
Searching Intrinsic Dimensions of Vision Transformers

Fanghui Xue
1
, Biao Yang

1
, Yingyong Qi

1
, and Jack Xin

1

1University of California, Irvine, CA 92697, USA

Abstract: It has been shown by many researchers that transformers perform as well as convolutional neural

networks in many computer vision tasks. Meanwhile, the large computational costs of its attention module hinder

further studies and applications on edge devices. Some pruning methods have been developed to construct

efficient vision transformers, but most of them have considered image classification tasks only. Inspired by these

results, we propose SiDT, a method for pruning vision transformer backbones on more complicated vision tasks

like object detection, based on the search of transformer dimensions. Experiments on CIFAR-100 and COCO

datasets show that the backbones with 20% or 40% dimensions/parameters pruned can have similar or even

better performance than the unpruned models. Moreover, we have also provided the complexity analysis and

comparisons with the previous pruning methods.

Keywords: deep neural networks, vision transformers, pruning

1. Introduction

Unlike the convolutional or recurrent neural networks (CNN or RNN) [3], transformers are the models based

completely or partially on the attention mechanisms. They are originally proposed to learn global dependency

for sequence transduction tasks [10] and have obtained better performance and training efficiency. Besides its

success in language models, transformers have also been widely studied in computer vision tasks. One of the

directions is to replace the CNN backbones by transformers. In other words, transformers are used to extract

features from images, and the features are processed by various heads to solve various tasks after that. Among

these transformer-based models, ViT [2], DeiT [9] and Swin Transformer [8] have achieved high performance in

multiple tasks like image classification, object detection, segmentation, etc.

The general architecture of the transformer for sequence modeling is composed of an encoder module and a

subsequent decoder module. The encoder module is a stack of a few sequential encoder blocks, with each of

them containing a self-attention (SA) layer and a fully connected feed-forward network, with a residual structure

[4], and a layernorm applied after the summation of the shortcut and the residual. While the feed-forward

network consists simply of two fully connected layers, the self-attention layer is computed through the

multi-head self-attention (MSA) mechanism [10], which is more complicated and usually requires more

computational resources than the convolution operations used in CNNs. Therefore, pruning methods [16, 12, 13]

have been proposed to construct efficient vision transformers. However, most of them only consider pruning

DeiT on the image classification task. In this paper, we present a pruning method for transformer backbones

which is valid on both image classification and object detection tasks. Since our method aims to search for the

intrinsic dimensions (i.e., the possible lowest dimensions to maintain network performance) of transformers, we

name it SiDT in the rest of the paper. Although SiDT is inspired by previous pruning methods like Network

Slimming [7] and Vision Transformer Pruning (VTP) [16], it has its own merits:

 SiDT can prune transformers for not only classification tasks, but also other vision tasks like object

detection.

ISBN-978-989-9121-05-8

PORTO 20th International Conference on “Innovations in Engineering & Sciences”

(PICIES-22)

Porto (Portugal) May 31-June 2, 2022

https://doi.org/10.17758/HEAIG10.H0622602 18

 We have analyzed the computational complexity of the unpruned and the pruned models.

 The models with 20% or 40% dimensions pruned perform similarly or even better than the unpruned

model.

 SiDT prunes the dimensions of linear embeddings, different from the feature pruning of VTP.

2. Related Work

2.1. Vision Transformers

Vision Transformer (ViT) [2] is among the vision models whose backbones are purely transformers. ViT has

partitioned the input image into small patches to mimic the tokens in the language transformers. Instead of pixels,

these patches are embedded into features of certain dimensions, serving as the input of the attention module.

Since its job is to learn representations, ViT has included the encoder module only, i.e., a stack of multi-head

self-attentions. Despite ViT's high accuracy on image classification, there are some concerns about its quadratic

computational complexity on the number of queries . That means the complexity is also quadratic on the input

resolution , whereas the convolution operation has linear complexity. ViT has also been restricted to

image classification since pixel-level tasks like segmentation typically need to deal with high resolution features.

