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ERHAN BAYRAKTAR AND SUMAN CHAKRABORTY

Abstract. A graph G percolates in the Kr,s-bootstrap process if we can add all missing edges of G
in some order such that each edge creates a new copy of Kr,s, where Kr,s is the complete bipartite
graph. We study Kr,s-bootstrap percolation on the Erdős-Rényi random graph, and determine
the percolation threshold for balanced Kr,s up to a logarithmic factor. This partially answers a
question raised by Balogh, Bollobás, and Morris. We also establish a general lower bound of the
percolation threshold for all Kr,s, with r ≥ s ≥ 3.

1. Introduction

For a given graph H, the H-bootstrap process is defined as follows. Let G be a graph on vertex
set [n] := {1, 2, . . . , n} and Kn be the complete graph on the same set of vertices. Set G0 = G and
define, for each t ≥ 0,

Gt+1 := Gt ∪
{
e ∈ E(Kn) : ∃H with e ∈ H ⊂ Gt ∪ {e}

}
.

Let 〈G〉H = ∪t≥0Gt. Here 〈G〉H is the closure of G under the H-bootstrap process. We say G
percolates under the H-bootstrap process on Kn if 〈G〉H = Kn.

Recently this process was studied by Balogh, Bollobás, and Morris for G = Gn,p, where Gn,p is
the random graph on n vertices in which each edge is present independently with probability p. In
[2], they defined the critical threshold for H-bootstrap percolation on Kn as follows:

pc(n,H) := inf{p : P (〈G〉H = Kn) ≥ 1/2}
In this short article we study upper and lower bounds of pc(n,H) for H = Kr,s, where Kr,s is the
complete bipartite graph with r vertices in one part and s in the other. Here and throughout the
paper we will assume r ≥ s ≥ 3 without loss of generality. Let

λ(r, s) :=
rs− 2

r + s− 2
.

The following theorem is the main result of this paper.

Theorem 1.1. Let r ≥ 4, s ≥ 3, and s ≤ r ≤ (s − 2)2 + s. Then there exist constants
c(r, s), C(r, s) > 0 such that for large enough n,

c(r, s)(log n)−1n−1/λ(r,s) ≤ pc(n,Kr,s) ≤ C(r, s)

(
log n

log log n

)2/λ(r,s)

n−1/λ(r,s). (1.1)
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Remark 1.2. This partially answers a question by Balogh, Bollobás, and Morris; see Problem 5 in
[2]. For the case K2,t some results have been recently obtained that we discuss in the next section.
In the next proposition we obtain a general lower bound on pc(n,Kr,s). One can also obtain a
general lower bound using Proposition 25 in [2], but for Kr,s the following proposition provides a
better lower bound.

Proposition 1.3. For any r, s ≥ 3,

pc(n,Kr,s) ≥ (e log n)−1λ((s− 2)2 + s, s)
2
n−1/λ((s−2)

2+s,s).

1.1. Related results. Graph bootstrap percolation is an example of cellular automata introduced
by von Neumann [12] (see also [6]). Bollobás [4] introduced H-bootstrap percolation, which is also
known as weak saturation. Extremal questions are well studied when H = Kr (see [1], [7], and [9]).

More recently, graph bootstrap percolation has been studied on random graphs (see [5] for an
exposition on random graphs). In the context of the Erdős-Rényi random graph Balogh, Bollobás,
and Morris [2] obtained the following result regarding Kr bootstrap percolation. It was shown that
for r ≥ 4, and n ∈ N, sufficiently large

n−1/λ(r)

2e log n
≤ pc(n,Kr) ≤ n−1/λ(r) log n,

where λ(r) =
(r2)−2
r−2 . Recently, extremal results have been studied for H = Kr,s, where Kr,s is the

complete bipartite graph with one part containing r nodes, and s nodes in the other. In [8], the
authors considered a related process called saturation. A graph G is called called H saturated if G
does not contain a copy of H, and adding any missing edge in G completes a new copy of H. In
[8], it was shown that if Kn,n is Kr,s saturated then it must have at least (r+ s− 2)n− (r+ s− 2)2

edges, confirming a conjecture in [11] up to an additive constant. In [11] the authors studied the
weak saturation of Kr,s in Kn,n, and showed that if it is Kr,s-weakly saturated in a bipartite graph,
then it has at least (2s − 2 + o(1))n edges, when s ≤ r. Weak saturation of Kr,s in Kn has been
studied in [10]. In the context of random graph the authors in [2] proposed the problem (Problem
5 in [2] ) to determine pc(n,Kr,s), at least up to a poly-logarithmic factor, for all r, s ∈ N. It was
shown in [2] that

pc(n,K2,3) =
log n

n
+ Θ

(
1

n

)
.

Recently some progress has been made for bipartite graphs of the form K2,t. In [3], it was shown
that

pc(n,K2,4) = Θ

(
1

n10/13

)
.

A lower and upper bound for K2,t is also obtained in [3] for t ≥ 4. Our result complements the
results in [3], and determines pc(n,Kr,s) up to poly-logarithmic factor when the graph is balanced
(see Definition 3.1). We also obtain a general lower bound for pc(n,Kr,s) when r, s ≥ 3.

