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We present a multi-stage model for jet evolution through a quark-gluon plasma within the
JETSCAPE framework. The multi-stage approach in JETSCAPE provides a unified descrip-
tion of distinct phases in jet shower contingent on the virtuality. We demonstrate a simultaneous
description of leading hadron and integrated jet observables as well as jet v, using tuned param-
eters. Medium response to the jet quenching is implemented based on a weakly-coupled recoil

prescription. We also explore the cone-size dependence of jet energy loss inside the plasma.
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1. Introduction

Jet evolution through the QGP is characterized by several distinct phases depending on jet
virtualities, and different energy loss mechanisms are essential to describe each stage. A multi-
stage approach within the JETSCAPE framework provides a unified description of the jet shower,
including a high-virtuality gluon-splitting phase and a low-virtuality scattering-dominated phase.
In these proceedings, we report a comprehensive study of multi-stage jet evolution by performing
a model-to-data comparison to constrain the jet quenching parameter in heavy-ion collisions.

2. Unified approach in JETSCAPE

Throughout this study, a dynamically evolving QGP created in Pb-Pb collisions at y/sy y = 5.02
TeV is simulated using (2 + 1)-D VISHNU [1] with fluctuating TRENTo [2] initial conditions,
followed by free-streaming and dissipative fluid dynamics. Hard partons produced by PYTHIA [3]
with initial state radiation (ISR) and multi-parton interaction (MPI) are initialized in the transverse
plane by TRENTo profiles for initial binary collisions. These partons then evolve through the
hydrodynamic medium. The multi-stage energy loss formalism consists of MATTER [4, 5] for
the high-virtuality stage and LBT [6, 7] for the low-virtuality stage. The phase spaces for the two
energy loss models are separated by a switching virtuality Qg. The simulation of p+p collisions is
performed by MATTER vacuum showers using the JETSCAPE PP19 tune [8].

MATTER is a Monte-Carlo event generator for partons with virtuality O > Q. Parton splittings
are described by a generalized Sudakov form factor, which includes vacuum and medium-modified
parton splitting functions. The in-medium contribution, which induces transverse momentum
broadening of jets, ¢, in a QGP, is estimated based on the Higher-Twist energy loss model [9-11].
We have used a hard thermal loop technique [12] to formulate §.

The time-ordered in-medium shower in LBT for low virtuality partons relies on solving a
linearized Boltzmann equation with in-medium kernels. The model contains leading order 2 — 2
elastic and 2 — 2 + n inelastic scatterings, where » indicates multiple gluon radiation. The Higher-
Twist formalism evaluates the average number of emitted gluons from a hard parton, which follows
the Poisson distribution.

The switching virtuality Qg is set to 1, 2, and 3 GeV, and a value of g = 0.25 is used for
the strong coupling to determine the quenching parameter §. Our previous analysis of the single
hadron and jet nuclear modification factor R4 4 constrained these model parameters [13]. Both the
MATTER and the LBT in-medium showers implemented recoil partons based on a weakly-coupled
picture to reproduce the medium response to jet quenching. The energies and momenta originating
from incoming thermal partons during jet-medium scattering (holes) are subtracted from the jet
signals in the final state.

3. Results

The left panel of Fig. 1 shows the jet cross section in p+p collisions at \/syn = 5.02 TeV
with two rapidity cuts, normalized by the PYTHIA predictions. The pr dependence of the jet
cross-section is consistent with data for jet pr > 200 GeV at mid-rapidity. The ratio of the jet
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Figure 1: Comparison between the results obtained from the JETSCAPE PP19 tune at \/syny = 5 TeV
and measurements. (Left) Inclusive jet cross-section with |y;.,| < 0.3 [14], normalized by the PYTHIA
predictions. (Right) Ratio of the iet spectra for R = 0.2 to 0.8 with respect to R = 1.0 [151.
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Figure 2: Inclusive jet R4 4 in central (top panel) and peripheral (bottom panel) Pb-Pb collisions at \/sy v =
5.02 TeV with various R and Qg values [15].

cross-section with various R with respect to R = 1.0 is displayed in the right panel in Fig. 1.
The angular dependence of the jet R44 is well reproduced by the MATTER vacuum shower in
JETSCAPE with the PP19 tune.

We present the jet R44 with various R and switching virtualities Qg in central and peripheral
Pb+Pb collisions in Fig. 2. We consistently observe stronger jet quenching with larger values of Qy.
The parton shower in the high-virtuality phase (MATTER) is dominated by virtuality splitting, but
the low-virtuality phase (LBT) is largely affected by scatterings, which induce jet p7 broadening.
This accounts for the jet R4 4 being more suppressed when the LBT phase starts at higher virtuality
Q. The jet R44 independent to R leads to the Ra4 ratio with respect to R = 1.0 consistent with
unity unity as shown in Fig. 3. This monotonic behavior is independent of centrality and jet pr,
implying that the jet energy contained within R < 0.2 generally dominates the jet R44 value. The
steeply falling jet shape function shown in the left panel of Fig. 4 supports this interpretation.
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Figure 3: Ratio of jet R44 as a function of R with respect to R = 0.2 in central (a-b) and peripheral (c-d)
Pb-Pb collisions with two jet pr intervals. The data is calculated from the jet R4 4 results shown in Fig. 7
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Figure 4: (Left) Jet shape function for R = 0.4 jets in central Pb-Pb collisions [16]. (Right) Anisotropic
flow coeflicients v, and v3 for jets at peripheral Pb-Pb collisions [17].

However, a rigorous investigation of recoils would be necessary as their influence on jet shape is
expected to be significant at larger R.

The right panel in Fig. 4 shows the jet v, and v3 in peripheral Pb-Pb collisions. The observed
non-zero v, for high-energy jets originates from the path-length dependent jet quenching in an
almond-shaped QGP. The vanishing jet v3 within the statistical uncertainties is consistent with the
data.

4. Conclusion

We have studied jet modification using a unified approach within the JETSCAPE framework.
The results for the jet cross-section in pp collisions using the JETSCAPE PP19 tune show good
agreement with data. The multi-stage model with a combination of MATTER and LBT provides
a simultaneous description of the integrated and differential jet observables. Our future work will
investigate recoils for the detailed jet quenching mechanism at large R.
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