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Abstract: It has been shown by many researchers that transformers perform as well as convolutional neural 

networks in many computer vision tasks. Meanwhile, the large computational costs of its attention module hinder 

further studies and applications on edge devices. Some pruning methods have been developed to construct 

efficient vision transformers, but most of them have considered image classification tasks only. Inspired by these 

results, we propose SiDT, a method for pruning vision transformer backbones on more complicated vision tasks 

like object detection, based on the search of transformer dimensions. Experiments on CIFAR-100 and COCO 

datasets show that the backbones with 20% or 40% dimensions/parameters pruned can have similar or even 

better performance than the unpruned models. Moreover, we have also provided the complexity analysis and 

comparisons with the previous pruning methods. 
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1. Introduction 

Unlike the convolutional or recurrent neural networks (CNN or RNN) [3], transformers are the models based 

completely or partially on the attention mechanisms. They are originally proposed to learn global dependency 

for sequence transduction tasks [10] and have obtained better performance and training efficiency. Besides its 

success in language models, transformers have also been widely studied in computer vision tasks. One of the 

directions is to replace the CNN backbones by transformers. In other words, transformers are used to extract 

features from images, and the features are processed by various heads to solve various tasks after that. Among 

these transformer-based models, ViT [2], DeiT [9] and Swin Transformer [8] have achieved high performance in 

multiple tasks like image classification, object detection, segmentation, etc. 

The general architecture of the transformer for sequence modeling is composed of an encoder module and a 

subsequent decoder module. The encoder module is a stack of a few sequential encoder blocks, with each of 

them containing a self-attention (SA) layer and a fully connected feed-forward network, with a residual structure 

[4], and a layernorm applied after the summation of the shortcut and the residual. While the feed-forward 

network consists simply of two fully connected layers, the self-attention layer is computed through the 

multi-head self-attention (MSA) mechanism [10], which is more complicated and usually requires more 

computational resources than the convolution operations used in CNNs. Therefore, pruning methods [16, 12, 13] 

have been proposed to construct efficient vision transformers. However, most of them only consider pruning 

DeiT on the image classification task. In this paper, we present a pruning method for transformer backbones 

which is valid on both image classification and object detection tasks. Since our method aims to search for the 

intrinsic dimensions (i.e., the possible lowest dimensions to maintain network performance) of transformers, we 

name it SiDT in the rest of the paper. Although SiDT is inspired by previous pruning methods like Network 

Slimming [7] and Vision Transformer Pruning (VTP) [16], it has its own merits: 

 SiDT can prune transformers for not only classification tasks, but also other vision tasks like object 

detection. 

ISBN-978-989-9121-05-8  

PORTO 20th International Conference on “Innovations in Engineering & Sciences”  

(PICIES-22) 

Porto (Portugal) May 31-June 2, 2022 

https://doi.org/10.17758/HEAIG10.H0622602 18



 We have analyzed the computational complexity of the unpruned and the pruned models. 

 The models with 20% or 40% dimensions pruned perform similarly or even better than the unpruned 

model. 

 SiDT prunes the dimensions of linear embeddings, different from the feature pruning of VTP. 

2. Related Work 

2.1. Vision Transformers 

Vision Transformer (ViT) [2] is among the vision models whose backbones are purely transformers. ViT has 

partitioned the input image into small patches to mimic the tokens in the language transformers. Instead of pixels, 

these patches are embedded into features of certain dimensions, serving as the input of the attention module. 

Since its job is to learn representations, ViT has included the encoder module only, i.e., a stack of multi-head 

self-attentions. Despite ViT's high accuracy on image classification, there are some concerns about its quadratic 

computational complexity on the number of queries  . That means the complexity is also quadratic on the input 

resolution    , whereas the convolution operation has linear complexity. ViT has also been restricted to 

image classification since pixel-level tasks like segmentation typically need to deal with high resolution features.  

A window-based transformer called Swin Transformer [8] has then been proposed for these more 

complicated vision tasks. Like ViT, Swin has also provided a series of backbones which are based purely on 

transformers, especially the transformer encoders. The first advantage of Swin is that it can generate hierarchical 

features so that they can be used to solve semantic segmentation and object detection tasks with suitable heads. 

