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Abstract

We consider pattern-forming fronts in the complex Ginzburg-Landau equation with a trav-
eling spatial heterogeneity which destabilizes, or quenches, the trivial ground state while pro-
gressing through the domain. We consider the regime where the heterogeneity propagates
with speed c just below the linear invasion speed of the pattern-forming front in the associated
homogeneous system. In this situation, the front locks to the interface of the heterogeneity
leaving a long intermediate state lying near the unstable ground state, possibly allowing for
growth of perturbations. This manifests itself in the spectrum of the linearization about the
front through the accumulation of eigenvalues onto the absolute spectrum associated with the
unstable ground state. As the quench speed c increases towards the linear invasion speed,
the absolute spectrum stabilizes with the same rate at which eigenvalues accumulate onto it
allowing us to rigorously establish spectral stability of the front in L2(R).

The presence of unstable absolute spectrum poses a technical challenge as spatial eigen-
values along the intermediate state no longer admit a hyperbolic splitting and standard tools
such as exponential dichotomies are unavailable. Instead, we projectivize the linear flow, and
use Riemann surface unfolding in combination with a superposition principle to study the evo-
lution of subspaces as solutions to the associated matrix Riccati di↵erential equation on the
Grassmannian manifold. Eigenvalues can then be identified as the roots of the meromorphic
Riccati-Evans function, and can be located using winding number and parity arguments.

Keywords. Pattern-forming fronts, spectral stability, heterogeneity, absolute spectrum,
geometric desingularization, Riccati-Evans function.

Mathematics Subject Classification. 35B36, 35B35, 34A26.

R. Goh, Department of Mathematics and Statistics, Boston University, 111 Cummington Mall, Boston, MA
02215, USA. E-mail address: rgoh@bu.edu

B. de Rijk, Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, 85748 Garching bei
München, Germany. E-mail address: bjoern.de-rijk@tum.de

1 Introduction

In many physical settings spatial heterogeneities and growth processes have been shown to e↵ec-
tively mediate and control the formation of regular spatial patterns. Here, instead of building a
periodic structure from small random fluctuations or a localized perturbation of a homogeneous
unstable state, a heterogeneity moves through a spatial domain, progressively exciting, “trigger-
ing,” or “quenching” a system into an unstable state, from which patterns can nucleate. By control-
ling this excitation, patterns can be precisely selected, while suppressing the formation of defects.
Examples of such phenomena occur in various natural and experimental settings such as light-
sensing reaction-di↵usion systems [39, 46, 62], directional solidification of crystals [1], ion-beam
milling [47], and phase separative systems [25, 40, 44].
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Most of the recent mathematical work has focused on bifurcation and existence of pattern-
forming fronts in the presence of such a heterogeneity, connecting a stable pattern to the stable
ground state ahead of the heterogeneity. In a variety of prototypical partial di↵erential equation
models with such spatial heterogeneities [4, 27, 28, 30, 31, 48, 49], tools from dynamical systems
theory and functional analysis have been employed to establish fronts for various nonlinearities
and quenching speeds in one or two spatial dimensions. Broadly speaking, these works focus on
how characteristics of the pattern (i.e. wavenumber, amplitude, and orientation) depend on the
speed and structure of the heterogeneity. In comparison, relatively little work has been done to
characterize temporal stability of such pattern-forming fronts. Here one wishes to understand how
localized or bounded perturbations of the front grow or decay in a suitable norm.

In this work, we consider stability of pattern-forming fronts (see Figure 1) in a prototypical
model for pattern-formation: the complex Ginzburg-Landau (cGL) equation with supercritical
cubic nonlinearity,

At = (1 + i↵)Axx + �(x � ct)A � (1 + i�)A|A|2, �(⇠) = �sgn(⇠), A 2 C, x, t 2 R, (1.1)

posed in one space dimension, with dispersion parameters ↵, � 2 R, and where � : R ! R is a
heterogeneity, traveling with fixed speed c 2 R. The spatially homogeneous cGL equation with
� ⌘ 1 can be derived and justified as a universal amplitude equation near the onset of an oscillatory
instability of a trivial ground state in dissipative systems, such as a reaction-di↵usion system or
the Couette-Taylor problem, see [2, 45, 59, 60]. Pattern formation in such systems is initiated
by a localized perturbation of the destabilized ground state. Under such idealized conditions, the
localized perturbation leads to a spatial invasion process which leaves a periodic pattern in its
wake, whose wavenumber does not depend on the perturbation but only on the system parameters;
see for instance [16] and references therein. Thus, through the Ginzburg-Landau approximation,
this spatial invasion process corresponds to the existence of an invading front solution to the cGL
equation connecting a periodic pattern to the unstable ground state A = 0.

In spatially homogeneous models, it cannot be expected that such pattern-forming fronts are
stable against bounded or L2-localized perturbations (or in fact against perturbations that are small
in any translational invariant norm) as any perturbation ahead of the front will grow exponentially
in time due to the instability of the ground state. In contrast, for heterogeneous models which
progressively excite a system into an unstable state, the unstable state is only established in the
wake of the heterogeneity after which patterns start to nucleate. Consequently, perturbations can-
not grow far ahead of the interface of the pattern-forming front. This begs the question of whether
stability of quenched fronts can be rigorously established against perturbations which are small in
a translational invariant norm.

In this paper, we make the first step towards answering this question in the a�rmative. We
prove spectral stability in L2(R) of pattern-forming fronts in the cGL equation (1.1) with a step-
function heterogeneity �(⇠) = �sgn(⇠). That is, we establish that the spectrum of the linearization
of (1.1) about the front is confined to the open left-half plane, except for a simple (embedded)
eigenvalue at zero (due to gauge invariance of the cGL equation) and a parabolic touching of
continuous spectrum at the origin (due to the di↵usive stability of the periodic pattern).

Under similar spectral conditions, nonlinear stability of source defects in the cGL equation has
been obtained in [8]. Thus, we strongly expect that, using a similar approach as in [8], our spectral
results can be employed to prove nonlinear stability of the pattern-forming front as a solution
to (1.1) against L2-localized perturbations.

We again emphasize that, in contrast to the spatially homogeneous situation, we are able to
obtain spectral stability of the invading front in the space L2(R), which has a translational invariant
norm. In order to properly position our result in a broader perspective, it is useful to explore this
dichotomy in more depth and first discuss spectral stability and instability of the base state and of

2



tf
0

-1

-0.5

0

0.5

1

Figure 1: Plot of the real and imaginary parts of the triggered/quenched front solution Atf (⇠) to (1.1) with
↵ = �0.1, � = �0.2 in the co-moving frame with speed c such that clin� c = 5.8⇥10�4. Included is a plot of
the step-function heterogeneity and the stability of the pure associated homogeneous solutions, which are
the di↵usively stable periodic state Ap behind the front interface for ⇠  ⇠tf , the absolutely unstable trivial
state A = 0 for ⇠ 2 (⇠tf , 0), and the stable homogeneous state A = 0 ahead of the quenching interface for
⇠ � 0, which are “glued” together to form the front solution.

pattern-forming fronts in the spatially homogeneous system in §1.1 before stating our main result
in §1.2.

1.1 Invasion into the unstable trivial state: convective and absolute instability

In the spatially homogeneous cGL equation (1.1) with � ⌘ 1, a pattern-forming front connects the
unstable equilibrium A = 0 at x = +1 to a periodic pattern at x = �1. The speed at which this
front travels through the domain is commonly referred to as the spreading speed. It is often the
case that the linear information about the rest state can be used to predict properties, including the
spreading speed and the spatio-temporal oscillation frequency of the pattern formed in the wake,
of such an invasion front resulting from a compact perturbation of the unstable ground state. In
this case, since the linear information of the state ahead of the front dictates its invasion properties,
such fronts are referred to as pulled fronts.

The linearly selected speed can be heuristically thought of as the co-moving frame speed at
which the base state transitions from convective to absolute instability. In the case of the former,
perturbations of the unstable state grow but are convected into the far-field, while in the latter
perturbations grow both in L2-norm and also pointwise. In other words, one can think of this
speed as the minimal co-moving frame speed for which perturbations of the constant state do not
grow pointwise; see [36, 54] and [51, §2].

The transition between convective and absolute instability can also be understood in terms of
essential and absolute spectrum of the associated linearization L0 := (1 + i↵)@2

⇠ + 1 + c@⇠, written
in a co-moving frame ⇠ = x � ct and posed on L2(R,C). The essential spectrum �ess(L0) of
this operator is defined as the set of � 2 C for which L0 � � is not Fredholm with index 0;
see Appendix B.1. To characterize this set, one inserts A = e�t+⌫⇠ into the linearized equation
At = L0A, obtaining a linear dispersion relation

0 = d(�, ⌫; c) = (1 + i↵)⌫2 + c⌫ + 1 � �, ⌫, � 2 C. (1.2)

Discontinuous changes in the Fredholm index of L0 � � are then found when (1.2) has a root
⌫(�) 2 iR, and thus the essential spectrum is given by

�ess(L0) :=
n
�(1 + i↵)`2 + 1 + ci` : ` 2 R

o
,

see Figure 4 for a schematic depiction. To understand the behavior of localized perturbations
of the base state in the co-moving frame, one can pose L0 on a weighted L2-space with norm
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L2
�(R,C)

:=
R
|e�⇠ f (⇠)|2d⇠, which penalizes or allows asymptotic growth depending on the weight

� 2 R. In this space, for � > 0, the Fredholm boundaries are shifted so that the essential spectrum
is given by

�ess,�(L0) :=
n
(1 + i↵)(� + i`)2 + 1 + c(� + i`) : ` 2 R

o
,

penalizing perturbations at +1, and allowing growth at �1. If there exists a � such that �ess,�(L0)
is contained in the open left-half plane, the base state is only convectively unstable. If there does
not exist such a �, perturbations grow point-wise, and thus the base state is absolutely unstable.

Absolute spectrum The transition between both types of instabilities, as c is varied, is mediated
by the location of a set in the complex plane known as the absolute spectrum, see Appendix B.2.
In our case, the absolute spectrum, ⌃⇤,abs, consists of �-values for which the linear dispersion
relation (1.2) has a pair of roots with the same real part. One readily observes that there are always
points in the set �ess,�(L0), which consists of �-values for which (1.2) possesses a root ⌫(�) with
Re ⌫(�) = �, lying to the right of ⌃⇤,abs, no matter the value of � 2 R. Thus, while not technically
part of the spectrum, intersections of ⌃⇤,abs with the right half-plane indicate absolute instabilities.
We find

⌃⇤,abs :=
(

1 �
c2

4(1 + i↵)
� (1 + i↵)`2 : ` � 0

)
, (1.3)

see Figure 4 for a schematic depiction along with �ess(L0). In our case, and in many other proto-
typical equations, the right most part of the absolute spectrum consists of branch points which are
“double-roots” of the dispersion relation (1.2). That is, they are (�, ⌫)-pairs which satisfy

0 = d(�, ⌫; c), 0 = @⌫d(�, ⌫; c).

Such a root, readily calculated to be

�⇤,br(c) = 1 �
c2

4(1 + i↵)
, ⌫⇤,br(c) =

c
2(1 + i↵)

,

thus dictates the absolute instability of the base state, with transitions occurring at speeds c with
Re �⇤,br(c) = 0.

Nonlinear invasion In our setting, with a supercritical cubic nonlinearity, the above linear in-
formation indeed characterizes the nonlinear invading front connecting a periodic pattern to the
unstable base state. That is, the front invades with the linear spreading speed clin = sup{c :
Re �⇤,br(c) > 0}, has temporal oscillation frequency given by !lin = Im �⇤,br(clin) and has leading-
order spatial decay rate ⌫lin := ⌫⇤,br(clin). In our specific case, one calculates [28]

clin = 2
p

1 + ↵2, !lin = ↵, ⌫lin =
1 � i↵
p

1 + ↵2
.

Periodic patterns in the homogeneous nonlinear equation (1.1) are relative equilibria with re-
spect to the gauge action A 7! esiA, s 2 R, and thus take the form

p
1 � k2ei(!t�kx), |k| < 1, with a

nonlinear dispersion relation, in the co-moving frame of speed c, of the form

!(k) = �↵k2
� �

⇣
1 � k2

⌘
� ck. (1.4)

Through this relation, the linear prediction for the temporal oscillation frequency !lin then gives
the selected spatial wavenumber of the pattern formed:

klin = �
� + ↵

p
1 + ↵2 +

p
1 + �2

.
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Note that the other root of (1.4) gives a wavenumber outside the domain of existence |k| < 1. Ex-
istence of pattern-forming fronts in certain parameter regimes for the homogeneous cGL equation
are considered, for example, in [65] where a phase-amplitude decomposition was used to construct
PDE fronts as traveling-waves in a real three-dimensional ODE.

Stability of freely invading front After this front in the homogeneous cGL equation (1.1) with
� ⌘ 1 has been established, one expects perturbations behind the front interface to decay di↵u-
sively as long as the periodic pattern at x = �1 is stable with spectrum lying in the closed left-half
plane only touching the imaginary axis in a quadratic tangency at the origin, see Appendix B.3
for the spectral calculations confirming this in our case. Moreover, if the front propagates with
speed c > clin, exponentially localized perturbations ahead of the front are expected to be con-
vected into the periodic bulk of the front and, if still small, decay di↵usively. This idea, which
was first proposed by Sattinger [58], can be used to prove stability of “fast” pattern-forming fronts
in exponentially weighted spaces [12, 17, 18]. Thus, upon introducing an exponential weight, the
unstable spectrum of the state ahead of the front can be stabilized.

If the front invades with the linear spreading speed clin, established above, we are right on
the boundary where spectrum could be stabilized with an exponential weight. In this case the
stability argument is more subtle, since the linearization has, after introducing the exponential
weight, spectrum up to the imaginary axis. Although stability analyses in this regime have been
carried out for invading fronts connecting a stable state to an unstable homogeneous rest state, see
for instance [5, 9, 19, 20, 26, 38], the authors are not aware of any results for pattern-forming
fronts propagating with the spreading speed clin.

1.2 Main result

Previous existence result Our main result concerns the spectral stability of pattern-forming
fronts in the cGL equation (1.1) with a step-function heterogeneity �(⇠) = �sgn(⇠). The fronts
take the form A(x, t) = ei!tAtf(x � ct), where ! 2 R gives the temporal frequency, and Atf(⇠) is a
function of the co-moving frame variable ⇠ = x � ct, which satisfies the traveling-wave ODE

0 = (1 + i↵)A⇠⇠ + cA⇠ + (�(⇠) � i!)A � (1 + i�)A|A|2, (1.5)

and connects a periodic pattern to the trivial state. That is, it has the asymptotics

lim
⇠!�1

|Atf(⇠) � Ap(⇠)| = 0, lim
⇠!1

Atf(⇠) = 0, (1.6)

where Ap(⇠) :=
p

1 � k2e�ik⇠ is a periodic solution to (1.5) for � ⌘ 1. The wavenumber k 2 (�1, 1)
relates to the frequency ! through the nonlinear dispersion relation (1.4).

The gauge action in the traveling-wave ODE can be factored out by writing (1.5) as the first-
order system in the variables ⇢ = |A| and z = A⇠/A,

z⇠ = �
1

1 + i↵

⇣
cz + �(⇠) � i! � (1 + i�)⇢2

⌘
� z2,

⇢⇠ =
1
2
⇢ (z + z) .

(1.7)

The front solution then arises as a heteroclinic connection between the points (�ik, 1 � k2� and
(z+, 0) with

z+ := �
c +

p
c2 + 4(1 + i↵)(1 + i!)

2(1 + i↵)
,
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which are equilibria of (1.7) for � ⌘ 1 and � ⌘ �1, respectively. Thus, in addition to (1.6), the
asymptotic behavior of Atf is characterized by

lim
⇠!1

A0tf(⇠)
Atf(⇠)

= z+. (1.8)

The previous work [28] rigorously established existence of such fronts and determined expan-
sions for frequency/wavenumber selection curves (!tf , ktf)(c) for speeds 0 ⌧ clin � c < 1. In this
regime, just below the linear invasion speed clin, the pattern-forming instability wants to invade
the domain faster than the speed of the inhomogeneity causing the front to “lock” to the quenching
point at ⇠ = 0, see Figure 1. In this situation, it was found that the leading-order dependence of the
wavenumber on the quenching speed c is determined by the intersection of the absolute spectrum
with the imaginary axis which, using (1.3), is found to be

⌃⇤,abs \ iR = {i!abs}, !abs = �↵ +
↵c2

2(1 + ↵2)
.

Technically, the front is the outcome of a heteroclinic bifurcation analysis in (1.7), which employs
geometric desingularization and invariant foliations to describe the unfolding in the parameters
(c,!) at (clin,!lin) of the equilibria (z0,±, 0) in (1.7) for � ⌘ 1 given by

z0,± := �
c ±

p
c2 � 4(1 + i↵)(1 � i!)

2(1 + i↵)
.

We summarize this result in the following statement. The corresponding trajectory, wavenumber,
and front interface location curves are depicted in Figure 2.

Theorem 1.1 ([28]). Let � > 0 and ↵, � 2 R be fixed such that |� � ↵| and � are su�ciently small.
Then, provided 0 < �c := clin � c ⌧ 1, there exists a pattern-forming front solution ei!tf tAtf(x� ct)
to (1.1) with frequency !tf , where Atf(⇠) is a heteroclinic solution to (1.5) whose interface

⇠tf := inf
�
⇠ : |Atf(y)| < � for y > ⇠

 
,

is located to the left of the jump heterogeneity at ⇠ = 0 at which Atf(⇠) is continuously di↵eren-
tiable. The asymptotic behavior of Atf(⇠) is described by (1.6) and (1.8) with wavenumber k = ktf
and frequency ! = !tf , which are related through the nonlinear dispersion relation (1.4). Fi-
nally, the frequency !tf , the wavenumber ktf and the rescaled front interface

p
�c ⇠tf are smooth

functions of
p
�c and we have the expansions

!tf = !abs + O
⇣
(�c)3/2

⌘
, ktf = klin + O (�c) ,

p

�c ⇠tf = ⇡
p

1 + ↵2 + O
⇣p
�c

⌘
.

This result shows that the quenching speed c selects the pattern wavenumber ktf and the loca-
tion of the front interface ⇠tf . In particular, the front interface moves away from ⇠ = 0 as c% clin,
leaving a long intermediate, or “plateau”, region where its amplitude |A| is small, see Figure 2.
Thus, for ⇠ 2 [⇠tf , 0], the profile is close to the equilibrium state A = 0, which is unstable as a
solution to (1.1) with � ⌘ 1. Hence, one might intuitively expect quenched fronts to be unstable
in this regime, with unstable modes arising in this plateau region. But, as c% clin and the plateau
region expands, the corresponding base state A = 0 becomes less unstable, in the sense that the
absolute spectrum ⌃⇤,abs, defined in (1.3) above, moves to the left, intersecting less and less of the
right-half plane.
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Figure 2: All for ↵ = �0.1, � = �0.2, c = 2.0094 so �c = 0.00058; (top left): Plot of the ⇢-component
of the solution trajectory; (top right): z-component of the solution trajectory, z0,± denote the equilibria
of (1.7) with � ⌘ 1, z+ denotes the z-unstable equilibrium of (1.7) with � ⌘ �1; (center left) plot of front
interface location dependence on quenching speed c; (bottom right): scaled plot depicting the leading-
order O(|�c|�1/2)-behavior of ⇠tf for �c small; (bottom left) dependence of asymptotic wavenumber ktf on
c. Results obtained by continuing (1.7) as a boundary value problem in parameters (c,!) using AUTO07p
(see § 9 and [28] for more detail.)

Perturbation setup and stability result This begs the question of whether modes arising from
the plateau state are actually unstable. This subtle mechanism, described heuristically in the next
subsection, underpins our spectral stability analysis and makes the upcoming stability result some-
what unexpected, especially given that, in the spatially homogeneous setting as discussed in §1.1,
unstable absolute spectrum of the base state always yields unstable (essential) spectrum of the
pattern-forming front (no matter the chosen exponential weight).

We introduce the necessary concepts to state our main result, which concerns the spectral
stability of the pattern-forming front ei!tf tAtf(x�ct) as a solution to (1.1), or equivalently, of Atf(⇠)
as a stationary solution to

At = (1 + i↵)A⇠⇠ + cA⇠ + (�(⇠) � i!tf)A � (1 + i�)A|A|2. (1.9)

Note that the temporal detuning by i!tf moves the absolute spectrum (1.3) of the base state via the
shift � 7! � � i!tf . Thus, the absolute spectrum of the base state A ⌘ 0 as a solution to (1.9) with
� ⌘ 1 is now given by

⌃0,abs := ⌃⇤,abs � i!tf =

(
1 �

c2

4(1 + i↵)
� i!tf � (1 + i↵)`2 : ` � 0

)
, (1.10)

with associated branch point �br(c) = 1 � c2

4(1+i↵) � i!tf .
We exploit the gauge invariance present in the cGL equation by decomposing in polar coordi-

nates,

Atf(⇠) = ⇢tf(⇠)ei�tf (⇠). (1.11)
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Substituting the perturbed solution A(⇠, t) = Atf(⇠)+ a(⇠, t)ei�tf (⇠) into (1.9) yields a nonlinear evo-
lution equation for the complex-valued perturbation a(⇠, t). The stability of Atf(⇠) as a solution
to (1.9) can be determined by studying the dynamics of small solutions to this perturbation equa-
tion. Therefore, we wish to split the perturbation equation in a linear and purely nonlinear part,
which is at least quadratic in a(⇠, t). However, since complex conjugation is not a linear opera-
tion, the obtained nonlinear part contains the term �(1 + i�)⇢tf(⇠)2a, which is not quadratic in a.
This problem can be resolved by introducing the variable b = a. Thus, the resulting perturbation
equation reads

at = Ltf(a, b) +Ntf(b, a),

bt = Ltf
⇣
b, a

⌘
+Ntf

⇣
b, a

⌘
,

(1.12)

where Ltf denotes the asymptotically constant linear operator

Ltf(a, b) = (1 + i↵)
✓
a⇠⇠ + 2i�0tf(⇠)a⇠ +

✓
i�00tf (⇠) �

⇣
�0tf(⇠)

⌘2
◆

a
◆

+ c
⇣
a⇠ + i�0tf(⇠)a

⌘
+ �(⇠)a � i!tfa � (1 + i�)⇢tf(⇠)2 (2a + b) ,

and Ntf is the nonlinearity

Ntf(a, b) = �(1 + i�)
⇣
(⇢tf(⇠) + a)2(⇢tf(⇠) + b) � ⇢tf(⇠)3

� ⇢tf(⇠)2(2a + b)
⌘
.

We observe that the nonlinearity in (1.12) is indeed quadratic in (a, b).
The main result of this paper is a statement about the spectrum of the linearization Ltf of (1.9)

about Atf(⇠), which is given by the linear part of the perturbation equation (1.12), and reads

Ltf

 
a
b

!
=

0
BBBBB@

Ltf(a, b)

Ltf
⇣
b, a

⌘
1
CCCCCA .

We note that Ltf is a linear di↵erential operator on L2�R,C2� with domain H2�R,C2�, but can
also be posed on the weighted space L2


�
R,C2� with domain H2


�
R,C2�, where the Sobolev spaces

Hr

�
R,C2� are defined through their norms

kuk2Hr

=

rX

i=0

Z

R
e�2|⇠|

|@i
⇠u(⇠)|2d⇠,

for r 2 N0 and  � 0, and we denote L2

�
R,C2� := H0


�
R,C2�. We note that perturbations in

L2�R,C2� are localized, whereas perturbations in L2

�
R,C2� are allowed to grow as ⇠ ! ±1 with

exponential rate less than . Hence, the spaces L2

�
R,C2� are di↵erent from the exponentially

weighted spaces used in the spatially homogeneous setting in §1.1 to stabilize the spectrum of the
unstable rest state at +1.

As mentioned before, we require that the periodic end state Ap of the pattern-forming front
at �1 is spectrally stable in L2(R) as a solution to (1.1) with � ⌘ 1. That is, the spectrum of its
linearization is confined to the open left-half plane except for a parabolic touching at the origin
due to translational invariance. Necessary and su�cient conditions for spectral stability of periodic
traveling waves (or wave trains) in the cGL equation have been obtained in [64]. In the relevant
regime |↵��| ⌧ 1 and 0 < clin� c ⌧ 1 of Theorem 1.1, a su�cient condition for spectral stability
is |↵| < 1

2

p
2, whereas spectral instability holds for |↵| > 1

2

p
2.

We are now able to state our main result which is also depicted schematically in Figure 3.

Theorem 1.2. Let ↵ 2
�
�

1
2

p
2, 1

2

p
2
�
, fix  2

�
0, 1

2clin

�
, and take the same assumptions as in

Theorem 1.1. Then, the pattern-forming front is spectrally stable as a solution to (1.1), which
entails:
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i) The spectrum of Ltf , posed on L2�R,C2�, does not intersect the closed right-half plane,
except at the origin as a parabolic curve.

ii) Posed on the exponentially weighted space L2

�
R,C2�, the operator Ltf has no spectrum in

the closed right-half plane, except for an algebraically simple eigenvalue, which resides at
the origin. Furthermore, eigenvalues near the origin lie O(|clin � c|)-close to ⌃0,abs [ ⌃0,abs.

0 0
O(ɛ13/2)

O(ɛ12)

Σ0,abs

Σ0,abs

O(ɛ12)
O(ɛ12)

Figure 3: Schematic depiction of the spectrum of the linearization Ltf about the pattern-forming front, in
both the unweighted space L2(R,C2) (left) and the weighted space L2

(R,C2) (right), including essential
spectrum (red) and point spectrum (black dots). The right plot also includes the absolute spectrum (blue
curves), ⌃0,abs, and its complex conjugate, of the trivial state A ⌘ 0 in (1.9) for � ⌘ 1, with branch points
�br(c), �br(c) denoted as blue squares. The various “big-oh” notations give the distance of the eigenvalues
and the branch points from the origin as "1 ⇠ �c1/2

& 0.