A window-based transformer called Swin Transformer [8] has then been proposed for these more

complicated vision tasks. Like ViT, Swin has also provided a series of backbones which are based purely on

transformers, especially the transformer encoders. The first advantage of Swin is that it can generate hierarchical

features so that they can be used to solve semantic segmentation and object detection tasks with suitable heads.

To obtain features of different resolutions, Swin has merged image patches into 1 patch at the end of

each architecture stage. Since the size of patches is fixed, the image height and the width are both reduced by a

half after merging. The overall transformer architecture is divided into one initial stage without merging and

three intermediate stages with merging, and hence it can produce features of four resolution levels. Another

advantage comes from the window-based multi-head self-attention (W-MSA) with shifting. Compared with the

quadratic complexity of MSA, W-MSA has achieved a linear complexity from computing the attentions locally,

within a small window of patches. Global information across different windows is then exchanged via shifting

the window partitions.

2.2. Dimension Pruning

The dimension/channel pruning problem of CNNs can be solved by adding group sparsity to the

convolutional weights [14, 11] or formulated as a neural architecture search problem [17, 6]. Among them, a

method called Network Slimming (NetSlim) has been proposed based on learning the channel scaling factors [7],

which is able to reduce the model complexity and computational cost, and preserve the accuracy at the same

time. These channel scaling factors are simply defined to be the learnable scale parameters of the batch

normalization layer, and the channels corresponding to low scales are pruned. To learn sparse scales, the

regularization of these scale parameters is added to the loss during training. After being trained with sparsity

and the channels with low scales pruned, the model is further fine-tuned to achieve better performance. We shall

be aware that the regularization term is not added to the convolutional weights, but directly to the scale

parameters, which play a similar role as the architecture parameters in the differentiable neural architecture

search context [6]. That is why searching for dimensions is indeed dimension pruning.

Similar to the channel pruning in CNNs, there are also some studies for vision transformer pruning. Inspired

by NetSlim, VTP [16] has assigned scoring parameters to the features before the linear embedding or projection

layers and pruned the dimensions of these features which are corresponding to low scores. Since the dimensions

of the linear layers depend on the dimensions of the input features, the parameters of these layers are also

reduced. Another pruning method has been proposed in NViT [12], which is based on the scores of grouped

structural parameters. The scores are different from those of VTP as they are computed directly from the weight

parameters. NViT has taken pruning the number of heads and the latency on hardware into account. Moreover, it

https://doi.org/10.17758/HEAIG10.H0622602 19

has been pointed out that having the same dimensions across all layers in the conventional transformer design

might not be optimal [12], which inspires the studies of automated transformer architecture design.

These pruning methods have obtained high pruning ratio with a very small accuracy loss for vision

transformers like DeiT [9], on the image classification tasks. It would be natural to consider pruning Swin or

other light transformer backbones for multiple computer vision tasks. WDPruning [13] is a direct pruning

method for Swin on ImageNet classification, without the fine-tuning stage. It has also provided an option for

depth pruning, and an automated learned pruning ratio based on learnable thresholds of saliency scores.

However, experimental results have shown worse accuracy of the pruned models, as it has not been fine-tuned.

Inspired by these previous studies, we consider pruning Swin backbone as dimension search in this paper.

Before we specify the details of each stage, we summarize a general framework for searching the dimensions of

operations [7, 16] (see also Fig. 1(a)):

 Specify the architecture parameters for representing the dimensions of the operations.

 Set up a loss function which involves the architecture parameters and the other learnable parameters.

 Optimize the loss via gradient descent and prune the network based on the values of the architecture

parameters.

 Fine-tune the pruned network.

Fig. 1: (a) The stages of transformer pruning. (b) Assign the scoring matrix to the output dimensions

of multi-head queries, keys, and values.

