A NOTE ON UTILITY MAXIMIZATION WITH PROPORTIONAL
TRANSACTION COSTS AND STABILITY OF OPTIMAL
PORTFOLIOS
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Abstract. The aim of this short note is to establish a limit theorem for the optimal trading
strategies in the setup of the utility maximization problem with proportional transaction costs. This
limit theorem resolves the open question from [4]. The main idea of our proof is to establish a
uniqueness result for the optimal strategy. The proof of the uniqueness is heavily based on the dual
approach which was developed recently in [6, 7, 8].
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1. Preliminaries and the Limit Theorem.

1.1. Utility Maximization with Proportional Transaction Costs. We
consider a model with one risky asset which we denote by S = (S¢)o<i<r, where
T < o0 is a fixed finite time horizon. We assume that the investor has a bank account
that, for simplicity, bears no interest. The process S is assumed to be an adapted,
strictly positive and continuous process (not necessarily a semi-martingale) defined on
a filtered probability space (0, F, (F;)o<i<T,P) where the filtration F := (F;)o<i<r
satisfies the usual assumptions (right continuity and completeness).

Let x € (0,1) be a constant. Consider a model in which every purchase or sale of
the risky asset at time ¢ € [0, 7] is subject to a proportional transaction cost of rate
k. A trading strategy is an adapted process v = (y¢)o<t<r of bounded variation with
right-continuous paths; note that it automatically has left limits and hence is RCLL
(right-continuous with left limits). The random variable +; denotes the number of
shares held at time . We use the convention yo— = 0. Moreover, we require that
~r = 0 which means that we liquidate the portfolio at the maturity date.

Let v := ;" —7; , t € [0, T] be the Jordan decomposition into two non-decreasing
processes (v, Jo<i<r and (7; )Jo<i<r describing the positive variation and negative
variation, respectively. Because the bid price process is (1 — k)S and the ask price
process is (1 + k)S, the liquidation value of a trading strategy ~ at time ¢ is given by

Vi = (1 f@)/o Sudy, — (1 + n>/0 Sudvy + (L= K)S: (7)™ = (1 +#)Si(ve)”

where (y¢)" := max(0,v;) and (7;)” := max(0, —y;) (beware that these are not the
same variables as 7;",7; above). Note that the integrals take into account the possible
transaction at ¢ = 0. Namely, we define

t t
/ Sudy, = Sovy +/ Sudy, and / Sudry, = Sofyar +/ Sudfyf[.
0 (0,t] 0 (0,t]
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By rearranging the terms, we get

t t
(1.1) V= 7S, / Sudru — K| ulS: — & / Suldval, te0,T).
0 0

Observe that the wealth process (V,")o<t<r is RCLL like v and 47 = 0 implies
V7_ = V7. For any initial capital z > 0, we denote by A(z) the set of all trading
strategies v which satisfy the admissibility condition = + V7 > 0, for all ¢ € [0,T].

We will assume that the process S is sticky (Definition 2.2 in [11]) and satisfies a
slight strengthening of the condition of “two-way crossing” (TWC) (Definition 3.1 in
[3]). For completeness, we formulate the assumptions explicitly.

ASSUMPTION 1.1. The process S is sticky with respect to the filtration F. That is,
for any 0 > 0 and a stopping time 7 < T (with respect to F) such that P(t < T) > 0,
we have
IP( sup |Sy — S;] <(5,7’<T> > 0.
T<u<T
ASSUMPTION 1.2. The process S satisfies the (TWC) property with respect to the
filtration F, if, for any stopping time o < T, we have

inf{t >c:8;,>S,}=inf{t >0:5,<S,} =0 as.

REMARK 1.3. Let us remark that Assumptions 1.1-1.2 hold true for reasonable
semi—martingale models and important non semi—martingale models such as the ex-
ponential fraction Brownian motion (see [11] for Assumption 1.1 and [3, 16] for As-
sumption 1.2). Moreover, in [11] the author proved that Assumption 1.1 implies the
absence of arbitrage with the presence of proportional transaction costs, and so this
is a quite natural assumption. Assumption 1.2 is more technical and its financial in-
terpretation is linked to arbitrage opportunities with simple strategies in a frictionless
setup (for details see [3]).

Next, we introduce our utility maximization problem. Let U : (0,00) — R be an
increasing, strictly concave, continuously differentiable utility function, satisfying the
Inada conditions U’'(0) = oo and U’(c0) = 0, as well as the condition of “reasonable
asymptotic elasticity” introduced in [14]

< 1.