Remark 1.3. We emphasize for the parameter range in the above result that the unstable set
⌃0,abs [ ⌃0,abs is not contained in the absolute spectrum of the linearization about the front, Ltf .
This of course is because the absolute spectrum of the asymptotically constant operator Ltf is
determined by its end states which are di↵erent than for L0, the linearization about the base state,
see Appendix B.2. In more detail, this means Ltf is not a relatively compact perturbation of L0
and hence has di↵erent essential spectrum. As the absolute spectrum of each end state must lie to
the left of the essential spectrum of the linear operator, our parameter assumptions imply that the
absolute spectrum of Ltf must be contained in the open left-half plane, bounded away from the
imaginary axis.

The first assertion in Theorem 1.2 yields spectral stability of the pattern-forming front in the
translational invariant space L2(R,C2), whereas the exponential weight in assertion ii) shifts the
spectrum associated with the periodic end state at �1 to the left, and thus reveals the embedded
eigenvalue at the origin, see Figure 3. This simple eigenvalue arises due to gauge invariance of
the cGL equation. We expect that the spectral information in Theorem 1.2, i.e. assertions i) and ii)
combined, is su�cient to prove nonlinear stability of the pattern-forming front as a solution to (1.1)
via a similar approach as in [8] (cf. Hypothesis 2.3 in [8]). We do note that, in contrast to the
spatially homogeneous setting in [8], the inhomogeneous cGL equation (1.1) is not translational
invariant in ⇠ and, thus, possesses no additional eigenvalue at 0. We refer to §9.3 for further
discussion.

To gain intuitive understanding of Theorem 1.2, and to stress the di↵erence with the spatially
homogeneous setting described in §1.1, we next formally outline the expected mechanism for
stability of pattern-forming fronts in (1.1) with �(⇠) = �sgn(⇠).

1.3 Heuristic mechanism: stability of a front with absolutely unstable plateau

To develop understanding of how the spectrum of the linearization Ltf about the pattern-forming
front solution Atf(⇠) to (1.9) behaves, one can view this solution as a composite, matching, or
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0

Σ*,abs

Σ*,abs

λbr(c)
0

Σ0,abs

λbr(c)

Σ0,abs

O(ɛ13)

O(ɛ12)
O(ɛ12)

O(ɛ12)

Figure 4: Left: Plot of the essential (red) and absolute spectrum (blue) of the base state linearization L0;
Right: Absolute spectrum of the base state detuned by i!tf (blue lines) and eigenvalues (black dots) which
limit onto ⌃0,abs [ ⌃0,abs and accumulate onto the branch-points �br, �br, as "1 & 0. The various “big-oh”
notations give the rate at which the eigenvalues and the branch points of the absolute spectrum converge (as
"1 & 0).

“gluing”, of three states: the di↵usively stable asymptotic periodic pattern Ap(⇠) for ⇠ 2 (�1, ⇠tf),
the stable rest state A ⌘ 0 for ⇠ 2 (0,1), and the unstable plateau state A ⌘ 0 for ⇠ 2 (⇠tf , 0) in
between; see Figure 1. Here, we recall that A ⌘ 0 is stable as a solution to (1.9) for � ⌘ �1 and
(absolutely) unstable for � ⌘ 1.

Since the two asymptotic states of the front Atf(⇠) are stable (so that the essential spectrum of
the front is also stable), one only needs to focus on point spectrum arising from the plateau region
and from the interfaces between each state. Viewing the composite front as a gluing of two separate
fronts, one between the stable rest state and the unstable rest state across the inhomogeneity at
⇠ = 0 and another between the unstable rest state and the stable periodic pattern, the main result
of [55] gives that all but finitely many eigenvalues accumulate onto the absolute spectrum of the
plateau state as the length of the plateau region increases, or in other words, as c % clin. Due
to the introduction of the new variable b = a in the perturbation equation (1.12), the absolute
spectrum (1.10) of the plateau state is now given by ⌃0,abs [ ⌃0,abs.

Furthermore, the result in [55] also implies that, as the plateau width |⇠tf | ⇠ (�c)�1/2 increases,
the point spectrum accumulates with rate O(1/|⇠tf |

2) = O(�c) onto the branch points, �br(c), �br(c),
which lie at the right most part of the absolute spectrum ⌃0,abs [ ⌃0,abs. At the same time, recall
that as �c& 0 (i.e. c% clin) these branch points become less unstable, satisfying

Re �br(clin � �c) =
�c

p
1 + ↵2

�
�c2

4(1 + ↵2)
.

In sum, as c% clin, point spectrum accumulates onto the absolute spectrum with the same rate as
the absolute spectrum stabilizes, indicating that it may be possible for point spectrum to in fact be
stable. See Figure 4 for a schematic depiction of this phenomena, and Figure 8 below for numerical
computations of the spectrum indicating that this is indeed the case. From a phenomenological
point of view, one could interpret this potential stability as follows. If the pattern-forming front is
locally perturbed in the plateau region, the absolute instability of the nearby state A = 0 indicates
that this perturbation should grow with rate �c, but if the plateau domain is not long enough, the
perturbation might get convected into the bulk of the front and then di↵usively decay away before
it can grow and saturate the domain.
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1.4 Overview of our approach

We start by reducing complexity in the existence and eigenvalue problems through rescaling and
reparameterization, factoring out the gauge invariance in the existence problem and roughly elim-
inating the dispersion parameter ↵. Since the (transformed) linearization has asymptotically con-
stant coe�cients, we can explicitly determine its essential spectrum. This leads us to focus on the
point spectrum, posed on the exponentially weighted function space L2


�
R,C2� where eigenfunc-

tions may grow exponentially as ⇠ ! ±1 with rate smaller than . By formulating the eigenvalue
problem as a first-order system with the unbounded spatial variable ⇠ taking the role of the evo-
lutionary variable, eigenfunctions can be constructed as intersections of invariant subspaces with
certain asymptotic decay properties at ±1. In previous works studying stability of fronts, pulses,
and coherent structures, such intersections were tracked using a complex analytic function of the
spectral parameter �, known as the Evans function [37, 53], whose zeros give eigenvalue locations,
including (algebraic) multiplicity.

The main di�culty of this work arises for spectral parameter values � near ⌃0,abs [ ⌃0,abs, the
absolute spectrum of the plateau state. In this region, the spatial eigenvalues of the associated
linear system in the plateau region, ⇠ 2 (⇠tf , 0), lack a uniform spectral gap, precluding one from
regaining hyperbolicity with an exponential weight as mentioned above. Thus, to evolve subspaces
in this region, one would need a smooth, parameter-dependent change of coordinates (sometimes
referred to as an Arnold normal form [3, 29]) to unfold the dynamics in � and c. Instead of tak-
ing this approach, we take inspiration from the existence problem [28] and projectivize the linear
flow, studying the evolution of invariant subspaces as trajectories on the relevant Grassmannian
manifold. By performing an analogous “blow-up” of the linear system, and coordinatizing the
Grassmannian with frame coordinates, such trajectories are described as solutions to a matrix
Riccati di↵erential equation for each coordinate chart of the manifold. Hence one can construct
eigenfunctions by finding intersections of corresponding trajectories in the matrix Riccati equa-
tion [7, 41, 42, 56]. Given a coordinate chart of the Grassmannian manifold, intersections can be
located using a meromorphic function of the spectral parameter �, known as the Riccati-Evans
function, whose zeros are in 1-to-1 correspondence to the eigenvalues, including (algebraic) mul-
tiplicity, and whose poles indicate �-values at which trajectories have left the coordinate chart.
Such poles often occur for �-values close to the absolute spectrum where the eigenvalue problem
exhibits highly oscillatory behavior. The Riccati-Evans function was introduced quite recently
(mostly as a numerical tool) to study stability [33, 32], but has not been used near the absolute
spectrum.

We split our spectral analysis into parts by dividing the complex plane into three regions, a
neighborhood of the origin, where the branch points �br(c), �br(c) of the absolute spectrum are lo-
cated and where we find most eigenvalues accumulate as c% clin, an intermediate region bounded
away from the absolute spectrum, and a neighborhood of infinity. In the last region, standard scal-
ing arguments preclude the existence of eigenvalues. In the intermediate region, the eigenvalue
problem reduces to two coupled second-order problems in the limit c % clin, whose eigenvalues
can be bounded away using an L2-energy estimate, after which a perturbative approach allows us
to approximate the Riccati-Evans function showing it does not vanish anywhere in the region. The
first region, lying near the origin, is the most critical as it is where absolute spectrum lies and where
eigenvalues accumulate as c % clin. Here, we use a Riemann surface unfolding in combination
with the superposition principle to track the relevant trajectories in the matrix Riccati equation.
Using winding number arguments we can enclose eigenvalues in a discrete set of O((�c)3/2)-disks
D j, where the number j 2 Z \ {0} can be interpreted as the number of times eigenfunctions wind
around the fixed points of the associated Riccati equation, cf. Remark C.1. Only the most critical
disk, which contains at most two eigenvalues and is centered at the origin, intersects the closed
right-half plane. One of these eigenvalues must be 0 due to gauge invariance, whereas the other one
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must be real and negative by a subtle parity argument involving the derivative of the Riccati-Evans
function at 0.

Contributions To our knowledge, this work is the first rigorous result considering the spectral
stability of a quenched pattern-forming front. Thereby, it is a first step towards addressing nonlin-
ear stability of such pattern-forming fronts against perturbations which are small in translational
invariant norms. Broadly speaking, our result indicates that, as long as pattern-formation is con-
trolled by a spatial inhomogeneity progressively quenching the system in an unstable state, the
invasion process is expected to be stable against “natural” classes of perturbations.

We expect our analysis to be prototypical in the sense that similar mechanisms (i.e. the same
subtle dance between accumulating point spectrum and stabilizing weakly unstable absolute spec-
trum) will govern the stability of pattern-forming fronts in other important spatially inhomoge-
neous models where the quenching is suitably “fast”, such as the Swift-Hohenberg equation, the
Cahn-Hilliard equation, and certain reaction-di↵usion systems. This is discussed more in §9. At
the phenomenological level, our result shows the somewhat subtle and unexpected phenomena of a
(spectrally) stable pattern-forming front with a long plateau state lying near an absolutely unstable
base state. More generally, it contributes a novel and explanatory example to the recently growing
set of works where absolute spectrum plays a role in governing the stability and bifurcation of
coherent structures [11, 14, 21, 57]. We note that our case is novel as we exhibit a situation where
the absolute spectrum of the plateau state is unstable while the spectrum of the linearization about
the front is stable.

On the technical side, we give an example of how a matrix Riccati formulation can be used
to rigorously explore subtle behaviors in the stability problem and unfold dynamics for spectral
parameters where no hyperbolicity of spatial eigenvalues can be recovered. Our work should
also provide useful information and insight into studying more complicated problems where the
first-order system formulation of the eigenvalue problem is infinite-dimensional.

Finally, to briefly comment on the other prototypical type of invasion front which can be
controlled by a quenching mechanism, we also provide numerical results for spectral stability and
instability of quenched fronts in the cGL equation with a subcritical cubic-quintic nonlinearity.
In this case the free invasion front in the homogeneous, non-quenched, system is not pulled, but
pushed, that is the front spreads faster than predicted by the linear information about the unstable
base state. Our simulations indicate that stability is not governed by the absolute spectrum of the
plateau state, but by a single fold eigenvalue, reminiscent of snaking phenomena; see §9.4.

Outline of paper First, we introduce the Riccati-Evans function in §2 as a tool to locate point
spectrum of general second-order operators and outline its relation to the standard Evans func-
tion. Subsequently, in §3 we reduce complexity in the existence and eigenvalue problems through
rescaling and reparameterization. In §4 we summarize and slightly extend the existence result of
pattern-forming fronts in [28] to suit our needs. In §5 we formulate our spectral stability result in
the rescaled and reparameterized coordinates and sketch the set-up of our spectral analysis divid-
ing the complex plane into three regions. The analysis of the point spectrum, which is the core
of the paper, can be found in §6-§8. In particular, in the preparatory §6, we argue that no point
spectrum can reside in the outer region and we define the Riccati-Evans function for our spectral
problem. The point spectrum in the intermediate and inner regions is then studied in §7 and §8,
respectively. In §9 we discuss potential applications and extensions of our work, as well as provide
numerical results for spectral stability of fronts for parameters both inside and outside the regime
rigorously considered here. The Appendices A and B contain some background information on
exponential dichotomies, essential spectrum and absolute spectrum, whereas Appendix C provides
the detailed proofs of more technical nature, which are only summarized in the main text.
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2 The Riccati-Evans function

In this paper, we use the Riccati-Evans function as a tool to locate the critical point spectrum.
Below, we construct the Riccati-Evans function for general second-order operators posed on ex-
ponentially weighted L2-spaces.

Definition 2.1. Let ± 2 R. For r 2 N0 and n 2 N, we define the weighted Sobolev spaces
Hr
�,+(R,C

n) of r-times weakly di↵erentiable functions � : R! Cn through the associated norm

k�k2Hr
� ,+
=

rX

j=0

 Z 0

�1

����@ j
x�(x)

����
2

e�2�xdx +
Z
1

0

����@ j
x�(x)

����
2

e�2+xdx
!
.

We denote L2
�,+(R,C

n) = H0
�,+(R,C

n) and abbreviate Hr
�,(R,Cn) = Hr

(R,Cn) for  2 R.

Let k± 2 R and n 2 N. Let ⌦ ⇢ C be an open and bounded region, where we wish to locate
point spectrum of a second-order elliptic operator L : D(L) ⇢ L2

�,+(R,C
n) ! L2

�,+(R,C
n), with

domain D(L) = H2
�,+(R,C

n), given by

Lu = D@2
xu + A1(x)@xu + A0(x)u,

with D 2 Cn⇥n a positive matrix and bounded and continuous coe�cients functions A0, A1 : R !
Cn⇥n. The eigenvalue problem Lu = �u can be written as a first-order system

�x = A(x, �)�, � 2 C2n, (2.1)

with A 2 C(R ⇥ ⌦,C2n⇥2n) such that A(x, ·) is analytic on ⌦ for each x 2 R, and @�A(·, �) is
bounded on R for each � 2 ⌦. We assume that the weighted eigenvalue problems

�x = (A(x, �) � ±)�, � 2 C2n, (2.2)

admit for each � 2 ⌦ exponential dichotomies, see Appendix A, on [0,1) and (�1, 0] with rank
n projections P±(x, �) on C2n, which depend analytically on �. Typically, P+ is called the stable
projection for x ! +1, and P� the unstable projection for x ! �1. We emphasize that such
exponential dichotomies exist as long as � lies to the right of the essential spectrum of the operator
L, cf. [53, Theorem 3.2], because the Morse indices of the exponential dichotomies must be equal
to n for � to the right of the essential spectrum by the second-order structure of L.

Thus, � 2 ⌦ lies in the point spectrum of L if and only if there exists a nontrivial solutions
� 2 H1

�,+(R,C
2n) to (2.1), which is, by continuity and boundedness of the matrix A and by

the exponential dichotomies of (2.2), equivalent to finding nontrivial C1-solutions � to (2.1) with
initial condition �(0) 2 ker(P�(0, �)) \ P+(0, �)[C2n]. We choose bases

�±(±x, �) =
 
X±(±x, �)
Y±(±x, �)

!
2 C2n⇥n, x � 0, � 2 ⌦,

of the relevant subspaces ker(P�(�x, �)) and P+(x, �)[C2n], respectively, which depend analyti-
cally on �. Consider the analytic maps S ± : R± ⇥ ⌦ ! C given by S ±(±x, �) = det(X±(±x, �)).
For x � 0 and � 2 ⌦ with S ±(±x, �) , 0 the relevant subspaces can be represented by

T±(±x, �) := Y±(±x, �)X±(±x, �)�1
2 Cn⇥n.

In fact, for x � 0, the n-dimensional subspaces ker(P�(�x, �)) and P+(x, �)[C2n] in the Grass-
mannian manifold Gr(n,C2n) are mapped to T±(±x, �) under the coordinate chart c, which maps
any n-dimensional subspace W of C2n represented by a basis

⇣
X
Y

⌘
2 C2n⇥n with det(X) , 0 to the
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matrix YX�1
2 Cn⇥n; see [41] and references therein. We emphasize that this mapping is well-

defined: if W is also represented by the basis
⇣

X̃
Ỹ

⌘
2 C2n⇥n, there is an invertible matrix ⌧ 2 Cn⇥n

such that
⇣

X̃
Ỹ

⌘
=

⇣
X
Y

⌘
⌧ yielding det(X̃) , 0 and Ỹ X̃�1 = YX�1. Thus, given x � 0 and � 2 ⌦ with

S ±(±x, �) , 0, the quotients T±(±x, �) are well-defined and uniquely determined by the subspaces
ker(P�(�x, �)) and P+(x, �)[C2n], even if a singularity occurs at some y � 0 with y , x so that
S ±(±y, �) = 0.

Writing the coe�cient matrix A(x, �) of (2.1) as a block matrix

A(x, �) :=
 
A11(x, �) A12(x, �)
A21(x, �) A22(x, �)

!
,

with Ai j(x, �) 2 Cn⇥n, we observe that T�(x, �) and T+(x, �) are solutions to the matrix Riccati
equation [43, 61]

Tx = A21(x, �) + A22(x, �)T � T A11(x, �) � T A12(x, �)T, T 2 Cn⇥n, (2.3)

for x 2 (�1, 0] such that S �(x, �) , 0, and x 2 [0,1) such that S +(x, �) , 0, respectively. In other
words, the evolution of the n-dimensional subspaces ker(P�(�x, �)) and P+(x, �)[C2n] is captured
by the Riccati flow (2.3), and nontrivial intersections can be located by the following determinantal
function.

Definition 2.2. Let S := {� 2 ⌦ : S +(0, �) = 0 or S �(0, �) = 0}. We define the Riccati-Evans
function E : ⌦ \ S! C by

E(�) = det(T+(0, �) � T�(0, �)).

The following result follows immediately by the above construction, see also [32, 33].

Proposition 2.3. The Riccati-Evans function E : ⌦ \ S! C enjoys the following properties:

1. The Riccati-Evans function can be related to the classical Evans function E : ⌦ ! C given
by E(�) = det(��(0, �) | �+(0, �)) through the formula

E(�) =
E(�)

S �(0, �)S +(0, �)
, � 2 ⌦ \ S. (2.4)

2. E is meromorphic on ⌦.

3. E vanishes at some �0 2 ⌦ \ S if and only if �0 is an eigenvalue of L. Moreover, the
multiplicity of �0 as a root of E agrees with the algebraic multiplicity of �0 as an eigenvalue
of L.

4. The Riccati-Evans function is uniquely determined and does not depend on the choice of
bases.

The advantage of the Riccati-Evans function over the classical Evans function, is that one
tracks the flow of subspaces rather than individual solutions to (2.1). Thus, the Riccati-Evans
function does not depend on the choice of bases, which simplifies parity arguments in the spectral
analysis significantly. However, one has to bare in mind that the dynamics in the matrix Riccati
equation (2.3) can be highly complicated and solutions might exhibit singularities, which explains
the meromorphic character of E. Consequently, winding number arguments with the Riccati-
Evans function E are more involved than with the classical Evans function. Indeed, to calculate
the number of eigenvalues including multiplicity inside a contour one must calculate the winding
number of both E and S ±(0, ·). Using the classical Evans function one needs only to calculate
the winding number of E(�). In our upcoming spectral analysis, we can control the dynamics in
a matrix Riccati equation in C2⇥2 by using superposition principles to perturb from an invariant
subset of diagonal solutions.
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2.1 Derivative of the Riccati-Evans function

In our spectral analysis we find that the two most critical eigenvalues correspond to two simple
real roots of the Riccati-Evans function. One of these roots must reside at the origin due to gauge
invariance. The position of the other critical eigenvalue can be determined via a parity argument,
which involves the sign of the derivative E0(0). Below we establish, in the general setting of the
previous subsection, an expression for the derivative of the Riccati-Evans function at a simple root.

Let �0 2 ⌦\S be a root of the Riccati-Evans function such that ker(P�(0, �0))\P+(0, �0)[C2n]
is one-dimensional, i.e. such that the geometric multiplicity of �0 as an eigenvalue of the operator
L equals one. Take a nonzero vector �0 2 ker(P�(0, �0)) \ P+(0, �0)[C2n]. Choose bases �̃� of
ker(P�(0, �0)) and �̃+ of P+(0, �0)[C2n] such that the first column of �̃± equals �0. There exist
invertible matrices ⌧± 2 Cn⇥n such that �̃± = �±(0, �0)⌧±. Thus, �̃±(�) := �±(0, �)⌧± are also
analytic bases of ker(P�(0, �)) and P+(0, �)[C2n], respectively, for � 2 ⌦.

The subspace ker(P�(0, �0))?\P+(0, �0)[C2n]? is one-dimensional and thus spanned by some
vector  0 2 C2n. Let �0(x) be the solution to (2.1) at � = �0 with initial condition �0 and let  0(x)
be the solution to the adjoint problem

 x = �A(x, �0)⇤ ,  2 C2n, (2.5)

with initial condition  0. Since the systems (2.2) at � = �0 admit exponential dichotomies on
[0,1) and (�1, 0], respectively, we find that the same holds true for their adjoints

 x =
�
�A(x, �0)⇤ + k±

�
 ,  2 C2n, (2.6)

with associated rank n projections In � P±(x, �0)⇤ on C2n. Since it holds

ker(P�(0, �0))? \ P+(0, �0)[C2n]? = ker(In � P�(0, �0)⇤) \ (In � P+(0, �)⇤)[C2n],

 0(x) is a nontrivial solution to (2.5) in H1
�k�,�k+

(R,C2n), which is unique up to scalar multiples.
The derivative of the classical Evans function Ẽ : ⌦ ! C given by Ẽ(�) = det(�̃�(�) | �̃+(�))

can now be determined via a Lyapunov-Schmidt reduction procedure, which exploits the expo-
nential dichotomies of (2.2) and (2.6). As in [53, §4.2.1], we find

Ẽ0(�0) =
1
k 0k2

det
⇣
 ̃� | �̃+

⌘ Z

R
 0(x)⇤@�A(x, �0)�0(x)dx, (2.7)

where  ̃� is obtained from �̃� by replacing the first column by  0. One readily observes via
Hölder’s inequality that the Melnikov-type integral in the latter is convergent, where we use that
�0 2 L2

k�,k+
(R,C2n),  0 2 L2

�k�,�k+
(R,C2n) and @�A(·, �0) is bounded on R. Taking derivatives

in (2.4) we arrive at the derivative

E
0(�0) =

Ẽ0(�0)
det(X̃�) det(X̃+)

, (2.8)

of the Riccati-Evans function, where X̃± denote the upper (n⇥ n)-blocks of �̃±. Note that we used
here that the Riccati-Evans function is independent of the choice of bases.

3 Reducing complexity through rescaling and reparameterization

Theorem 1.1 is proved in [28] by reducing complexity in the traveling-wave equation (1.5). We
have already seen that the gauge action in (1.5) can be factored out by introducing the new vari-
ables ⇢ = |A| and z = A⇠/A, yielding the first-order problem (1.7). Subsequently, the dispersion
parameter ↵ is eliminated in [28] through appropriate rescaling and reparameterization in (1.7). In
order to simplify the upcoming spectral analysis of the pattern-forming front, we follow the pro-
cess in [28] and apply a similar rescaling and reparameterization to the linearization Ltf of (1.9)
about the front solution Atf(⇠).
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3.1 Rescaling and reparameterization in the existence problem

Completing the square in the z-equation in (1.7) yields

z⇠ = �
 
z +

(1 � i↵) c
2
�
1 + ↵2�

!2

+
m2

1 + ↵2

0
BBBB@

(1 � �(⇠)) (1 � i↵)
m2 � "2

1 +
"4

1
4
+ i!̂ + (1 + i"2) l2⇢2

1
CCCCA

where we denote

m2 = 1 +
(c↵)2

4
�
1 + ↵2� � ↵!, l2 =

1 + ↵�
m2 , "1 =

r
2 �

c

m
p

1 + ↵2
,

!̂ =
! � !abs

m2 , "2 =
� � ↵

1 + ↵�
.

(3.1)

Note that it holds m � 1 in the relevant regime 0 < �c := clin � c ⌧ 1 of Theorem 1.1, where we
use the expansion ! = !abs + O((�c)3/2). Hence, the parameter "1 ⇠

p
�c is well-defined, and

the parameter regime 0 < �c ⌧ 1 and 0  |� � ↵| ⌧ 1 in Theorem 1.1 is, after the reparameter-
ization (3.1), captured by taking 0 < "1 ⌧ 1 and 0  |"2| ⌧ 1. For notational convenience we
abbreviate " := ("1, "2) throughout the manuscript.

Now we observe that the parameter ↵ can be eliminated in (1.7) for ⇠ < 0 by rescaling z, ⇢ and
⇠. Indeed, setting

R = l2⇢2, ⇣ =
m

p
1 + ↵2

⇠, ẑ =
 
z +

(1 � i↵) c
2
�
1 + ↵2�

! p
1 + ↵2

m
, (3.2)

transforms system (1.7) into

ẑ⇣ = �ẑ2 + µ + (1 + i"2)R +
1 � �

m2 (1 � i↵),

R⇣ = R
⇣
ẑ + ẑ + "2

1 � 2
⌘
.

(3.3)

with µ := �"2
1 + i!̂ + "4

1
4 . Since we can express m as a smooth function of !̂ and "1 by m2 :=

(1 + ↵2)(1 + ↵2
� "2

1↵
2 + 1

4"
4
1↵

2 + ↵!̂)�1, we find that system (3.3) is smooth in ↵, !̂ and the small
parameter " = ("1, "2).

