrought Mg materials. In fact, double twinning, as a critical
fracture mechanism, is typically observed in experiments where tensile
loading is unfavorable for extensive tension twinning. The contribution
of the current work is to uncover a more comprehensive picture of the
tensile fracture behavior in wrought Mg alloy. The major findings are
summarized in Fig. 8. The final fracture modes are closely related to the
deformation modes operated under a specific stress state. Basically, two
fracture modes are categorized: (1) shear cracking which results in flat
macroscopic shear fracture surface under tension at = 45° and 22.5°;
and (2) brittle-like cracking which leads to irregular-shaped fracture
surface under tension at § = 0°, 67.5, and 90°.

As shown in Fig. 8a and b, shear cracking occurring under tension at
6 = 45° and 22.5° is mainly resulted from the extensive shear defor-
mation accommodated by basal slips which are the dominant defor-
mation modes in these two loading directions. Cracks are nucleated
solely from basal slip bands at local damages induced by impingement of

Fig. 6. Microcracks observed for the 0° (RD) spec-
imen under tension: (a) SEM image captured in the
area near the fracture surface on the YZ plane,
which is sectioned by cutting the cylindrical spec-
imen through its diameter. (b,c) SEM image along
with EBSD results (IPF and IQ maps) showing the
microstructural features surrounding the micro-
cracks. In the IQ map, grain boundaries are denoted
by black lines. Tension, compression, and C-T dou-
ble twin boundaries are colored in blue, red, and
light blue respectively. Co-zone and none co-zone
twin-twin boundaries are delineated in yellow and
green colors. (For interpretation of the references to
color in this figure legend, the reader is referred to
the Web version of this article.)
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Fig. 7. Microcracks observed on the specimens
subjected to tension at # = 90° (ND) and 67.5°: (a,c)
SEM image captured in the area near the fracture
surface on the YZ plane which is sectioned by cut-
ting the cylindrical specimen through the diameter.
(b,d) SEM image and EBSD results (IPF and IQ
maps) showing the microstructural features sur-
rounding the microcracks. In the IQ map, grain
boundaries are denoted by black lines. Tension,
compression, and C-T double twin boundaries are
colored in blue, red, and light blue respectively. Co-
zone and none co-zone twin-twin boundaries are
delineated in yellow and green colors. (For inter-
pretation of the references to color in this figure
legend, the reader is referred to the Web version of
this article.)

(b) Propagation mode for
shear cracking

- Crack path

(c) Initiation mode for brittle cracking

twin

C or C-T TB cracking

Tension

None co-zone twin-
twin boundaries

67.5°

GB cracking

Fig. 8. Schematics summarizing the anisotropic fracture mechanisms in rolled Mg alloy. (a) Initiation mode for shear cracking in tension at & = 45° and 22.5°. (b)
Crack propagation mode for shear cracking in tension at & = 45° and 22.5°. (c) Initiation mode for brittle-like cracking in tension at # = 0°, 67.5, and 90°. “C or C-T
TB” represents “compression or compression-tension twin boundary”. “HAGB” denotes “high-angle grain boundary™.

tension, compression, and C-T double twins (Fig. 8a). Due to the strong
basal texture, basal slips under tension at 8 = 45°, 22.5° can be easily
transmitted across neighboring grains, most of which have low misori-
entation angles. The propagation of the nucleated crack, which is driven
by the shear deformation localized in basal-slip bands, follows the
transmitted basal-slip bands across the neighboring grains (Fig. 8b). Asa
result, the final crack follows a preferential path on the YZ plane whose
orientation matches well with that of the basal-plane traces projected on
the same observation plane, as characterized in Figs. 4 and 5.

The macroscopic fracture surfaces under tension at = 0°, 67.5, and

90° show brittle-like features with irregular-shaped ridges and islands.
Since there is no preferential crack propagation path, we only focus on
the crack initiation modes by charactering microcracks near the fracture
surface to reveal the fracture mechanisms in these material orientations.
As shown in Fig. 8c, crack initiation mode displays distinctive micro-
structural origins between the case of @ = 0° and the cases of = 90° and
67.5°. For @ = 0°, where tension twinning is unfavored and compression
twinning is promoted, crack initiation is commonly detected as cracking
at compression and/or C-T double twin boundaries. However, tension at
6 =90° and 67.5° favors extensive tension twinning, which often results
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in significant twin-twin interaction and even the development of T-C-T
tertiary twins. Rather than TB cracking, cracking at high-angle grain
boundaries (HAGBs) acts as the dominant crack initiation mode at § =
90° and 67.5°. Interestingly, C-T-C tertiary twins and none co-zone TTBs
with high-angle misorientation are found to be connected to the crack
initiation sites, suggesting that the deformation incompatibility induced
by the development of these microstructures may serve as the driving
force for crack initiation at & = 90° and 67.5°. It is worth noting that
microcracks nucleated by either TB cracking at @ = 0° or GB cracking at
6 = 90° and 67.5° are sparsely distributed at multiple locations in the
material. Unlike the cases of tension at § = 45° and 22.5°, there is no
preferential crack propagation route for the nucleated microcracks to
grow probably due to the large difference in the orientation of these
microcracks (see Figs. 6 and 7). That is also the reason why the final
fracture surface shows brittle-like features with irregular-shaped ridges
and islands.

5. Conclusions

An experimental study of the anisotropic fracture behavior of a rolled
AZ31B magnesium alloy was carried out with monotonic tension in five
material orientations. 6 denotes the angle between the axial direction of
the tension testing specimen and the rolled direction of the material.
Major conclusions are drawn as follows.

1. The material orientation affects the fracture behavior. Tension at § =
0°, 67.5°, and 90° results in brittle-like fracture surfaces while ten-
sion at § = 45° and 22.5° displays macroscopic shear fracture
behavior.

2. Crack initiation under tension at @ = 45° and 22.5° is originated from
shear deformation in the basal slip bands at local damages induced
by impingement of tension, compression and/or compression-
tension twins. Crack extension is driven by localized shear defor-
mation in basal slip bands which can be transmitted across neigh-
boring grains, resulting in a final crack path following basal plane
traces.

3. The microstructural origins of brittle-like cracking are different be-
tween the case of tension at = 0° and that of tension at § = 67.5°
and 90°. Twin boundary cracking in compression and/or
compression-tension double twins is commonly detected in tension
at @ = 0° whereas high-angle grain boundary cracking, which is
facilitated by the impingements of tension-compression-tension ter-
tiary twins and the none co-zone twin-twin boundaries, acts as the
crack initiation mode in tension at = 67.5° and 90°.
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