!
AE(U) := lim sup xg(;a):)

For a given initial capital x > 0, we consider the optimization problem

(1.2) u(z) := sup Ep[U(z + V7).
vEA(z)

1.2. Approximating Sequence of Models. For any n, let S™ = (57)o<i<T
be a strictly positive, continuous process defined on some filtered probability space
Q™ F", (F")o<i<T,P"), where the filtration F" := (F[")o<i<r satisfies the usual
assumptions . For the n—th model, a trading strategy is a right continuous adapted
processes 7" = (v§")o<t<7 of bounded variation satisfying 7% = 0. As before, we use
the convention that v§_ = 0. Similarly to (1.1) the corresponding liquidation value is
given by

t t
A ::vfszu/o Sﬁd'yﬁfﬁm”\Sl’fﬁ/o STldyzl, t e [0,7].
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For any = > 0 we denote by A"(x) the set of all trading strategies 4™ which satisfy
x+ V" >0, forallt €[0,T]. Set

wiwyi= sup B [U (o4

As in [4] we assume the following natural assumption.

ASSUMPTION 1.4. There exist € € (0,k) and probability measures Q ~ P, Q™ ~
P", n € N with the following properties:
1) There exists a local Q—martingale (M;)o<i<r and for any n € N there exists
a local Qp—-martingale (M]")o<i<7 such that

|My — S¢| < (k—¢€)Sy Poas., Vtel0,T]
and for any n
|M — SP| < (k—¢e)Sy, P" as., Vtel0,T].

2) The sequence of probability measures P*, n € N, is contiguous to the se-
quence Q", n € N. Namely, for any sequence of events A™ € F™*, n € N if
lim,, 0o Q" (A™) = 0 then lim,,_,, P*(A™) = 0.

REMARK 1.5. Let us notice that condition 1) in Assumption 1./ is a priori a
robust no-arbitrage condition (for details see [12]) and condition 2) in Assumption 1./
can be viewed as an asymptotic no-arbitrage condition for large markets (for details
see [13]).

Next, we formulate an assumption which guarantees uniform integrability.

ASSUMPTION 1.6. One (or more) of the following conditions hold:
(i) U is bounded from above.

(i) There exist a constant q > ﬁE(U) and a sequence of pairs (Q", M”), n €N

such that for any n, Q" ~ P", (Mtn)ogth is a Q-local martingale, for all
t €10, T] we have |M]* — S}| < KSP P™-a.s. and

AP™ q
supE@n [(A> } < 00.
neN dQnr
The verification of the second condition in the above assumption requires an explicit
representation of consistent price systems. For the case where the market models

are semi—martingales defined on the Brownian probability space and satisfy some
regularity assumptions this condition holds true (for details see Example 2.8 in [4]).

LEMMA 1.7. Assume that Assumption 1.6 holds true. Then, for any x > 0, the

set {U+ ($ + VZ,Y)} is uniformly integrable, where U™ := max(U,0).
neNyreA™ (x)

Proof. The statement is obvious if U is bounded. Thus, assume that the second
condition in Assumption 1.6 holds true. From Lemma 6.3 in [14] it follows that there
exists a constant L such that U(v) < L(1 4 v?) for all v. Hence, the result follows
from Proposition 2.7 in [4]. d



1.3. Meyer—Zheng Topology and Extended Weak Convergence. Any
RCLL function f € D[0,T] := D([0,T]; R) can be extended to a function f: R — R
by f(t) := f(T) for all t > T. The Meyer—Zheng topology, introduced in [15], is a
relative topology, on the image measures on graphs (¢, f(¢)) of trajectories t — f(t),
t € Ry under the measure A\(dt) := e~ 'dt (called pseudo-paths), induced by the weak
topology of probability laws on the compactified space [0, cc] x R. From Lemma 1 in
[15], it follows that the Meyer—Zheng topology on the space D[0,T] is given by the
metric

T
daiz(frg) == / min(L, | £(t) — g())dt + |F(T) — g(T)|, f.g €D, 7).

We denote the corresponding space by Das2[0,T].
Next, we formulate our convergence assumptions.

ASSUMPTION 1.8. For any k € N, let D([0,T]; R¥) be the space of all RCLL func-
tions f : [0,T] — R* equipped with the Skorokhod topology (for details see [2]). We
assume that there exists m € N and a stochastic processes X™ : Q™ — D([0,T]; R™),
neN, X:Q— C(0,T;R™) (i.e. X is continuous) which satisfy the following:

(i) The filtrations (F)o<i<r, n € N and (Fi)o<i<r, are the usual filtrations

(right continuous and completed by the corresponding probability measure)
generated by X", n € N and X, respectively.

