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Abstract. The 19F(p,αγ)16O reaction is of crucial importance for Galactic 19F

abundances and CNO cycle loss in first generation Population III stars. Due

to its extremely small cross sections, the 19F(p,αγ)16O reaction has not been

measured in the low energy part of the Gamow window(70-200 keV). As a day-

one campaign, the experiment was performed under the extremely low cosmic-

ray-induced background environment of the China JinPing Underground Lab-

oratory(CJPL), one of the deepest underground laboratories in the world. The

γ-ray yields were measured over Ec.m.=72.4–344 keV, covering the full Gamow

window for the first time. The direct experimental data will help people to

expound the fluorine over-abundances, energy generation, as well as heavy-

element nuclosynthesis scenario in asymptotic giant branch (AGB) stars, with

the astrophysical model on the firm ground.

1 Introduction

Fluorine is one of the most interesting elements in nuclear astrophysics, its astrophysical

origin is puzzling. 19F can be produced in the convective zone triggered by a thermal pulse

in asymptotic giant branch (AGB) stars [1, 2]. So far, however, the astronomically observed

fluorine over-abundances cannot be understood by using current AGB models [3–6]. In AGB
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Figure 1. Level scheme of the 19F(p,α)16O reaction. The total reaction rate is dominated by the (p,α0)
and (p,αγ) channel.

stars, 19F is readily annihilated by hydrogen via the 19F(p,α)16O reaction [3, 7, 8]. Given its

importance, a precise and complete measurement of the total cross section appeared desirable.

The 19F(p,α)16O reaction occurs via three types of channels, i.e., (p,α0), (p,απ) and (p,αγ),
as shown in Fig. 1. The total reaction rate is dominated by the (p,α0) and (p,αγ) channel [3].
For the (p,αγ) channel, the energy range of Ec.m. > 189 keV has been studied which is

much higher than the the low energy edge of the Gamow window(70-350 keV) [9, 10]. In

this paper, we report on the progress of a direct measurement of the 19F(p,αγ)16O reaction

at Jinping Underground Nuclear Astrophysics experimental facility (JUNA). In the present

work, the studies have been extended to Ec.m.=72.4-344 keV, the lowest to date. The results

from present and previous work allow to calculate the reaction rates over a wide range of

temperatures.

2 Experiment

The experiment was carried out on the JUNA accelerator at CJPL [11]. The experimental

setup is similar to the one described in Ref. [2, 12]. The beam current was 1 mA for the low

energy measurements. Two very strong and durable implanted 19F targets were used [10, 12].

A 4π BGO detector array specially designed for the JUNA project [13] was equipped to detect

the γ-rays, which was already used in previous work [12].

The γ-ray spectrum taken at a proton beam energy of Ep = 130 keV with the 4π BGO
array was shown in Fig. 2. Two background peaks at 1460.8 keV (from 40Ar) and 2614.5 keV

(from 208Tl) and the 6130 keV peak from the 19F(p,αγ2)16O reaction were used for energy

calibration [2].

The γ-ray yield and hence the S Factors of the 19F(p,αγ2)16O reaction were determined by

the integration of the 6130 keV peak of the spectrum(the red region in Fig. 2). The details can

be found in Ref [2]. In conclusion, The present S Factors are much larger than the previous

predictions. The thermonuclear 19F(p,αγ2)16O rate has been determined down to 0.05 GK
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Figure 2. γ-ray spectrum of the 19F+p experiments measured by a 4π BGO array at a proton energy of

Ep = 130 keV [2].

and parameterized by the standard format of [14],

NA〈σv〉(p,αγ)
= exp(62.821 − 0.022063

T9

− 10.5347

T 1/3
9

− 67.9612T 1/3
9
+ 50.592T9 − 24.33T 5/3

9
+ 11.0325 lnT9)

+ exp(30.5159 − 0.097764

T9

+
17.4599

T 1/3
9

+ 38.7519T 1/3
9

− 134.383T9 + 57.3453T 5/3
9
+ 37.5491 lnT9)

+ exp(−18.6175 − 0.349603

T9

+
39.0245

T 1/3
9

+ 67.2527T 1/3
9

− 116.029T9 + 39.954T 5/3
9
+ 42.7072 lnT9)

+ exp(−91.3551 − 0.136527

T9

+
0.16144

T 1/3
9

+ 21.6386T 1/3
9
+ 873.979T9 − 1709.51T 5/3

9
− 7.5102 lnT9)

with a fitting error of less than 1% over a temperature region of 0.01–1 GK [2].
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