K,; GRAPH BOOTSTRAP PERCOLATION

ERHAN BAYRAKTAR AND SUMAN CHAKRABORTY

ABSTRACT. A graph G percolates in the K. ;-bootstrap process if we can add all missing edges of G
in some order such that each edge creates a new copy of K, s, where K, ; is the complete bipartite
graph. We study K, s-bootstrap percolation on the Erdds-Rényi random graph, and determine
the percolation threshold for balanced K, s up to a logarithmic factor. This partially answers a
question raised by Balogh, Bollobas, and Morris. We also establish a general lower bound of the
percolation threshold for all K, , with r > s > 3.

1. INTRODUCTION

For a given graph H, the H-bootstrap process is defined as follows. Let G be a graph on vertex
set [n] :={1,2,...,n} and K,, be the complete graph on the same set of vertices. Set Gy = G and
define, for each t > 0,

Gt+1 =Gy U {6 € E(Kn) :dH withee H C Gy U {6}}

Let (G)y = Ui>0Gy. Here (G) is the closure of G under the H-bootstrap process. We say G
percolates under the H-bootstrap process on K, if (G) = Kj.

Recently this process was studied by Balogh, Bollobas, and Morris for G = G, p, where Gy, ), is
the random graph on n vertices in which each edge is present independently with probability p. In
[2], they defined the critical threshold for H-bootstrap percolation on K, as follows:

pe(n, H) :=inf{p: P ((G)y = K,) > 1/2}
In this short article we study upper and lower bounds of p.(n, H) for H = K, 5, where K, is the
complete bipartite graph with r vertices in one part and s in the other. Here and throughout the
paper we will assume r > s > 3 without loss of generality. Let
rs—2
"2
The following theorem is the main result of this paper.

A(r, s) :==

Theorem 1.1. Let r > 4, s > 3, and s < r < (s — 2)2 + s. Then there exist constants
c(r,s),C(r,s) > 0 such that for large enough n,

log n 2/A(r,s)
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Remark 1.2. This partially answers a question by Balogh, Bollobds, and Morris; see Problem 5 in
[2]. For the case K3, some results have been recently obtained that we discuss in the next section.
In the next proposition we obtain a general lower bound on p.(n, K,s). One can also obtain a
general lower bound using Proposition 25 in [2], but for K, ; the following proposition provides a
better lower bound.

Proposition 1.3. For any r,s > 3,
pc(n,Kr,s) > (elog n)—l)\((s _ 2)2 + s, 5)2,’1—1/)\((8—2)24-8,8).

1.1. Related results. Graph bootstrap percolation is an example of cellular automata introduced
by von Neumann [12] (see also [0]). Bollobas [1] introduced H-bootstrap percolation, which is also
known as weak saturation. Extremal questions are well studied when H = K, (see [1], [7], and [9]).

More recently, graph bootstrap percolation has been studied on random graphs (see [5] for an
exposition on random graphs). In the context of the Erdds-Rényi random graph Balogh, Bollobds,
and Morris [2] obtained the following result regarding K, bootstrap percolation. It was shown that
for r > 4, and n € N, sufficiently large

n_1/>‘(7") 1/)

o <pe(n,K;) <n” /AT logn,

2elogn
where \(r) = (ﬁ)_;2 Recently, extremal results have been studied for H = K, 5, where K, 5 is the
complete bipartite graph with one part containing r nodes, and s nodes in the other. In [3], the

authors considered a related process called saturation. A graph G is called called H saturated if G
does not contain a copy of H, and adding any missing edge in G completes a new copy of H. In
[5], it was shown that if K, , is K, s saturated then it must have at least (r +s—2)n — (r +s—2)?
edges, confirming a conjecture in [11] up to an additive constant. In [11] the authors studied the
weak saturation of K, s in K, ,, and showed that if it is K, s-weakly saturated in a bipartite graph,
then it has at least (2s — 2+ o(1))n edges, when s < r. Weak saturation of K, in K, has been
studied in [10]. In the context of random graph the authors in [2] proposed the problem (Problem
5 in [2] ) to determine p.(n, K, ), at least up to a poly-logarithmic factor, for all r,s € N. It was

shown in [2] that
logn 1
pe(n, Kag) =~ 1.0 <> '
n n

Recently some progress has been made for bipartite graphs of the form Ks;. In [3], it was shown
that

1
pC(naKZA) =0 (nlO/13) .