1.2. Remarks on the proof. Our proof of the lower bound in Theorem 1.1 is based on the witness
set algorithm introduced in [2]. The main idea involves two steps. The first step is to show that
if a graph G percolates under the Kr,s-bootstrap process on Kn then there exists an witness set
(see Section 2 for the precise definition) satisfying certain extremal properties. The second step
is to show that if p is below a certain threshold then there is no such set with high probability,
that is, with probability going to one as the size of the graph goes to infinity. Although we use
the same algorithm to establish the extremal properties of the witness set, the steps involved are
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different from those used in [2] to prove bounds on the Kr-bootstrap process, and the analysis of
the algorithm leads to a different optimization problem than in the case of Kr. Interestingly the
condition required to establish the lower bound for Kr,s using the witness set algorithm is also
necessary to show that Kr,s is balanced. Our lower bound works for r, s ≥ 3. The upper bound
directly uses Proposition 3 from [2]. The assumptions in their proposition are valid when r ≥ 4
and s ≥ 3.

2. Lower bound for Kr,s percolation

A novel Witness-Set algorithm was introduced in [2] in the context of Kr-bootstrap percolation.
We first fix some notations and then recall the algorithm for H-bootstrap percolation, for any finite
graph H. We start with a graph G, and run the H-bootstrap process, that is we add the edges in
〈G〉H\G one by one. The edges in 〈G〉H\G are called infected edges. First, let us fix an ordering
of the edges (e1, e2, . . . , ek) in 〈G〉H\G. More precisely, e1 is the first edge that was added (we also
say ‘e1 is infected’) and H1 is the copy of H that was completed by adding e1 (if more than one is
completed we arbitrarily choose one), and continuing similarly for i = 2, 3, . . . , k, let ei be the i-th
edge that was added (or infected), and H i be the copy of H that was completed by adding ei (if
more than one is completed we arbitrarily choose one). We are now ready to state the Witness-Set
algorithm.

Witness-Set Algorithm. Assign a graph F (e) ⊆ G, to each edge e ∈ 〈G〉H . The set of edges of
F (e), denoted by E(F (e)) is obtained as follows:

• If e ∈ G then set E(F (e)) = {e}.
• If e = ei for some i = 1, 2, . . . , k then

E(F (e)) :=
⋃

e′ 6=e∈E(Hi)

E(F (e′)). (2.1)

Now F (e) is the graph whose vertices are the endpoints of the edges in E(F (e)), and edge set
E(F (e)). The graph F (e) is called the Witness-Set of edge e. Note that in (2.1) the union is taken
only over the edges of H. In particular in the bootstrap process when a copy of H is completed on
the set of vertices, say, V (H), there might be additional edges in the graph induced by V (H), and
the union is not taken over such edges.

The Red Edge Algorithm. Let G be a graph, and e ∈ 〈G〉H\G.

• Run the Witness-Set Algorithm until the edge e is infected.
• Let (ea1 , ea2 , . . . , eam) be the infected edges which satisfy F (eaj ) ⊆ F (e), where eam = e

and a1 < a2 < . . . < am.
• Call the set of edges Se := {ea1 , ea2 , . . . , eam} red edges, and note that eaj ∈ Haj\(Ha1 ∪
. . . ∪Haj−1).

Therefore F (e) = (Ha1 ∪ . . . ∪Ham) \{ea1 , ea2 , . . . , eam}.
For an edge e ∈ 〈G〉H\G run the Red-Edge Algorithm, and let Se = {ea1 , ea2 , . . . , eam}. Then

for t ∈ [m], define
Bt(e) := (Ha1 ∪ . . . ∪Hat)\{ea1 , . . . , eat}.

Also, define a graph Gt(e), obtained using the Red Edge Algorithm whose vertices are the graphs
{Ha1 , Ha2 , . . . ,Hat}, and in which two nodes Hai , and Haj are adjacent if they share at least one
common edge.

Let us now make few remarks about the Red Edge algorithm. First note that, if e = ei for some
i = 1, 2, . . . , k, then F (e) can be interpreted as the subset of G that causes the infection of e. For



4 E. BAYRAKTAR AND S. CHAKRABORTY

Figure 1. Example of the running of the Witness-set algorithm and the Red Edge algorithm

each j = 1, 2, . . . ,m, the condition F (eaj ) ⊆ F (e) implies that Haj\{ea1 , ea2 , . . . , eam} ⊆ F (f) for
some f ∈ Ham . In words, at the j-th step in the Red Edge algorithm eaj is added and Haj is
completed. The condition F (eaj ) ⊆ F (e) ensures the graph Gm is connected (this will be useful
in our proof; see Lemma 2.1, Lemma 2.4 and Lemma 2.5 below for more details). In Lemma 2.4
below we obtain an upper bound on the number of edges in Bt, which will be used to obtain the
lower bound in Theorem 1.1.