3. Method

Architecture parameters. For the dimension search of transformers, we still follow the four stages

summarized in Section 2.2. Since the searching, pruning and fine-tuning stages are similar, the key difference is

how we set up the architecture parameters. Whereas we prune convolution operations in CNNs, there are a few

types of operations for different transformers. So, we discuss in detail the strategies of setting up architectures

parameters for MSA, W-MSA and multilayer perceptron (MLP) [8]. Suppose again the batch size is 1,

 is the input feature map with and the resolution and the dimension of the feature. Set

 , we obtain the transformed input feature .

For SA [10], is linearly embedded into the query , key and value of the same shapes:

https://doi.org/10.17758/HEAIG10.H0622602 20

where the embedding matrices , if the embedding dimensions for the query, key and

value are equal to . Then the attention map is computed via the softmax function of the scaled product

of the query and the key:

 ()

and assigned to the value to compute the output of SA:

 ()

Note that the output of SA has the same shape as the input . To set up the architecture parameters, we

apply a uniform score matrix for , and via matrix multiplication:

 ̃ ̃ ̃

where is a diagonal matrix, whose diagonal elements are the architecture parameters for

 . In other words, we assign a score to the -th dimension of the -dimensional query, and to

the key and value at the same -th dimension. Then we compute the SA module based on the scored query, key,

and value, and obtain ̃ ̃ ̃ .

For MSA [10], we need to compute multiple SA modules and each of them is a head. Let be the number

of heads. For , we also compute , and through linear embedding of via

 , and like that of SA, and obtain the heads:

With and the concatenations of and , the output of the MSA module is computed by

concatenating the heads and projecting linearly via :

 []

We use a stronger scoring matrix for MSA, which is not only uniform over the query, key

and value, but also over all the heads:

 ̃ ̃ ̃

for . Then we compute the new MSA module and obtain ̃ (̃ ̃ ̃) and:

 (̃ ̃ ̃) [̃ ̃ ̃]

For W-MSA [8], the input features are divided into a few windows of size , and MSA is

computed locally within these windows. That is to say, we reshape to be a tensor in , and

obtain and for after embedding of multi-head. Here and

 can be viewed as the concatenations of and for . For each

window, we compute the MSA module and obtain () . Finally, we rearrange the

outputs of these windows and obtain:

 []

To set up the architecture parameters for W-MSA, again we use a uniform scoring matrix for

the query, key and value, over all the heads and windows:

 ̃ ̃ ̃

Then we have ̃ ̃ ̃ ̃ and

 (̃ ̃ ̃) [̃ ̃ ̃]

The last module to be discussed is MLP [8], which simply contains two linear layers with activation.

Suppose is the input feature, and represents the dimensions of the hidden state. Suppose further

 and are two matrices for linear embedding, is the activation. Then we have:

https://doi.org/10.17758/HEAIG10.H0622602 21

The scoring matrix is applied immediately after through matrix multiplication, and get

 . Here can be viewed as the scores for the dimensions of the hidden state.

Pruning. The pruning procedure is summarized in Fig. 1. During the searching stage, the elements in the

scoring matrix are regularized by norm like NetSlim [7], and involved in the overall loss:

where is the classification or detection loss, is the loss, , and are the input, target and the

architecture parameters, and represents the other learnable parameters. is a scale hyperparameter to be set

up in the section of experiments. The architecture parameters are updated via gradient descent or architecture

search algorithms [6], together with the elements of the embedding matrices . After the completion of

searching, we rank the diagonal elements of the scoring matrix according to their absolute values. The

dimensions of the embedding matrices are pruned if their corresponding scores are ranked low. Suppose the

remaining ratio of the dimensions after pruning is . Then only dimensions with higher scores are left in

the pruned matrices.

For MSA, we have , and after pruning, and hence , , and

 . Since we have not pruned the query or key number , the attention map still belongs to , and the

head . This leads to the projection matrix , and the output of the pruned MSA in

 , with the same shape as the unpruned model. One can easily see that the original unpruned MSA module

has parameters and a computational complexity of . For the pruned MSA, the

number of parameters is reduced to , and the computational complexity is reduced to

 . Similarly, the unpruned W-MSA module has parameters and a computational complexity of

 . For the pruned W-MSA, the number of parameters is reduced to , and the

computational complexity is reduced to . Finally, the unpruned MLP has

parameters and a computational complexity of . For the pruned MLP, the number of parameters is

reduced to , and the computational complexity is reduced to . This is because

 and after pruning.