A lower and upper bound for Ky is also obtained in [3] for ¢ > 4. Our result complements the
results in [3], and determines p.(n, K, s) up to poly-logarithmic factor when the graph is balanced
(see Definition 3.1). We also obtain a general lower bound for p.(n, K, s) when r,s > 3.

1.2. Remarks on the proof. Our proof of the lower bound in Theorem 1.1 is based on the witness
set algorithm introduced in [2]. The main idea involves two steps. The first step is to show that
if a graph G percolates under the K, s-bootstrap process on K, then there exists an witness set
(see Section 2 for the precise definition) satisfying certain extremal properties. The second step
is to show that if p is below a certain threshold then there is no such set with high probability,
that is, with probability going to one as the size of the graph goes to infinity. Although we use
the same algorithm to establish the extremal properties of the witness set, the steps involved are
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different from those used in [2] to prove bounds on the K,-bootstrap process, and the analysis of
the algorithm leads to a different optimization problem than in the case of K. Interestingly the
condition required to establish the lower bound for K, using the witness set algorithm is also
necessary to show that K, s is balanced. Our lower bound works for r,s > 3. The upper bound
directly uses Proposition 3 from [2?]. The assumptions in their proposition are valid when r > 4
and s > 3.

2. LOWER BOUND FOR K. 3 PERCOLATION

A novel Witness-Set algorithm was introduced in [2] in the context of K,-bootstrap percolation.
We first fix some notations and then recall the algorithm for H-bootstrap percolation, for any finite
graph H. We start with a graph G, and run the H-bootstrap process, that is we add the edges in
(G) ;\G one by one. The edges in (G);;\G are called infected edges. First, let us fix an ordering
of the edges (eq, ez, ..., e;) in (G);\G. More precisely, e; is the first edge that was added (we also
say ‘ep is infected’) and H' is the copy of H that was completed by adding e; (if more than one is
completed we arbitrarily choose one), and continuing similarly for i = 2,3, ..., k, let e; be the i-th
edge that was added (or infected), and H® be the copy of H that was completed by adding e; (if
more than one is completed we arbitrarily choose one). We are now ready to state the Witness-Set
algorithm.

Witness-Set Algorithm. Assign a graph F'(e) C G, to each edge e € (G) ;. The set of edges of
F(e), denoted by E(F(e)) is obtained as follows:

o If e € G then set E(F(e)) = {e}.

e If e =¢; for some i =1,2,...,k then

E(F(e)):= |J EF()). (2.1)

e/#ecE(HY)

Now F'(e) is the graph whose vertices are the endpoints of the edges in E(F'(e)), and edge set
E(F(e)). The graph F'(e) is called the Witness-Set of edge e. Note that in (2.1) the union is taken
only over the edges of H. In particular in the bootstrap process when a copy of H is completed on
the set of vertices, say, V(H), there might be additional edges in the graph induced by V (H), and
the union is not taken over such edges.

The Red Edge Algorithm. Let G be a graph, and e € (G);\G.

e Run the Witness-Set Algorithm until the edge e is infected.
e Let (€qys€ay- - -»€a,,) be the infected edges which satisfy F'(e,,) C F(e), where e,,, = e
and a1 < as < ... < Q.
e Call the set of edges Se := {€a;,€ay,---;€a, | red edges, and note that e,, € H\(H" U
L UH%L),
Therefore F(e) = (H*™ U...UH*)\{eq,, €ays---€a, |
For an edge e € (G);\G run the Red-Edge Algorithm, and let S, = {eq,,€qs,- -, €q,, - Then
for t € [m], define
Bi(e) := (H" U...UH")\{ea,---,€a}
Also, define a graph % (e), obtained using the Red Edge Algorithm whose vertices are the graphs
{H™ H® ... H"} and in which two nodes H%, and H% are adjacent if they share at least one
common edge.
Let us now make few remarks about the Red Edge algorithm. First note that, if e = e; for some
i=1,2,...,k, then F(e) can be interpreted as the subset of G that causes the infection of e. For
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FiGURE 1. Example of the running of the Witness-set algorithm and the Red Edge algorithm

each j =1,2,...,m, the condition F(e,;) C F(e) implies that H%\{e4,, €ay; - -,€a,, } S F(f) for
some f € H. In words, at the j-th step in the Red Edge algorithm e,; is added and H% is
completed. The condition F'(e,;) € F(e) ensures the graph %, is connected (this will be useful
in our proof; see Lemma 2.1, Lemma 2.4 and Lemma 2.5 below for more details). In Lemma 2.4
below we obtain an upper bound on the number of edges in B;, which will be used to obtain the
lower bound in Theorem 1.1.