We now provide an explicit example to illustrate the Witness-set algorithm and the Red Edge
algorithm in Figure 1. In this figure, the nodes of G are given by the set {A,B,C,D,E, F,G,H},
and the edges of G are drawn in black. The edges of 〈G〉H\G are drawn in red, where H is a triangle
(complete graph on three vertices). We first ordered the edges in 〈G〉H\G and marked them by
e1, e2, . . . , e7, and the triangle completed by adding them are ABC,ACD,BCD,FGH,ADE,BAE,
and CDE respectively. Now let us run the Witness-set algorithm until the edge e = e5 gets infected,
we get

F (e1) = {AB,BC}, F (e2) = {AB,BC,CD}, F (e3) = {BC,CD}, F (e4) = {GF,GH},
F (e5) = {DE,AB,BC,CD}.

Now in the Red Edge algorithm, for e = e5 we have Se = {e1, e2, e3, e5} and

B1(e5) = {AB,BC}, B2(e5) = {AB,BC,CD}, B3(e5) = {AB,BC,CD}, B4(e5) = {AB,BC,CD,DE}.
Here note, for example, that B3(e5) 6= F (e3), and B1(e3) = F (e3) = {BC,CD}. Also, quantities

such as B3(e3) does not make sense.
Let us now start with two basic results. For an edge e ∈ 〈G〉H\G run the Red-Edge Algorithm,

and let Se = {ea1 , ea2 , . . . , eam}. Then consider the graph Gm(e), whose vertices are the graphs
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{Ha1 , Ha2 , . . . ,Ham}, and in which two nodes Hai , and Haj are adjacent if E(Hai) ∩ E(Haj ) is
non-empty. With this notation, the first one (Lemma 2.1) states that the graph Gm(e) is connected,
and the second one (Lemma 2.3) ensures that all witness sets can not be very large.

Lemma 2.1. Let F (e) be a Witness-Set for e on the graph G. Then Gm(e) is a connected graph.

Proof of Lemma 2.1. Take f ∈ F (e). Then we claim that there is a path in Gm(e) from Ham to
Hat for some t ∈ [m], where f ∈ E(Hat). Indeed, since f ∈ F (e) either f ∈ E(Ham), in which case

we are done or there is an f1 ∈ E(Ham) such that f belongs to the Witness-Set of f1. Let H(1) be

the copy of H that was created by the Red-Edge algorithm by the addition of f1 (note that H(1)

and Ham must be two different copies of H). Clearly, Ham and H(1) are adjacent in Gm(e). Then

again either f ∈ E(H(1)), in which case we are done or there is an f2 ∈ E(H(1)) such that f belongs

to the Witness-Set of f2. Let H(2) be the copy of H that was created by the Red-Edge algorithm
by the addition of f2 (note that H(2), H(1), and H(am) must be three different copies of H). Again,

H(2) and H(1) are adjacent in Gm(e). Continuing this similarly the claim is proved since there are
only m distinct copies of H that were created by the Red-Edge algorithm.

Now for j ∈ [m], F (eaj ) ⊆ F (eam). Since the set F (eaj ) is non-empty, there exists an edge
f ∈ F (eaj ) ∩ F (e). Thus there is a t ∈ [m], such that there is a path in Gm from Ham to Hat and
f ∈ E(Hat). Also since f ∈ F (eaj ), there is a path from Haj to Hat′ such that f ∈ E(Hat′ ). These
give f ∈ E(Hat) ∩E(Hat′ ). Therefore either t = t′ or Hat and Hat′ are neighbors. Thus there is a
path from Ham to Haj . �

Remark 2.2. It is not difficult to see that Gt(e) is not necessarily a connected graph for all t ∈ [m].
Nevertheless, we will only use the fact that Gm(e) is connected to deduce Lemma 2.5 from Lemma
2.4.

Lemma 2.3. Let F (e) be an Witness-Set for e on the graph G. Let L ∈ N. If e(F (e)) ≥ L, then
there exists an edge f ∈ E (〈G〉H) with

L ≤ e(F (f)) ≤ e(H)L (2.2)

in the same realization of the Witness-Set algorithm.

Proof of Lemma 2.3. Firstly, if e(F (e)) ≤ e(H)L then we can take f = e, and we are done. Oth-
erwise, consider an instance of the Witness-Set algorithm when e1, e2, . . . , el are already infected,
and after that f is next in line to be infected. Then by (2.1)

e(F (f)) ≤ e(H) max
1≤i≤l

e(F (ei)).

In other words e(F (f)) ≤ e(H)e(F (ei)) for 1 ≤ i ≤ l. Therefore if e(F (e)) > e(H)L one witness
set satisfying (2.2) must be created in the process with F (f) ⊂ F (e). �

The following lemma provides us the key estimate to establish the lower bound. Let us fix some
notations before stating the lemma. Let lt denote the number of components of Gt(e). Also let
ct(v) denote the number of components of Gt(e) containing the vertex v ∈ V (G), and define

kt :=
∑

v∈V (Bt)

(ct(v)− 1).

We are now ready to state the lemma and the proof is deferred to the end of this section.

Lemma 2.4. For r ≥ 3, s ≥ 3, and r ≤ (s− 2)2 + s we have

e(Bt(e)) ≥
rs− 2

r + s− 2
(v(Bt(e)) + kt − lt(r + s))) + lt(rs− 1).
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Note that Lemma 2.1 gives Gm(e) is a connected graph, and hence lm = 1, and km = 0. Now
the following lemma is immediate from Lemma 2.4.