3.2 Rescaling and reparameterization in the spectral problem

Our idea is to reduce complexity in the spectral problem by applying a similar rescaling and
reparameterization as in §3.1 to the linearization Ltf of (1.9) about the front solution Atf(⇠). To do
so, we first need to formulate the linear operator Ltf in terms of the front solution (ztf(⇠), ⇢tf(⇠))
to (1.7), where we of course have Atf(⇠) = ⇢tf(⇠)ei�tf (⇠) and ztf(⇠) = A0tf(⇠)/Atf(⇠) = ⇢0tf(⇠)/⇢tf(⇠) +
i�0tf . Thus, we set a = w⇢tf and b = y⇢tf and arrive, using (1.6)-(1.8), at the operator L̃tf , posed on
L2
�,�2Re(z+)(R,C

2), whose domain is H2
�,�2Re(z+)(R,C

2) (see Definition 2.1), given by

L̃tf

 
w
y

!
=

0
BBBB@

L̃tf(w, y)
L̃tf (w, y)

1
CCCCA ,

L̃tf(w, y) =
1
⇢tf

Ltf (w⇢tf , y⇢tf) =(1 + i↵)w⇠⇠ + (c + 2(1 + i↵)ztf) w⇠ � (1 + i�)⇢2
tf(w + y).

We note that the rescaling of the perturbation by the front amplitude ⇢tf , which is bounded
away from the origin at �1, leaves the spectrum of the corresponding asymptotic state unchanged.
Since ⇢tf ! 0 exponentially fast as ⇠ ! 1, this shifts the spatial eigenvalues of the associated
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state to the right, and is the reason for the inclusion of an additional weight �2Re(z+) for ⇠ � 0,
cf. (1.8).

Thus, by construction, we find that the spectra of the operators L̃tf , posed on L2
�,�2Re(z+)(R,C

2),
and of Ltf , posed on L2

(R,C2), coincide, including multiplicities of eigenvalues.
Now, we can apply the reparameterization (3.1) and rescaling (3.2) to the linear operator L̃tf ,

posed on the space L2
�,�2Re(z+)(R,C

2), and arrive at the operator L̂tf , posed on L2
̂�,̂+

(R,C2) with
domain H2

̂�,̂+
(R,C2), which is given by

L̂tf

 
w
y

!
=

0
BBBB@

L̂tf(w, y)
L̂tf (w, y)

1
CCCCA ,

L̂tf(w, y) = L̃tf

0
BBBBB@w

0
BBBBB@·
p

1 + ↵2

m

1
CCCCCA , y

0
BBBBB@·
p

1 + ↵2

m

1
CCCCCA

1
CCCCCA =

⇣
w⇣⇣ + 2ẑtfw⇣ � (1 + i"2)⇢2

tf(w + y)
⌘ m2

(1 � i↵)
,

and

̂� := �

p

1 + ↵2

m
, ̂+ :=

( � 2Re(z+))
p

1 + ↵2

m

=

p

1 + ↵2

m
+ Re

r
µ +

2(1 � i↵)
m2 �

"2
1

2
+ 1,

(3.4)

where we note that rescaling the spatial coordinate by a factor
p

1 + ↵2/m in (3.2) lead to a rescal-
ing of the weights � and  � 2Re(z+) for ⇣  0 and ⇣ � 0, respectively, by the same factor.

Thus, by construction, the spectra of the operators L̂tf , posed on L2
̂�,̂+

(R,C2), and of L̃tf ,
posed on L2

�,�2Re(z+)(R,C
2), coincide, including multiplicities of eigenvalues. In addition, the

dispersion parameter ↵ is, up to a scaling factor, eliminated from the operator L̂tf . Therefore we
have, as in the existence problem, reduced the complexity in the relevant spectral problem through
the reparameterization (3.1) and rescaling (3.2).

4 Overview of existence results

In this section, we collect the results from the existence analysis of the pattern-forming front
in [28], which are needed for our spectral analysis. The existence analysis in [28] is, in order to
reduce complexity, performed in the rescaled and reparameterized traveling-wave equation (3.3).
As explained in §3, we adopt a similar reduction in our spectral analysis.

We start by reformulating the existence result, Theorem 1.1, in terms of the rescaled and
reparameterized system (3.3).

Theorem 4.1. Let ↵ 2 R and let � > 0 be fixed such that � is su�ciently small. Then, provided
0 < "1 ⌧ 1 and 0  |"2| ⌧ 1, there exists a front solution  tf(⇣; ") = (ẑtf ,Rtf)(⇣; ") to (3.3) for
!̂ = !̂tf(") between the hyperbolic fixed points

lim
⇣!1

 tf(⇣; ") = (z+("), 0) , lim
⇣!�1

 tf(⇣; ") =
0
BBBB@1 �

"2
1

2
+ ik̂tf("), 1 � k̂tf(")2

1
CCCCA ,

where

ẑ+(") := �

s
2(1 � i↵)

m(")2 � "2
1 + i!̂ +

"4
1

4
, (4.1)

and k̂tf(") and !̂tf(") are smooth at " = (0, 0) satisfying

k̂tf(0, "2) =
"2

1 +
q

1 + "2
2

, @ j
"1!̂tf(0, "2) = 0, j = 0, 1, 2, (4.2)
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The solution  tf(⇣; ") is continuous at the jump heterogeneity at ⇣ = 0. The position

⇣tf(") := inf
n
⇣ : Rtf(⇣̃; ") < � for all ⇣̃ > ⇣

o
,

of the front interface (see also Figure 2, upper right panel) satisfies

lim
"!(0,0)

"1⇣tf(") = ⇡, (4.3)

and " 7! "1⇣tf(") is smooth at " = (0, 0).

A consequence of Theorem 1.1 is that, using the calculations in §3.1 to express m and µ as

m(")2 :=
1 + ↵2

1 + ↵2 � "2
1↵

2 + 1
4"

2
1↵

2 + ↵!̂tf(")
, µ(") := �"2

1 + i!̂tf(") +
"4

1
4
, (4.4)

the number of parameters in (3.3) has reduced to three: the fixed parameter ↵ and the small
parameter " = ("1, "2). We find that m(") and µ(") are smooth at " = (0, 0) and satisfy

m(0, 0) = 1, µ(0, 0) = 0. (4.5)

4.1 Tracking the solution to the left of the front interface

The front solution  tf(⇣; ") in Theorem 4.1 is constructed in [28] by tracking the one-dimensional,
unstable manifold Wu

� of the fixed point
⇣
1 � 1

2"
2
1 + ik̂tf("), 1 � k̂tf(")2

⌘
in (3.3). Global control

over this manifold can be obtained by perturbing from the ‘real limit’ " = (0, 0). Indeed, setting
"1, "2 = 0 and � ⌘ 1 in (3.3), we obtain, using (4.5), the system

ẑ⇣ = �ẑ2 + R,
R⇣ = 2R(ẑ � 1),

(4.6)

which is equivalent to the real Ginzburg-Landau equation

r⇣⇣ = �2r⇣ � r + r3, (4.7)

upon setting R = r2 and z = 1 + r⇣/r. The unstable manifold Wu
� in (4.6) is given by the solution

 ⇤(⇣) = (ẑ⇤(⇣),R⇤(⇣)) =
 
1 +

r0⇤(⇣)
r⇤(⇣)

, r⇤(⇣)2
!
,

where r⇤(⇣) is a heteroclinic in (4.7) connecting the hyperbolic saddle (1, 0) to the hyperbolic
degenerate sink (0, 0). A simple phase plane analysis of (4.7) shows that the solution r⇤(⇣) is
monotonically decreasing and does not lie in the strong stable manifold of (0, 0) corresponding
to the only eigenvector of the linearization. Thus, r⇤(⇣) decays exponentially to 0, whereas r0⇤(⇣)

r⇤(⇣)
decays algebraically to �1 as ⇣ ! 1. All in all, one obtains the following result.

Proposition 4.2 ([28]). Take � > 0 su�ciently small and let ⇣� 2 R be the value such that R⇤(⇣�) =
�. Then, there exists a �-independent constant C > 1 and ⌘ > 0 such that

0 < ẑ⇤(⇣�)  C| log(�)|�1,
1

ẑ⇤(⇣�)
 C| log(�)|, (4.8)

and
k ⇤(⇣) � (1, 1)k  Ce⌘⇣ , ⇣  0,

kR⇤(⇣)k  Ce�⌘⇣ , ⇣ � 0.
(4.9)

In addition, there exists a constant C� > 1, which only depends on �, such that, provided 0 < "1 ⌧

1 and 0  |"2| ⌧ 1, it holds

k tf(⇣tf(") + ⇣; ") �  ⇤(⇣� + ⇣)k  C�k"k,���� tf(⇣tf(") + ⇣; ") �
⇣
1 � 1

2"
2
1 + ik̂tf("), 1 � k̂tf(")2

⌘����  C�e⌘⇣ ,
⇣  0. (4.10)
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4.2 Tracking the solution to the right of the front interface

To the right of the front interface, i.e. for ⇣ � ⇣tf("), the solution  tf(⇣; ") lies in a neighborhood
of the normally hyperbolic, attracting manifold R = 0 in (3.3). Thus, with the aid of geometric
singular perturbation theory [22, 23, 24], it is established in [28] that there exists a solution on the
manifold R = 0 that converges exponentially fast to  tf(⇣; ") as ⇣ ! 1. Setting R = 0 in (3.3) one
obtains the scalar Riccati equation

ẑ00 = �ẑ2
0 + µ(") +

1 � �
m(")2 (1 � i↵). (4.11)

Parameters " are chosen in such a way in [28] that the unstable manifold Wu
� intersects with to the

two-dimensional stable manifold W s
+ of the sink (ẑ+("), 0) in (3.3) (for � ⌘ �1). Note that ẑ+("),

which is defined in (4.1), is smooth at " = (0, 0) and satisfies

ẑ+(0, 0) = �
p

2 � 2i↵. (4.12)

Thus, the solution  tf(⇣; ") in the unstable manifold Wu
� converges exponentially fast to the

solution (ẑ0(⇣; "), 0) on the manifold R = 0 as ⇣ ! 1, where ẑ0(⇣; ") is the solution to (4.11) with
initial condition ẑ0(0; ") = ẑ+("). Hence, as ẑ+(") is a fixed point of (4.11) for � ⌘ �1, it holds
ẑ0(⇣; ") = ẑ+(") for all ⇣ � 0.

More precisely, the following estimates are obtained in [28].

Proposition 4.3. There exist constants C > 1 and ⌘ > 0 such that, provided 0 < "1 ⌧ 1 and
0  |"2| ⌧ 1, we have for ⇣ � ⇣tf("),

k tf(⇣; ") � (ẑ0(⇣; "), 0)k  C�e�⌘|⇣�⇣tf (")|, (4.13)
kẑ0(⇣; ")k  C. (4.14)

For the spectral analysis in this paper, we need to extend the estimates on the R-component in
Proposition 4.2 beyond the front interface, which follows by a simple application of Grönwall’s
lemma in combination with the exponential decay obtained in Proposition 4.3.

Proposition 4.4. Let � > 0 be su�ciently small and let ⇣� 2 R be the value such that R⇤(⇣�) = �.
Then, there exists a constant C� > 1, which only depends on �, such that, provided 0 < "1 ⌧ 1
and 0  |"2| ⌧ 1, it holds

k tf(⇣tf(") + ⇣; ") �  ⇤(⇣� + ⇣)k  C�

p
k"k,

for ⇣ 2 [0,�◆ log k"k], where ◆ > 0 is a constant independent of " and �.

5 Set-up of spectral analysis

In an e↵ort to reduce complexity, we have followed the rescaling and reparameterization per-
formed in the existence analysis of the pattern-forming front in [28], and applied a similar reduc-
tion to the linearized operator Ltf in §3. By construction, the spectrum of the obtained operator
L̂tf , posed on L2

̂�,̂+
(R,C2), coincides with the spectrum Ltf , posed on L2

(R,C2), including mul-
tiplicities of eigenvalues. Of course, the same holds for the spectra of L̂tf , posed on L2

0,̂0
(R,C2)

with domain H2
0,̂0

(R,C2), where we denote

̂0 = �Re(ẑ+(")) � 1
2"

2
1 + 1. (5.1)

and of Ltf , posed on L2(R,C2). Hence, our main result, Theorem 1.2, follows by proving the
following equivalent statement for L̂tf .

19



Theorem 5.1. Let ↵ 2
�
�

1
2

p
2, 1

2

p
2
�
. Fix  2

�
0, 1

4
p

1+↵2

�
. Let ̂± be as in (3.4) and let ̂0 be as

in (5.1). Then, provided 0 < "1 ⌧ 1 and 0  |"2| ⌧ 1, the following assertions hold true:

i) The spectrum of L̂tf posed on L2
0,̂0

(R,C2) does not intersect the closed right-half plane,
except at the origin as a parabolic curve.

ii) When posed on L2
̂�,̂+

(R,C2), the operator L̂tf has no spectrum in the closed right-half
plane, except for an algebraically simple eigenvalue, which resides at the origin. Further-
more, eigenvalues near the origin lie O("2

1)-close to ⌃0,abs [ ⌃0,abs.

In order to prove Theorem 5.1, we follow the approach as outlined in §1.4. We cover, as
in [10], the critical spectrum of L̂tf by the following three regions

R1 = R1(⇥1) := {� 2 C : |�|  ⇥1},

R2 = R2(✓2,⇥1,⇥2) := {� 2 C : ⇥1  |�|  ⇥2 ^ | arg(�)|  1
2⇡ + ✓2},

R3 = R3(✓3,⇥2) := {� 2 C : | arg(�)|  1
2⇡ + ✓3, |�| � ⇥2},

(5.2)

where ⇥1, ✓2, ✓3 > 0 and ⇥2 > 1 are constants which are independent of the small parameter ".
We will study the spectrum of L̂tf in the regions R1, R2 and R3 separately. See Figure 5 (right) for
a schematic depiction of these regions.

We decompose the spectrum of L̂tf into essential and point spectrum; we refer to [53] for
a general introduction. The following result shows that the essential spectrum of L̂tf , posed on
L2

0,̂0
(R,C2), is contained in the left-half plane and touches the imaginary axis only at the origin

as a parabolic curve, whereas the essential spectrum of L̂tf , posed on L2
̂�,̂+

(R,C2), is confined to
the open left-half plane and does not intersect the regions R1,R2 and R3. The proof of this result,
which uses a standard analysis of the asymptotic linearizations at ±1 and their spatial eigenvalue
configurations, is given in Appendix B.3; see also Figure 5 for a schematic description.

Theorem 5.2. Let ↵ 2
�
�

p
2

2 ,
p

2
2

�
and fix  2

�
0, 1

4
p

1+↵2

�
. For ⇥1, ✓2, ✓3 > 0 su�ciently small

and ⇥2 > 1 su�ciently large, we have that, provided 0 < "1 ⌧ 1 and 0  |"2| ⌧ 1, the following
statements hold true:

i) There is no essential spectrum of the operator L̂tf , posed on L2
̂�,̂+

(R,C2), in the region
R1(⇥1) [ R2(✓2,⇥1,⇥2) [ R3(✓3,⇥2).

ii) The essential spectrum of Ltf , posed on L2
0,0

(R,C2) does not touch the closed right-half
plane, except at the origin as a parabolic curve.

A point � 2 C lies in the point spectrum of L̂tf , posed on L2
̂�,̂+

(R,C2), if and only if it does
not lie in its essential spectrum and the associated eigenvalue problem L̂tfX = �X, which reads

w⇣⇣ + 2ẑtf(⇣; ")w⇣ � (1 + i"2)Rtf(⇣; ")(w + y) =
(1 � i↵)�

m(")2 w,

y⇣⇣ + 2ẑtf(⇣; ")y⇣ � (1 � i"2)Rtf(⇣; ")(w + y) =
(1 + i↵)�

m(")2 y,
(5.3)

admits a nontrivial solution in H2
̂�,̂+

(R,C2).
Since H2

0,̂0
(R,C2) is contained in H2

̂�,̂+
(R,C2) as  > 0, the point spectrum of L̂tf , posed

on L2
0,̂0

(R,C2), is contained in the spectrum of L̂tf , posed on L2
̂�,̂+

(R,C2). We will show in §6-
§8, in particular see Theorems 6.1 and 7.4 and Corollary 8.19, that the point spectrum of L̂tf ,
posed on L2

̂�,̂+
(R,C2), is contained in the open left-half plane, except for an algebraically simple

eigenvalue residing at the origin, which, in conjunction with the aforementioned results on the
essential spectrum, proves Theorem 5.1, and thus also proves Theorem 1.2.
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Figure 5: (left): plot of the essential spectrum of the operator L̂tf , posed on L2
0,̂0

(R,C2) with insets of
the most critical spatial eigenvalues ⌫±(�) associated with the asymptotic systems at ±1, respectively.
Associated splittings are given in (B.9)-(B.11). Solid red lines give Fredholm boundaries of spectrum
coming from �1, dotted red line gives right-most Fredholm boundary when posed on L2

̂�,̂+
(R,C2), green

lines give Fredholm boundaries coming from +1; see Appendices B.1 and B.3 for more detail. (right):
schematic depiction of the regions R1,R2 and R3 defined in (5.2).

6 Preparations for the analysis of the point spectrum

In the upcoming three sections we analyze the point spectrum of the operator L̂tf , posed on
L2
̂�,̂+

(R,C2), in the regions R1 and R2, defined in (5.2), separately. In the region R3, a standard
scaling argument, similar to for instance [8, Proposition 3.1], [35, Section 5.3] or [10, Proposi-
tion 6.1], precludes the existence of point spectrum and we obtain the following result.

Theorem 6.1. For ✓3 > 0 su�ciently small and ⇥2 > 1 su�ciently large, there is, provided
0 < "1 ⌧ 1 and 0  |"2| ⌧ 1, no point spectrum of the operator L̂tf , posed on L2

̂�,̂+
(R,C2), in the

region R3(✓3,⇥2).

In the regions R1 and R2, we employ the Riccati-Evans function, see §2, as a tool to locate the
point spectrum, which requires control over the evolution of the relevant subspaces as trajectories
in the associated matrix Riccati equations. Such control is established in §7 and §8 for the regions
R2 and R1, respectively.

In this section we make the necessary preparations for the analysis in the regions R1 and R2
in the upcoming two sections. That is, we apply a linear coordinate transform to the eigenvalue
problem (5.3), which leads to a simplification to the right of the front interface. Moreover, we
formulate the Riccati-Evans function for our problem, and show that it remains invariant under the
linear coordinate transform.

6.1 A linear coordinate transform

In this subsection we apply a linear coordinate transform to the eigenvalue problem (5.3), which
simplifies the problem to the right of the front interface, i.e. for ⇣ 2 [⇣tf("),1).

21



Proposition 4.3 implies that, to the right of the front interface, Rtf(⇣; ") is small and ẑtf(⇣; ") is
approximated by the solution ẑ0(⇣; ") to the scalar Riccati equation (4.11). Thus, setting Rtf to 0
and ẑtf to ẑ0 in (5.3), we obtain the reduced eigenvalue problem

w⇣⇣ + 2ẑ0(⇣; ")w⇣ =
(1 � i↵)�

m(")2 w,

y⇣⇣ + 2ẑ0(⇣; ")y⇣ =
(1 + i↵)�

m(")2 y.
(6.1)

We observe that, by setting Rtf to 0, the eigenvalue problem (5.3) has decoupled into a second-
order problem and its conjugate. We apply the standard procedure of removing the first derivatives
w⇣ and y⇣ from (6.1) through the linear coordinate transform u = bw and v = by with

b(⇣; ") := e
R ⇣
⇣tf (") ẑ0(y;")dy

.

In the new coordinates, system (6.1) reads

u⇣⇣ �
 
� + 1 � �

m(")2 (1 � i↵) + µ(")
!

u = 0,

v⇣⇣ �
 
� + 1 � �

m(")2 (1 + i↵) + µ(")
!

v = 0,
(6.2)

where we exploit that ẑ0 satisfies the scalar Riccati equation (4.11). We observe that system (6.2)
has constant coe�cients (except for the jump in � at ⇣ = 0), and is thus explicitly solvable. We
believe that this, perhaps surprising, fact is a consequence of the special structure of the underlying
Ginzburg-Landau equation.

Inspired by the above simplification in the reduced eigenvalue problem (6.1), we hope to sim-
plify the full eigenvalue problem (5.3) by applying a similar linear coordinate transform. In order
to apply the theory of exponential dichotomies later, it is convenient to consider the so-called
spatial-dynamics formulation of (5.3). That is, we rewrite (5.3) as a first-order linear system in
C4. Since the associated coe�cient matrix lies in C4⇥4, it is convenient, also for later purposes, to
introduce the short-hand notation

I2[z] :=
 
z 0
0 z̄

!
, J2[z] :=

 
0 z
z̄ 0

!
, z 2 C. (6.3)

Thus, we rewrite (5.3) as the first-order system

�⇣ = A(⇣; �, ")�, � 2 C4, (6.4)

with

A(⇣; �, ") :=
 

I2[0] I2[1]
�

m2I2[1 � i↵] + Rtf (I2 [1 + i"2] +J2 [1 + i"2]) �I2 [ẑtf]

!
.

where we suppressed the arguments of Rtf , ẑtf and m in the coe�cient matrix A(⇣; �, "). Thus,
inspired by the above, we apply the linear coordinate transformation

�̂ = B(⇣; ")�, B(⇣; ") :=
 
I2

⇥
�
⇤
I2[0]

I2
⇥
�ẑtf

⇤
I2

⇥
�
⇤
!
, �(⇣; ") := e

R ⇣
⇣tf (")(ẑtf (y;")�ik̂tf ("))dy

, (6.5)

to the eigenvalue problem (6.4) yielding the system

�̂⇣ = A⇤(⇣; �, ")�̂, �̂ 2 C4, (6.6)
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with

A⇤(⇣; �, ") :=

0
BBBBBB@

�k̂tfI2[i] I2[1]
�+1��

m2 I2[1 � i↵] + I2[µ] + Rtf

✓
2I2 [1 + i"2] +J2


�

�

�◆
�k̂tfI2[i]

1
CCCCCCA ,

where we suppress the arguments of Rtf , ktf , µ,m and � in the coe�cient matrix A⇤(⇣; �, "). We
find by Proposition 4.3 that, to the right of the front interface, i.e. for ⇣ 2 [⇣tf("),1), system (6.6)
is close to a constant coe�cient system. More specifically, along the plateau state, i.e. for ⇣ 2
[⇣tf("), 0], system (6.6) is approximated by

�̂⇣ = A⇤,�(�, ")�̂, �̂ 2 C4, (6.7)

whereas to the right of the inhomogeneity, i.e. for ⇣ 2 [0,1), system (6.6) is approximated by

�̂⇣ = A⇤,+(�, ")�̂, �̂ 2 C4, (6.8)

with

A⇤,±(�, ") :=
 
D(") I2[1]
A±(�, ") D(")

!
,

D(") := �k̂tfI2[i], A±(�, ") :=
� + 1 � �

m2 I2[1 � i↵] + I2[µ],
(6.9)

where we suppress the arguments of ktf , µ and m in the coe�cient matrices D(") and A±(�, ").
We emphasize that, as in (6.2), systems (6.7) and (6.8) decouple into two systems in C2 with
constant coe�cients, which will simplify the upcoming analysis significantly. We remark that our
choice for adding the factor e�ik̂tf (")(⇣�⇣tf (")) in �(⇣; ") is motivated by the fact that system (6.6) has
asymptotically constant coe�cients, which is convenient for the definition of the Riccati-Evans
function later in §6.2, see also §2. Indeed, by Theorem 4.1 we have

lim
⇣!�1

�(⇣; ")
�(⇣; ")

Rtf(⇣; ") = 1, lim
⇣!1

�(⇣; ")
�(⇣; ")

Rtf(⇣; ") = 0.

We conclude this subsection with the following technical lemma providing control over �(⇣; ").
Its proof is a direct consequence of the detailed approximations of ẑtf(⇣) obtained in §4 and can be
found in Appendix C.

Lemma 6.2. Let ◆ be as in Proposition 4.4. Provided 0 < "1 ⌧ � ⌧ 1 and 0  |"2| ⌧ � ⌧ 1, we
have the estimate

������
�(⇣; ")
�(⇣; ")

� 1
������  C�

p
k"k

���log k"k
��� , ⇣  ⇣tf(") � ◆ log k"k, (6.10)

where C� > 0 depends on � only. Moreover, it holds

lim
⇣!�1

�(⇣; ")ê�⇣ = 0, lim
⇣!1

�(⇣; ")�1e�̂+⇣ = 0. (6.11)

where ̂± are defined in (3.4).

6.2 The Riccati-Evans function

Since the essential spectrum of the operator L̂tf , posed on L2
̂�,̂+

(R,C2), is, by Theorem 5.2, not
intersecting the regions R1 and R2, a point � 2 R1 [ R2 lies in its point spectrum if and only if the
associated eigenvalue problem (5.3) admits a nontrivial solution in H2

̂�,̂+
(R,C2) or, equivalently,

if and only if the first-order reformulation (6.4) admits a nontrivial solution in H1
̂�,̂+

(R,C4). In this
subsection we will define the Riccati-Evans function, which locates the point spectrum in R1 [R2.
Thus, (6.4) admits a nontrivial solution in H1

̂�,̂+
(R,C4) for � 2 R1 [R2 if and only if � is a root of

the Riccati-Evans function.
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6.2.1 Construction of the Riccati-Evans function

We construct the Riccati-Evans function by applying the general procedure in §2 to our operator
L̂tf , posed on L2

̂�,̂+
(R,C2). By Theorem 5.2, there exists an open and bounded neighborhood

⌦ ⇢ C of R1 [ R2 that lies to the right of its essential spectrum. Thus, as in §2, we evoke [53,
Theorem 3.2] to conclude that the systems

�⇣ = (A(⇣; �, ") � ̂±) �, � 2 C4,

have for each � 2 ⌦, exponential dichotomies on (�1, 0] and [0,1), respectively, with associated
rank 2 projections P±(⇣; �, "), which depend analytically on �.

Consider the coordinate chart c, which maps any 2-dimensional subspace W 2 Gr(2,C4) rep-
resented by a basis

⇣
X
Y

⌘
2 C4⇥2 with det(X) , 0 to the matrix YX�1

2 C2⇥2. Choose bases
 
X±(±⇣; �, ")
Y±(±⇣; �, ")

!
2 C4⇥2, ⇣ � 0, � 2 ⌦,

of the relevant subspaces ker(P�(�⇣; �, ")) and P+(⇣; �, ")[C4], respectively. Define S ±," : R± ⇥
⌦ ! C by S ±,"(±⇣; �) := det(X±(±⇣; �, ")). For ⇣ � 0 and for � 2 ⌦ with S ±,"(±⇣; �) , 0,
the subspaces ker(P�(�⇣; �, ")) and P+(⇣; �, ")[C4] in the Grassmannian Gr(2,C4) are, under the
coordinate chart c, represented by

T±(±⇣; �, ") := Y±(±⇣; �, ")X±(±⇣; �, ")�1
2 C2⇥2.