We now provide an explicit example to illustrate the Witness-set algorithm and the Red Edge
algorithm in Figure 1. In this figure, the nodes of G are given by the set {A, B,C,D,E,F,G,H},
and the edges of G are drawn in black. The edges of (G) ;;\G are drawn in red, where H is a triangle
(complete graph on three vertices). We first ordered the edges in (G);\G and marked them by
e1,€s,...,er, and the triangle completed by adding them are ABC, ACD,BCD, FGH,ADE, BAFE,
and CDF respectively. Now let us run the Witness-set algorithm until the edge e = e5 gets infected,
we get

F(e1) ={AB,BC}, F(es) = {AB,BC,CD}, F(e3) ={BC,CD}, F(e4) = {GF,GH},

F(es) = {DE, AB, BC,CD}.
Now in the Red Edge algorithm, for e = e5 we have S, = {e1, e2,e3,e5} and
Bi(es) = {AB, BCY}, Bay(es) = {AB, BC,CDY, By(es) = {AB, BC,CD}, By(es) = {AB, BC,CD, DE}.
Here note, for example, that Bs(es) # F(e3), and Bi(e3) = F(e3) = {BC,CD}. Also, quantities
such as Bs(e3) does not make sense.

Let us now start with two basic results. For an edge e € (G) ;;\G run the Red-Edge Algorithm,
and let S = {eq;,€a9,---;€q,, - Then consider the graph ¥%,,(e), whose vertices are the graphs
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{H",H*,...,H%}, and in which two nodes H%, and H% are adjacent if E(H%) N E(H%) is
non-empty. With this notation, the first one (Lemma 2.1) states that the graph %, (e) is connected,
and the second one (Lemma 2.3) ensures that all witness sets can not be very large.

Lemma 2.1. Let F(e) be a Witness-Set for e on the graph G. Then %,,(e) is a connected graph.

Proof of Lemma 2.1. Take f € F(e). Then we claim that there is a path in ¢,,(e) from H*" to
H® for some t € [m], where f € E(H®). Indeed, since f € F(e) either f € E(H®), in which case
we are done or there is an f; € E(H%) such that f belongs to the Witness-Set of f;. Let H() be
the copy of H that was created by the Red-Edge algorithm by the addition of f; (note that H @
and H% must be two different copies of H). Clearly, H*" and H) are adjacent in %,(e). Then
again either f € E(H™), in which case we are done or there is an fo € E(H™) such that f belongs
to the Witness-Set of fo. Let H® be the copy of H that was created by the Red-Edge algorithm
by the addition of fy (note that H @ H® and H@m) must be three different copies of H ). Again,
H® and HM are adjacent in %, (e). Continuing this similarly the claim is proved since there are
only m distinct copies of H that were created by the Red-Edge algorithm.

Now for j € [m], F(eq;) C F(eq,,). Since the set F(e,,) is non-empty, there exists an edge
[ € F(eq;) N F(e). Thus there is a t € [m], such that there is a path in ¢, from H%" to H® and
f € E(H®™). Also since f € F(eq,), there is a path from H% to H% such that f € E(H* ). These
give f € E(H™)N E(H® ). Therefore either t =t or H* and H* are neighbors. Thus there is a
path from H%" to H%. O

Remark 2.2. It is not difficult to see that ¥ (e) is not necessarily a connected graph for all ¢ € [m].
Nevertheless, we will only use the fact that %,,(e) is connected to deduce Lemma 2.5 from Lemma
2.4.

Lemma 2.3. Let F(e) be an Witness-Set for e on the graph G. Let L € N. If e(F(e)) > L, then
there exists an edge f € E ((G)y) with

L < e(F(f)) < e(H)L (2.2
in the same realization of the Witness-Set algorithm.

Proof of Lemma 2.3. Firstly, if e(F(e)) < e(H)L then we can take f = e, and we are done. Oth-
erwise, consider an instance of the Witness-Set algorithm when e, eq, ..., ¢; are already infected,
and after that f is next in line to be infected. Then by (2.1)

(F(f)) < e(H) max e(F(c).