Lemma 2.5. Recall that λ(r, s) = rs−2
r+s−2 , under the conditions of Lemma 2.4 we have

e(F (e)) ≥ λ(r, s) (v(F (e))− 2) + 1. (2.3)

Next we will show that the expected number of witness sets is asymptotically negligible when p
is smaller than certain threshold. For each m ∈ N and every e ∈ E(Kn), define

Ym(e) = |{F ⊂ Gn,p : e ⊂ V (F ), and e(F ) = m ≥ λ(r, s) (v(F )− 2) + 1}|.
Here, Ym(e) counts the number of subgraphs F of Gn,p whose vertex set contains the end points

of edge e, and has m ≥ λ(r, s) (v(F )− 2) + 1 edges.

Lemma 2.6. Let r, s ≥ 3, epn1/λ(r,s)(log n)rs ≤ λ(r, s)2. Then there exists a constant C(r, s) such
that for sufficiently large n,

E(Ym(e)) ≤ C(r, s)

n1/λ(r,s)

(
m+ C(r, s)

2rs log n

)m−λ(r,s)−1
,

for m ≤ rs log n.

Proof of Lemma 2.6. Now for a fixed m, let l ∈ N be maximal such that m ≥ λ(r, s) (l − 2) + 1.
Therefore v(F ) ≤ l, and hence

E(Ym(e)) ≤
l−2∑
j=0

(
n

j

)((j
2

)
m

)
pm ≤

l−2∑
j=0

(
n

j

)(( l
2

)
m

)
pm ≤

l−2∑
j=0

(
n

j

)(
l2/2

m

)
pm ≤ 2nl−2

(
epl2

2m

)m
.

The first inequality is a crude upper bound of number of possible F that has at most l vertices
and exactly m edges. Note that the sum runs up to l − 2 since F must contain the endpoints of
the edge e. In the last inequality we used

l−2∑
j=0

(
n

j

)
≤

l−2∑
j=0

nj ≤ nl−2
(

1 +
1

n
+

1

n2
+ . . .

)
≤ 2nl−2.

Since m ≤ rs log n, for a sufficiently large constant C(r, s) we have l ≤ m−1
λ(r,s) + 2 ≤ C(r, s) log n.

Therefore pl2 = o(1), and consequently epl2

2m = o(1). We also have m ≥ λ(r, s) (l − 2)+1. Combining
these and the last display we have

E(Ym(e)) ≤ 2nl−2
(
epl2

2m

)m
≤ 2

(
n1/λ(r,s)

epl2

2m

)λ(r,s)(l−2)(
epl2

2m

)
.

Let C(r, s) > 0 be large enough such that m(m+ C(r, s)) ≥ (m+ 2λ(r, s))2 ≥ (λ(r, s)l)2. Then
we will have

l2

m
≤ m+ C(r, s)

λ(r, s)2
.

Hence using m ≤ rs log n, we have (enlarging the constant C(r, s) if needed)

epl2

m
≤ C(r, s)

n1/λ(r,s)
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Using the last three displays we immediately have

E(Ym(e)) ≤ C(r, s)

n1/λ(r,s)

(
n1/λ(r,s)

ep(m+ C(r, s))

2λ(r, s)2

)λ(r,s)(l−2)
≤ C(r, s)

n1/λ(r,s)

(
m+ C(r, s)

2rs log n

)λ(r,s)(l−2)
.

Finally using the facts m ≤ rs log n, and the fact that λ(r, s) (l − 2) > m − λ(r, s) − 1 (since l is
maximal such that m ≥ λ(r, s) (l − 2) + 1) we have

E(Ym(e)) ≤ C(r, s)

n1/λ(r,s)

(
m+ C(r, s)

2rs log n

)m−λ(r,s)−1
.

�

Proposition 2.7. Let r, s ≥ 3, and e ∈ E(Kn). If epn1/λ(r,s)(log n)rs ≤ λ(r, s)2 then

P
(
e ∈ 〈Gn,p〉Kr,s

)
→ 0

as n→∞.

Proof of Proposition 2.7. We shall prove that, for every e ∈ E(Kn),

P
(
e ∈ 〈Gn,p〉Kr,s

)
→ 0

as n → ∞. For an edge e ∈ 〈Gn,p〉Kr,s
, consider the set F = F (e) ⊂ Gn,p, obtained using the

Witness-Set Algorithm. There can be two cases: in the first case e ∈ Gn,p, or in the second case
(when e /∈ Gn,p), we must have e ∈ 〈Gn,p〉Kr,s

\Gn,p using Lemma 2.5 we will get an Witness-Set

F = F (e) such that
e(F ) ≥ λ(r, s) (v(F )− 2) + 1.

Now let us assume e(F ) ≤ log n for the time being. In the second case we must have Ym(e) ≥ 1 for
some

λ(r, s) (r + s− 2) + 1 ≤ m ≤ log n.