Define S" := {� 2 ⌦ : S +,"(0; �) = 0 or S �,"(0; �) = 0}. The associated Riccati-Evans function
E" : ⌦ \ S" ! C is then given by

E"(�) = det (T+(0; �, ") � T�(0; �, ")) .

It follows from Proposition 2.3 that E" is meromorphic on ⌦, and the eigenvalue problem (6.4)
has a nontrivial solution in H1

̂�,̂+
(R,C4) for some � 2 ⌦ \ S" if and only if E"(�) = 0. In addition,

the multiplicity of a root �0 2 ⌦ \ S" of E" corresponds to the algebraic multiplicity of �0 as an
eigenvalue of L̂tf .

6.2.2 Invariance under the linear coordinate transform

We study the behavior of the Riccati-Evans function E" under the linear coordinate transform (6.5),
which transforms the eigenvalue problem (6.4) into (6.6). For all � 2 ⌦ we set

W+(⇣; �, ") := B(⇣; ")P+(⇣; �, ")[C4], ⇣ � 0,
W�(⇣; �, ") := B(⇣; ") ker(P�(⇣; �, ")), ⇣  ⇣tf("),

(6.12)

Flowing these subspaces forward and backward in the linear system (6.6) leads then to subspaces
W±(⇣; �, ") 2 Gr(2,C4) for each ⇣ 2 R and � 2 ⌦, which can be represented by T̂±(⇣; �, ") =
Ŷ±(⇣; �, ")X̂±(⇣; �, ")�1

2 C2⇥2, where
 
X̂±
Ŷ±

!
(⇣; �, ") 2 C4⇥2, (6.13)

are bases of W±(⇣; �, "), as long as det(X̂±(⇣; �, ")) , 0. We emphasize that det(X±(⇣; �, ")) = 0,
det(X̂±(⇣; �, ")) = 0, since the structure of the coordinate transform (6.5) yield det(X̂±(⇣; �, ")) =
|�(⇣; ")|2 det(X±(⇣; �, ")).
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Thus, the relevant subspaces ker(P�(0; �, ")) and P+(0; �, ")[C4] in Gr(2,C4), represented by
T±(0; �, ") 2 C2⇥2 under the coordinate chart c, are mapped by the linear coordinate transform (6.5)
onto subspaces W±(0; �, ") 2 Gr(2,C4) represented by T̂±(0; �, ") 2 C2⇥2 given by

T̂±(0) = I2[�(0)]T±(0)I2[�(0)]�1 + I2 [ẑtf(0)] ,

where we suppress the dependency on � and " and recall the short-hand notation (6.3). Therefore,
the coordinate transform leaves the Riccati-Evans function E" : ⌦ \ S" ! C invariant, i.e. it holds

E"(�) = det
⇣
T̂+(0; �, ") � T̂�(0; �, ")

⌘
, � 2 ⌦ \ S". (6.14)

Of course, one can also choose to evaluate at the front interface ⇣tf(") and define the alter-
native Riccati-Evans function Ẽ" : ⌦ \ S̃" ! C, with S̃" := {� 2 ⌦ : det(X+(⇣tf("); �, ")) =
0 or det(X�(⇣tf("); �, ")) = 0}, by

Ẽ"(�) = det (T+(⇣tf("); �, ") � T�(⇣tf("); �, ")) = det
⇣
T̂+(⇣tf("); �, ") � T̂�(⇣tf("); �, ")

⌘
,

Analogous to the Riccati-Evans function E", the alternative Riccati-Evans function Ẽ" is meromor-
phic on ⌦ and its roots coincide (including multiplicity) with the point spectrum of L̂tf in ⌦ \ S̃"
(including algebraic multiplicity of the eigenvalues).

7 Analysis in the region R2

In this section we study the point spectrum or, equivalently, the roots of the Riccati-Evans function
E" in the region R2. Recall from §6.2.2 that the Riccati-Evans function is invariant under the linear
coordinate transform (6.5), and thus can be defined in terms of the subspaces W±(⇣; �, ") given
by (6.12). Control over these subspaces can be obtained through exponential dichotomies, which
arise by perturbing from the limit k"k ! 0 in which the transformed eigenvalue problem (6.6)
along the front reduces to two coupled second-order problems. In order to extend the exponential
dichotomies across the front we prove, with the aid of an L2-energy estimate, that the coupled
eigenvalue problem admits no eigenvalues in the region R2. Thus, using the control provided
by the exponential dichotomies, we can approximate the Riccati-Evans function and show that
it possesses neither zeros nor poles in the region R2, which, by Proposition 2.3, precludes the
existence of point spectrum in R2.

7.1 Exponential dichotomy to the left of the inhomogeneity

An exponential dichotomy for system (6.6) on (�1, 0] arises through the standard procedure of
approximating (6.6) by its singular limit and applying roughness techniques, see for instance [10,
Section 6.6] and [35, Section 6.1] for a similar approach. That is, using detailed estimated on the
quenched front obtained in §4, we first approximate (6.6) on (�1, 0] by the simpler "-independent
system

�̂⇣ = Al(⇣; �)�̂, �̂ 2 C4, (7.1)

where, recalling the short-hand notation (6.3), we denote

Al(⇣; �) :=
 

I2[0] I2[1]
�I2[1 � i↵] + R⇤(⇣) (I2[2] +J2[1]) I2[0]

!
. (7.2)

The reduced system (7.1) is equivalent to two coupled second-order eigenvalue problems. A
standard L2-energy estimate precludes the existence of eigenvalues of (7.1) in the region R2, which
implies that (7.1) admits an exponential dichotomy on R. Transferring this exponential dichotomy
to system (6.6) using roughness techniques finally yields the following proposition. A detailed
proof can be found in Appendix C.
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Proposition 7.1. Let ⇥2 > 1 be given. There exists ⌧ > 0 such that, provided 0 < "1 ⌧ ⇥1 ⌧

�, ✓2 ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ �, ✓2 ⌧ 1, system (6.6) admits for each � 2 R1(⇥2) an exponential
dichotomy on (�1, 0] with �- and "-independent constants and projections P⇤,l(⇣; �, ") on C4

satisfying
���P⇤,l(0; �, ") � Ql(�)

���  C�k"k
⌧, (7.3)

where Ql(�) is the spectral projection onto the stable eigenspace of the matrix

A1l (�) =
 
I2[0] I2[1]

�I2[1 � i↵] I2[0]

!
,

and C� > 1 is a constant depending only on �.

7.2 Exponential dichotomy to the right of the inhomogeneity

As in the proof of Proposition 7.1, we apply roughness techniques to transfer an exponential
dichotomy of an approximate system to system (6.6) itself, with the di↵erence that, to the right of
the inhomogeneity, the approximate system has constant coe�cients, so that hyperbolicity readily
yields an exponential dichotomy. Thus, the proof of the following proposition is shorter than the
one of Proposition 7.1. It can again be found in Appendix C.

Proposition 7.2. There exists a constant C > 1 such that, provided 0 < "1 ⌧ ⇥1 ⌧ �, ✓2 ⌧ 1
and 0  |"2| ⌧ ⇥1 ⌧ �, ✓2 ⌧ 1, system (6.6) admits for each � 2 R2(✓2,⇥1,⇥2) an exponen-
tial dichotomy on [0,1) with �- and "-independent constants and projections P⇤,r(⇣; �, ") on C4

satisfying
���P⇤,r(⇣; �, ") � Qr(�)

���  Ck"k, ⇣ � 0,

where Qr(�) is the spectral projection onto the stable eigenspace of the matrix

A1r (�) =
 

I2[0] I2[1]
(� + 2)I2[1 � i↵] I2[0]

!
.

7.3 Conclusion

In this subsection we complete our spectral study of the operator L̂tf , posed on L2
̂�,̂+

(R,C2),
in the region R2. We prove that the associated Riccati-Evans function E" is analytic on R2 and
does not vanish. Recall from §6.2.2 that E" can be defined in terms of the subspaces W±(⇣; �, ")
given by (6.12). The following technical lemma states that these subspaces must coincide with the
relevant subspaces of the exponential dichotomies for the transformed eigenvalue problem (6.6),
which were established in Propositions 7.1 and 7.2. Its proof, which can be found in Appendix C,
follows readily from the properties of the transform (6.5) and a dimension counting argument.

Lemma 7.3. Let ⇥2 > 0 be given. Provided 0 < "1 ⌧ ⇥1 ⌧ �, ✓2 ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧

�, ✓2 ⌧ 1, it holds

W�(⇣; �, ") = ker(P⇤,l(⇣; �, ")), ⇣ 2 (�1, 0], � 2 R2(✓2,⇥1,⇥2), (7.4)

where P⇤,l(⇣; �, ") is the projection associated with exponential dichotomy of (6.6) on (�1, 0]
established in Proposition 7.1. In addition, we have

W+(⇣; �, ") = P⇤,r(⇣; �, ")[C4], ⇣ 2 [0,1), � 2 R2(✓2,⇥1,⇥2), (7.5)

where P⇤,r(⇣; �, ") is the projection associated with exponential dichotomy of (6.6) on [0,1) es-
tablished in Proposition 7.2.
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We are now in the position to establish that there is no point spectrum of the operator L̂tf in
R2.

Theorem 7.4. Let ⇥2 > 0 be given. Provided 0 < "1 ⌧ ⇥1 ⌧ �, ✓2 ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧

�, ✓2 ⌧ 1, the operator L̂tf , posed on L2
̂�,̂+

(R,C2), has no point spectrum in R2(✓2,⇥1,⇥2).

Proof. In this proof we denote by C� > 1 any constant which depends on � only. We employ the
notation and concepts introduced in §6.2

We start by proving that the Riccati-Evans function admits no poles in the region R2. Consider
the spectral projections Ql(�) and Qr(�) from Propositions 7.1 and 7.2, respectively. First, observe
that the kernel of Ql(�) and the range of Qr(�) have the bases

�l(�) :=
0
BBBB@

I2[1]
I2

hp
�(1 � i↵)

i
1
CCCCA , �r(�) :=

0
BBBB@

I2[1]
�I2

hp
(� + 2)(1 � i↵)

i
1
CCCCA ,

respectively. Employing Propositions 7.1 and 7.2 and Lemma 7.3, we find that  l(�, ") := (I4 �

P⇤,l(0; �, "))�l(�) and  r(�, ") := P⇤,r(0; �, ")�r(�) are bases of W�(0; �, ") and W+(0; �, "), re-
spectively, satisfying

k l(�, ") � �l(�)k, k r(�, ") � �r(�)k  C�k"k
⌧, � 2 R2(✓2,⇥1,⇥2). (7.6)

We denote by X̂±(�, ") the upper 2 ⇥ 2-block of  l(�, ") and  r(�, "), respectively. By (7.6) it
follows

���det(X̂±(�, ")) � 1
���  C�k"k

⌧, � 2 R2(✓2,⇥1,⇥2),

yielding det(X̂±(�, ")) , 0. Hence, by (6.14), E" admits no poles in the region R2.
Employing (7.6), we approximate

����T̂�(0; �, ") � I2
hp
�(1 � i↵)

i���� ,
����T̂+(0; �, ") + I2

hp
(� + 2)(1 � i↵)

i����  C�k"k
⌧,

and, by (6.14), we establish
����E"(�) �

⇣p
�(1 � i↵) +

p
(� + 2)(1 � i↵)

⌘ ⇣p
�(1 + i↵) +

p
(� + 2)(1 + i↵)

⌘����  C�k"k
⌧,

for � 2 R2(✓2,⇥1,⇥2). Therefore, the Riccati-Evans function E", associated with the operator L̂tf ,
does not vanish on R2. The result now follows directly from Proposition 2.3. ⇤

8 Analysis in the region R1

8.1 Approach

In this section we locate the point spectrum in the region R1 using the Riccati-Evans function E". In
the region R1, system (6.6) has exponential dichotomies to the left of the front interface at ⇣ = ⇣tf(")
and to the right of the inhomogeneity at ⇣ = 0. However, along the intermediate plateau state of
the front, i.e. for ⇣ 2 [⇣tf("), 0], the eigenvalue problem loses hyperbolicity and the control over the
relevant subspaces W±(⇣; �, ") through exponential dichotomies is lost. Indeed, all points � 2 R1
lie close to the absolute spectrum of the plateau state and, thus, spatial eigenvalues cannot be
separated uniformly. We regain control by observing that the eigenvalue problem is asymptotically
close to a diagonal constant-coe�cient system along the plateau state. Consequently, the leading-
order dynamics in the matrix Riccati equation admit an invariant subset of diagonal solutions on
which the flow is given by two scalar Riccati equations, which can be explicitly solved using
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Riemann-surface unfolding and a Möbius transformation. We find that the relevant solutions to
the scalar Riccati equations have, when evaluated at ⇣ = 0, a discrete family of poles in � that
accumulate on the absolute spectrum of the plateau state as "1 & 0. We prove that all such poles
are confined to the open left-half plane except two which reside O("3

1)-close to the origin. With
the aid of the superposition principle, we perturb from the invariant subset of diagonal solutions
and, for � 2 R1 lying O("3

1)-away from the poles, we establish su�cient control over the relevant
trajectories in the matrix Riccati equation along the plateau state to approximate the Riccati-Evans
function and prove that it admits neither zeros nor poles.

All in all, we will obtain that the closed right-half plane, except for a disk D1(") centered at
the origin with a radius of order O("3

1), contains no point spectrum. To locate the point spectrum
in D1(") we proceed as follows. First, we establish that � = 0 is a simple root of the Riccati-Evans
function E" with E0"(0) > 0, where we exploit that explicit solutions to the eigenvalue problem
at � = 0 arise through gauge and (almost) translational invariance. Second, we compute that the
winding number of the meromorphic Riccati-Evans function on a contour enclosing the disk D1(")
equals 0, which proves that its number of poles equals its number of zeros (including multiplicity).
Then, we write the Riccati-Evans function, as in (2.4), as a quotient of two analytic functions. We
find, again using a winding number computation, that the number of zeros of its denominator
equals 2. Hence, because we cannot exclude zero-pole cancellation, we find that E" has either
one or two roots in D1("). In case it has two roots, we use a parity argument, using E0"(0) > 0
and E"(�) is real for � 2 R, to show that the other root must be real and negative. So, using
Proposition 2.3, we conclude that the point spectrum of L̂tf , posed on L2

̂�,̂+
(R,C2), is contained

in the open left-half plane, except for an algebraically simple eigenvalue residing at the origin.
The set-up of this section is as follows. In §8.2 we study the eigenvalue problem (6.4) at � = 0

and obtain the relevant solutions that arise due to gauge and (almost) translational invariance.
In §8.3 and §8.4 we obtain exponential dichotomies for (6.6) to the left of the front interface and
to the right of the inhomogeneity. In §8.5 we then track the relevant subspaces along the plateau
state, and vice versa, within the associated matrix Riccati equations. In §8.6 we deduce that the
critical point spectrum in the region R1 must be contained in the disk D1("). Then, we make
preparations for the final parity argument in §8.10: we approximate the derivative E0"(0) in §8.7,
we perform the necessary winding number computations in §8.8 and prove that the Riccati-Evans
function E" is real for real � in §8.9.

8.2 The eigenvalue problem at � = 0

Due to gauge symmetry of the cGL equation (1.1), � = 0 is an eigenvalue of the operator L̂tf ,
posed on L2

̂�,̂+
(R,C2). In this subsection we compute the associated eigenfunction and find two

additional solutions to the eigenvalue problem at � = 0, which arise through translational invari-
ance of the homogeneous cGL equation (1.1) with � constant.

It follows directly from gauge invariance of the cGL equation (1.1) that the time derivative
of its pattern-forming front solution ei!tf tAtf(x � ct) satisfies the associated variational equation.
Switching to a co-moving frame and polar coordinates (1.11), this yields the element (⇢tf ,�⇢tf) of
the kernel ofLtf , when posed on the space L2

(R,C2). We emphasize that (⇢tf ,�⇢tf) is not localized
and, therefore, not an element of the kernel of Ltf , when posed on the space L2(R,C2).

We note that, due to the spatially inhomogeneous term �, solutions to the cGL equation (1.1)
are not translational invariant. However, upon switching to the co-moving frame, we find that �(⇠)
is constant except for a jump at ⇠ = 0. Hence, the spatial derivative @⇠Atf(⇠) of the front solution
Atf(⇣) to (1.9) is a solution to the associated variational equation, which is non-smooth at ⇠ = 0
only, where its derivative makes a jump. Switching to polar coordinates (1.11) again, yields the
formal element (⇢0tf + i�0tf⇢tf , ⇢0tf � i�0tf⇢tf) of the kernel of Ltf .

Subsequently, we apply the rescaling and reparameterization from §3 to the obtained (formal)

28



elements of the kernel of Ltf . Besides (1,�1), we find that
⇣
ẑtf(⇣; ") � 1 + 1

2"
2
1, ẑtf(⇣; ") � 1 + 1

2"
2
1

⌘

formally lies in the kernel of L̂tf , when posed on the space L2
̂�,̂+

(R,C2). Thus, the eigenvalue
problem (6.4) at � = 0, which reads

�⇣ = A(⇣; 0, ")�, (8.1)

admits the nontrivial solution �0 2 L2
̂�,̂+

(R,C4) given by

�0(⇣) = (1,�1, 0, 0)> . (8.2)

In addition, we find C1-solutions �± : R! C4 to (8.1) satisfying

�±(±⇣; ") =
⇣
ẑtf(±⇣; ") � 1 + "2

1
2 , ẑtf(±⇣; ") � 1 + "2

1
2 , @⇣ ẑtf(±⇣; ") , @⇣ ẑtf(±⇣; ")

⌘>
, ⇣ > 0. (8.3)

Finally, after applying the linear coordinate transform B(⇣; "), given by (6.5), the two solutions
�0(⇣) and ��(⇣; ") to (8.1) yield two linearly independent solutions �̂0(⇣; ") := B(⇣; ")�0(⇣) and
�̂�(⇣; ") := B(⇣; ")��(⇣; ") satisfying

�̂0(⇣; ") =

0
BBBBBBBBBBBBBB@

�

��
�ẑtf

��ẑtf

1
CCCCCCCCCCCCCCA
, �̂�(⇣; ") =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

�
✓
ẑtf � 1 + "2

1
2

◆

�
✓
ẑtf � 1 + "2

1
2

◆

�
✓✓
"2

1
2 � 1

◆
ẑtf + µ + (1 + i"2) Rtf

◆

�
✓✓
"2

1
2 � 1

◆
ẑtf + µ + (1 � i"2) Rtf

◆

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

, ⇣ < 0, (8.4)

to the transformed eigenvalue problem (6.6) at � = 0, where we suppressed the arguments on the
right hand sides and we used that  tf(⇣; ") = (ẑtf ,Rtf)(⇣; ") satisfies equation (3.3).

The next result now follows immediately from Propositions 4.2, 4.3 and Lemma 6.2.

Lemma 8.1. There exists a constant C > 1 such that, provided 0 < "1 ⌧ 1 and 0  |"2| ⌧ 1, the
solutions �±(⇣; ") to (8.1) are bounded as ⇣ ! ±1 and it holds

�����±(0; ") +
⇣p

2(1 � i↵) + 1 ,
p

2(1 + i↵) + 1 , (1 ⌥ 1)(1 � i↵) , (1 ⌥ 1)(1 + i↵)
⌘T ����  Ck"k.

Moreover, the solutions �̂0(⇣; ") and �̂�(⇣; ") to (6.6) at � = 0 converge to 0 as ⇣ ! �1.

8.3 Exponential dichotomies to the left of the front interface

As in the proof of Proposition 7.1 for the region R2, we employ roughness techniques to carry
over an exponential dichotomy of the approximate system (7.1) to system (6.6) itself. However,
at � = 0 system (7.1) possesses an eigenvalue, so that it only admits an exponential dichotomy
on a half-line rather than on the whole real line. Thus, transferring to system (6.6) yields an
exponential dichotomy for � in the region R1 to the left of the front interface rather than to the left
of the inhomogeneity as in Proposition 7.1. We arrive at the following result, whose proof can be
found in Appendix C.

Proposition 8.2. Provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, system (6.6)
admits for each � 2 R1(⇥1) an exponential dichotomy on (�1, ⇣tf(")] with �- and "-independent
constants and projections P⇤,l(⇣; �, ") on C4 satisfying

ker(P⇤,l(⇣; 0, ")) = Span
n
�̂0(⇣; "), �̂�(⇣; ")

o
, ⇣ 2 (�1, ⇣tf(")], (8.5)
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where �̂0(⇣; ") and �̂�(⇣; ") are defined in (8.4). In addition, we have the estimate
���P⇤,l(⇣tf("); �, ") � Q⇤,l(0)

���  C�

⇣ p
k"k

���log k"k
��� + |�|

⌘
, (8.6)

where Q⇤,l(0) is a projection on C4 with

ker(Q⇤,l(0)) = Span
⇢⇣

1,�1, ẑ⇤(⇣�),�ẑ⇤(⇣�)
⌘>
,

⇣
ẑ⇤(⇣�) � 1, ẑ⇤(⇣�) � 1, � � ẑ⇤(⇣�), � � ẑ⇤(⇣�)

⌘>�
,

(8.7)

and C� > 1 is a constant depending only on �.

8.4 Exponential dichotomies to the right of the inhomogeneity

Analogous to the proof of Proposition 7.2, we establish an exponential dichotomy for system (6.6)
on [0,1), with the subtle di↵erence that we work with a sharper approximation yielding exponen-
tial estimates, which are necessary for the upcoming analysis, see for instance Proposition 8.8. We
establish the following result, whose proof can be found in Appendix C.

Proposition 8.3. There exist constants C > 1 and ⌘ > 0 such that, provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1
and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, system (6.6) admits for each � 2 R1(⇥1) an exponential dichotomy
on [0,1) with �- and "-independent constants and projections P⇤,r(⇣; �, ") on C4 satisfying

���P⇤,r(⇣; �, ") � Q⇤,r(�, ")
���  Ce�⌘"1 , ⇣ � 0,

where Q⇤,r(�, ") is the spectral projection onto the stable eigenspace of the matrix A⇤,+(�, ") de-
fined in (6.9), which is smooth at � = 0 and " = (0, 0) and satisfies

Q⇤,r(0, 0)
h
C4

i
= Span

0
BBBB@

I2[0]
�I2

hp
2(1 � i↵)

i
1
CCCCA . (8.8)

8.5 Tracking subspaces along the absolutely unstable plateau

We approximate system (6.6) along the plateau between the front interface at ⇣ = ⇣tf(") and the
inhomogeneity at ⇣ = 0 by system (6.7). By observing that the coe�cients of the matrix A⇤,�(�, ")
are smooth at � = 0 and " = (0, 0) and it holds

A⇤,�(0, 0) =
 
I2[0] I2[1]
I2[0] I2[0]

!
,

by (4.2) and (4.5), one directly obtains the a priori estimate.

Lemma 8.4. There exists a constant C > 1 such that, provided 0 < "1 ⌧ ⇥1 ⌧ 1 and 0  |"2| ⌧

⇥1 ⌧ 1, the evolution T⇤,p(⇣, y; �, ") of (6.7) satisfies
���T⇤,p(⇣, y; �, ")

���  C (1 + |⇣ � y|) e
p
k"k+|�| |⇣�y|, ⇣, y 2 R, � 2 R1(⇥1).

The flow induced by (6.7) in the coordinate chart c, which maps any subspace W 2 Gr(2,C4)
represented by a basis

⇣
X
Y

⌘
2 C4⇥2 with det(X) , 0 to the matrix T = YX�1

2 C2⇥2, is given by the
matrix Riccati equation

T⇣ = �T 2 +DT � TD +A�, T 2 C2⇥2, (8.9)

where we suppress dependency on � and ".
In this subsection, we track the relevant subspaces W±(⇣; �, "), defined in (6.12), along the

absolutely unstable plateau. As in §7.3, we relate these subspaces of solutions of the transformed
eigenvalue problem (6.6) to its exponential dichotomies established in Propositions 8.2 and 8.3.
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Lemma 8.5. Provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, it holds

W�(⇣; �, ") = ker(P⇤,l(⇣; �, ")), ⇣ 2 (�1, ⇣tf(")], � 2 R1(⇥1),

where P⇤,l(⇣; �, ") is the projection associated with exponential dichotomy of (6.6) on (�1, ⇣tf(")]
established in Proposition 8.2. In addition, we have

W+(⇣; �, ") = P⇤,r(⇣; �, ")[C4], ⇣ 2 [0,1), � 2 R1(⇥1),

where P⇤,r(⇣; �, ") is the projection associated with exponential dichotomy of (6.6) on [0,1) es-
tablished in Proposition 8.3.

Proof. The proof is completely analogous to the proof of Lemma 7.3. ⇤

The estimate (4.8) in Proposition 4.2 in combination with Lemma 8.5 and the bounds in Propo-
sitions 8.2 and 8.3 now readily lead to the following approximation result.

Lemma 8.6. There exist constants C > 1 and ⌘ > 0 such that, provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1
and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, it holds

���T̂�(⇣tf("); �, ") � I2
⇥
ẑ⇤(⇣�)

⇤���  C| log(�)|�2,
���T̂+(0; �, ") � I2

⇥
t̂+(�, ")

⇤���  Ce�⌘"1 , (8.10)

for � 2 R1(⇥1), where t̂+(�, ") and ŝ+(�, ") are the principal square roots of the diagonal entries
of the matrixA+(�, "), defined in (6.9), which are smooth near � = 0 and " = 0 with

t̂+(0, 0) = �
p

2(1 � i↵), ŝ+(0, 0) = �
p

2(1 + i↵). (8.11)

For later convenience, we now fix the bases (6.13) of W±(⇣; �, ") by setting

X̂�(⇣tf("); �, ") = I4 = X̂+(0; �, "). (8.12)

so that T̂ (⇣tf("); �, ") = Ŷ�(⇣tf("); �, ") and T̂+(0; �, ") = Ŷ+(0; �, "). Note that is possible by
Lemma 8.6.