In other words e(F'(f)) < e(H)e(F(e;)) for 1 < i <. Therefore if e(F(e)) > e(H)L one witness
set satisfying (2.2) must be created in the process with F'(f) C F(e). O

The following lemma provides us the key estimate to establish the lower bound. Let us fix some
notations before stating the lemma. Let /; denote the number of components of % (e). Also let
¢t(v) denote the number of components of ¥4 (e) containing the vertex v € V(G), and define

ko= Y (alv) = 1).
veV (By)

We are now ready to state the lemma and the proof is deferred to the end of this section.

Lemma 2.4. Forr >3, 5> 3, andr < (s —2)% + s we have

e(By(e)) > 22

> =5 WB) + ke = Llr + 9))) + lu(rs — ).
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Note that Lemma 2.1 gives ¢, (e) is a connected graph, and hence l,, = 1, and k,, = 0. Now
the following lemma is immediate from Lemma 2.4.

Lemma 2.5. Recall that \(r,s) = r’::’;fz, under the conditions of Lemma 2.4 we have

e(F(e)) > Ar,s) (v(F(e)) —2) + 1. (2.3)
Next we will show that the expected number of witness sets is asymptotically negligible when p
is smaller than certain threshold. For each m € N and every e € E(K,,), define
Yi(e) ={F CGnp:e CV(F), and e(F) =m > A(r,s) (v(F) — 2) + 1}].
Here, Y, (e) counts the number of subgraphs F' of Gy, , whose vertex set contains the end points
of edge e, and has m > A\(r,s) (v(F) —2) + 1 edges.

Lemma 2.6. Let r,s > 3, epn'/"%) (logn)rs < (r, 3)2. Then there exists a constant C(r,s) such
that for sufficiently large n,

C(ﬁ 8) <m + C’(r, 8)>m—>\(7‘,s)—1

E(Yin(e)) < /(s

)

2rslogn

for m < rslogn.

Proof of Lemma 2.6. Now for a fixed m, let [ € N be maximal such that m > A(r,s) (I — 2) + 1.
Therefore v(F') <[, and hence

-2 j 1—2 ! 1-2 9 g\ ™
n\ ((3) n\ [ (5) n\ [1%/2 _o(epl
E(Y, < 2 )pm < 2/ )pm < m <ot ) .
( ’"(e))—.z(j)(m)p —Z(j><m e ) U =
7=0 7=0 7=0
The first inequality is a crude upper bound of number of possible F' that has at most [ vertices

and exactly m edges. Note that the sum runs up to I — 2 since F' must contain the endpoints of
the edge e. In the last inequality we used

=2 -2 1 1

Z<> anj < nl2 (1++2+...> < op'~2.

. J . n o n

7=0 7=0
Since m < rslogn, for a sufficiently large constant C(r,s) we have [ < % +2 < C(r,s)logn.

Therefore pl? = o(1), and consequently % = o(1). We also have m > A(r, s) (I — 2)+1. Combining
these and the last display we have

2\ ™ 2\ Alr,s)(1—2) 2
(Y (e)) < 20\ <€pl> <9 <n1/A(ns>€Pl> <6Pl >

2m 2m 2m

Let C(r,s) > 0 be large enough such that m(m + C(r,s)) > (m + 2A(r, s))? > (A(r, 5)])?. Then
we will have
E o mA C(r,s)
mT M)t
Hence using m < rslogn, we have (enlarging the constant C(r, s) if needed)
epl? < C(r,s)
m n1/>‘(7‘75)
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Using the last three displays we immediately have
C(r,s) (1 jameep(m+ Clr,5)\ 02
n1/>‘(7'75) " 2)\(7“, 5)2
C(r,s) (m+C(r,s) A(rs)(1=2)
= pl/A(rs) 2rslogn :

Finally using the facts m < rslogn, and the fact that A(r,s) (I —2) > m — A(r,s) — 1 (since [ is
maximal such that m > A(r,s) (I —2) + 1) we have

C(r,s) (m+C(r,s) m=A(rs)=1
nl/)\(r,s) :

E(Ym(e))

E(Ym(e)) <

2rslogn

Proposition 2.7. Let r,s > 3, and e € E(K,,). If epn*/2 ) (logn)rs < A(r,s)* then

P <e c (Gn,,,>KTS) =0
as n — oQ.