One shall note that our settings of architecture parameters are different from those of VTP [16]. VTP's

scoring matrix is applied directly to the input feature , whereas ours is applied to , and . In other

words, VTP prunes the features but we prune the linear embeddings. As we apply the same matrix to the

embedding dimensions of multiple heads, we have only such architecture parameters, making the model

easier to train. Moreover, VTP is applied to DeiT on the classification task only, whereas our method prunes

Swin Transformer, which serves as a backbone for multiple vision tasks. Finally, we have also provided the

complexity analysis of the unpruned and pruned operations, which is missing in previous studies.

4. Experiments

We conduct SiDT for Swin Transformer on CIFAR-100 classification [18]. We prune its tiny version

(Swin-T), which has 27.53M parameters and a complexity of 4.49G FLOPS. The settings of the search stage are

similar to those for training the unpruned baseline
1
, with batch size = 256, patch size = 4, window size = 7,

embedding dimension = 96, initial learning rate = 0.00025, momentum = 0.9, weight decay = 0.05, epochs = 160,

and the sparsity scale for regularization. After searching, we obtain the scores of all the

dimensions and rank them according to their absolute values. Next, the dimensions with lower scores are pruned,

based on predefined pruning ratios of 20%, 40%, 60% and 80%. Finally, the pruned model is trained again with

a warm start, using the same settings as the search stage. Table I shows that the number of parameters and

computational costs can be greatly reduced after pruning, while preserving the accuracy at the same time,

compared to the baseline [15]. After pruning 80% of the dimensions, the accuracy is only around 2% lower than

the recovered baseline. The model with 20% or 40% dimensions pruned has an accuracy which is even higher

1 When setting up the architecture parameters, we refer to the code at https://github.com/Cydia2018/ViT-cifar10-pruning

https://doi.org/10.17758/HEAIG10.H0622602 22

than the baseline model. This can be explained by the relatively larger size of Swin-T on easier datasets like

CIFAR, as over-parameterized models can cause overfitting.

Additionally, we have also pruned the Swin-T backbone for the COCO object detection task [5], following

the settings in the Swin paper [8]. That is, batch size = 16, initial learning rate = 0.0001, weight decay = 0.05,

epochs = 36, and all the other settings of the backbone are the same as the Swin-T for CIFAR classification

discussed above. We use Cascade Mask R-CNN [1] as the detection head, in accordance with that of the Swin-T

baseline. Again, we follow the steps in Fig. 1, and prune the model with pruning ratios of 20% and 40%. During

the search stage, we also start training with a pretrained Swin-T object detection model. Table II indicates that

the model with 20% dimensions of the backbone pruned has a similar performance of box mAP and mask mAP

as the unpruned model. Here mAP means the mean average precision over all categories. The box or mask

indicates that mAP is computed over bounding boxes or masks. Even if 40% dimensions of the backbone are

pruned, the loss in mAP is still less than 1.5%. This is a fair result since the detection task is more complicated

than the classification task, and pruning a detection model can lead to a slightly larger accuracy decline.

TABLE I: Prune Swin-T via SiDT on CIFAR-100 classification task. PR = Pruning Ratio. Acc = accuracy. Para. = number

of parameters.

PR Acc (%) Para. (M) FLOPS (G)

0% (Baseline [15]) 78.07 - -

0% (Baseline2) 81.78 27.60 4.49

20% SiDT 82.75 23.28 3.53

40% SiDT 82.11 17.89 2.60

60% SiDT 80.81 11.92 1.73

80% SiDT 79.35 7.17 0.92

TABLE II: Prune Swin-T backbone via SiDT on COCO object detection task. PR = Pruning Ratio.