To obtain features of different resolutions, Swin has merged       image patches into 1 patch at the end of 

each architecture stage. Since the size of patches is fixed, the image height and the width are both reduced by a 

half after merging. The overall transformer architecture is divided into one initial stage without merging and 

three intermediate stages with merging, and hence it can produce features of four resolution levels. Another 

advantage comes from the window-based multi-head self-attention (W-MSA) with shifting. Compared with the 

quadratic complexity of MSA, W-MSA has achieved a linear complexity from computing the attentions locally, 

within a small window of patches. Global information across different windows is then exchanged via shifting 

the window partitions.  

2.2. Dimension Pruning 

The dimension/channel pruning problem of CNNs can be solved by adding group sparsity to the 

convolutional weights [14, 11] or formulated as a neural architecture search problem [17, 6]. Among them, a 

method called Network Slimming (NetSlim) has been proposed based on learning the channel scaling factors [7], 

which is able to reduce the model complexity and computational cost, and preserve the accuracy at the same 

time. These channel scaling factors are simply defined to be the learnable scale parameters of the batch 

normalization layer, and the channels corresponding to low scales are pruned. To learn sparse scales, the    

regularization of these scale parameters is added to the loss during training. After being trained with    sparsity 

and the channels with low scales pruned, the model is further fine-tuned to achieve better performance. We shall 

be aware that the regularization term is not added to the convolutional weights, but directly to the scale 

parameters, which play a similar role as the architecture parameters in the differentiable neural architecture 

search context [6]. That is why searching for dimensions is indeed dimension pruning. 

Similar to the channel pruning in CNNs, there are also some studies for vision transformer pruning. Inspired 

by NetSlim, VTP [16] has assigned scoring parameters to the features before the linear embedding or projection 

layers and pruned the dimensions of these features which are corresponding to low scores. Since the dimensions 

of the linear layers depend on the dimensions of the input features, the parameters of these layers are also 

reduced. Another pruning method has been proposed in NViT [12], which is based on the scores of grouped 

structural parameters. The scores are different from those of VTP as they are computed directly from the weight 

parameters. NViT has taken pruning the number of heads and the latency on hardware into account. Moreover, it 
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has been pointed out that having the same dimensions across all layers in the conventional transformer design 

might not be optimal [12], which inspires the studies of automated transformer architecture design.  

These pruning methods have obtained high pruning ratio with a very small accuracy loss for vision 

transformers like DeiT [9], on the image classification tasks. It would be natural to consider pruning Swin or 

other light transformer backbones for multiple computer vision tasks. WDPruning [13] is a direct pruning 

method for Swin on ImageNet classification, without the fine-tuning stage. It has also provided an option for 

depth pruning, and an automated learned pruning ratio based on learnable thresholds of saliency scores. 

However, experimental results have shown worse accuracy of the pruned models, as it has not been fine-tuned. 

Inspired by these previous studies, we consider pruning Swin backbone as dimension search in this paper. 

Before we specify the details of each stage, we summarize a general framework for searching the dimensions of 

operations [7, 16] (see also Fig. 1(a)): 

 Specify the architecture parameters for representing the dimensions of the operations. 

 Set up a loss function which involves the architecture parameters and the other learnable parameters. 

 Optimize the loss via gradient descent and prune the network based on the values of the architecture 

parameters. 

 Fine-tune the pruned network. 

Fig. 1: (a) The stages of transformer pruning. (b) Assign the scoring matrix           to the output dimensions 

of multi-head queries, keys, and values. 

3. Method 

Architecture parameters. For the dimension search of transformers, we still follow the four stages 

summarized in Section 2.2. Since the searching, pruning and fine-tuning stages are similar, the key difference is 

how we set up the architecture parameters. Whereas we prune convolution operations in CNNs, there are a few 

types of operations for different transformers. So, we discuss in detail the strategies of setting up architectures 

parameters for MSA, W-MSA and multilayer perceptron (MLP) [8]. Suppose again the batch size is 1, 

         is the input feature map with   and   the resolution and   the dimension of the feature. Set 

      , we obtain the transformed input feature       .  