Proof of Proposition 2.7. We shall prove that, for every e € E(K,),
P (e € (Guply,,) =0

as n — oo. For an edge e € (Gnp)p , consider the set F' = F(e) C Gpp, obtained using the
Witness-Set Algorithm. There can be two cases: in the first case e € Gp.p, or in the second case
(when e ¢ Gy,p), we must have e € (G p) g \Gnp using Lemma 2.5 we will get an Witness-Set
F = F(e) such that 7
e(F) > X, s) (v(F) —2) + 1.

Now let us assume e(F') < logn for the time being. In the second case we must have Y, (e) > 1 for
some

Arys)(r+s—2)+1<m<logn.
Using Markov’s inequality and Lemma 2.6 we have the probability that e € (Gpp) is at most

logn logn m—A(r,s)—1
C(r,s) m+ C(r,s)
p + Z E(Ym(e)) S p + nl/A(T,S) Z < 27"3 logn ’
m=M\(r,s)(r+s—2)+1 m=A\(r,s)(r+s—2)+1

Since r+s > 6 and A(r, s) > 1 we have each term in the last sum going to zero as n — oo and there
are at most logn terms. Hence the factor n=2/*("%) ensures the whole term in the last display goes
to zero as n — 0o.

We are now left with the part e(F) > logn. In this case Lemma 2.3, gives that there must be
an edge f in K, such that logn < e(F(f)) < rslogn. Therefore Y,,(f) > 1 for some logn < m <
rslogn Now using Lemma 2.6, the union bound, and Markov’s inequality the probability that such
an edge exists is at most

n M mﬁ%n M m—>x(7",s)—1<n2m z logn—X(r,s)—1
2 ) nl/A(rs) 2rslogn =" Q/As) \ rs .

m=logn
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z+C(r,s) z
2rslogn

Here we use the fact that the function ( is decreasing in the interval [logn,rslogn] for

sufficiently large n and rs > 9. To complete the proof we again use rs > 9, and ensure that the

last display is converging to zero as n — oo. O
Now we will prove Lemma 2.4, which will complete the proof of the lower bound.

Proof of Lemma 2.4. To simplify the notation, in this proof we will write B;(e) = By, and ¥;(e) =

%,. We will do induction on t. If £ = 1 then v(By) =r+s, e(B;) =rs—1,1; =1, and k; = 0.

Therefore

Thus the lemma holds for ¢t = 1. For ¢ > 2 we break it down into three cases.

e(By))=rs—1=

CaseIl. l; =1;_1 +1. A
In this case all edges of K/ are new (an edge e € K/ is called new when e ¢ K for i =
1,2,...,t —1). Indeed, otherwise if it shares an edge with already existing edges then it must
belong to one of the components of ¢ _1 but ¥ has one more component than %;_1. Therefore
e(B;) = e(Bi—1) +rs — 1.

Let b be the number of vertices of K, that are not new. Hence v(B;) = v(Bi_1) +r+s—b
and k; = k;—1 + b (these b vertices are in one more component in % than in ¢,_;). Let us now use
these and the induction hypothesis for ¢ — 1 to get

e(B)) > (%) W(Bot) + o — L1 (r + )+l (rs — 1) + 75 — 1

= <7ff;_22) (W(B) =1 —s+b+ ki —b—(ls — 1)(r +5)) + (L1 + 1)(rs — 1)

rs — 2
= <T+S—2> (U(Bt) + kK — lt(’l” + 8))) + lt(T‘S — 1)
Therefore the lemma is proved for I; = l;_1 + 1.
CaseIl. [, =1;_4.

In this case Kﬁ s shares at least one edge with some component C; of ¢;_;. Also all other edges

that are not shared with C; must be new. Let b be the number of vertices of K}.,\C1 which are
not new and a be the number of vertices in K, ;N C;. We have the following inequality now

e(Bt) > e(Bi—1) + s — 1 — |{edges shared with C}|
Using the induction hypothesis
rs — 2

R

Here note that v(B;) = v(By—1) +r+s—a —b, ky = ki—1 + b, Thus

e(B) = <

) (v(B=1) + kt—1 — li—1(r + s)))+li—1(rs—1)+rs—1—|{edges shared with C;}|

rs —2

7"4—3—2) (v(Bt) =71 = s+ a+ ks —li(r +s)))+lt(rs—1)+rs—1—|{edges shared with C1}|
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Finally we have
rs—2
G(Bt) Z <7‘—+—5—2> (’U(Bt) + kt — lt(’r + S))) + lt(TS — ].)
rs — 2
r+s—2

+(a—r—s)<

Therefore we will be done if we show that

) +rs — 1 — |{edges shared with C1}|.