Using Markov’s inequality and Lemma 2.6 we have the probability that e ∈ 〈Gn,p〉Kr,s
is at most

p+

logn∑
m=λ(r,s)(r+s−2)+1

E(Ym(e)) ≤ p+
C(r, s)

n1/λ(r,s)

logn∑
m=λ(r,s)(r+s−2)+1

(
m+ C(r, s)

2rs log n

)m−λ(r,s)−1
.

Since r+s ≥ 6 and λ(r, s) > 1 we have each term in the last sum going to zero as n→∞ and there

are at most log n terms. Hence the factor n−1/λ(r,s) ensures the whole term in the last display goes
to zero as n→∞.

We are now left with the part e(F ) > log n. In this case Lemma 2.3, gives that there must be
an edge f in Kn such that log n ≤ e(F (f)) ≤ rs log n. Therefore Ym(f) ≥ 1 for some log n ≤ m ≤
rs log n Now using Lemma 2.6, the union bound, and Markov’s inequality the probability that such
an edge exists is at most(

n

2

)
C(r, s)

n1/λ(r,s)

rs logn∑
m=logn

(
m+ C(r, s)

2rs log n

)m−λ(r,s)−1
≤ n2 C(r, s)

n1/λ(r,s)

(
2

rs

)logn−λ(r,s)−1
.



8 E. BAYRAKTAR AND S. CHAKRABORTY

Here we use the fact that the function
(
x+C(r,s)
2rs logn

)x
is decreasing in the interval [log n, rs log n] for

sufficiently large n and rs ≥ 9. To complete the proof we again use rs ≥ 9, and ensure that the
last display is converging to zero as n→∞. �

Now we will prove Lemma 2.4, which will complete the proof of the lower bound.

Proof of Lemma 2.4. To simplify the notation, in this proof we will write Bt(e) = Bt, and Gt(e) =
Gt. We will do induction on t. If t = 1 then v(B1) = r + s, e(B1) = rs − 1, l1 = 1, and k1 = 0.
Therefore

e(B1) = rs− 1 =
rs− 2

r + s− 2
(v(B1) + k1 − l1(r + s))) + l1(rs− 1).

Thus the lemma holds for t = 1. For t ≥ 2 we break it down into three cases.

Case I. lt = lt−1 + 1.
In this case all edges of Kt

r,s are new (an edge e ∈ Kt
r,s is called new when e /∈ Ki

r,s for i =
1, 2, . . . , t − 1). Indeed, otherwise if it shares an edge with already existing edges then it must
belong to one of the components of Gt−1 but Gt has one more component than Gt−1. Therefore

e(Bt) = e(Bt−1) + rs− 1.

Let b be the number of vertices of Kt
r,s that are not new. Hence v(Bt) = v(Bt−1) + r + s − b

and kt = kt−1 + b (these b vertices are in one more component in Gt than in Gt−1). Let us now use
these and the induction hypothesis for t− 1 to get

e(Bt) ≥
(

rs− 2

r + s− 2

)
(v(Bt−1) + kt−1 − lt−1(r + s))) + lt−1(rs− 1) + rs− 1

=

(
rs− 2

r + s− 2

)
(v(Bt)− r − s+ b+ kt − b− (lt − 1)(r + s))) + (lt−1 + 1)(rs− 1)

=

(
rs− 2

r + s− 2

)
(v(Bt) + kt − lt(r + s))) + lt(rs− 1).

Therefore the lemma is proved for lt = lt−1 + 1.

Case II. lt = lt−1.
In this case Kt

r,s shares at least one edge with some component C1 of Gt−1. Also all other edges

that are not shared with C1 must be new. Let b be the number of vertices of Kt
r,s\C1 which are

not new and a be the number of vertices in Kr,s ∩ C1. We have the following inequality now

e(Bt) ≥ e(Bt−1) + rs− 1− |{edges shared with C1}|
Using the induction hypothesis

e(Bt) ≥
(

rs− 2

r + s− 2

)
(v(Bt−1) + kt−1 − lt−1(r + s)))+lt−1(rs−1)+rs−1−|{edges shared with C1}|

Here note that v(Bt) = v(Bt−1) + r + s− a− b, kt = kt−1 + b, Thus

e(Bt) ≥
(

rs− 2

r + s− 2

)
(v(Bt)− r − s+ a+ kt − lt(r + s)))+lt(rs−1)+rs−1−|{edges shared with C1}|
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Finally we have

e(Bt) ≥
(

rs− 2

r + s− 2

)
(v(Bt) + kt − lt(r + s))) + lt(rs− 1)

+ (a− r − s)
(

rs− 2

r + s− 2

)
+ rs− 1− |{edges shared with C1}|.