We expect that the evolution of the subspaces W±(⇣; �, ") in (6.6) along the plateau is to lead-
ing order governed by the dynamics of (6.7). Thus, we expect the evolution of the representations
T̂±(⇣; �, ") 2 C2⇥2 of W±(⇣; �, ") under the coordinate chart c to be to leading order governed by
the matrix Riccati equation (8.9). Since A�(�, ") and D(") are diagonal matrices, one readily
observes that the flow of (8.9) leaves the subspace of diagonal matrices in C2⇥2 invariant. The ma-
trices T̂+(0; �, ") and T̂�(⇣tf("); �, ") are to leading-order diagonal by the estimates in Lemma 8.6.
Thus, by tracking the leading-order diagonal approximation of T̂�(⇣tf("); �, ") in (8.9) forward
from ⇣tf(") to 0, we expect to estimate T̂�(0; �, "). Similarly, by tracking the leading-order di-
agonal approximation of T̂+(0; �, ") in (8.9) backward from 0 to ⇣tf("), we expect to estimate
T̂+(⇣tf("); �, "). We emphasize that, depending on the precise location of � in the region R1, it is
advantageous to either approximate T̂+(⇣tf("); �, ") or T̂�(0; �, "), cf. Remark 8.10.

The dynamics of (8.9) on this subspace of diagonal matrices is given by the two scalar Riccati
equations

t⇣ = �t2 +
�

m(")2 (1 � i↵) + µ("), (8.13)

s⇣ = �s2 +
�

m(")2 (1 + i↵) + µ("). (8.14)
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We emphasize that although these scalar Riccati equations are explicitly solvable, the dependence
of their solutions on the parameters � and " is rather complicated. In fact, given any solution
�(⇣;$) to the scalar Riccati equation

�⇣ = ��
2 +$,

with parameter $ 2 C and fixed initial condition �(0;$) = �0 2 C, one finds that �(⇣; ·) is, for
each fixed ⇣ > 0, a meromorphic function whose poles and zeros accumulate on the negative real
axis as ⇣ ! 1, see Figure 6.

Figure 6: Two views of the plot of the modulus (vertical axis) and argument (color) of the solution �(⇣;$)
to �⇣ = ��2 +$ as a function of the parameter $ with ⇣ = 10.0 and Re(�(0;$)) = 1.0 = Im(�(0;$)). Left
plot also has black line on the negative real axis with |�| = 0.

To uncover the dependence of the dynamics in (8.13) and (8.14) on � 2 R1, we proceed as
in the existence analysis of the front in [28]. There, stable and unstable manifolds in (3.3) are
matched by projecting them onto the singular sphere R = 0, where the dynamics is governed by
the scalar Riccati equation (4.11). Setting

M(") =
p
|µ(")|, (8.15)

one observes, using (4.2) and (4.4), that M(") is smooth at " = (0, 0) and satisfies

M(0, 0) = 0, @"1 M(0, 0) = (1, 0). (8.16)

The matching procedure in [28, §3.4] yields, via the implicit function theorem, that

µ(") = M(")2ei&(M(")), m(") = m̃(M(")), M(")⇣tf(") = ⇣̂(M(")), (8.17)

where m̃(M), ⇣̂(M) and &(M) are smooth at M = 0 satisfying

m̃(0) = 1, &(0) = ⇡, ⇣̂(0) = �⇡, ⇣̂0(0) = Re
 

1
p

2(1 � i↵)

!
�

1
ẑ⇤(⇣�)

. (8.18)

We will perform a similar matching procedure as in [28] to track the relevant diagonal solutions
to (8.9). We establish control for all � 2 R1(⇥1) outside a discrete collection of disks, whose
centers lie on ⌃0,abs [⌃0,abs and whose interior contains the poles of the diagonal solutions to (8.9)
lie. See Figure 7 for a schematic depiction. Since the proof uses the same approach as [28] we
only give a sketch here and leave the full proof to Appendix C.

Proposition 8.7. There exists a constant C > 1 such that, provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1
and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, the following holds. There exists a discrete collection of disks
D j(") ⇢ C, j 2 Z \ {0} with center � j and radius r j satisfing

� j := �

⇣
1 � j2

⌘
"2

1(1 + sign( j) i↵)

1 + ↵2 , (8.19)

|r j|  min
n
C� j2M(")3,C j2��1/4M(")3 +C�, jM(")4

o
 C� j2k"k3, (8.20)
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j=±1

j=2
j=3

j=4

j=-2

j=-3

j=-4

O(ɛ13)

0

Γ

Figure 7: Schematic depiction of the disks Dj("), j 2 Z \ {0} (blue circles), with radii of order O("3
1) and

centers � j (blue dot) as defined in (8.19), lying on the lines {s(1 ± i↵) : s  0} (dotted green), which form
the limit of the absolute spectrum (1.10), and its complex conjugate, as "1 & 0. The disks enclose the
zeros (black dots) and poles (red x) of the Riccati-Evans function. The contour � (red dotted-dashed circle)
encloses the first disk D1(").

where C� > 1 is a constant depending only on �, and C�, j > 1 is a constant depending on �
and j only, such that the diagonal solutions

Td,±(⇣; �, ") =
 
t±(⇣; �, ") 0

0 s±(⇣; �, "))

!
,

to (8.9) with initial data t+(0; �, ") = t̂+(�, "), s+(0; �, ") = ŝ+(�, ") and t�(⇣tf("); �, ") = ẑ⇤(⇣�) =
s�(⇣tf("); �, ") satisfy

���Td,+(⇣tf(�, "); �, ")
���  �1/4,

���Td,�(0; �, ")
���  �1/4, � 2 R1(⇥1) \

[

j2Z\{0}

D j("). (8.21)

In addition, each of the meromorphic functions t�(0; ·, ") and t+(⇣tf("); ·, ") has precisely one pole
in each disk D j("), j 2 Z>0, which is simple. Similarly, each of the meromorphic functions
s�(0; ·, ") and s+(⇣tf("); ·, ") possesses precisely one pole in each disk D j("), j 2 Z<0, which is
simple.

Sketch of proof. To outline our proof, let us discuss the solution t+ to (8.13) with initial condition
t+(0; �, ") = t̂+(�, "). We locate poles of the solution endpoint t+(⇣tf ; ·, ") by studying solutions with
q� = 1/t+(⇣tf ; �, ") for q� in a �-dependent neighborhood of the origin. We unfold the dynamics in
the parameter � with a polar-coordinate Riemann surface unfolding near the branch point N2ei' :=
� 1�i↵

m(")2 + µ("). Then, by scaling ⇠ = N⇣ and making the coordinate change r = log
⇣

t+Nei'/2

t�Nei'/2

⌘
, one

obtains a constant flow. Letting ⇠tf = N⇣tf and solving the resulting boundary value problem on
the scaled interval yields the family of nonlinear complex equations

�⇠tf = e�i '2 ⇡i j +
e�i '2

2
log

0
BBBBBBBBB@

1 + Nei '2
t̂+

1 � Nei '2
t̂+

1
CCCCCCCCCA
�

e�i '2

2
log

0
BBBB@

1 + ei '2 Nq�
1 � ei '2 Nq�

1
CCCCA , j 2 Z>0,

where j parameterizes the branch of the multi-valued complex logarithm.
We then solve the imaginary part of this equation for ' ⇠ ⇡ in terms of (N, q�) ⇠ (0, 0)

uniformly for each j 2 Z>0. Then, we use the fact that the scaled front location satisfies M⇠tf =

N⇣tf , see (8.17). Inserting this into the real part of the equation, we then obtain for each j 2 Z>0
a unique solution N j(M; q�) in a suitably defined neighborhood of the origin. Expanding this
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solution in M and converting back to � through (8.15), we find for each j 2 Z>0 and any q�
su�ciently small a unique solution � lies in the disk D j("). So, each D j(") contains precisely one
pole of t+(0; �, "). Applying similar arguments for s+, t�, s� gives the result for the other solution
components. ⇤

Using Proposition 8.7 we aim to approximate the solutions T̃±(⇣; �, ") to the matrix Riccati
equation (8.9) with initial conditions T̃+(0; �, ") = T̂+(0; �, ") and T̃�(⇣tf("); �, ") = T̂+(⇣tf("); �, ")
by the diagonal solutions Td,±(⇣; �, "). We do so by applying a superposition principle to (8.9).
That is, given two di↵erent solutions T0 and T1 to the matrix Riccati equation (8.9) and a solution
to the associated linear system

W⇣ = (D + T0)W �W(D � T0), W 2 C2⇥2,

a third solution T2 to (8.9) can be found through the superposition formula

W = (T0 � T2)�1 (T2 � T1) (T1 � T0)�1 .

We refer to [34] for more theoretical background. It is readily seen that (8.9) has two fixed points,
which correspond to square roots of the diagonal matrix A�(�, "). We use these two fixed point
solutions as input for the superposition principle, which leads to the following result.

Proposition 8.8. There exist constants C > 1 and ⌘ > 0 such that, provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1
and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, the solutions T̃±(⇣; �, ") to the matrix Riccati equation (8.9) with
initial conditions T̃+(0; �, ") = T̂+(0; �, ") and T̃�(⇣tf("); �, ") = T̂+(⇣tf("); �, ") enjoy the estimates

���T̃+(⇣tf("); �, ") � Td,+(⇣tf("); �, ")
���  Ce�⌘"1 ,

���T̃�(0; �, ") � Td,�(0; �, ")
���  C�1/4,

���T̃+(⇣tf("); �, ")
��� ,

���T̃�(0; �, ")
���  C�1/4,

for � 2 R1(⇥1) \
[

j2Z\{0}

D j("), (8.22)

where Td,±(⇣; �, ") and D j(") are as in Proposition 8.7.

Proof. In this proof we denote by C > 1 any constant which is independent of ", �, � and ⇥1.
Let T0(�, ") be the matrix obtained by taking entry-wise principal square roots in the diagonal

matrixA�(�, "). Then it holds T0(�, ")2 = A�(�, ") and the entries of the diagonal matrix T0(�, ")
have nonnegative real parts. Consequently, ±T0(�, ") are fixed point solutions to (8.9), which,
by (4.5), satisfy

kT0(�, ")k  C
p
k"k + |�|, � 2 R1(⇥1). (8.23)

Following the superposition principle in [34, §III.B], we consider the ratios

W±(⇣; �, ") =
⇣
T̃±(⇣) ⌥ T0

⌘�1 ⇣
Td,±(⇣) � T̃±(⇣)

⌘ �
Td,±(⇣) ⌥ T0

��1
2 C2⇥2,

where we suppress �- and "-dependency on the right hand side.
Using Lemma 8.6, one finds det(T̃+(0; �, ") � T0(�, ")) , 0, det(Td,+(0; �, ") � T0(�, ")) , 0

and, more specifically,

kW+(0; �, ")k  Ce�⌘"1 , � 2 R1(⇥1), (8.24)

provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1. Similarly, with the aid of
Lemma 8.6 and estimate (4.8) in Proposition 4.2, one establishes 0 , det(T̃�(⇣tf("); �, ")�T0(�, ")),
det(Td,�(⇣tf(")�, ") � T0(�, ")) , 0 and, more specifically,

kW�(⇣tf("); �, ")k  C, � 2 R1(⇥1), (8.25)
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provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1. Thus, the subspaces corresponding
to T̃±(⇣; �, "), Td,±(⇣; �, ") and ±T0(�, ") in the linear system (6.7) are complementary at ⇣ = 0 and
⇣ = ⇣tf("), respectively, and therefore at all ⇣ 2 R. It follows det(T̃±(⇣)�T0), det(Td,±(⇣)�T0) , 0
for all ⇣ 2 R and the ratioW±(⇣; �, ") is well-defined for each ⇣ 2 R and � 2 R1(⇥1), where the
�-meromorphic functions T̃±(⇣; �, ") and Td,±(⇣; �, ") have no poles.

Through direct verification, see also [34], one observes that W±(⇣; �, ") satisfies the linear
matrix equation

W⇣ = (D± T0)W �W(D ⌥ T0), W 2 C2⇥2,

where we suppress �- and "-dependency. Consequently, it holds

W+(⇣; �, ") = e(T0(�,")+D("))⇣
W+(0; �, ")e(T0(�,")�D("))⇣ ,

W�(⇣; �, ") = e�(T0(�,")�D("))(⇣�⇣tf ("))
W�(⇣tf("); �, ")e�(T0(�,")+D("))(⇣�⇣tf (")),

for ⇣ 2 [⇣tf("), 0], yielding

kW+(⇣tf("); �, ")k  Ce�⌘"1 ,

kW�(0; �, ")k  C,
(8.26)

by (8.24), (8.25) and the fact that all entries of the diagonal matrices T0(�, ")±D(") have nonneg-
ative real part.

By combining
���T̃±(⇣; �, ") � Td,±(⇣; �, ")

��� =
����
⇣
T̃± ⌥ T0

⌘
W±

�
Td,± ⌥ T0

�����



⇣���T̃± � Td,±
��� +

���Td,±
��� + kT0k

⌘
kW±k

⇣���Td,±
��� + kT0k

⌘
,

where we suppressed the arguments on the right hand side, with the estimates (8.21) established
in Proposition 8.7 and the approximations (8.23) and (8.26), we obtain (8.22), provided 0 < "1 ⌧

⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1. ⇤

Recall that, under the coordinate chart c, the matrix T̂+(⇣; �, ") 2 C2⇥2 represents the relevant
subspace W+(⇣; �, ") 2 Gr(2,C4) of solutions to (6.6), which was defined by (6.12). Having
established the bound (8.22) in Proposition 8.8, we are now in the position to track T̂+(⇣; �, ") along
the plateau state back from ⇣ = 0 to ⇣ = ⇣tf("). We employ the variation of constant formula and
exploit that system (6.6) is, by Proposition 4.3, converging at an "- and �-independent exponential
rate to (6.7) when propagating forward along the plateau, whereas the evolution of (6.7) can only
grow with an exponential rate of order O(

p
k"k + |�|) by Lemma 8.4.

Proposition 8.9. There exists a constant C > 1 such that, provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and
0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, it holds

���T̂+(⇣tf("); �, ") � T̃+(⇣tf("); �, ")
���  C�,

���T̂+(⇣tf("); �, ")
���  C�1/4,

� 2 R1(⇥1) \
[

j2Z\{0}

D j("), (8.27)

where T̃+(⇣; �, ") is as in Proposition 8.8 and D j(") is as in Proposition 8.7.

Proof. In this proof we denote by C > 1 any constant which is independent of ", �, � and ⇥1. Fix
� 2 R1(⇥1) \

S
j2Z\{0} D j(").

Denote by

B⇤,p(⇣; ") := A⇤(⇣; �, ") � A⇤,�(�, "),
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the di↵erence of the coe�cient matrices of (6.6) and (6.7). By (4.13) in Proposition 4.3 it holds
���B⇤,p(⇣; ")

���  C�e�⌘|⇣�⇣tf (")|, ⇣ 2 [⇣tf("), 0]. (8.28)

Recall that T⇤,p(⇣, y; �, ") denotes the evolution of the reduced system (6.7). The subspace
spanned by the matrix solution

T⇤,p(⇣, ⇣tf("); �, ")
 

I2[1]
T̃+(⇣tf("); �, ")

!
2 C4⇥2,

to (6.7) is, under the chart c, represented by the solution T̃+(⇣; �, ") to the corresponding matrix
Riccati equation (8.9). Thus, the variation of constants formula

Y(⇣; �, ") = T⇤,p(⇣, ⇣tf("); �, ")
 

I2[1]
T̃+(⇣tf("); �, ")

!
+

Z ⇣

0
T⇤,p(⇣, y; �, ")B⇤,p(y; ")Y(y; �, ")dy,

(8.29)

yields a matrix solution Y(⇣; �, ") 2 C4⇥2 to (6.6), which spans the subspace W+(⇣; �, ") for each
⇣ 2 R. Indeed, Y(0; �, ") spans the subspace which is represented by T̃+(0; �, ") = T̂+(0; �, ") 2
C2⇥2 under the chart c.

By (8.29), we find that Ŷ(⇣; �, ") := T⇤,p(⇣tf("), ⇣; �, ")Y(⇣; �, ") satisfies

Ŷ(⇣; �, ") =
 

I2[1]
T̃+(⇣tf("); �, ")

!
+

Z ⇣

0
T⇤,p(⇣tf("), y; �, ")B⇤,p(y; ")T⇤,p(y, ⇣tf("); �, ")Ŷ(y; �, ")dy.

(8.30)

We apply a Neumann series expansion to approximate Ŷ(⇣; �, "). Thus, we consider the linear
operator F�," given by

⇣
F�,"Ŷ

⌘
(⇣) =

Z ⇣

0
T⇤,p(⇣tf("), y; �, ")B⇤,p(y; ")T⇤,p(y, ⇣tf("); �, ")Ŷ(y)dy,

on C([⇣tf("), 0],C4⇥2), which by (8.28) and Lemma 8.4 has norm kF�,"k  C�, provided 0 < "1 ⌧

⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1. Hence, I � F�," is invertible on C([⇣tf("), 0],C4⇥2)
and (8.30) can be reformulated as

Ŷ(⇣; �, ") =
"
(I � F�,")�1

 
I2[1]

T̃+(⇣tf("); �, ")

!#
(⇣),

Using Proposition 8.8, we approximate
������Ŷ(⇣; �, ") �

 
I2[1]

T̃+(⇣tf("); �, ")

!������  kF�,"k
���(I � F�,")�1

���
������

 
I2[1]

T̃+(⇣tf("); �, ")

!������  C�.

Hence, as Ŷ(⇣tf("); �, ") = Y(⇣tf("); �, "), we establish
������Y(⇣tf("); �, ") �

 
I2[1]

T̃+(⇣tf("); �, ")

!������  C�. (8.31)

Upon denoting Y(⇣tf("); �, ") = (Y1(�, "),Y2(�, ")), we approximate using Proposition 8.9 and
estimate (8.31):

���T̂+(⇣tf("); �, ") � T̃+(⇣tf("); �, ")
��� =

���Y2Y
�1
1 � T̃+

��� 
���T̂+

��� kI[1] �Y1k + kY2 � T̃+k



⇣���T̂+ � T̃+
��� + kT̃+k

⌘
kI[1] �Y1k + kY2 � T̃+k

 C
⇣���T̂+ � T̃+

��� + �1/4
⌘
� +C�,

where we suppress the arguments on the right hand side. Hence, using Proposition 8.8, we con-
clude (8.27) holds, provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1. ⇤
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Remark 8.10. We emphasize that a similar argument as in Proposition 8.9 to track the subspace
W�(⇣; �, ") forward from ⇣ = ⇣tf(") to ⇣ = 0 fails, since the exponential growth of the evolution
of (6.7) cannot be compensated as there is no exponential decay of system (6.6) towards sys-
tem (6.7) when propagating backward along the plateau state. However, for the winding number
argument in §8.8 on a contour � enclosing the disk D1("), we are able (and it is advantageous) to
track W�(⇣; �, ") forward from ⇣ = ⇣tf(") to ⇣ = 0 by using that better bounds on the evolution
of (6.7) hold for � 2 �.

8.6 Reduction to disk D1(")

We prove that the alternative Riccati-Evans function Ẽ", defined in §6.2.2, has no roots in R1(⇥1)\S
j2Z\{0} D j("), where D j(") are the disks defined in Proposition 8.7.

Theorem 8.11. Provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, the operator L̂tf ,
posed on L2

̂�,̂+
(R,C2), has no point spectrum in

R1(⇥1) \
[

j2Z\{0}

D j("),

where the disks D j(") are as in Proposition 8.7.

Proof. Let Ẽ" be as in §6.2.2. Provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, we
employ (4.8) in Proposition 4.2, (8.10) in Lemma 8.6 and (8.27) in Proposition 8.9 to yield

���Ẽ"(�) � ẑ⇤(⇣�)2
���  C| log(�)|�3, for � 2 R1(⇥1) \

[

j2Z\{0}

D j("), (8.32)

where C > 1 is an "-, �- and �-independent constant. Using (4.8), we conclude from (8.32) that
the meromorphic function Ẽ" possesses neither poles nor roots on R1(⇥1) \

S
j2Z\{0} D j("). Hence,

by the considerations in §6.2.2, the operator L̂tf , posed on L2
̂�,̂+

(R,C2), has no point spectrum
R1(⇥1) \

S
j2Z\{0} D j(") ⇤

By estimate (8.20) in Proposition 8.7, D1(") = D�1(") is the only disk D j("), j 2 Z \ {0} which
intersects the closed right half plane. Thus, all that remains is to control the point spectrum in
D1("). In the following we proceed as outlined in §8.1.

8.7 The derivative of the Riccati-Evans function at � = 0

In this subsection, we show that � = 0 is a simple root of the Riccati-Evans function E" and we
approximate the derivative E0"(0).

We showed in §8.2 that gauge invariance yields the nontrivial solution �0 2 H1
̂�,̂+

(R,C4),
given by (8.2), to the eigenvalue problem (6.4) at � = 0. Hence, � = 0 is an eigenvalue of the
operator L̂tf , posed on L2

̂�,̂+
(R,C4). It readily follows by Proposition 2.3 that � = 0 is a root of

the associated Riccati-Evans function.
To approximate the derivative of the Riccati-Evans function we use the expressions (2.7)

and (2.8) in §2.1. Thus, on the one hand, we need bases of ker(P�(0; 0, ")) and P+(0; 0, ")[C4],
where we recall that P�(⇣; �, ") and P+(⇣; �, ") are the projections associated with the exponential
dichotomies of (6.4) on (�1, 0] and [0,1), respectively, which were established in §6.2.1. On the
other hand, we need to control a nontrivial solution  0(⇣; ") to the adjoint system

 ⇣ = �A(⇣; 0, ")⇤ ,  2 C4, (8.33)

with initial condition  0(0; ") 2 ker(P�(0; 0, "))? \ P+(0; 0, ")[C4]?.
To find the desired bases, we use the explicit solutions (8.3) to (8.1) obtained in §8.2.
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Lemma 8.12. Let �0(⇣) and �±(⇣; ") be as in (8.2) and (8.3), respectively. Provided 0 < "1 ⌧ 1
and 0  |"2| ⌧ 1, (�0(0) | �±(0, ")) are bases of ker(P�(0; 0, ")) and P+(0; 0, ")[C4], respectively.
In addition, it holds ker(P�(0; 0, ")) \ P+(0; 0, ")[C4] = Span{�0(0)}.

Proof. By Lemma 8.1 the solutions �±(⇣; ") are bounded as ⇣ ! ±1, whereas the linearly inde-
pendent solution �0(⇣) is bounded on R. Hence, (�0(0) | �±(0, ")) are bases of ker(P�(0; 0, ")) and
P+(0; 0, ")[C4], respectively. In addition, the estimate Lemma 8.1 shows that �+(0; ") and ��(0; ")
are linearly independent, which proves ker(P�(0; 0, ")) \ P+(0; 0, ")[C4] = Span{�0(0)}. ⇤

Lemma 8.12 shows that the eigenvalue � = 0 of the operator L̂tf , posed L2
̂�,̂+

(R,C4), has
geometric multiplicity 1, and thus the formulas (2.7) and (2.8) in §2.1 can indeed be employed to
compute the derivative of the Riccati-Evans function at � = 0.

The next result provides control over the relevant nontrivial solution  0(⇣; ") to the adjoint
system (8.33). To the left of the front interface and to the right of the inhomogeneity such control
is provided by exponential dichotomies, which arise through standard roughness techniques, cf. the
proof of Proposition 8.2. Along the absolutely unstable plateau we employ a variation of constants
approach, comparable to the one in the proof of Proposition 8.9, to establish the desired control.
All in all, we arrive at the following lemma, whose proof can be found in Appendix C.

Lemma 8.13. There exists a constant C > 1 such that, provided 0 < "1 ⌧ � ⌧ 1 and 0 
|"2| ⌧ � ⌧ 1, there exists a solution  0(⇣; ") to the adjoint equation (8.33) with initial condition
 0(0; ") 2 ker(P�(0; 0, "))? \ P+(0; 0, ")[C4]?, which enjoys the estimates

k 0(⇣; ")k  C| log(�)|2ê�(⇣tf (")�⇣), ⇣  ⇣tf("),

k 0(⇣; ")k  Ce�̂+⇣ , ⇣ � 0,
(8.34)

and
��� 0(⇣; ") �  ̃0(⇣; ")

���  C| log(�)|4�e�
⌘
2 (⇣�⇣tf (")), ⇣ 2 [⇣tf("), 0], (8.35)

where we denote

 ̃0(⇣; ") :=
0
BBBBB@0, 0,�

1

@⇣ ẑ0(⇣; ")
,

1
@⇣ ẑ0(⇣; ")

1
CCCCCA
>

.

We are now in a position to compute the derivative of the Riccati-Evans function at � = 0
using the expressions (2.7) and (2.8) in §2.1.

Theorem 8.14. There exists a constant C > 1 such that, provided 0 < "1 ⌧ � ⌧ 1 and 0  |"2| ⌧

� ⌧ 1, it holds
��������
"3

1E
0

"(0) �
2⇡

⇣
1 + ↵2

⌘

1 + Re
p

2 + 2i↵

��������
 Ck"k. (8.36)

Proof. In this proof C > 1 denotes any "- and �-independent constant.
By Lemma 8.12 the subspace ker(P�(0; 0, "))\P+(0; 0, ")[C4] = Span{�0(0)} is one-dimensional.

Thus, we can substitute the relevant expressions in (2.7) and (2.8) and obtain

E
0

"(0) =
det ( 0(0; ") | ��(0; ") | �0(0) | �+(0; "))

Z

R
 0(⇣; ")⇤@�A(⇣; 0, ")�0(⇣)d⇣

k 0(0; ")k2 det
⇣
�̃0(0) | �̃�(0; ")

⌘
det

⇣
�̃0(0) | �̃+(0; ")

⌘ , (8.37)
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where we recall (�0(0) | �±(0; ")) 2 C4⇥2 are the bases of ker(P�(0; 0, ")) and P+(0; 0, ")[C4],
respectively, obtained in Lemma 8.12,  0(⇣; ") is the nontrivial solution with

 0(0; ") 2 ker(P�(0; 0, "))? \ P+(0; 0, ")[C4]?,

to the adjoint problem (8.33), obtained in Lemma 8.13, and �̃0(0), �̃±(0; ") 2 C2 denote the upper
two entries of the vectors �0(0) and �±(0; "), respectively.