-2
(a—r—s) <r7fs—2> +rs — 1 — |{edges shared with Cy}| > 0. (2.4)

Divide the vertices of K, s into an r-subset, and an s-subset, such that each vertices one of these
subset has an edge to every vertices of the other subset. Now we denote ]Kf,s N C1| = a, and let
K}, N Cy consists of P vertices from the r-subset and @ vertices from the s-subset. Therefore
|{edges shared with C1}| = PQ). Since at least one edge is shared 1 < P < r, and 1 < @ < s.
Therefore showing (2.4) reduces to the problem to showing

rs — 2

@+Q‘T‘”<%th

subject to the conditions 1 < P < r, and 1 < Q < s. Let us prove this with the additional
constraint 1 < P+ @ < r+ s — 1. Note that if we want to show (2.5) for a fixed P, then it is
sufficient to check this for the endpoints i.e. Q =1 and @ = s (since for a fixed P (2.5) is linear in
Q). Therefore we must check for each 1 < P <r — 1 the following hold

rs —2 rs —2

(P-1)| ——— _

r4+s—2 r+s—2

Again both these equations are linear in P and therefore we check these equations for P = 1,r — 1.
For P =1 the first one trivially holds, and the second one is

rs —2 rs —2
-1 —— l—-s=(s—-1)|————1
(s )<r—|—5—2>+ s=(s )<r+5—2 )
It is easy to show that fjs_i is non-decreasing both in r and s and therefore the last expression is

non-negative as long as r, s > 2. Similarly, for P = r — 1 the first one
rs — 2 rs—2

-2) ——— 1-(r—-1)=@r—-2)| ——=—-1) >0.

r-n () - e-n=0-2 JE

For P = r — 1 the second one boils down to the condition
rs —2 (s=2)22+s—r

-3 1— —1) = > 0.

(r+s )<r+s—2)+ s(r—1) < T >_

Therefore we have shown (2.5) for 1 < P <r —1, and 1 < @ < s. Let us check this for P =r and
(@ = s — 1. Indeed, since r > s, we have
rs —2 (r—22%+r—s

N s

(rts " S)<r—|—s—2 r+s—2
The proof of is complete as long as |Kf,5 NCy| <r+s—1. Finally if |K}fs NCy| =r+ s, then no
new vertices were added by addition of K7, and v(B;) = v(B; — 1). Therefore e(B;) > e(B;-1).

In this case we also have |Kﬁs N C{| = 0 and hence k; = k;—1. Hence the proof is complete when
le =1li—q.

>+rs—1—PQ>O (2.5)

>+1—P>0, and(P+s—2)< >—|—1—3P>0.

> 0.

>+rs—1—r(s—1):
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Case III. [; < ;1.
Let m =1 —1;+1. Kﬁs shares at least one edge with edge with the components C1,Cs, ..., Cy,,
and it does not share any edge with the other components. Note that m > 2. Therefore

e(By) > e(Bi—1) +rs—1— Z |{edges shared with C;}|.
i=1
Let &2(m) denote the set of all subsets of {1,2,...,m} and for S € &(m) define
as=H{ve Kl ,:veC;ejeS}

Here ag counts the number of nodes of K}, that are in C; for j € S, and are not in any other
component. Let a = [K},N{C1U...UCp}|, and b = number of vertices in K} \{C1U...UCy,}
which are not new. Here v(B;) = v(Bi—1) + 7+ s —a —b. Since K;f’s merges the components
{C1U...UCy} we have if S = {j € [m] : v € C}} then ¢ (v) = ¢—1(v) — |S| + 1. Therefore
kt < ki—1 4+ b — ¢ where ¢ = } g (1) as (|S] = 1).

Now we have

e(By) > e(Bi—1)+rs—1— Z |[{edges shared with C;}|

i=1

> <”‘2) (0(Bio1) + kit — boa(r + ) + i (rs — 1)

m
+rs—1— Z |{edges shared with C;}|
i=1
Plugging in the estimates we get
B(Bt) Z (

rs —2

7“+S—2> (v(Bt) + ke —l(r+s))) + L(rs —1)

rs — 2 " .
+ (M) (a+c—2m)+m— ; |{edges shared with C;}|.