Therefore we will be done if we show that

(a− r − s)
(

rs− 2

r + s− 2

)
+ rs− 1− |{edges shared with C1}| ≥ 0. (2.4)

Divide the vertices of Kr,s into an r-subset, and an s-subset, such that each vertices one of these
subset has an edge to every vertices of the other subset. Now we denote |Kt

r,s ∩ C1| = a, and let

Kt
r,s ∩ C1 consists of P vertices from the r-subset and Q vertices from the s-subset. Therefore
|{edges shared with C1}| = PQ. Since at least one edge is shared 1 ≤ P ≤ r, and 1 ≤ Q ≤ s.
Therefore showing (2.4) reduces to the problem to showing

(P +Q− r − s)
(

rs− 2

r + s− 2

)
+ rs− 1− PQ ≥ 0 (2.5)

subject to the conditions 1 ≤ P ≤ r, and 1 ≤ Q ≤ s. Let us prove this with the additional
constraint 1 ≤ P + Q ≤ r + s − 1. Note that if we want to show (2.5) for a fixed P , then it is
sufficient to check this for the endpoints i.e. Q = 1 and Q = s (since for a fixed P (2.5) is linear in
Q). Therefore we must check for each 1 ≤ P ≤ r − 1 the following hold

(P − 1)

(
rs− 2

r + s− 2

)
+ 1− P ≥ 0, and (P + s− 2)

(
rs− 2

r + s− 2

)
+ 1− sP ≥ 0.

Again both these equations are linear in P and therefore we check these equations for P = 1, r− 1.
For P = 1 the first one trivially holds, and the second one is

(s− 1)

(
rs− 2

r + s− 2

)
+ 1− s = (s− 1)

(
rs− 2

r + s− 2
− 1

)
It is easy to show that rs−2

r+s−2 is non-decreasing both in r and s and therefore the last expression is
non-negative as long as r, s ≥ 2. Similarly, for P = r − 1 the first one

(r − 2)

(
rs− 2

r + s− 2

)
+ 1− (r − 1) = (r − 2)

(
rs− 2

r + s− 2
− 1

)
≥ 0.

For P = r − 1 the second one boils down to the condition

(r + s− 3)

(
rs− 2

r + s− 2

)
+ 1− s(r − 1) =

(
(s− 2)2 + s− r

r + s− 2

)
≥ 0.

Therefore we have shown (2.5) for 1 ≤ P ≤ r − 1, and 1 ≤ Q ≤ s. Let us check this for P = r and
Q = s− 1. Indeed, since r ≥ s, we have

(r + s− 1− r − s)
(

rs− 2

r + s− 2

)
+ rs− 1− r(s− 1) =

(r − 2)2 + r − s
r + s− 2

≥ 0.

The proof of is complete as long as |Kt
r,s ∩ C1| ≤ r + s− 1. Finally if |Kt

r,s ∩ C1| = r + s, then no

new vertices were added by addition of Kt
r,s and v(Bt) = v(Bt − 1). Therefore e(Bt) ≥ e(Bt−1).

In this case we also have |Kt
r,s ∩ Cc1| = 0 and hence kt = kt−1. Hence the proof is complete when

lt = lt−1.
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Case III. lt < lt−1.
Let m = lt−1−lt+1. Kt

r,s shares at least one edge with edge with the components C1, C2, . . . , Cm,
and it does not share any edge with the other components. Note that m ≥ 2. Therefore

e(Bt) ≥ e(Bt−1) + rs− 1−
m∑
i=1

|{edges shared with Ci}|.

Let P(m) denote the set of all subsets of {1, 2, . . . ,m} and for S ∈P(m) define

aS = |{v ∈ Kt
r,s : v ∈ Cj ⇔ j ∈ S}|.

Here aS counts the number of nodes of Kt
r,s that are in Cj for j ∈ S, and are not in any other

component. Let a = |Kt
r,s ∩ {C1 ∪ . . . ∪ Cm}|, and b = number of vertices in Kt

r,s\{C1 ∪ . . . ∪ Cm}
which are not new. Here v(Bt) = v(Bt−1) + r + s − a − b. Since Kt

r,s merges the components
{C1 ∪ . . . ∪ Cm} we have if S = {j ∈ [m] : v ∈ Cj} then ct(v) = ct−1(v) − |S| + 1. Therefore
kt ≤ kt−1 + b− c where c =

∑
S∈P(m) aS (|S| − 1).

Now we have

e(Bt) ≥ e(Bt−1) + rs− 1−
m∑
i=1

|{edges shared with Ci}|

≥
(

rs− 2

r + s− 2

)
(v(Bt−1) + kt−1 − lt−1(r + s))) + lt−1(rs− 1)

+ rs− 1−
m∑
i=1

|{edges shared with Ci}|

Plugging in the estimates we get

e(Bt) ≥
(

rs− 2

r + s− 2

)
(v(Bt) + kt − lt(r + s))) + lt(rs− 1)

+

(
rs− 2

r + s− 2

)
(a+ c− 2m) +m−

m∑
i=1

|{edges shared with Ci}|.

Therefore we will be done if we show(
rs− 2

r + s− 2

)
(a+ c− 2m) +m ≥

m∑
i=1

|{edges shared with Ci}|.