(i) We have the weak convergence

(8™, X™),P") = ((S,X),P) on D([0,T];R™"!).

The above relation means that the joint distribution of (S™, X™) under P™
converge to the joint distribution of (S, X) under P.

(iii) We have the extended weak convergence (X™,P") = (X,P). This means (see
[1]) that, for any k and a continuous bounded function ¢ : D([0,T];R™) —
R*, we have

7

(X", Y"),P") = ((X,Y),P) on D([0,T];R™""),
where
Y o= Epn [W(X™)|F] and Y :=Ep [@(X)|F], t€][0,T].
1.4. The Main Result. We are ready to state our limit theorem.
THEOREM 1.9. Let x > 0. Then we have,
(1.3) u(z) = lim u"(z).

n—oo

Moreover, let ™ € A™(x), n € N be a sequence of asymptotically optimal portfolios,
namely

(1.4) Tim. (u”(x) — Ep- [U (x + v;)]) ~0.
Then,
(1.5) ((S™,4™),P") = ((S,7°"");P)  on the space D([0,T]) x Dpsz[0,T],

where v°Pt is the unique optimal portfolio for the optimization problem (1.2).
4



We finish this section with the following remark.

REMARK 1.10. Assumptions 1.4, 1.6, 1.8 are analogues (for the current setup) of
similar assumptions in [{] and are needed for the proof of (1.3). This proof follows
exactly the lines of the proof from [4]. In order to prove the “new” result (1.5) we
establish a uniqueness result, that is Proposition 2.1. For the proof of Proposition 2.1
we need to assume Assumptions 1.1-1.2.

2. The Uniqueness Result. In this section we prove that for a given initial
capital, the problem of utility maximization from terminal wealth has a unique optimal
trading strategy. Although, for strictly concave utility the uniqueness of the optimal
terminal wealth is straightforward, the uniqueness of the optimal trading strategy is
far from obvious and was an open question for the general setup we consider in the
present note (see Remark 6.9 in [18]). It is important to mention the paper [9] where
the authors proved a uniqueness result for consumption-investment problems in the
presence of proportional transaction costs where the price of the assets is given by a
geometric Lévy process.

ProposITION 2.1. Let x > 0, be the initial capital. Then, there exists a unique
optimal portfolio v°P* = (v"")o<i<T to the optimization problem (1.2).

Proof. From Theorem 2.3 in [8], there exists a semi-martingale S € [(1—k)S, (1+
k)S] and 4! € A(zx) such that v! is a solution to (1.2) and (v/_)o<i<r is a solution

to the frictionless problem
T A
0

T
U (:10 +/ thdgt)] =supEp
0 6

where the supremum is taken over all S'fintegrable predictable processes 8 = (0;)o<i<T
which satisfy the admissibility condition x + fou 0,dS, > 0 for all u € [0,T]. Moreover,
we have

(2.1) Ep

T 1
(2.2) / YdS, =V .
0

Step I: Assume by contradiction that there exists an optimal solution 42 # v! which

1 2
solves the utility maximization problem (1.2). First, let us notice that V! = V.
Indeed, if by contraction there is no equality then from the fact that U is increasing
and strictly concave we obtain that for the strategy v := (v +~2)/2

Ep {U (x+V7?1)] + Ep {U (x+vj’!2)}

Ep [U (z + V})] > 5

which contradicts the optimality of 4*,72. Thus, from (2.2) and the fact that S €
[(1—k)S, (14 k)S] it follows that

T T
/ ’}/tl_dgt = ijjl = ng S / ’Y?_d;gt
0 0
We conclude that

T . T .
(2.3) / yidS, = / v2_dS,.
0 0
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Let us prove that

(2.4) / 'ytlfdgt:/ v2 dS,, Vue|0,T].
0 0

Assume by contradiction that (2.4) does not hold. Then, without loss of generality
we can assume that there exist € > 0, a stopping time © < T and an event of positive
probability A € Fg such that

) )
(2.5) / Yi_dS; — / 2 dS; > € on the event A.
0 0

Define a strategy (V7 )o<t<r by
7=t for t<©

and
2= (1 =Ta)y} +1492 for t > 0O.