Therefore we will be done if we show

rs —2 m
_rsTe B - ' .
<r +5— 2> (at+c—2m)+m= ;1 |{edges shared with C;}|

Now let us note that a = }-gc () as, and hence a + ¢ = 3 gc 5, as|S|. Therefore we will have
to prove

G —2
E |{edges shared with C;}| < <r::98_2> E ag|S| —2m | +m (2.6)
i—1 Se(m)

Note that |[K}, NCj| = (e (m):$35} s, and consequently we have the following simple but
important identity

ZlyKﬁ,smCi\—Z Y ag= > aglSl.
iz

i=1 {SeP(m):53i} SeP(m)
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Now the inequality (2.6) becomes equivalent to the following

< | —
Z |{edges shared with C;}| (r e ) (Z |K, N Ci 2m> +m

=1
Next step is to turn it into an optimization problem. Let Kf,’s N C; consists of P; vertices from

the r-subset and @); vertices from the s-subset of K}f’s fort=1,2,...,m. We will be done if we
prove the following for P, > 1, Q; > 1,and > ;" P, <r, > ", Qi <s.

ZPQZ_ <r—|—8—2> (i(awo—zm) +m,

i=1
Lemma 2.8 gives that thls is true with an additional constraint » ;" (P; + Q;) < r + s — 1. The
only case remains when » /" (P; + Q;) = r + s . In this case left side of the equation is at most
rs —m To see this,
We have Y| P, =r,> 1", Q; = s, and using Cauchy-Schwarz (Y10 PiQ;)* < >t P2Y"" Q7.
Also Y7, P;Q; will be maximized if P; = CQ; and therefore C = r/s. Hence the maximum value
is

ZPiQi:;ZQ?:g O Qi) Z Z =3 -3 ) @
i=1 i=1 i=1 i=1 j=1,; i=1 j=1,j£i

_r 52_m s — =—(s°>—ms+s)=rs—rm+r
—S< > QJ) 8( +5) e

i=1
Now rs —rm +r < rs —m iff m > r/r —1. Which is trivially true since m > 2. Therefore the
right side is
(TS_Q) (r+s—2m)+m=rs—2+(2—2m) <TS_2) +m
r+s—2 r+s—2
>rs—24(2—-2m)+m=rs—m,
and the proof therefore is complete. O

Let us prove the following technical Lemma that we have used in the proof of Lemma 2.6.

Lemma 2.8. Letm > 2 and 3 < s < v, P, > 1, Qi > 1, and Y%, P, < v, 3372, Qi < s,
Yo (P4 Qi) <r+s—1, then

2 m
ZPQZ < <r+s—2> (;(PZ—FQZ) —2m> +m,
Proof of Lemma 2.8. We will use induction on m. For m = 2, we need to show
rs—2
P1Q1+ PQ2 < (7“—1—5—2) (PL+ Q1+ P+ Q2 —4)+2.

If we fix any 3 of (P1,Q1, P2, Q2) then it becomes linear in the remaining variables. Therefore it
is sufficient to verify this for the endpoints: (1,1, —1,1),(1,1,1,s —1),(1,1,1,1),(r — 1,1,1,s —
2),(r—2,1,1,s—1),(r—1,s —2,1,1),(r —2,s — 1,1, 1).
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It trivially holds for (1,1,1,1). For (1,1,1,s—1),(1,1,r —1,1), it is easy using the fact that for
(1,1,7 — 1,5 — 2), (using r, s > 3, and 222 — 7x is increasing for > 7/4 )

r?2 —Tr+s? —b5s+ 12 S 3(s —2)?

rs —2

_ —1-4)+2—-1—-(r—1)(s—2) = > 0.
<r+s—2>(r+s )+ (r=1(s-2) r+s—2 T (r+s-2)
For (r — 2,5 —1,1,1) we again use r,s > 3, and 2% — 5z is increasing for z > 5/2,