Now let us note that a =
∑

S∈P(m) aS , and hence a+ c =
∑

S∈P(m) aS |S|. Therefore we will have
to prove

m∑
i=1

|{edges shared with Ci}| ≤
(

rs− 2

r + s− 2

) ∑
S∈P(m)

aS |S| − 2m

+m (2.6)

Note that |Kt
r,s ∩ Cj | =

∑
{S∈P(m):S3j} aS , and consequently we have the following simple but

important identity
m∑
j=1

|Kt
r,s ∩ Ci| =

m∑
i=1

∑
{S∈P(m):S3i}

aS =
∑

S∈P(m)

aS |S|.
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Now the inequality (2.6) becomes equivalent to the following

m∑
i=1

|{edges shared with Ci}| ≤
(

rs− 2

r + s− 2

)( m∑
i=1

|Kt
r,s ∩ Ci| − 2m

)
+m

Next step is to turn it into an optimization problem. Let Kt
r,s ∩ Ci consists of Pi vertices from

the r-subset and Qi vertices from the s-subset of Kt
r,s for i = 1, 2, . . . ,m. We will be done if we

prove the following for Pi ≥ 1, Qi ≥ 1, and
∑m

i=1 Pi ≤ r,
∑m

i=1Qi ≤ s.

m∑
i=1

PiQi ≤
(

rs− 2

r + s− 2

)( m∑
i=1

(Pi +Qi)− 2m

)
+m,

Lemma 2.8 gives that this is true with an additional constraint
∑m

i=1(Pi + Qi) ≤ r + s − 1. The
only case remains when

∑m
i=1(Pi + Qi) = r + s . In this case left side of the equation is at most

rs−m To see this,
We have

∑m
i=1 Pi = r,

∑m
i=1Qi = s, and using Cauchy-Schwarz (

∑m
i=1 PiQi)

2 ≤
∑m

i=1 P
2
i

∑m
i=1Q

2
i .

Also
∑m

i=1 PiQi will be maximized if Pi = CQi and therefore C = r/s. Hence the maximum value
is

m∑
i=1

PiQi =
r

s

m∑
i=1

Q2
i =

r

s

(
m∑
i=1

Qi)
2 −

m∑
i=1

m∑
j=1,j 6=i

QiQj

 ≤ r

s

s2 − m∑
i=1

m∑
j=1,j 6=i

Qj


=
r

s

(
s2 −

m∑
i=1

(s−Qi)

)
=
r

s

(
s2 −ms+ s

)
= rs− rm+ r.

Now rs − rm + r ≤ rs −m iff m ≥ r/r − 1. Which is trivially true since m ≥ 2. Therefore the
right side is (

rs− 2

r + s− 2

)
(r + s− 2m) +m = rs− 2 + (2− 2m)

(
rs− 2

r + s− 2

)
+m

≥ rs− 2 + (2− 2m) +m = rs−m,
and the proof therefore is complete. �

Let us prove the following technical Lemma that we have used in the proof of Lemma 2.6.

Lemma 2.8. Let m ≥ 2 and 3 ≤ s ≤ r, Pi ≥ 1, Qi ≥ 1, and
∑m

i=1 Pi ≤ r,
∑m

i=1Qi ≤ s,∑m
i=1(Pi +Qi) ≤ r + s− 1, then

m∑
i=1

PiQi ≤
(

rs− 2

r + s− 2

)( m∑
i=1

(Pi +Qi)− 2m

)
+m,

Proof of Lemma 2.8. We will use induction on m. For m = 2, we need to show

P1Q1 + P2Q2 ≤
(

rs− 2

r + s− 2

)
(P1 +Q1 + P2 +Q2 − 4) + 2.

If we fix any 3 of (P1, Q1, P2, Q2) then it becomes linear in the remaining variables. Therefore it
is sufficient to verify this for the endpoints: (1, 1, r − 1, 1), (1, 1, 1, s− 1), (1, 1, 1, 1), (r − 1, 1, 1, s−
2), (r − 2, 1, 1, s− 1), (r − 1, s− 2, 1, 1), (r − 2, s− 1, 1, 1).
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It trivially holds for (1, 1, 1, 1). For (1, 1, 1, s− 1), (1, 1, r− 1, 1), it is easy using the fact that for
r, s ≥ 3, rs−2

r+s−2 ≥ 1.For (1, 1, r − 1, s− 2), (using r, s ≥ 3, and 2x2 − 7x is increasing for x ≥ 7/4 )(
rs− 2

r + s− 2

)
(r + s− 1− 4) + 2− 1− (r − 1)(s− 2) =

2r2 − 7r + s2 − 5s+ 12

r + s− 2
≥ 3(s− 2)2

(r + s− 2)
≥ 0.

For (r − 2, s− 1, 1, 1) we again use r, s ≥ 3, and x2 − 5x is increasing for x ≥ 5/2,(
rs− 2

r + s− 2

)
(r + s− 1− 4) + 2− 1− (r − 1)(s− 2) =

2s2 − 7s+ r2 − 5r + 12

r + s− 2
≥ 3(s− 2)2

(r + s− 2)
≥ 0.

Finally for both the cases (r − 1, 1, 1, s − 2), and (r − 2, 1, 1, s − 1) we need to verify the same
inequalities and since rs−2

r+s−2 ≥ 1 we immediately have(
rs− 2

r + s− 2

)
(r + s− 1− 4) + 2− (r − 1 + s− 2) = (r + s− 5)

(
rs− 2

r + s− 2
− 1

)
≥ 0.