We approximate the Melnikov integral in (8.37), with the aid of Lemma 8.12, as
������

Z

R
 0(⇣; ")⇤@�A(⇣; 0, ")�0(⇣)d⇣ �

Z 0

⇣tf (")
 ̃0(⇣; ")⇤@�A(⇣; 0, ")�0(⇣)d⇣

������  C| log(�)|2. (8.38)

We will use Cauchy’s integral theorem to approximate the remaining integral
Z 0

⇣tf (")
 ̃0(⇣; ")⇤ @�A(⇣; 0, ") �0(⇣)d⇣ =

�2
m(")2 Re

 Z 0

⇣tf (")

1 � i↵
@⇣ ẑ0(⇣; ")

d⇣
!
. (8.39)

Using (4.2) in Theorem 4.1, we deduce from (4.4) that it holds
���µ (") + "2

1

���  C"3
1, |m(") � 1|  C"2

1. (8.40)

The C1-curve ⌫" : [⇣tf("), 0]! C given by ⌫"(⇣) = ẑ0(⇣;")
p
�µ(")
, satisfies the di↵erential equation

⌫⇣ = �
p
�µ(")

⇣
⌫2 + 1

⌘
. (8.41)

Thus, using estimates (4.8) and (4.10) in Proposition 4.2, estimate (4.13) in Proposition 4.3
and (4.12), the begin and end point of the curve ⌫" are approximated by

������⌫"(0) +
p

2 � 2i↵
"1

������  C, C Re
⇥
⌫"(⇣tf("))

⇤
�

1
| log(�)|"1

, |⌫"(⇣tf("))| 
C
"1
. (8.42)

Since it holds Re
p
�µ(") > 0 by (8.40), the flow in (8.41) points into the left-half plane on the

imaginary axis between the fixed points ±i, whereas the flow points into the right-half plane on the
other parts of the imaginary axis. Thus, since we have Re(⌫"(0)) < 0 < Re(⌫"(⇣tf("))) by (8.42),
the curve ⌫" must cross the imaginary at some point between the fixed points �i and i of (8.41);
see also Figure 2 top right, for a similar trajectory.

By (8.42) we can connect the point ⌫"(0) to ⌫"(⇣tf(")) by a C1-curve ⌫̃" : [�1, 1]! C of length
 C/"1 satisfying C|⌫̃"(⇣)"1 log(�)| � 1 for all ⇣ 2 [�1, 1] and crossing the imaginary axis precisely
once and doing so at a point above i. So, we can approximate

�������

Z

⌫̃"

1
�
z2 + 1

� j dz

�������
 C| log(�)|2 j" j�1/2

1 , j = 1, 2. (8.43)

By the previous considerations, the union of the curves ⌫" and ⌫̃" yields a closed C1-curve ⌫̌"
winding n+ + 1 times clockwise around i and n� times counterclockwise around �i for some
n± 2 Z�0. Applying separation of variables in (8.41) and using the residue theorem yields

p
�µ(")⇣tf(") =

Z

⌫"

1
z2 + 1

dz =
I

⌫̌"

1
z2 + 1

dz �
Z

⌫̃"

1
z2 + 1

dz = �⇡(n+ + n� + 1) �
Z

⌫̃"

1
z2 + 1

dz

Combing the latter with (4.3) in Theorem 4.1, (8.40) and (8.43) yields n± = 0. So, employing the
residue theorem again, we compute

Z

⌫"

1
�
z2 + 1

�2 dz =
I

⌫̌"

1
�
z2 + 1

�2 dz �
Z

⌫̃"

1
�
z2 + 1

�2 dz = �
⇡

2
�

Z

⌫̃"

1
�
z2 + 1

�2 dz.
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Hence, by (8.38), (8.39), (8.40), (8.43) and
Z 0

⇣tf (")

1
@⇣ ẑ0(⇣; ")

d⇣ = �
Z

⌫"

1

µ("1)
p
�µ("1)

�
z2 + 1

�2 dz,

we thus obtain
�����"

3
1

Z

R
 ̃0(⇣; ")⇤@�A(⇣; 0, ")�0(⇣)d⇣ � ⇡

�����  Ck"k, (8.44)

provided 0 < "1 ⌧ ⇥1 ⌧ 1 and 0  |"2| ⌧ � ⌧ 1. Finally, we observe from (4.11) and (4.12)
that it holds

���@⇣ ẑ0(0; ") + 2 � 2i↵
���  Ck"k,

noting �(0) = �1. So, using Lemma 8.1, estimate (8.35) in Lemma 8.13 and (8.44) we approxi-
mate (8.37) as (8.36) and the result follows. ⇤

We have now found a leading-order expression of the derivative E0"(0), and conclude that, if
E
0
"(0) is real, cf. §8.9, then it must be of positive sign. In addition, it follows that � = 0 is a

simple zero of E". Hence, by Proposition 2.3, the eigenvalue � = 0 of the operator L̂tf , posed
L2
̂�,̂+

(R,C4), has algebraic multiplicity 1.

8.8 Winding number computations

We start by computing the winding number of E" on a simple contour �. As depicted in Figure 7,
we take � to be a circle centered at the origin and tailor its radius such that, on the one hand,
� encloses the disk D1(") = D�1("), but none of the other disks D j("), j 2 Z \ {0,±1}, and, on
the other hand, the evolution of system (6.7) is well-approximated for � 2 �. Thus, we can,
using variation of constants, approximate the Riccati-Evans function E"(�) for � 2 � by a suitable
analytic function and apply Rouché’s theorem to compute the winding number of E"(�).

Lemma 8.15. Provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, the winding number
of E"(�) is 0, where � denotes the simple contour

� :=
n
��1/3M(")3ei# : # 2 [0, 2⇡]

o
⇢ R1(⇥1), (8.45)

and M(") is defined in (8.15).

Proof. In this proof C > 1 denotes any "-, �- and �-independent constant.
We start by approximating the evolution T⇤,p(⇣, y; �, ") of system (6.7) for � 2 �. Define

$(�, ") =

s
�

m(")2 (1 � i↵) + µ ("),

Fix # 2 [0, 2⇡] and let � = ��1/3M(")3ei#
2 �. Using (8.16), (8.17) and (8.18) we obtain the

expansions
������$(�, ") � M(")

 
i +

��1/3M(")
2

ei(#� ⇡2 )(1 � i↵)
!������  CM(")2, (8.46)

provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1. Directly solving the constant-
coe�cient system (6.7) yields

T⇤,p(⇣, y; �, ") =
0
BBBB@
I2

⇥
cosh ($(�, ")(⇣ � y))

⇤
I2

h sinh($(�,")(⇣�y))
$(�,")

i

I2
⇥
sinh ($(�, ")(⇣ � y))$(�, ")

⇤
I2

⇥
cosh ($(�, ")(⇣ � y))

⇤
1
CCCCA , (8.47)
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where we recall the notation (6.3). Thus, using Lemma 8.4, (8.17), (8.18) and (8.46), for ⇣ 2
[⇣tf("), 0] we arrive at

���T⇤,p(⇣, 0; �, ")
��� 

���T⇤,p(⇣, ⇣tf("); �, ")
���
���T⇤,p(⇣tf("), 0; �, ")

���

 C��1/3 (1 + |⇣ � ⇣tf(")|) e
p
k"k+|�||⇣�⇣tf (")|,

���T⇤,p(0, ⇣; �, ")
��� 

���T⇤,p(0, ⇣tf("); �, ")
���
���T⇤,p(⇣tf("), ⇣; �, ")

���

 C��1/3 (1 + |⇣ � ⇣tf(")|) e
p
k"k+|�||⇣�⇣tf (")|.

(8.48)

Next, we fix � 2 � and approximate T̂�(0; �, "). Recall from §6.2.2 that, under the coordinate
chart c, the matrix T̂�(⇣; �, ") 2 C2⇥2 represents the subspace W�(⇣; �, ") 2 Gr(2,C4) of solutions
to (6.6). As in the proof of Proposition 8.9, we denote B⇤,p(⇣; ") = A⇤(⇣; �, ") � A⇤,�(�, "). The
variation of constants formula

Z(⇣; �, ") = T⇤,p(⇣, 0; �, ")
 
I2[1]

T̃�(0; �, ")

!
+

Z ⇣

⇣tf (")
T⇤,p(⇣, y; �, ")B⇤,p(y; ")Z(y; �, ")dy, (8.49)

yields a matrix solution Z(⇣; �, ") 2 C4⇥2 to (6.6), which spans the subspace W�(⇣; �, ") for
each ⇣ 2 R. Indeed, Z(⇣tf("); �, ") spans the subspace which is represented by T̃�(⇣tf("); �, ") =
T̂�(⇣tf("); �, ") 2 C2⇥2 under the chart c

By (8.49), we find that Ẑ(⇣; �, ") := T⇤,p(0, ⇣; �, ")Z(⇣; �, ") satisfies

Ẑ(⇣; �, ") =
 
I2[1]

T̃�(0; �, ")

!
+

Z ⇣

⇣tf (")
T⇤,p(0, y; �, ")B⇤,p(y; ")T⇤,p(y, 0; �, ")Ẑ(y; �, ")dy. (8.50)

As in the proof of Proposition 8.9, we employ a Neumann series expansion to approximate the
solution Ẑ(⇣; �, ") to (8.50) by

⇣
I2[1]

T̃�(0;�,")

⌘
, where the latter can be bounded by C�

1
4 using Proposi-

tion 8.8. Thus, we apply (8.28) and (8.48) to the variation of constants formula (8.50) and obtain
������Ẑ(⇣; �, ") �

 
I2[1]

T̃�(0; �, ")

!������  C�1/3, ⇣ 2 [⇣tf("), 0]. (8.51)

Hence, upon denoting Ẑ(0; �, ") = Z(0; �, ") = (Z1(�, "),Z2(�, ")), we approximate using Propo-
sition 8.8 and (8.51):

���T̂�(0; �, ") � T̃�(0; �, ")
��� =

���Z2Z
�1
1 � T̃�

��� 
���T̂�

��� kI[1] �Z1k + kZ2 � T̃�k



⇣���T̂� � T̃�
��� + kT̃�k

⌘
kI[1] �Z1k + kZ2 � T̃�k

 C
⇣���T̂� � T̃�

��� + �1/4
⌘
�1/3 +C�1/3,

where we suppress the arguments on the right hand side. Hence, we conclude
���T̂�(0; �, ") � T̃�(0; �, ")

���  C�1/3,
���T̂�(0; �, ")

���  C�1/4, (8.52)

using Proposition 8.8.
All in all, (8.10) and (8.11) in Lemma 8.6 and (8.52) yield

����E"(�) � 2
p

1 + ↵2
����  C�1/4 < 2

p
1 + ↵2, for � 2 �,

provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1. Hence, applying Rouché’s
Theorem on the contour � yield that E"(�) has winding number 0 and, thus, the meromorphic
function E" possesses an equal number of zeros and poles in the interior of �. ⇤
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Hence, Lemma 8.15 shows that the Riccati-Evans function E" has an equal number of zeros
and poles in the interior of the contour �. Thus, to find its number of zeros, we can compute the
number of poles of E" in the interior of �. Our plan is to use the formula (2.4) in Proposition 2.3
to write the Riccati-Evans function E" as a quotient of two analytic functions. Then, by applying
Rouché’s theorem, we determine the number of zeros of the denominator in the interior of �,
which then provides us an upper bound of the number of poles of E". An additional outcome of
the upcoming analysis is that we can approximate the Riccati-Evans function at � \ R>0, which is
useful for the parity argument. All in all, we obtain the following result.

Lemma 8.16. Provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, E" has at most
two poles (including multiplicity) in the interior of the simple contour �, given by (8.45). If E" has
precisely two poles within �, then the zeros of det(X̂�(0; ·, ")) and the poles of E" in the interior of
� coincide (including multiplicity), where X̂�(⇣; �, ") 2 C2⇥2 is defined in §8.5 by (8.12). Finally,
it holds

����E"
⇣
��1/3M(")3

⌘
� 2

p
1 + ↵2

����  C| log(�)|�2, (8.53)

and
������det

⇣
X̂�

⇣
0; ��1/3M(")3, "

⌘⌘
�
⇡2

4
��2/3ẑ⇤(⇣�)2

⇣
1 + ↵2

⌘������  C��2/3
| log(�)|�3. (8.54)

where C > 1 is an "- and �-independent constant and M(") is defined in (8.15).

Proof. In this proof C > 1 denotes any "-, �- and �-independent constant.
Recall from §6.2.2 that the matrix solution

 
X̂�(⇣; �, ")
Ŷ�(⇣; �, ")

!
2 C4⇥2, with

 
X̂�(⇣tf("); �, ")
Ŷ�(⇣tf("); �, ")

!
=

 
I2[1]

T̂�(⇣tf("); �, ")

!
,

to system (6.6) spans the relevant subspace W�(⇣; �, "), which is represented by T̂�(⇣; �, ") =
Ŷ�(⇣; �, ")X̂�(⇣; �, ")�1, and is analytic in � 2 R1(⇥1), because the coe�cient matrix of (6.6)
depends analytically on � and the meromorphic function T̂�(⇣tf("); ·, ") has no poles on R1(⇥1)
by (8.10) in Lemma 8.6. Thus, using (8.10) and (8.11) in Lemma 8.6, a pole of the Riccati-Evans
function

E"(�) = det
⇣
T̂+(0; �, ") � T̂�(0; �, ")

⌘
=

det
⇣
T̂+(0; �, ")X̂�(0; �, ") � Ŷ�(0; �, ")

⌘

det(X̂�(0; �, "))
,

of multiplicity n at some � = �p yields a zero of det(X̂�(0; �, ")) at some point � = �p 2 R1(⇥1) of
multiplicity � n. Note that, due to possible zero-pole cancellation, a zero of det(X̂�(0; ·, ")) does
not necessarily yield a pole of E".

Our plan is to approximate det(X̂�(0; �, ")) for � 2 � by an analytic function with a known
number of zeros and find its number of zeros within the contour � using Rouché’s theorem. There-
fore, we consider the matrix solution

 
X̂0(⇣; �, ")
Ŷ0(⇣; �, ")

!
2 C4⇥2, with

 
X̂0(⇣tf("); �, ")
Ŷ0(⇣tf("); �, ")

!
=

 
I2[1]

Td,�(⇣tf("); �, ")

!
,

to system (6.7), which spans the 2-dimensional subspace represented by the solution Td,�(⇣; �, "),
defined in Proposition 8.7, to (8.9) under the coordinate chart c. Because the coe�cient matrix
of (6.7) depends analytically on � and Td,�(⇣tf("); �, ") = diag (ẑ⇤(⇣�), ẑ⇤(⇣�)) is independent of �,
we find that X̂0(0; ·, ") and Ŷ0(0; ·, ") are analytic on R1(⇥1). Consequently, the quotient

Ŷ0(⇣; �, ")X̂0(⇣; �, ")�1 = Td,�(⇣; �, ") = diag (t�(⇣; �, "), s�(⇣; �, ")) , (8.55)
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is meromorphic.
It follows immediately by the diagonal structure of system (6.7) that X̂0(⇣; �, ") and Ŷ0(⇣; �, ")

are diagonal matrices for each ⇣ 2 R. Consequently, the upper (or lower) diagonal elements of
X̂0(0; �, ") and Ŷ0(0; �, ") cannot vanish for the same � 2 R1(⇥1) as this would imply that the
subspace spanned by

⇣
X̂0, Ŷ0

⌘
(⇣; �, ") is no longer 2-dimensional. So, (8.55) yields that the poles

of t�(0; ·, ")s�(0; ·, ") in R1(⇥1) coincide with the zeros of det(X̂0(0; ·, ")), including multiplicity.
We obtained in Proposition 8.7 that the number of poles of t�(0; ·, ") and of s�(0; ·, ") in

D1(") = D�1(") is one (including multiplicity). We conclude that det(X̂0(0; ·, ")) has precisely two
zeros in D1("), including multiplicity. In addition, (8.21) in Proposition 8.7 shows that t�(0; ·, ")�1

and s�(0, ·, ")�1 have no zeros in R1(⇥1) outside of the disks D j("), j 2 Z \ {0}. Thus, also
det(X̂0(0; ·, ")) admits no zeros in R1(⇥1) outside of the disks D j("), j 2 Z \ {0}. By (8.20) in
Proposition 8.7, the contour � contains the disk D1(") = D�1("), but none of the other disks
D j("), j 2 Z \ {0,±1}, we establish that det(X̂0(0; ·, ")) has precisely two zeros in the interior of �,
including multiplicity.

All that remains is to approximate det(X̂�(0; �, ")) by det(X̂0(0; �, ")) for � 2 � and apply
Rouché’s theorem. The explicit expression (8.47) of the evolution of (6.7), obtained in the proof
of Lemma 8.15, yields that

✓
X̂0
Ŷ0

◆
(0; �, ") is given by

0
BBBB@

I2
h
cosh ($(�, ")⇣tf(")) � sinh($(�,")⇣tf ("))ẑ⇤(⇣�)

$(�,")

i

I2
⇥
cosh ($(�, ")⇣tf(")) ẑ⇤(⇣�) � sinh($(�, ")⇣tf("))$(�, ")

⇤
1
CCCCA ,

where we recall the notation (6.3). So, using (4.8) in Proposition 4.2, (8.17), (8.18) and the esti-
mate (8.46), obtained in the proof of Lemma 8.15, we establish
�����X̂0(0; �, ") �

⇡

2
��1/3ei✓ẑ⇤(⇣�)I2[1 � i↵]

�����  C,
���Ŷ0(0; �, ") + ẑ⇤(⇣�)I2[1]

���  CM("), (8.56)

and therefore we arrive at
������det(X̂0(0; �, ")) �

⇡2

4
��2/3e2i#ẑ⇤(⇣�)2

⇣
1 + ↵2

⌘������  C��1/3,

���det(Ŷ0(0; �, ")) � ẑ⇤(⇣�)2
���  CM("),

(8.57)

for � = ��1/3M(")3ei#
2 �.

Next, we approximate det(X̂�(0; �, ")) by det(X̂0(0; �, ")). By (8.12) and the variation of con-
stants formula we have
 
X̂�(⇣; �, ")
Ŷ�(⇣; �, ")

!
= T⇤,p(⇣, ⇣tf("); �, ")

 
I2[1]

T̂�(⇣tf("); �, ")

!
+

Z ⇣

⇣tf (")
T⇤,p(⇣, y; �, ")B⇤,p(y; ")

 
X̂�(y; �, ")
Ŷ�(y; �, ")

!
dy,

where we denote B⇤,p(⇣; ") = A⇤(⇣; �, ") � A⇤,�(�, ") as in the proof of Proposition 8.9. Therefore,

U(⇣; �, ") := T⇤,p(⇣tf("), ⇣; �, ")
 
X̂�(⇣; �, ")
Ŷ�(⇣; �, ")

!
,

solves

U(⇣; �, ") =
 

I2[1]
T̂�(⇣tf("); �, ")

!
+

Z ⇣

⇣tf (")
T⇤,p(⇣tf("), y; �, ")B⇤,p(y; ")T⇤,p(y, ⇣tf("); �, ")U(y; �, ")dy.

(8.58)

As in the proof of Proposition 8.9, we employ a Neumann series expansion to approximate the
solutionU(⇣; �, ") of (8.58) by

⇣
I2[1]

T̂�(⇣tf (");�,")

⌘
, where the latter can be bounded by C| log(�)|�1 using
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estimates (4.8) and (8.10). Thus, we apply (8.28) and Lemma 8.4 to the variation of constants
formula (8.58) and establish

������U(⇣; �, ") �
 

I2[1]
T̂�(⇣tf("); �, ")

!������  C�, ⇣ 2 [⇣tf , 0].

So, combining the latter with (8.10) and identity (8.48), we obtain
������

 
X̂�(0; �, ")
Ŷ�(0; �, ")

!
�

 
X̂0(0; �, ")
Ŷ0(0; �, ")

!������ =
������T⇤,p(0, ⇣tf("); �, ")

 
U(0; �, ") �

 
I2[1]

Td,�(⇣tf("); �, ")

!!������



���T⇤,p(0, ⇣tf("); �, ")
���
 ������U(0; �, ") �

 
I2[1]

T̂�(⇣tf("); �, ")

!������

+
���Td,�(⇣tf("); �, ") � T̂�(⇣tf("); �, ")

���
!

 C��1/3
| log(�)|�2,

(8.59)

for � 2 �. Thus, using (4.8) from Proposition 4.2, (8.56), (8.57) and (8.59), we obtain

| det(X̂�(0; �, ")) � det(X̂0(0; �, "))|  C��2/3
| log(�)|�3 < | det(X̂0(⇣tf("); �, "))|, (8.60)

for � 2 �, provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1. Hence, by Rouché’s
theorem the numbers of zeros within the contour � of the analytic functions det(X̂�(0; ·, ")) and
det(X̂0(0; ·, ")) coincide (including multiplicity).

We conclude that det(X̂�(0; ·, ")) has precisely two zeros in the interior of � and, therefore, the
Riccati-Evans function E" has at most two poles (including multiplicity) inside of �.

Finally, by combining (4.8) in Proposition 4.2, (8.57) and (8.60) we establish (8.54). On the
other hand, with the aid of (8.56), (8.57), (8.59) and (8.60) we obtain

����det
⇣
T̂�

⇣
0; ��1/3M(")3, "

⌘⌘���� =

��������

det
⇣
Ŷ�

⇣
0; ��1/3M(")3, "

⌘⌘

det
⇣
X̂�

�
0; ��1/3M(")3, "

�⌘

��������
 C| log(�)|�2,

provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1. Thus, (8.10) and (8.11) in
Lemma 8.6 yield (8.53). ⇤

8.9 Restriction to the real line

We prove that the Riccati-Evans function E"(�) is real for real � 2 ⌦ \ S" by exploiting that (6.6)
obeys a conjugation symmetry for real � 2 R \⌦ \ S".

Proposition 8.17. Provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, it holds
E"(�) 2 R for � 2 R \ ⌦ \ S". In addition, det(X̂�(⇣; �, ")) is real for ⇣ 2 R and � 2 R \ R1(⇥1),
where X̂�(⇣; �, ") 2 C2⇥2, is part of a matrix solution to (6.6) with initial condition given by (8.12).

Proof. First, note that by conjugation symmetry, that if �̂(⇣) is a solution to (6.6) for � 2 R, then
so is �̂2(⇣) = S 4�̂(⇣) with S 4 :=

⇣
J2[1] 0

0 J2[1]

⌘
.

Let � 2 R \ R2(✓2,⇥1,⇥2). Consider the vector ��r (�) := (1, 0,
p
�(1 � i↵), 0). System (6.6)

admits, by Proposition 7.2, an exponential dichotomy on (�1, 0] with projections P⇤,l(⇣; �, ").
By (7.3) and Lemma 7.3,  �r (�, ") := (I4 � P⇤,l(0; �, "))��r (�) lies in W�(0; �, ") = ker(P⇤,l(0; �, "))
and satisfies

k �r (�, ") � ��r (�)k  C�k"k
⌧, � 2 R2, (8.61)
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for some �-, "- and �-independent constant ⌧ > 0 and some constant C� > 1, which depends on
� only. Solutions �̂(⇣) to (6.6) are bounded as ⇣ ! �1 if and only if �̂(0) 2 W�(0; �, "). Thus,
the solution �̂(⇣) to (6.6) with initial condition �̂(0) =  �r (�, ") is bounded as ⇣ ! �1. By the
conjugation symmetry of (6.6), �̂2(⇣) = S 4�̂(⇣) is also a bounded solution to (6.6) as ⇣ ! �1.
Consequently, it holds S 4 �r (�, ") 2 W�(0; �, ") and, by (8.61), �̃(�, ") :=

�
 �r (�, ") | S 4 �r (�, ")

�

forms a basis of W�(0; �, ") satisfying �̃(�, ") = S 4�̃(�, ")J2[1]. Thus, since T̂�(0; �, ") is inde-
pendent on the choice of bases of W�(0; �, "), we establish

T̂�(0; �, ") = J2[1]T̂�(0; �, ")J2[1].

Analogously, one obtains T̂+(0; �, ") = J2[1]T̂+(0; �, ")J2[1] using Proposition 7.2 instead.
It follows that the Riccati-Evans function satisfies the functional identity E"(�) = E"(�) for � 2

R2(✓2,⇥1,⇥2)\S". Since⌦\S" is a connected open set containing the open set R2(✓2,⇥1,⇥2)\S",
we conclude that this functional identity is in fact satisfied on ⌦ \ S" and, thus, E" is real on
R \⌦ \ S".

By (8.12), it holds Ŷ�(⇣tf("); �, ") = T̂�(⇣tf("); �, ") for all � 2 R1(⇥1)\R. Thus, there exists a
solution �̂(⇣; �, ") to (6.6) such that

 
X̂�(⇣; �, ")
Ŷ�(⇣; �, ")

!
=

✓
�̂(⇣; �, ") | S 4�̂(⇣; �, ")

◆
,

for � 2 R \ R1 and ⇣ 2 R. We arrive at X̂�(⇣; �, ") = J2[1]X̂�(⇣; �, ")J2[1], which implies
det(X̂�(⇣; �, ")) = det(X̂�(⇣; �, "), and thus det(X̂�(⇣; �, ")) is real for ⇣ 2 R and � 2 R\R1(⇥1). ⇤

8.10 Parity argument

Consider the contour � defined by (8.45). By estimate (8.20) in Proposition 8.7, the contour �
encloses the disk D1(") = D�1("), but none of the other disks D j("), j 2 Z \ {0,±1}. We derived in
Lemma 8.15 that the number of zeros of E" in the interior of � equals its number of poles within �
(including multiplicity). In addition, by Lemma 8.16, E" has at most two poles, and thus at most
two zeros, in the interior of � (including multiplicity). We derived in §8.7 that � = 0 is a simple
zero of E", which lies inside �. The following parity argument shows that, if a second zero of E"
exists in �, it must be real and negative.