From (2.5) and the relation S € [(1 — &)S, (1 4 )S] it follows that for any u € [0, T]
/ rﬁ’fdgt
0

u (S) u
= (1 — HAHu>@)/ ytldet + HA]IU>@ (/ fytldet + / vfd5t>
0 0 ©

u

>(1- ]IA]Iu>@)/ 'Ytlfdgt + ]IA]Iu>@/ ’Yt{dgt
0 0
> (1-Lalise) VY +LalsoVy .

Thus, 73 satisfies the admissibility condition z + fou v2 dS, > 0 for all u € [0,T].
Moreover, for u = T, by applying (2.3) we obtain

T A
/ Vi dS,
0
T R S . T R
= (1 — ]IA)/ ’ytl_dSt +HA (/ ’)/tl_dSt +/ ’yf_dSt>
0 0 (S]
T A~
z/ Y dS; + €l 4.
0

This contradicts the fact that 4! is the optimal solution for (2.1) and so, (2.4) follows.

Step II: Since by contradiction 7! # ~+2, there exists ¢ > 0 such that the stopping
time
o=oc(e):=T ANinf{t: |7f — 77| > €}

satisfies
(2.6) Plc <T) > 0.
Next, define the stopping time

Ti=inf{t >0 |y} — 2 <e€/2}.
6



Observe that y4. = 7% = 0 implies 7 < T a.s. on the event 0 < T. Clearly, on the
interval (o, 7] we have |v/_ —~7_| > § and so from the associativity of the stochastic
integral (see Section 2 in [17]) and (2.4) we conclude that for any ¢ € (o, 7]

~ ~ o 1 u ~
S, — 5 z/ d(/ 757—757 dSv>=0.
! t 'Yzlt— - 75— 0 ( )

Thus, (S is right continuous) S is constant on [o,7]. Since S € [(1 — k)S, (1 4 £)S]
then from Assumption 1.2 we get S, € ((1 — £)Sq, (1 4 £)S,)) (i.e. the shadow price
is strictly between the bid price and the ask price). From Assumption 1.1 and (2.6),
it follows that for the event

B:= {(1 —K)S; < S, < (1+K)S;, Vte [077—]}

we have P(B N {0 < T}) > 0. Finally, since S is constant on the interval [0, 7], we
observe that on the event B N {o < T} the interval [0, 7] is a no-trading region for
any solution of (1.2) (see Theorem 3.5 in [6] and Remark 2.13 in [7]). Hence on the
event BN {c <T}, v, and 7, , are (random) constants. In particular

(2.7) Yo = Yo =" —77 on Bn{o<T}

On the other hand, from the definition of o,7 and the right continuity of v*,~? it
follows that
Wl =42 > € and |7} —~2|<€/2 on {o<T}

which is a contradiction to (2.7). |

3. Proof of Theorem 1.9 . We start with the following lower semi—continuity
result.

LEmMA 3.1. For any x > 0 we have

u(z) <lim inf «"(z).
n—0o0
Proof. The proof is done by using the same approximating arguments as in
Lemma 4.2 in [4]. Observe that since our utility function is not state dependent,
then Assumption 2.5(i) in [4] is trivially satisfied. Moreover the continuity of u which
is essential for the proof (and was established in Lemma 4.1 in [4]) is a well known
fact for the current setup (see Theorem 3.2 in [6]). d

Next, we have the following result.

LEMMA 3.2. Let z > 0 and 4™ € A™(z), n € N be a sequence of admissible trad-
ing strategies. The sequence ((X™,S™, ™), P") is tight on the space D([0, T|; R™+1) x
Darz[0,T] and so from Prohorov’s theorem (see [2]) it is relatively compact. Moreover,
any cluster point is of the form ((X,S,%),P) and satisfies the following conditional
independence property:

Let (ff(’v)ogtST be the usual filtration (right continuous and P-completed) gen-
erated by X and 4. Then, for anyt < T, .7-"tX’;Y and Fr are conditionally independent
given Fy. As before F = (Fy)o<i<r 1S the usual filtration generated by X.

Proof. The proof is the same as the proof of Lemma 4.3 in [4] and it is based on
Assumption 1.4 (Assumption 2.3 in [4]) and the extended weak convergence Assump-
tion 1.8 (Assumption 2.9 in [4]). d



Now, we are ready to prove Theorem 1.9.