Hence the lemma is proved for m = 2. Now assume that the lemma holds for m− 1. Then

m∑
i=1

PiQi ≤
(

rs− 2

r + s− 2

)(m−1∑
i=1

(Pi +Qi)− 2(m− 1)

)
+m− 1 + PmQm

=

(
rs− 2

r + s− 2

)( m∑
i=1

(Pi +Qi)− 2m

)
+m+ (2− Pm −Qm)

(
rs− 2

r + s− 2

)
− 1 + PmQm.

Since m ≥ 2,
∑m

i=1 Pi ≤ r, and Pi ≥ 1, we have Pm ≤ r −
∑m−1

i=1 Pi ≤ r − m + 1 ≤ r − 1 and
similarly Qm ≤ s− 1. To finish the proof we will show for 1 ≤ Pm ≤ r − 1, 1 ≤ Qm ≤ s− 1,

(2− Pm −Qm)

(
rs− 2

r + s− 2

)
− 1 + PmQm ≤ 0.

Again it is sufficient to check for the endpoints (1, 1), (1, s − 1), (r − 1, 1), (r − 1, s − 1). For (1, 1)
it is trivial. For (1, s− 1), and (r − 1, 1), we only need rs−2

r+s−2 ≥ 1. Finally for (r − 1, s− 1)

(4− r − s)
(

rs− 2

r + s− 2

)
− 1 + (r − 1)(s− 1) =

−(r − 2)2 − (s− 2)2

r + s− 2
≤ 0,

completing the proof. �

3. Upper bound for Kr,s percolation

For the upper bound we directly appeal to the Proposition 3 from [2]. Let us recall the definition
of balanced graph before we state the proposition.

Definition 3.1. A graph H is called balanced if e(H) ≥ 2v(H)− 2, and

e(F )− 1

v(F )− 2
≤ λ(H) :=

e(H)− 2

v(H)− 2
(3.1)

for every proper subgraph F ⊂ H with v(F ) ≥ 3.

We are now ready to state the proposition that we are going to use to obtain an upper bound.

Proposition 3.2. If H is a balanced graph then

pc(n,H) ≤ C
(

log n

log log n

)2/λ(H)

n−1/λ(H) (3.2)

for some constant C = C(H) > 0.



Kr,s GRAPH BOOTSTRAP PERCOLATION 13

The following Lemma establishes the upper bound by verifying that Kr,s is a balanced graph as
long as r is not much larger than s.

Lemma 3.3. For r ≥ s, Kr,s is a balanced graph for r ≥ 4, s ≥ 3, and r ≤ (s− 2)2 + s.

Proof of Lemma 3.3. The first task is to verify that rs ≥ 2(r + s)− 2. To check this observe that
for r = 4, and s = 3 it holds, and rs− 2(r+ s) + 2 is increasing in both r and s as long as r, s > 2.
Next we verify (3.1). It is easy to see that rs−1

r+s−1 and rs−1
r+s−2 are increasing function of both r and

s. Therefore to verify (3.1) it is enough to verify for the endpoints, that is rs−2
r+s−2 ≥

r(s−1)−1
r+s−1−2 and

rs−2
r+s−2 ≥

(r−1)s−1
r−1+s−2 . The first one is true since r ≥ s, indeed

rs− 2

r + s− 2
≥ (r − 1)s− 1

r − 1 + s− 2
⇔ (r − 2)2 + r − s ≥ 0.

The second one is true by our assumption

rs− 2

r + s− 2
≥ (r − 1)s− 1

r − 1 + s− 2
⇔ (s− 2)2 + s− r ≥ 0.

�

4. Proof of the general lower bound (Proposition 1.3)

In this section we obtain a lower bound for pc(n,Kr,s) in the unbalanced case. To see this note
that for a graph G on n vertices if we have 〈G〉Kr,s

= Kn, then we also have 〈G〉Kr′,s′
= Kn for any

r′ ≤ r, and s′ ≤ s. Therefore

P(〈Gp〉Kr′,s′
6= Kn) ≤ P(〈Gp〉Kr,s

6= Kn)

Now pick r′(≤ r) and s′(≤ s) such that r′ ≤ (s′ − 2)2 + s′. Then P(〈Gp〉Kr′,s′
6= Kn) →

1 as n → ∞ if epn1/λ(r
′,s′)(log n)r′s′ ≤ λ(r′, s′)2 (by Lemma 2.7). Therefore pc(n,Kr,s) ≥

λ(r′, s′)2(e log n)−1n−1/λ(r
′,s′). Using this and taking the supremum over all such r′, s′ we get

the lower bound
(e log n)−1 sup

r′≤r,s′≤s,r′≤(s′−2)2+s′
λ(r′, s′)

2
n−1/λ(r

′,s′).

Finally since x2n−1/x is increasing in x for x > 0, we obtain the following supremum is equal to

(e log n)−1λ((s− 2)2 + s, s)
2
n−1/λ((s−2)

2+s,s),

completing the proof.
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[4] Béla Bollobás. Weakly k-saturated graphs. In Beiträge zur Graphentheorie (Kolloquium, Manebach, 1967), pages
25–31. Teubner Leipzig, 1968.
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