Theorem 8.18. Provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, the Riccati-Evans
function E" has at most two zeros in the interior of the contour �, given by (8.45). One of these
zeros is the simple root � = 0. If a second zero of E" exists, it must be real and negative.

Proof. We derived in §8.7 that � = 0 is a zero of E". By Theorem 8.14 it holds E0"(0) > 0. Hence,
if E" only contains one zero in the interior of �, we are done.

Now, assume this is not the case. Then, E" possesses a second simple zero �" , 0 in the
interior of �. By Lemmas 8.15 and 8.16, E" possesses precisely two poles and two zeros (includ-
ing multiplicity) inside �, and the zeros of det(X̂�(0; ·, ")) and the poles of E" inside � coincide
(including multiplicity), where we recall X̂�(⇣; �, ") 2 C2⇥2 is defined in §8.5 by (8.12).

We established in Proposition 8.17 that both E"(�) and det(X̂�(0; �, ")) are real for real � 2
R \ R1(⇥1) \ S". Therefore, �" must be real. In addition, note that � \ R>0 = {��1/3M(")3

}. So,
by (8.53) in Lemma 8.16, we must have E"(��1/3M(")3) > 0.

Assume now �" > 0. Then, since E" has two poles within � and it holds E0"(0) > 0 and
E"(��1/3M(")3) > 0, it follows that E" has precisely one positive real pole within �, which must
be simple. Hence, det(X̂�(0; ·, ")) has precisely one positive real zero inside the contour �, which
must be simple.
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Since det(X̂�(0; ·, ")) has precisely one positive real zero inside the contour �, det(X̂�(0; 0, "))
and det(X̂�(0; ��1/3M(")3, ")) must have opposite signs. On the one hand, by (8.54) in Lemma 8.16
we establish det(X̂�(0; ��1/3M(")3, ")) > 0. On the other hand, by Lemma 8.5, the solution✓

X̂�
Ŷ�

◆
(⇣; 0, ") spans the subspace W�(⇣; 0, ") = ker(P⇤,l(⇣; 0, ")). So, by Lemma 8.5, estimate (8.5)

in Proposition 8.2 and (8.12), we have
 
X̂�(⇣; 0, ")
Ŷ�(⇣; 0, ")

!
=

⇣
�̂0(⇣; ") | �̂�(⇣; ")

⌘
·

h
(I2[1] | I2[0]) ·

⇣
�̂0(⇣tf("); ") | �̂�(⇣tf("); ")

⌘i�1
.

Thus, we establish

det(X̂�(0; 0, ")) = det
0
BBBBB@
�(0; ") �(0; ")

⇣
ẑtf(0; ") � 1 + 1

2"1
⌘

��(0; ") �(0; ")
⇣
ẑtf(0; ") � 1 + 1

2"1
⌘
1
CCCCCA · det

 
1 ẑtf(⇣tf("); ") � 1 + 1

2"1

�1 ẑtf(⇣tf("); ") � 1 + 1
2"1

!�1

=
|�(0; ")|2 (2Re(ẑtf(0; ")) � 2 + "1)

2Re(ẑtf(⇣tf("); ")) � 2 + "1
.

Thus, by (4.12), (4.8) and (4.10) in Proposition 4.2 and estimate (4.13) in Proposition 4.3, we
conclude det(X̂�(0; 0, ")) > 0 for 0 < "1 ⌧ � ⌧ 1 and 0  |"2| ⌧ � ⌧ 1. So, det(X̂�(0; 0, ")) and
det(X̂�(0; ��1/3M(")3, ")) are both positive and do not have opposite signs. We have arrived at a
contradiction. Therefore, our assumption that the real zero �" of E" is positive, was false, which
concludes the proof. ⇤

Hence, Theorems 8.11 and 8.18 yield that the region R1(⇥1) has no point spectrum of positive
real part, except for the simple eigenvalue � = 0 residing at the origin.

Corollary 8.19. Provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, the operator L̂tf ,
posed on L2

̂�,̂+
(R,C2), has no point spectrum in R1(⇥1)\ {� 2 C : Re(�) � 0}, except for a simple

eigenvalue at � = 0.

Proof. By estimate (8.20) in Proposition 8.7, the simple contour �, defined in (8.45), encloses the
disk D1(") = D�1(") in its interior, but none of the other disks D j("), j 2 Z \ {0,±1}. The result
now follows by combining Proposition 2.3 and Theorems 8.11 and 8.18. ⇤

9 Numerical results and discussion

9.1 Numerical results and evidence

Figures 8 and 9 give the results of numerical computation of the spectrum of Ltf posed on a finite,
but large spatial domain, ⇠ 2 [�500, 500]. We took the numerically continued front solution  tf
depicted in Figure 2 (obtained using AUTO07p [15], see [28] for more detail), interpolated onto
a uniform grid, and discretized Ltf with fourth-order finite di↵erences, Neumann boundary con-
ditions, and step-size d⇠ = 0.05. The linearization was also conjugated with exponential weights
to precondition the resulting discretized operator, aiding in the convergence of the eigenvalue al-
gorithms employed. Both the “eigs” and “eig” functions of MATLAB2019b were used to locate
eigenvalues of the discretized operator1.

The lower left panel in Figure 8 confirms the O(�c)-dependence of the (real part of the) eigen-
values lying outside of the disk D1("). Moreover, while our rigorous spectral stability result does
not determine whether one or two eigenvalues lie inside of D1("), the numerics strongly suggest
that the latter case is indeed true. In both of the top right and bottom right plots of Figure 8,

1The repository https://github.com/ryan-goh/cgl_stability contains a set of MATLAB and AUTO07p
codes used to create the numerical results and figures in §9
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Figure 8: Parameters ↵ = �0.1, � = �0.2; so that clin ⇡ 2.01; (top left): Numerical plot of point spectrum
of Ltf (black dots) with absolute spectrum ⌃0,abs [ ⌃0,abs (blue lines), light-blue dot gives time-translation
zero eigenvalue, orange x denotes O(�c3/2)-eigenvalue, inset zooms into region near origin, with blue x’s
denoting branch points of ⌃0,abs [ ⌃0,abs; (top right): Real part of the 20 least negative eigenvalues for
0 < clin � c ⌧ 1, all curves are asymptotically linear except for the O(�c3/2)-eigenvalue in orange, inset
zooms in for speeds c even closer to clin; (bottom left): Plot confirming leading-order linear dependence
of eigenvalues lying outside of D1(") as clin � c & 0, (bottom right): Numerical evidence of O((�c)3/2)-
dependence and stability of non-zero mode in D±1(").

the second eigenvalue accumulates onto the origin with rate O("3
1) = O(�c3/2), consistent with

our rigorous results that such an eigenvalue must lie in D1("). Heuristically, one can make sense
of this interfacial eigenvalue as an approximate spatial translation, or Goldstone mode. Here of
course the heterogeneity at ⇠ = 0 precludes such a mode, but as "1 & 0, we found that the as-
sociated eigenfunction is localized near the front interface at ⇠ = ⇠tf , which moves farther and
farther away ⇠ = 0 as c% clin, and approximately resembles the spatial derivative of the front. We
note that similar behavior can be observed for the standard Fitzhugh-Nagume pulse with a small
“critical” eigenvalue resembling an approximate spatial derivative of the Nagumo pulse along the
back, see [11] for numerical computations.

While we focused our rigorous e↵orts in the regime 0 < clin � c ⌧ 1,↵ ⇠ �, where the
existence results of [28] hold, our numerical continuation and spectral computations indicate that
pattern-forming fronts continue to exist and are in fact spectrally stable for 0 < clin � c = O(1)
and ��↵ = O(1) as long as the asymptotic periodic pattern is still di↵usively stable. Furthermore,
eigenvalues still accumulate onto the branch points (�br, �br as �c & 0 with rate O(�c), and one
negative real eigenvalue approaches the origin with faster rate O((�c)3/2); see Figure 9. Figure 9
also depicts the spectrum found for a range of speeds c. Here we note that, since our numerical
approach uses separated Neumann boundary conditions, much of the numerical spectrum of the
bounded domain approximation lies near the absolute spectrum of the stable asymptotic states of
the pattern-forming front, cf. [54].
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Figure 9: Equation (1.12) with parameters: ↵ = �0.1, � = �0.9; (top): Plot of real parts of eigenvalues
which are least negative, for speeds c 2 [0, clin] (left) and 0 < clin � c ⌧ 1 (right). The zero eigenvalue is
denoted by the horizontal blue line on top, the O((�c)3/2)-eigenvalue is depicted in orange, and the other
O(�c)-eigenvalues converge linearly to 0 near the right-hand side of the plot; (bottom row): Eigenvalues
(dots) and absolute spectrum ⌃0,abs [ ⌃0,abs (blue lines) for several c values, all other spectra was found to
be contained in the open left-half plane bounded away from the imaginary axis.

9.2 Stability of quenched pushed fronts

We compare our findings in the supercritical cGL equation (1.1) with numerical spectral results of
quenched fronts in the cGL equation with a subcritical, cubic-quintic nonlinearity,

At = (1 + i↵)Axx + �(x � ct)A + (⇢ + i�)A|A|2 � (1 + i�)A|A|4, ⇢ > 1, (9.1)

having dispersion parameters ↵, �, � 2 R. For � ⌘ 1 it is known that patterned fronts invade
the unstable state A ⌘ 0 at a speed cp greater than the linear spreading speed clin = 2

p
1 + ↵2.

Since the strong nonlinear growth behind the front interface dictates the invasion process, such
fronts are known as pushed fronts, [51, 65]. It was shown in [30] that for a quenching inhomo-
geneity, �(⇠) = �sign(⇠), traveling at speeds c close to cp, the equation (9.1) has pattern-forming
front solutions. Here the interaction of the heterogeneity with the strongly decaying oscillatory
tail of the front interface induces a multi-valued and non-monotonic wavenumber selection curve
(c,!) = (c(⇠tf),!tf(⇠tf)), parameterized by the front interface distance, which takes the form of a
deformed logarithmic spiral limiting on the free invasion parameters (cp,!p). The spiral nature
of this curve indicates existence of multiple fronts for a single quenching speed c, and hence hys-
teretic front dynamics. Furthermore, this oscillatory tail interaction is reminiscent of “collapsed
snaking” phenomenon in localized pattern-formation [63]. The left plots of Figure 10, which are
results of numerical continuation of the front solution, depict the wavenumber selection curve as
well as the relationship of the front interface location and quenching speed c.

The right plot of Figure 10 depicts the results of numerical eigenvalue computations of the
linearization about front solutions to (9.1). Front solutions were obtained using numerical contin-
uation as in the pulled case (see [30] for more detail on these computations) and the linearization
was obtained as for Ltf in the pulled case above in §9.1. Parameters ↵, �, ⇢, � were chosen such
that the asymptotic periodic pattern is di↵usively stable as a solution to (9.1) with � ⌘ 1.

Further strengthening the connection to snaking phenomena, we find that as ⇠tf ! �1, a sin-
gle real eigenvalue controls the stability of the front, oscillating back and forth across the origin

48



1 1.5 2 2.5
-6

-4

-2

2.16 2.17 2.18 2.19

-2.5

-2.45

1 1.5 2 2.5
-30

-20

-10

0

2.18 2.182 2.184

-6

-4

-2

0

-7 -6 -5 -4 -3 -2 -1 0
-1

-0.8

-0.6

-0.4

-0.2

0

0.2
-7 -6 -5 -4 -3 -2 -1 0

-0.01

0

0.01

Figure 10: Equation (9.1) with parameters: ↵ = 0.3, � = �0.2; ⇢ = 4, � = 0.4; cp = 2.183,!p = �2.468,
spatial domain ⇠ 2 [�100, 100] (upper left): non-monotonic wavenumber selection curve spiralling into
(cp,!p); (lower left): plot of the front interface location ⇠tf against the quenching speed c; (right): results
of eigenvalue computations of discretized linearization with dx = 0.01 and Neumann boundary conditions;
Plot of real parts of right-most eigenvalues for a range of interface values ⇠tf 2 (�7, 0) which corresponds to
c-values ranging roughly from 1 to 2.5. We note that the first two eigenvalues are purely real, with one fixed
at 0 and the other oscillating back and forth. The other eigenvalues are bounded away from the imaginary
axis in the left-half plane. In all plots, the orange and yellow circles denote the first two bifurcation points.
Insets illustrate fine oscillations of wavenumber selection curves and the corresponding fold-eigenvalue.

(which once again has an eigenvalue at zero due to the gauge symmetry present in (9.1)), with
bifurcations occurring at the fold points c0(⇠tf) = 0 of the wavenumber selection curve; see Fig-
ure 10. We anticipate such changes in stability could be rigorously tracked using an orientation
index calculation similar to those in §8. For such pushed fronts, we anticipate the analysis of the
Riccati-Evans function to be less delicate due to the fact that we have c > clin which makes the
plateau state A ⌘ 0 for ⇠ 2 (⇠tf , 0) only convectively unstable, not absolutely unstable as is the case
in this paper. This analysis will be the subject of future research.

9.3 Nonlinear stability

Looking outward from our results, a natural next step would be to consider nonlinear stability of
the pattern-forming front solutions studied here. Several approaches have been developed which
could be implemented to obtain nonlinear stability in a suitable sense from the spectral results
established in this paper. First, one could follow the approach of [6, 58]. Posing the system in
a co-moving frame with the quenching speed c, one could use an exponential weight to push
continuous spectrum away from the imaginary axis, and then perform a center-manifold reduction
onto the zero-mode coming from gauge symmetry. The small spectral gap caused by the presence
of the O("2

1) and O("3
1) stable eigenvalues would prohibitively restrict the size of perturbations

considered. To partially alleviate this, one could perform a center-stable manifold reduction onto
the 0-mode and the O(k"k3)-mode, with nearby dynamics foliated by the O(k"k2) directions.

However, to obtain nonlinear stability against perturbations from spaces with translational
invariant norms an alternative approach would have to be adopted. An option would be to use
pointwise methods as developed in [8, 66]. The fronts considered here behave somewhat like
the source defects in [8], where the heterogeneity at ⇠ = 0 behaves like the source center and
the group velocity of waves points outwards towards ⇠ = +1, with L2-spectrum consisting of
a quadratic tangency at the origin and a single embedded eigenvalue at zero. One would hope
to form the resolvent kernel using exponential dichotomies and formulate the temporal Green’s
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function with the aid of a contour integral outside the essential spectrum. One would then obtain
pointwise algebraic decay by separating the contribution of the 0-mode in the Green’s function.
Then, setting up a suitable perturbation ansatz, one would aim to characterize the precise pointwise
decay of the perturbation in di↵erent regions of spacetime and close a nonlinear iteration scheme,
showing that the perturbed front converges towards a time translate of the original front.

9.4 Stability mechanism in other quenched pattern-forming models and higher
spatial dimensions

As mentioned in the introduction, we expect the phenomena and stability mechanisms observed
here to be prototypical. In particular, we expect that, given any pattern-forming system where
patterns are di↵usively stable and the free invasion front is pulled, directionally quenched patterns
with speed with 0 < clin � c ⌧ 1 will have similar spectral stability properties. In particular, the
absolute spectrum of the base state will govern both the leading-order behavior of the selected
wavenumber of the pattern front and the point spectrum of the linearization about the front in
an appropriate exponentially weighted space. For example, such wavenumber selection dynam-
ics have been observed in other important models of pattern formation, such as a directionally
quenched Swift-Hohenberg model with supercritical cubic nonlinearity [4, 31]

ut = �(1 + @2
x)2u + �(x � ct)u � u3,

or the Cahn-Hilliard equation [29]

ut = �@
2
x

h
@2

xu + �(x � ct)u � u3
i
,

and it would be interesting to characterize them for suitable reaction-di↵usion models. In such
models, periodic patterns are generally not relative equilibria under the action of a gauge symme-
try so temporal dynamics cannot be factored out and pattern-forming front solutions are modulated
traveling waves. This means the spatial dynamical systems for the nonlinear existence problem
as well as the linearized spectral problem are infinite-dimensional. One would hope to perform
a center-manifold analysis to reduce the eigenvalue problem down to a finite-dimensional ODE
system whose dynamics resemble the system considered in this work. It would also be interesting
to study the spectral stability problem for directionally quenched patterns in higher spatial dimen-
sions where perturbations can act transversely to the direction of the front in addition to along
it.
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A Exponential dichotomies

Exponential dichotomies enable us to track solutions in linear systems by separating the solution
space in solutions that either decay exponentially in forward time or else in backward time. For
an extensive introduction on exponential dichotomies and their robustness properties the reader is
referred to [13] or [52]. Throughout this paper, we employ the following standard definition.
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Definition A.1. Let n 2 N0, J ⇢ R an interval and A 2 C(J,Matn⇥n(C)). Denote by �(x, y) the
evolution operator of

�x = A(x)�, � 2 Cn. (A.1)

Equation (A.1) has an exponential dichotomy on J with constants K, µ > 0 and projections
P(x) : Cn

! Cn if for all x, y 2 J it holds

• P(x)�(x, y) = �(x, y)P(y);

• k�(x, y)P(y)k  Ke�µ(x�y) for x � y;

• k�(x, y)(In � P(y))k  Ke�µ(y�x) for y � x.

B Properties of the essential spectrum and absolute spectrum

B.1 Essential spectrum

Let k± 2 R and n 2 N. The essential spectrum of a second-order operator L, posed on L2
k�,k+

(R,Cn),
given by

LX = DX⇠⇠ + A1(⇠)X⇠ + A0(⇠)X,

where D 2 Cn⇥n is a positive matrix and A0, A1 : R ! Cn⇥n are piecewise continuous coe�cient
functions with well-defined limits Ai,± = lim⇠!±1 Ai(⇠), is defined as the set of those � 2 C such
that L � � is not Fredholm of index 0. We shortly collect the necessary results to determine the
essential spectrum. For more background information we refer to [37, 53].

The essential spectrum of L is determined by the spatial eigenvalues of its limiting operators
L± on L2

k�,k+
(R,Cn) given by

L±X = DX⇠⇠ + A1,±X⇠ + A0,±X.

The spatial eigenvalues arise as the roots ⌫ 2 C of the linear dispersion relations

det
⇣
D⌫2 + A1,±⌫ + A0,± � �

⌘
= 0, (B.1)

which can be ordered by their real parts

Re ⌫1,±(�)  . . .  Re ⌫2n,±(�),

when counted with multiplicities. The Morse indices i±(�) equal the number of roots ⌫ of (B.1)
with Re(⌫) > k±. One then finds that L � � is Fredholm if and only if � lies in the intersection
⇢(L+)\⇢(L�) of the resolvent sets of L+ and L�. Using the Fourier transform one readily observes
that this is precisely the case if there are no roots ⌫ 2 C of (B.1) with Re(⌫) = k±. In addition, the
Fredholm index of L equals the di↵erence i�(�) � i+(�) of the Morse indices.

Thus, the essential spectrum

�ess(L) = C \ {� 2 ⇢(L+) \ �(L�) : i�(�) = i+(�)},

is the union of �(L+) [ �(L�) together with some connected components of ⇢(L+) \ ⇢(L�). The
second-order character of L dictates that the spatial eigenvalues admit the splitting

Re ⌫n,±(�) < k± < Re ⌫n+1,±(�). (B.2)

for � > 0 su�ciently large. Therefore, the right-most connected component of ⇢(L+)\ ⇢(L�) does
not lie in the essential spectrum of L and the right-most boundary of the essential spectrum of L is
contained in the set

�
� 2 C : Re ⌫n,+(�) = k+ _ Re ⌫n+1,+(�) = k+

 
[

�
� 2 C : Re ⌫n,�(�) = k� _ Re ⌫n+1,�(�) = k�

 
.

(B.3)
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B.2 Absolute spectrum

The absolute spectrum of one of the asymptotic operators L± above is defined as the set

⌃±,abs := {� 2 C : Re ⌫n,±(�) = Re⌫n+1,±(�)}.

The absolute spectrum of L is then defined as the union ⌃abs = ⌃+,abs [ ⌃�,abs. Observe that for �-
values in ⌃±,abs, one cannot choose a weight k± to recover the splitting (B.2). Thus, as the set (B.3)
is contained in the essential spectrum, there must be essential spectrum of L lying to the right of
⌃abs, no matter the choice of k± 2 R.

In addition to locating absolute instabilities we remark that the absolute spectrum is also impor-
tant in the approximation of spectra of operators posed on large bounded domains. The work [54]
showed that, when posed on a large bounded domain [�h, h] ⇢ R with separated boundary condi-
tions, all but finitely many points of the spectrum of L (which consists entirely of point spectrum)
accumulate onto the absolute spectrum as h! +1.

In the case of the constant-coe�cient operator L0 defined in Section 1.1, spatial eigenvalues
are given as roots of the dispersion relation (1.2) and one can thus find curves of absolute spectrum
by solving the following set of equations

0 = d(�, ⌫; c), 0 = d(�, ⌫ + i`; c), ` 2 R,

for (�, ⌫) in terms of `. One readily finds

⌫abs(`) = �
c

2(1 + i↵)
�

i`
2
, �abs(`) = 1 �

c2

4(1 + i↵)
�

(1 + i↵)`2

4
.

Here the branch points discussed in Section 1.1 satisfy

�⇤,br(c) = �abs(0) = 1 �
c2

4(1 + i↵)
.

We remark that when we detune the linear operator with the change of variables A 7! ei!tA, this
shifts the location of the absolute spectrum vertically in �, so that

�abs(`) = 1 �
c2

4(1 + i↵)
�

(1 + i↵)`2

4
� i!.

B.3 Essential spectrum and analysis of spatial eigenvalues

In this section, we study the essential spectrum of the operator L̂tf , posed on the spaces L2
0,̂0

(R,C2)
and L2

̂�,̂+
(R,C2). This will prove Theorem 5.2 and explain the schematic depiction in Figure 5. As

outlined in Appendix B, the essential spectrum of the asymptotically constant-coe�cient operator
L̂tf is determined by the spatial eigenvalues of its limiting operators at ±1.

In the limit ⇣ ! �1, the eigenvalue problem (5.3) associated with L̂tf is by Proposition 4.2 of
the form

�

m(")2 (1 � i↵)w = w⇣⇣ +
⇣
2 � "2

1 + 2ik̂tf(")
⌘

w⇣ � (1 + i"2)
⇣
1 � k̂tf(")2

⌘
(w + y),

�

m(")2 (1 + i↵)y = y⇣⇣ +
⇣
2 � "2

1 � 2ik̂tf(")
⌘

y⇣ � (1 � i"2)
⇣
1 � k̂tf(")2

⌘
(w + y),

(B.4)

whereas in the limit ⇣ ! 1 the eigenvalue problem reduces by Proposition 4.3 to

�

m(")2 (1 � i↵)w = w⇣⇣ + 2ẑ+(")w⇣ ,

�

m(")2 (1 + i↵)y = y⇣⇣ + 2ẑ+(")y⇣ .
(B.5)
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The spatial eigenvalues can be identified as the values ⌫ 2 C for which systems (B.4) and (B.5)
admit a nontrivial solution of the form e⌫⇣X0 with X0 2 R2. Taking determinants we find associated
linear dispersions relations

det

0
BBBBBBBBBBB@

#(⌫, ") �
�(1 � i↵)

m(")2 �(1 + i"2)
⇣
1 � k̂tf(")2

⌘

�(1 � i"2)
⇣
1 � k̂tf(")2

⌘
#(⌫, ") �

�(1 + i↵)
m(")2

1
CCCCCCCCCCCA
= 0, (B.6)

and

det
0
BBBBB@
⌫2 + 2ẑ+(")⌫ � �

m(")2 (1 � i↵) 0
0 ⌫2 + 2ẑ+(")⌫ � �

m(")2 (1 + i↵)

1
CCCCCA = 0, (B.7)

where we denote

#(⌫, ") := ⌫2 +
⇣
2 � "2

1 + 2ik̂tf(")
⌘
⌫ � (1 + i"2)

⇣
1 � k̂tf(")2

⌘
, (B.8)

The spatial eigenvalues arise as the roots of (B.6) and (B.7), and can be ordered by their real parts

Re ⌫1,±(�, ")  Re ⌫2,±(�, ")  Re ⌫3,±(�, ")  Re ⌫4,±(�, "),

when counted with multiplicities. In sum, we show the following below. For each � in the regions
R2 and R3, defined in (5.2), we will obtain the splittings

Re ⌫1,�(�)  Re ⌫2,�(�) < ̂� < 0 < Re ⌫3,�(�)  Re ⌫4,�(�), (B.9)
Re ⌫1,+(�)  Re ⌫2,+(�) < ̂0 < ̂+ < Re ⌫3,+(�)  Re ⌫4,+(�). (B.10)

This implies that R2[R3 contains no essential spectrum of the operator L̂tf , posed on L2
̂�,̂+

(R,C2)
or on L2

0,̂0
(R,C2). Moreover, we show that the splitting (B.9) persists for � 2 R1, whereas (B.10)

no longer holds. However, for � 2 R1 we still find

Re ⌫1,�(�)  Re ⌫2,�(�) < ̂� < Re ⌫3,�(�)  Re ⌫4,�(�). (B.11)

Finally, we will prove that the curve {� 2 R1 : Re ⌫3,�(�) = 0} is confined to the open left-half
plane except for a parabolic touching with the imaginary axis at the origin. This then concludes
the proof of Theorem 5.2.

Leading-order expressions. The four spatial eigenvalues ⌫i,�(�, ") associated with (B.4) arise
as the roots of the linear dispersion relation B.6. By Theorem 4.1 and by identities (4.4) and (4.12),
we find that ⌫i,�(�, ") depend continuously on (�, ") and satisfy

⌫1/2,�(�, 0) = �1 �
q

2 + � ±
p

1 � ↵2�2, ⌫3/4,�(�, 0) = �1 +
q

2 + � ±
p

1 � ↵2�2.