—2 2 Ts+r2—5r+12 _ 3(s—2)?
<TS)(T+S—1—4)+2—1—(r—1)(s—2): SoTskr—sr+12 36—

r+s—2 r+s—2 “(r+s—-2)
Finally for both the cases (r — 1,1,1,s — 2), and (r — 2,1,1,s — 1) we need to verify the same

inequalities and since rf;_% > 1 we immediately have

rs — 2 rs — 2
_— —1-4)+2—-(r—-1 —2) = -5 |———-1]) >0.
<r+s—2>(r+5 JF2-(r=lts=2)=(r+s ><r+5—2 >—

Hence the lemma is proved for m = 2. Now assume that the lemma holds for m — 1. Then

ZPQz < <7~Ts__2> (i (P + Qi) —2<m—1)> +m =1+ PpnQum

=1

rs—2 i rs —2
= <T+S_2> (;(B"‘Qi)_Qm) +m+ (2= Pyn—Qn) <r+s—2> — 1+ PpQm.

Since m > 2, 3> P < r, and P; > 1, we have P,, < T—Z:.Z—llPi <r—-m+1<r—1and
similarly @,, < s — 1. To finish the proof we will show for 1 < P,, <r—-1,1 <@y, <s—1,

(2_Pm_Qm) <TS_2>_1+PQOSO-

r4+s—2
Again it is sufficient to check for the endpoints (1, 1), (1, (r—1,1),(r—1,s —1). For (1,1)
1. Flnally for (r—1,s —1)

— 1),
it is trivial. For (1,5 — 1), and (r — 1,1), we only need - ”’ 5 >
—(r—2)?—(s—2)°

(4—r—s)<7j5—22)—1+(r—1)(s—1> T+ s_2

completing the proof. O

<0,

3. UPPER BOUND FOR K, ¢ PERCOLATION

For the upper bound we directly appeal to the Proposition 3 from [2]. Let us recall the definition
of balanced graph before we state the proposition.

Definition 3.1. A graph H is called balanced if e(H) > 2v(H) — 2, and
e(F)—1
v(F)—2 "~

for every proper subgraph F C H with v(F) > 3.

(3.1)

We are now ready to state the proposition that we are going to use to obtain an upper bound.
Proposition 3.2. If H is a balanced graph then
logn 2/A(H)
pe(n,H) < C| —=— n~1/AH) (3.2)
loglogn
for some constant C' = C(H) > 0.
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The following Lemma establishes the upper bound by verifying that K,  is a balanced graph as
long as r is not much larger than s.

Lemma 3.3. Forr > s, K, s is a balanced graph forr >4, s >3, and r < (s — 2)2 + s.

Proof of Lemma 3.3. The first task is to verify that rs > 2(r 4+ s) — 2. To check this observe that
for r =4, and s = 3 it holds, and rs — 2(r + s) + 2 is increasing in both r and s as long as r, s > 2.

Next we verify (3.1). It is easy to see that T’f;_ll and r’fs__12 are increasing function of (botiq r and
rs—2 r(s—1)—1
>

s. Therefore to verify (3.1) it is enough to verify for the endpoints, that is 3 2 a2

rs—2 > (7’—1)5—1
r+s—2 = r—1+4+s-2

and

. The first one is true since r > s, indeed
rs—2 S (r—1)s—1
r+s—-2"r—-1+s-2

The second one is true by our assumption

rs—2 - (r—1)s—1

r+s—2"r—1+s5—-2

S (r—22+r—5>0.

s (5=2)2%+s—1r>0.

4. PROOF OF THE GENERAL LOWER BOUND (PROPOSITION 1.3)
In this section we obtain a lower bound for p.(n, K, ) in the unbalanced case. To see this note
that for a graph G on n vertices if we have (G); = K, then we also have (G)f , = K, for any

r’ <r, and s’ < s. Therefore
PGy, , # Kn) <P(Gr) ., # Ku)
Now pick (< r) and §'(< s) such that ' < (s’ — 2)? + ¢'. Then P((Gp) , , # Kn) —

1as n — oo if epn'/2 "5 (logn)r's’ < A(’,s')* (by Lemma 2.7). Therefore pe(n, K,s) >
A, s') (elogn)~tn~1/A"s)  Using this and taking the supremum over all such /,s' we get
the lower bound
(elogn)™? sup A, s/)2n_1/)‘(rl’sl).
r'<r,s'<s,r'<(s'—2)2+s’

Finally since z2n~ Y% is increasing in x for z > 0, we obtain the following supremum is equal to
(elogn)TA((s — 2)% + s, S)2n71/>\((572)2+5,s)7
completing the proof.
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