PR
mAP

Box Mask

Para. (M)

Total Backbone

0% (Baseline [8]) 50.5 43.7 86 28

20% SiDT 50.4 43.7 80 22

40% SiDT 49.2 42.9 74 16

5. Conclusion

We have developed SiDT, a method for searching for the intrinsic dimensions of transformers, and provided

its complexity analysis. Experiments on multiple vision tasks have shown that SiDT can promote the efficiency

of vision transformers with little accuracy loss. This method will be applied to more computer vision tasks in

future work.

6. Acknowledgements

The work was partially supported by NSF grants DMS-1854434, DMS-1952644, and a Qualcomm Faculty

Award. The authors would like to thank Dr. Shuai Zhang and Dr. Jiancheng Lyu for helpful discussions.

References

[1] Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high quality object detection,” in Proc. of the IEEE

conference on computer vision and pattern recognition, 2018, pp. 6154-6162.

https://doi.org/10.1109/CVPR.2018.00644

2 The baseline result is recovered on our machine of single RTX 3090 GPU.

https://doi.org/10.17758/HEAIG10.H0622602 23

https://doi.org/10.1109/CVPR.2018.00644
https://doi.org/10.1109/CVPR.2018.00644

[2] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G.

Heigold, S. Gelly, et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” in

International Conference on Learning Representations, 2020.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 770-778.

https://doi.org/10.1109/CVPR.2016.90

[5] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick, “Microsoft coco:

Common objects in context,” in European conference on computer vision, 2014, pp. 740-755.

https://doi.org/10.1007/978-3-319-10602-1_48

[6] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable Architecture Search,” in ICLR 2019, 2019.

[7] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convolutional networks through network

slimming,” in Proc. of the IEEE International Conference on Computer Vision, 2017, pp. 2736-2744.

https://doi.org/10.1109/ICCV.2017.298

[8] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision

transformer using shifted windows,” in Proc. of the IEEE/CVF International Conference on Computer Vision, 2021,

pp. 10012-10022.

https://doi.org/10.1109/ICCV48922.2021.00986

[9] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jegou, “Training data-efficient image transformers

& distillation through attention,” in International Conference on Machine Learning, 2021, pp. 10347-10357.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is

all you need,” in Advances in neural information processing systems, vol. 30, 2017.

[11] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep neural networks,” in Advances in

neural information processing systems, vol. 29, 2016.

[12] H. Yang, H. Yin, P. Molchanov, H. Li, and J. Kautz, “Nvit: Vision transformer compression and parameter

redistribution”, arXiv preprint arXiv:2110.04869.

[13] F. Yu, K. Huang, M. Wang, Y. Cheng, W. Chu, and L. Cui, “Width & Depth Pruning for Vision Transformers,” in

AAAI Conference on Artificial Intelligence (AAAI), 2022.

[14] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,” Journal of the Royal

Statistical Society: Series B (Statistical Methodology), vol. 68(1), pp. 49-67, 2006.

https://doi.org/10.1111/j.1467-9868.2005.00532.x

[15] Z. Zhang, H. Zhang, L. Zhao, T. Chen, S. Arik, and T. Pfister, “Nested Hierarchical Transformer: Towards Accurate,

Data-Efficient and Interpretable Visual Understanding,” in AAAI Conference on Artificial Intelligence (AAAI), 2022.

[16] M. Zhu, Y. Tang, and K. Han, “Vision Transformer Pruning,” arXiv preprint arXiv:2104.08500.

[17] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures for scalable image recognition,”

in Proc. of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8697-8710.

https://doi.org/10.1109/CVPR.2018.00907

[18] A. Krizhevsky, G. Hinton, et al, “Learning multiple layers of features from tiny images,” Technical report, Citeseer,

2009.

https://doi.org/10.17758/HEAIG10.H0622602 24

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1109/CVPR.2018.00907
https://doi.org/10.1109/CVPR.2018.00907