Proof. Let > 0 and let 4™ € A™(z), n € N be a sequence of portfolios which

satisfy (1.4). By passing to a subsequence, we assume without loss of generality that
lim,, 00 u™ () exists.
Step I: From Proposition 2.1, there exists a unique solution to (1.2), denote it by
~°Pt. From the tightness of the sequence ((S™, X", 4™),P"), n € N (Lemma 3.2), it
follows that in order to prove (1.5) it is sufficient to show that the only cluster point
of this sequence is (S, X, y°Pt).

From Lemma 3.2, any cluster point is of the form ((X,S,%),P) where ¥ satisfies
the conditional independence property which is formulated in this lemma. Let A(x)
be the set of all (]:f(’ﬁ)ogtSTfadapted processes v = (¢ )o<t<7 of bounded variation
with right continuous paths which satisfy yr = 0 and = + V,” > 0, for all ¢. The term
V7 is defined as in (1.1). Introduce the optimization problem

(3.1) a(z) == sup Ep[U(z + V7)]
vEA(z)

By exploiting the uniform integrability result given by Lemma 1.7 (this is As-
sumption 2.5(ii) in [4]), and applying the same arguments as in Section 4.2 in [4], we
obtain that 4 € A(x) and satisfies
(3.2) Ep[U(z + V;)] > lim u"(z).

n—oo
Moreover, applying the Jensen inequality and the conditional independence property
given by Lemma 3.2 (Lemma 4.3 in [4]) in the same way as in Section 4.2 in [4], we
obtain, for any v € A(z), that

(3.3) v > B[V |Fr], Wt e[0,T],

where v7 denotes the optional projection of the process v with respect to F and it is
well defined. In particular, (3.3) implies that v € A(x).

Thus, from the Jensen inequality (for the concave function U), (3.3) and the
trivial relation A(z) C A(z), we get

(34) u@)> swp B [U (4 V)] 2 suwp BelU(z+ V)] = i2) > u(w).
yEA(x) YEA(x)

By applying the Jensen inequality, Lemma 3.1 and (3.2)—(3.3) it follows that

(3.5) u(z) > Ep [U (:v + ng)} > Ep {U (m + Vf’)} > nl;rr;ou"(x) > u(z).
From (3.4)~(3.5) we get (1.3) and we conclude that 4,v°P* € A(z) are optimal portfo-
lios for the optimization problem (3.1). Thus in order complete the proof it remains
to argue that the uniqueness result Proposition 2.1 holds true where the filtration F is
replaced with the filtration F%-7. For that end it remains to prove that Assumptions
1.1-1.2 hold true with respect to the filtration FX-7. This brings us to the second
step.

Step II: We start with Assumption 1.1. From Lemma 3.1 in [5] it follows that we
can restrict 7 in Assumption 1.1 to be deterministic and the Assumption will remains
the same. From [10] (see Chapter 2, Theorem 45) and the conditional independence
property given by Lemma 3.2 it follows that for any ¢,

P(S|F,) = P(S|F7)
8



and so Assumption 1.1 holds true with respect to FX:7.

Next, we treat Assumption 1.2. Assume by contradiction that the Assumption
does not hold. Then, there exists a stopping time with respect to FX7, ¢ < T and
€ > 0 such that (without loss of generality we choose the positive direction)

(3.6) P(S,— Sy >0 Vtel|o,0+¢)>0.

By enlarging the underlying probability space we assume (without loss of generality)
that there exists a random variable U which is uniformly distributed on the interval
[0,1] and is independent of F. Consider the process

Zy :=P(o < t|Fr), te[0,T).

Clearly, Z is a right continuous increasing process which satisfies Zp = 1. Introduce
the random time

T:=inf{t: Z; > U}.
Observe that Zp = 1 implies that 7 < T. Moreover, for any ¢ € [0, T]

P(r <t|Fr)=P(Z, > U|Fr) = Z; = P(o < t|Fr).
We conclude,
(3.7) ((5,0);P) = ((S,7); ).

Next, for any u € [0,1] define the random time 7, := inf{t : Z; > u}. From the
conditional independence property given by Lemma 3.2, it follows that

Zy =P(o < t|F,), Vte[0,T).

Hence, for any u € [0,1], 7, is a stopping time with respect to the filtration F. From
(3.7) and the fact that U is independent of S it follows that

P(S; =Sy, >0 Vte[o,0+¢€])
P(S;—S,>0 Vie[r,7+¢)

1
:/ P(S,—S;, >0 Vte[r,+e)du=0
0

where the last equality follows from Assumption 1.2 (for the filtration F). We obtain
a contradiction to (3.6), which completes the proof. d
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