For SA [10],   is linearly embedded into the query  , key   and value   of the same shapes: 
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where the embedding matrices              , if the embedding dimensions for the query, key and 

value are equal to  . Then the attention map   is computed via the softmax function   of the scaled product 

of the query and the key: 

        (      )       

and assigned to the value to compute the output of SA: 

           (      )        

Note that the output of SA has the same shape as the input  . To set up the architecture parameters, we 

apply a uniform score matrix   for  ,  and   via matrix multiplication: 

 ̃      ̃      ̃       

where        is a diagonal matrix, whose diagonal elements are the architecture parameters    for 

         . In other words, we assign a score    to the  -th dimension of the  -dimensional query, and to 

the key and value at the same  -th dimension. Then we compute the SA module based on the scored query, key, 

and value, and obtain     ̃  ̃  ̃ . 

For MSA [10], we need to compute multiple SA modules and each of them is a head. Let   be the number 

of heads. For          , we also compute   ,    and           through linear embedding of   via 

    ,      and             like that of SA, and obtain the heads: 

                        

With      and   the concatenations of         and   , the output of the MSA module is computed by 

concatenating the heads and projecting linearly via        : 

           [          ]         

We use a stronger scoring matrix            for MSA, which is not only uniform over the query, key 

and value, but also over all the heads: 

 ̃       ̃       ̃        

for          . Then we compute the new MSA module and obtain  ̃    ( ̃   ̃   ̃ )         and: 

   ( ̃  ̃  ̃)  [ ̃   ̃     ̃ ]    

For W-MSA [8], the input features        are divided into a few windows of size    , and MSA is 

computed locally within these windows. That is to say, we reshape   to be a tensor in           , and 

obtain         and                 for           after embedding of multi-head. Here          and 

   can be viewed as the concatenations of              and              for             . For each 

window, we compute the MSA module and obtain        (           )       . Finally, we rearrange the 

outputs of these windows and obtain: 

             [                ]           

To set up the architecture parameters for W-MSA, again we use a uniform scoring matrix            for 

the query, key and value, over all the heads and windows: 

 ̃           ̃           ̃           

Then we have  ̃        ̃    ̃    ̃    and  

     ( ̃  ̃  ̃)  [ ̃    ̃      ̃     ]  

The last module to be discussed is MLP [8], which simply contains two linear layers with activation. 

Suppose        is the input feature, and    represents the dimensions of the hidden state. Suppose further 

         and          are two matrices for linear embedding,      is the activation. Then we have: 
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The scoring matrix   is applied immediately after    through matrix multiplication, and get 

            . Here   can be viewed as the scores for the dimensions of the hidden state.  

Pruning. The pruning procedure is summarized in Fig. 1. During the searching stage, the elements in the 

scoring matrix   are regularized by    norm like NetSlim [7], and involved in the overall loss: 

                   

where   is the classification or detection loss,    is the    loss,  ,   and   are the input, target and the 

architecture parameters, and   represents the other learnable parameters.   is a scale hyperparameter to be set 

up in the section of experiments. The architecture parameters   are updated via gradient descent or architecture 

search algorithms [6], together with the elements of the embedding matrices  . After the completion of 

searching, we rank the diagonal elements of the scoring matrix   according to their absolute values. The 

dimensions of the embedding matrices are pruned if their corresponding scores are ranked low. Suppose the 

remaining ratio of the dimensions after pruning is  . Then only    dimensions with higher scores are left in 

the pruned matrices. 

For MSA, we have     ,      and              after pruning, and hence   ,   , and    

       . Since we have not pruned the query or key number  , the attention map still belongs to     , and the 

head           . This leads to the projection matrix         , and the output of the pruned MSA in 

    , with the same shape as the unpruned model. One can easily see that the original unpruned MSA module 

has        parameters and a computational complexity of             . For the pruned MSA, the 

number of parameters is reduced to       , and the computational complexity is reduced to         

      . Similarly, the unpruned W-MSA module has        parameters and a computational complexity of 

             . For the pruned W-MSA, the number of parameters is reduced to        , and the 

computational complexity is reduced to                . Finally, the unpruned MLP has         

parameters and a computational complexity of         . For the pruned MLP, the number of parameters is 

reduced to         , and the computational complexity is reduced to          . This is because 

          and           after pruning. 

One shall note that our settings of architecture parameters are different from those of VTP [16]. VTP's 

scoring matrix   is applied directly to the input feature  , whereas ours is applied to  ,   and  . In other 

words, VTP prunes the features but we prune the linear embeddings. As we apply the same matrix   to the 

embedding dimensions of multiple heads, we have only     such architecture parameters, making the model 

easier to train.  Moreover, VTP is applied to DeiT on the classification task only, whereas our method prunes 

Swin Transformer, which serves as a backbone for multiple vision tasks. Finally, we have also provided the 

complexity analysis of the unpruned and pruned operations, which is missing in previous studies. 

4. Experiments 

We conduct SiDT for Swin Transformer on CIFAR-100 classification [18]. We prune its tiny version 

(Swin-T), which has 27.53M parameters and a complexity of 4.49G FLOPS. The settings of the search stage are 

similar to those for training the unpruned baseline
1
, with batch size = 256, patch size = 4, window size = 7, 

embedding dimension = 96, initial learning rate = 0.00025, momentum = 0.9, weight decay = 0.05, epochs = 160, 

and the sparsity scale          for    regularization. After searching, we obtain the scores of all the 

dimensions and rank them according to their absolute values. Next, the dimensions with lower scores are pruned, 

based on predefined pruning ratios of 20%, 40%, 60% and 80%. Finally, the pruned model is trained again with 

a warm start, using the same settings as the search stage. Table I shows that the number of parameters and 

computational costs can be greatly reduced after pruning, while preserving the accuracy at the same time, 

compared to the baseline [15]. After pruning 80% of the dimensions, the accuracy is only around 2% lower than 

the recovered baseline. The model with 20% or 40% dimensions pruned has an accuracy which is even higher 

                                                           
1 When setting up the architecture parameters, we refer to the code at https://github.com/Cydia2018/ViT-cifar10-pruning 
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than the baseline model. This can be explained by the relatively larger size of Swin-T on easier datasets like 

CIFAR, as over-parameterized models can cause overfitting. 

Additionally, we have also pruned the Swin-T backbone for the COCO object detection task [5], following 

the settings in the Swin paper [8]. That is, batch size = 16, initial learning rate = 0.0001, weight decay = 0.05, 

epochs = 36, and all the other settings of the backbone are the same as the Swin-T for CIFAR classification 

discussed above. We use Cascade Mask R-CNN [1] as the detection head, in accordance with that of the Swin-T 

baseline. Again, we follow the steps in Fig. 1, and prune the model with pruning ratios of 20% and 40%. During 

the search stage, we also start training with a pretrained Swin-T object detection model. Table II indicates that 

the model with 20% dimensions of the backbone pruned has a similar performance of box mAP and mask mAP 

as the unpruned model. Here mAP means the mean average precision over all categories. The box or mask 

indicates that mAP is computed over bounding boxes or masks. Even if 40% dimensions of the backbone are 

pruned, the loss in mAP is still less than 1.5%. This is a fair result since the detection task is more complicated 

than the classification task, and pruning a detection model can lead to a slightly larger accuracy decline. 

 

TABLE I: Prune Swin-T via SiDT on CIFAR-100 classification task. PR = Pruning Ratio. Acc = accuracy. Para. = number 

of parameters. 

PR Acc (%) Para. (M) FLOPS (G) 

0% (Baseline [15]) 78.07 - - 

0% (Baseline2) 81.78 27.60 4.49 

20% SiDT 82.75 23.28 3.53 

40% SiDT 82.11 17.89 2.60 

60% SiDT 80.81 11.92 1.73 

80% SiDT 79.35 7.17 0.92 

 

TABLE II: Prune Swin-T backbone via SiDT on COCO object detection task. PR = Pruning Ratio.  

PR 
mAP 

Box  Mask 

Para. (M) 

Total  Backbone 

0% (Baseline [8]) 50.5  43.7  86      28 

20% SiDT 50.4  43.7  80      22 

40% SiDT 49.2  42.9  74      16 

5. Conclusion 

We have developed SiDT, a method for searching for the intrinsic dimensions of transformers, and provided 

its complexity analysis. Experiments on multiple vision tasks have shown that SiDT can promote the efficiency 

of vision transformers with little accuracy loss. This method will be applied to more computer vision tasks in 

future work. 
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