Similarly, the four spatial eigenvalues ⌫i,+(�, ") associated with (B.5), which arise as the roots of
the linear dispersion relation (B.7), also depend continuously on (�, ") and satisfy

⌫1/2,+(�, 0) =
p

2 ± 2i↵ �
p

(1 ± i↵)(2 + �), ⌫3/4,+(�, 0) =
p

2 ± 2i↵ +
p

(1 ± i↵)(2 + �).

Analysis of spatial eigenvalues for � 2 R3. Provided ⇥2 > 1 is su�ciently large and "1 > 0 and
|"2| � 0 are su�ciently small, one readily observes that for � 2 R3(✓3,⇥2) it holds:

������
⌫1/2,·(�, ")
p
|�|

�

r
�

|�|
(1 ± i↵)

������ ,
������
⌫3/4,·(�, ")
p
|�|

+

r
�

|�|
(1 ± i↵)

������ 
C
p
|�|
.

So, upon taking ⇥ > 1 su�ciently large and ✓3 > 0 su�ciently small, the spatial eigenvalues
⌫i,+(�, ") of (B.5) admit a �- and "-uniform spectral gap at Re(⌫) = 1 + Re

p
2 + 2i↵ and Re(⌫) =

1 + Re
p

2 + 2i↵ + 
p

1 + ↵2, whereas the spatial eigenvalues ⌫i,�(�, ") of (B.4) admit a �- and
"-uniform spectral gap at Re(⌫) = 0 and Re(⌫) = �

p
1 + ↵2 for � 2 R3(✓3,⇥2).
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Analysis of spatial eigenvalues at +1 for � 2 R1(⇥1) [ R2(✓2,⇥1,⇥2) Recall  > 0 was fixed
such that 

p
1 + ↵2 2 (0, 1

4 ). Therefore, Re
p

(1 ± i↵)(2 + �)  1+
p

1 + ↵2 implies Re(�)  � 7
16 .

Hence, provided ⇥1, ✓2 > 0 su�ciently small, the spatial eigenvalues ⌫i,+(�, ") of (B.5) have �-
and "-uniform spectral gaps at Re(⌫) = 1+Re

p
2 + 2i↵ and at Re(⌫) = 1+Re

p
2 + 2i↵+

p
1 + ↵2

for � 2 R1(⇥1) [ R2(✓2,⇥1,⇥2).

Analysis of spatial eigenvalues at �1. At � = 0 and " = (0, 0) the spatial eigenvalues of (B.4)
are 0,�2,�1 ±

p
3. Hence, taking ⇥1 > 0 su�ciently small, we may conclude that the spatial

eigenvalues ⌫i,�(�, ") of (B.4) admit a �- and "-uniform spectral gap at Re(⌫) = �
p

1 + ↵2 2

(� 1
4 , 0) for � 2 R1(⇥1).
Next, we solve Re(⌫i,�(�, ")) = 0 for � 2 R1(⇥1). Let H : C ⇥ R ⇥ U be given by

H(�, l, ") = det

0
BBBBBBBBBBB@

#(il, ") �
�(1 � i↵)

m(")2 �(1 + i"2)
⇣
1 � k̂tf(")2

⌘

�(1 � i"2)
⇣
1 � k̂tf(")2

⌘
#(�il, ") �

�(1 + i↵)
m(")2

1
CCCCCCCCCCCA
,

where # is defined as (B.8), and U is a neighborhood of (0, 0) inR2. It holds @�H(0, 0, 0) = �4i , 0
and H(0, 0, ") = 0 for all " 2 U. Hence, by the implicit function theorem, we find a neighborhood
V ⇢ R3 of (0, 0, 0) and a locally unique curve �⇤ : V ! C satisfying H(�⇤(l, "), l, ") = 0 and

�⇤(0, ") = 0, @l�⇤(0, 0, 0) = 2i, @ll�⇤(0, 0, 0) = �2 + 4↵2

for all (l, ") 2 V . Since by assumption it holds ↵2 < 1/2 the curve �⇤(·, ") intersects, upon making
V smaller if necessary, the closed right-half plane only in the origin as a parabolic curve. Hence,
the set of � 2 R1(⇥1) such that there are spatial eigenvalues ⌫i,�(�, ") of (B.4) having Re(⌫) = 0
does not intersect the closed right-half plane, except at the origin as a parabolic curve.

Finally, we solve Re(⌫i,�(�, ")) = 0 for � 2 R2(✓2,⇥1,⇥2). Thus, equating F(�, l, 0) = 0 yields
two solution continuous curves �± : R! C given by

�±(l) =
�l2 + 2il � 1 ±

p
�↵2l4 + 4i↵2l3 + 2↵2l2 + 4i↵2l + 1

↵2 + 1
.

Clearly, for |l| large, the curves lie in the left-half plane. Hence, if for some � 2 R2(✓2,⇥1,⇥2)
there is a spatial eigenvalue ⌫i,�(�, 0) of nonnegative real part, then one of the curves �±(l) must
intersect the imaginary axis, i.e. there exists l⇤, % 2 R such that �±(l⇤) = i% . Consequently, it holds
H(i%, l⇤, 0) = 0. Equating real and imaginary parts of H(i%, l⇤, 0) = 0 yields

(%, l⇤) = (0, 0) or (%, l⇤) =
✓
±2

p
�2 + 4↵2,±

p
�2 + 4↵2

◆
.

Since l⇤ must be real and ↵2 < 1
2 , it must hold (%, l⇤) = (0, 0). So, for ✓2 > 0 su�ciently small, the

curves �±(l) do not intersect the region R2(✓2,⇥1,⇥2). Thus, it must hold Re(⌫1/2,�(�, 0))  �1 <
�
p

1 + ↵2 < 0 < Re(⌫3/4,�(�, 0)) for all � 2 R2(✓2,⇥1,⇥2). So, by compactness of the region R2,
we conclude that the spatial eigenvalues ⌫i,�(�, ") of (B.4) admit a �- and "-uniform spectral gap
at Re(⌫) = �

p
1 + ↵2 and Re(⌫) = 0 for � 2 R2(✓2,⇥1,⇥2).

We also note that since the eigenvalues ⌫1/2, j(�, ") and ⌫3/4, j(�, ") have uniformly separated
real parts in R1 [ R2 [ R3 for j = ±, the absolute spectrum of the operator L̂tf is contained in the
open left-half plane bounded away from iR.
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C Detailed proofs of technical results

Proof of Lemma 6.2. By (4.2) in Theorem 4.1, estimate (4.10) from Proposition 4.2 and Propo-
sition 4.4 we have

������

Z ⇣

⇣tf (")

⇣
Im

⇥
ẑtf(⇣; ")

⇤
� k̂tf(")

⌘
d⇣

������



Z
�◆ log k"k

log k"k
⌘

���Im
⇥
ẑtf(⇣tf(") + ⇣, ")

⇤
� k̂tf(")

��� d⇣ +
Z log k"k

⌘

�1

���Im
⇥
ẑtf(⇣tf(") + ⇣), ")

⇤
� k̂tf(")

��� d⇣

 C�

p
k"k

���log k"k
��� ,

for ⇣  ⇣tf(") � ◆ log k"k, provided 0 < "1 ⌧ � ⌧ 1 and 0  |"2| ⌧ � ⌧ 1. Hence, (6.10) follows.
Moreover, Theorem 4.1 yields that Re(ẑtf(⇣; ")) converges exponentially to 1� 1

2"
2
1 as ⇣ ! �1.

Since it holds �1
4 < �

p
1 + ↵2  0, it follows � 1

2 < ̂� < 0 by (4.5), provided 0 < "1 ⌧ 1 and
0  |"2| ⌧ 1. Hence, the first identity in (6.11) follows.

Finally, �Re(ẑtf(⇣; ")) converges by Proposition 4.3 exponentially to

�Re(ẑ+(")) = ̂+ �

p

1 + ↵2

m(")
+
"2

1
2
� 1 < ̂+,

as ⇣ ! 1, which yields the second identity in (6.11), provided 0 < "1 ⌧ 1 and 0  |"2| ⌧ 1. ⇤

Proof of Proposition 7.1. In this proof C� > 1 denotes any constant, which depends on � only.
Let � 2 R2(✓2,⇥1,⇥2). We wish to approximate the coe�cient matrix A⇤(⇣; �, ") of (6.6) for ⇣

to the left of the inhomogeneity at ⇣ = 0. On the one hand, by (4.2) in Theorem 4.1, estimate (4.10)
in Proposition 4.2, identity (4.5), Proposition 4.4 and Lemma 6.2, we establish the estimate

kA⇤(⇣tf(") + ⇣; �, ") � Al(⇣� + ⇣; �)k  C�

p
k"k

���log k"k
��� , ⇣ 2 (�1,�◆ log k"k], (C.1)

for 0 < "1 ⌧ � ⌧ 1 and 0  |"2| ⌧ � ⌧ 1. On the other hand, by estimate (4.9) in Propo-
sition 4.2, and estimate (4.13) in Proposition 4.3, both R⇤(⇣) and Rtf(⇣; ") converge to 0 at an "-
and �-independent exponential rate ⌘ > 0. Hence, combining this with (4.2) in Theorem 4.1 and
identity (4.5), we find

kA⇤(⇣tf(") + ⇣; �, ") � Al(⇣� + ⇣; �)k  C�k"k
min{1,◆⌘}, ⇣ 2 [�◆ log k"k, 0]. (C.2)

By estimate (4.9) in Proposition 4.2, the coe�cient matrix Al(⇣; �) converges exponentially
to asymptotic matrices as ⇣ ! ±1, which are hyperbolic for each � 2 R2(✓2,⇥1,⇥2) with a �-
uniform spectral gap (which might depend on �). Hence, by [54, Theorem 1], system (7.1) has
for every � in the compact set R2(✓2,⇥1,⇥2) exponential dichotomies on (�1, 0] and [0,1) with
�-independent constants (which might depend on �). An Evans function El : ⌦2 ! C associated
with (7.1) is therefore well-defined and analytic on a small enough open and bounded neighbor-
hood ⌦2 of R2(✓2,⇥1,⇥2), cf. [54, Theorem 1].

The roots of the Evans function El correspond to those � 2 ⌦2 at which (7.1) admits a non-
trivial exponentially localized solution. Hence, by [50, Proposition 2.1], system (7.1) has an ex-
ponential dichotomy on R if and only if � 2 R2(✓2,⇥1,⇥2) is not a root of El. We prove, using
an L2-energy estimate, that (7.1) admits no nontrivial L2-localized solution and therefore has an
exponential dichotomy on R for each � 2 R2. Let � 2 R2(✓2,⇥1,⇥2) and �̂(⇣) = (ŵ, ŷ, v̂, û)(⇣) be a
nontrivial solution to (7.1) in L2(R,C4). Then, the first and second component satisfy the coupled
second-order eigenvalue problems

@2
⇣ ŵ = �(1 � i↵)ŵ + R⇤ (2ŵ + ŷ) ,

@2
⇣ ŷ = �(1 + i↵)ŷ + R⇤ (ŵ + 2ŷ) .
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Taking the L2-inner product of the above equations with ŵ and ŷ, respectively, and integrating by
parts yields

�(1 � i↵)kŵk22 = �kv̂k
2
2 �

Z
1

�1

R⇤(⇣)
⇣
2|ŵ(⇣)|2 + ŷ(⇣)ŵ(⇣)

⌘
d⇣,

�(1 + i↵)kŷk22 = �kûk
2
2 �

Z
1

�1

R⇤(⇣)
⇣
2|ŷ(⇣)|2 + ŵ(⇣)ŷ(⇣)

⌘
d⇣.

We add both equations and take imaginary parts to obtain

Im(�)
⇣
kŵk22 + kŷk

2
2

⌘
= Re(�)↵

⇣
kŵk22 � kŷk

2
2

⌘
. (C.3)

Hence, as � , 0 and �̂ 2 L2(R,C4) is a nontrivial solution to (7.1), it must hold Re(�) , 0. So,
adding both equations again, taking real parts now, we establish using Young’s inequality and (C.3)

|�|2

Re(�)

⇣
kŵk22 + kŷk

2
2

⌘
= �kv̂k22 � kûk

2
2 �

Z
1

�1

R⇤(⇣)
⇣
2|ŵ(⇣)|2 + 2Re

⇣
ŷ(⇣)ŵ(⇣)

⌘
+ 2|ŷ(⇣)|2

⌘
d⇣  0.

Since �̂ 2 L2(R,C4) is a nontrivial solution to (7.1), it follows Re(�) < 0. Hence, upon taking ✓2 >
0 su�ciently small, we derive a contradiction, since the set of � 2 R2(✓2,⇥1,⇥2) at which (7.1)
admits an L2-localized solution corresponds to the isolated roots of the analytic Evans function El.

Using [54, Theorem 1], we conclude that (7.1) has an exponential dichotomy on R for each
� in the compact set R2(✓2,⇥1,⇥2) with �-independent constants (which do depend on �) and
associated projections Pl(⇣; �). By (4.9) in Proposition 4.2, there exist constants C, ⌘ > 0 such
that kAl(⇣; �) � A1l (�)k  Ce�⌘⇣ for ⇣ � 0. Hence, by [50, Lemma 3.4], the dichotomy projections
satisfy

kPl(⇣; �) � Ql(�)k  C�e�⌘⇣ , ⇣ � 0, (C.4)

where Ql(�) is the spectral projection onto the stable eigenspace of A1l (�).
Take 0 < ⌧ < min{◆⌘, 1

2 }. By roughness of exponential dichotomies, cf. [13, Proposition 5.1]
and estimates (C.1) and (C.2), system (6.6) admits for each � 2 R2(✓2,⇥1,⇥2) an exponential
dichotomy on (�1, 0] with �- and "-independent constants and projections P⇤,l(⇣; �, ") satisfying

���P⇤,l(⇣tf(") + ⇣; �, ") � Pl(⇣� + ⇣; �)
���  C�k"k

⌧, ⇣ 2 (�1,�⇣tf(")],

provided 0 < "1 ⌧ ⇥1 ⌧ �, ✓2 ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ �, ✓2 ⌧ 1. Finally, combining the latter
with (C.4) yields (7.3). ⇤

Proof of Proposition 7.2. Using (4.2) in Theorem 4.1, (4.13) in Proposition 4.3 and identity (4.5)
we establish the estimate

���A⇤(⇣; �, ") � A1r (�)
���  Ck"k, ⇣ � ⇣tf(").

Since A1r (�) is hyperbolic for each � 2 R2(✓2,⇥1,⇥2) with a �- and �-uniform spectral gap, the
result follows directly by roughness of exponential dichotomies, cf. [13, Proposition 5.1]. ⇤

Proof of Lemma 7.3. Let �(⇣) be a solution to (6.4) with �(⇣) 2 ker(P�(⇣; �, ")) for ⇣  0. Then,
it holds �(⇣)e�̂�⇣ ! 0 as ⇣ ! �1. Hence, using (6.11) in Lemma 6.2 and using the fact that
ẑtf(⇣; ") is bounded on (�1, ⇣tf(")] by Proposition 4.2, the solution B(⇣; ")�(⇣) to (6.6) converges
to 0 as ⇣ ! �1. Hence, we conclude that solutions to (6.6) in the subspace W�(⇣; �, ") =
B(⇣; ") ker(P�(⇣; �, ")) converge to 0 as ⇣ ! �1, which yields (7.4) by a simple dimension count-
ing argument, using Proposition 7.1.
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Now let �̂(⇣) be a solution to (6.6) that converges to 0 as ⇣ ! 1. Then, using (6.11) in
Lemma 6.2 and using the fact that ẑtf(⇣; ") is bounded on [0,1) by Proposition 4.3, it follows
B(⇣, ")�1�̂(⇣)e�̂+⇣ ! 0 as ⇣ ! 1. Hence, we conclude B(⇣, ")�1�̂(⇣) is a solution to (6.4),
which lies in P+(⇣; �, ")[C4] for ⇣ � 0. So, (7.5) follows again by counting dimensions, using
Proposition 7.2. ⇤

Proof of Proposition 8.2. Throughout this proof C� > 1 is a constant depending on � > 0 only.
Let � 2 R1(⇥1). We approximate the coe�cient matrix A⇤(⇣; �, ") of (6.6) for ⇣ to the left of

the front interface ⇣tf("). By (4.2) in Theorem 4.1, estimate (4.10) in Proposition 4.2, identity (4.5)
and Lemma 6.2, we establish the estimate

kA⇤(⇣tf(") + ⇣; �, ") � Al(⇣� + ⇣; 0)k  C�

p
k"k

���log k"k
��� +C|�|, ⇣  0, � 2 R1(⇥1), (C.5)

for 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, where we recall Al(⇣; �) is defined
in (7.2) and C > 1 is a constant independent of �, " and �. By estimate (4.9) in Proposition 4.2, the
coe�cient matrix Al(⇣; 0) converges exponentially to a hyperbolic matrix as ⇣ ! �1. So, by [54,
Theorem 1], system

�̂⇣ = Al(⇣; 0)�̂, �̂ 2 C4, (C.6)

has an exponential dichotomy on (�1, ⇣�] with associated rank 2 projections Q⇤,l(⇣). Note that the
dichotomy constants might depend on �.

The two solutions �̂0(⇣; ") and �̂�(⇣; ") to (6.6) give rise, upon taking the limit k"k ! 0, to two
linearly independent solutions

�̂⇤,0(⇣) = e
R ⇣
⇣�

ẑ⇤(y)dy

0
BBBBBBBBBBBBB@

1
�1

ẑ⇤(⇣)
�ẑ⇤(⇣

1
CCCCCCCCCCCCCA
, �̂⇤,�(⇣) = e

R ⇣
⇣�

ẑ⇤(y)dy

0
BBBBBBBBBBBBB@

ẑ⇤(⇣) � 1
ẑ⇤(⇣) � 1

R⇤(⇣) � ẑ⇤(⇣)
R⇤(⇣) � ẑ⇤(⇣)

1
CCCCCCCCCCCCCA
,

to (C.6). Since R⇤(⇣) and ẑ⇤(⇣) converge exponentially to 1 as ⇣ ! �1 by (4.9) in Proposition 4.2,
it follows �̂⇤,0(⇣) and �̂⇤,�(⇣) decay exponentially to 0 as ⇣ ! �1. Thus, we obtain

ker(Q⇤,l(⇣)) = Span
n
�̂⇤,0(⇣), �̂⇤,�(⇣)

o
,

for ⇣ 2 (�1, ⇣�], which yields (8.7).
By roughness of exponential dichotomies, cf. [13, Proposition 5.1], and estimate (C.5), sys-

tem (6.6) admits, provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1, for each
� 2 R1(⇥1) an exponential dichotomy on (�1, ⇣tf(")] with �- and "-independent constants and
projections P⇤,l(⇣; �, ") satisfying (8.6).

Finally, (8.5) follows, because the linearly independent solutions �̂0(⇣; ") and �̂�(⇣; ") to (6.6)
at � = 0 converge to 0 as ⇣ ! �1 by Lemma 8.1. ⇤

Proof of Proposition 8.3. With the aid of identity (4.3) in Theorem 4.1 and (4.13) in Proposi-
tion 4.3, we establish the estimate

���A⇤(⇣; �, ") � A⇤,+(�, ")
���  Ce�⌘"1 , ⇣ � 0.

for �- and "-independent constants C > 1 and ⌘ > 0. The result now follows as in the proof
of Proposition 7.2, where we note that the spectral projection Q⇤,r(�, ") satisfies (8.8) by (4.2)
and (4.5). ⇤

57



Proof of Proposition 8.7. We start by tracking the solution t+(⇣; �, ") to (8.13) backward from 0
to ⇣tf("). As in [28], the polar coordinate representation

�

m(")2 (1 � i↵) + µ (") =: N(�, ")2ei'(�,"), (C.7)

with '(�, ") 2 [0, 2⇡) gives a Riemann-surface unfolding about the branch point in (8.13) yielding

t⇣ = �t2 + N2ei', (C.8)

where we suppress dependency on � and " in (C.8). Consequently, we have

t̂+(�, ") = t̃+(M("),N(�, "),'(�, ")),

with

t̃+(M,N,') :=

s
2

m̃(M)2 (1 � i↵) + N2ei'.

As in [28], we scale ⇠ = N⇣ in (C.8) and shift equilibria in (C.8) using the Möbius transformation

⇢ =
t + N⌘
t � N⌘

, ⌘ := ei '2 . (C.9)

We set r = log(⇢) and, once again suppressing dependence on � and ", find

r⇠ = 2⌘.

Now we set ⇠tf(�, ") := N(�, ")⇣tf("), and define the closed disk

B� :=
n
� 2 C : |�|  ��1/4

o

at the origin in C (the choice of radius ��1/4 becomes apparent later). Our goal is to solve the
equation

q� =
1

t+(⇠tf(�, "); �, ")
, (C.10)

with respect to � 2 R1(⇥1) for 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1, 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1 for q� in the
compact set B�.

In the new coordinates, the endpoints of the resulting boundary value problem take the form

r+ = 2⇡i j+ + log

0
BBBBBBB@

1 + N⌘
t̃+(M,N,')

1 � N⌘
t̃+(M,N,')

1
CCCCCCCA , r� = 2⇡i j� + log

 
1 + N⌘q�
1 � N⌘q�

!
,

for certain j± 2 Z. Thus, after integration we obtain the equation

�⇠tf =
r+ � r�

2⌘
= e�i '2 ⇡i j +

e�i '2

2
log

0
BBBBBBBBB@

1 + Nei '2
t̃+(M,N,')

1 � Nei '2
t̃+(M,N,')

1
CCCCCCCCCA
�

e�i '2

2
log

0
BBBB@

1 + ei '2 Nq�
1 � ei '2 Nq�

1
CCCCA , (C.11)

where we suppress dependence on � and " and we denote j = j+� j� 2 Z. We wish to solve (C.11)
with respect to N and ' in terms of M for (N,M) in a neighborhood of (0, 0) in R2. Setting
N,M = 0 in (C.11) and taking imaginary parts implies ' = ⇡. Thus, by the implicit function
theorem, we can only solve (C.11) for (N,M) in a neighborhood of (0, 0) if ' is close to ⇡.
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In case j = 0, we observe from (C.11) that N(�, ")�1⇠tf(�, ") = ⇣tf(") is bounded as k"k ! 0,
which contradicts (4.3) in Theorem 4.1. In addition, in case j < 0, we observe from (C.11) that
⇠tf > 0 for (N,M,') close to (0, 0, ⇡), which contradicts (4.3) again. Hence, it must hold j 2 Z>0.

Dividing (C.11) by j , 0, introducing | = 1/ j and taking imaginary parts leads to the equation

0 = cos
✓'

2

◆
⇡ +

|

2
Im

2
6666666664
e�i '2 log

0
BBBBBBBBB@

1 + Nei '2
t̃+(M,N,')

1 � Nei '2
t̃+(M,N,')

1
CCCCCCCCCA
� e�i '2 log

0
BBBB@

1 + ei '2 Nq�
1 � ei '2 Nq�

1
CCCCA

3
7777777775
,

which can, by the implicit function theorem and (8.18), in a neighborhood of (N,M,') = (0, 0, ⇡)
and for (q�, |) in the compact set B� ⇥ B1, be solved for ' in terms of M,N, q� and |. This yields
a unique smooth solution '(M,N; q�, |) defined in U2 ⇥ B� ⇥ B1, where U2 is a neighborhood of
(0, 0) in R2 and B1 is the closed unit disk at the origin in C. Subsequently expanding ', we obtain

������'(M,N; q�, |) � ⇡ �
|

⇡
Im

 
1

p
2(1 � i↵)

� q�
!

N
������  C�| ||N2, (C.12)

for (M,N, q�, |) 2 U2 ⇥ B� ⇥ B1, where C� > 0 is a M-, N-, q� and |-independent constant that
might be dependent on �.

Since the matching time ⇣̂ must satisfy M⇠tf � N⇣̂(M) = 0, we subsequently fix j 2 Z>0 and
substitute the real part of equation (C.11) in for ⇠tf we find

�N⇣̂(M) = M sin
✓'

2

◆
⇡ j +

M
2

Re

2
6666666664
e�i '2 log

0
BBBBBBBBB@

1 + Nei '2
t̃+(M,N,')

1 � Nei '2
t̃+(M,N,')

1
CCCCCCCCCA
� e�i '2 log

0
BBBB@

1 + ei '2 Nq�
1 � ei '2 Nq�

1
CCCCA

3
7777777775
, (C.13)

where we suppress the argument of '(M,N; q�, 1
j ). Equation (C.13) can, by the implicit function

theorem, (8.18) and (C.12), in a neighborhood of (N,M) = (0, 0) and for q� in the compact set
B�, be solved for N in terms of M and q�, yielding a unique smooth solution N j(M; q�) defined in
U1 ⇥B�, where U1 is a neighborhood of 0 in R. Subsequently expanding N j for fixed j 2 Z>0, we
obtain

������N j(M; q�) � M j �
jM2

⇡

 
1

ẑ⇤(⇣�)
� Re(q�)

!������  C�, jM3,

yielding by (4.8):
���N j(M; q�) � M j

���  C��1/4
| j|M2 +C�, jM3, (C.14)

for (M, q�) 2 U1⇥B�, where C�, j > 0 is a M- and q�-independent constant that might be dependent
on � and j and C > 0 is a M-, j-, �- and q�-independent constant.

To establish a more j-uniform bound on N j, see Remark C.1, we use (8.18), (C.12), (C.13)
and the fact that N j(M; q�) is a priori small by (C.7) for � 2 R1(⇥1), 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and
0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1. We approximate N j(M; q�) as follows

|N j(M; q�) � M j| 
1
⇡

⇣���⇡ + ⇣̂(M)
��� N j(M; q�) +

���M⇡ j + ⇣̂(M)N j(M; q�)
���
⌘

 C�N j(M; q�)M  C�

⇣
M|N j(M; q�) � M j| + | j|M2

⌘
,

yielding

|N j(M; q�) � M j|  C�| j|M2, (C.15)
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for (M, q�) 2 U1 ⇥ B� and j 2 Z>0, where C� > 0 is a M-, q�- and j-independent constant that
might be dependent on �.

Substituting the obtained expressions for N j(M; q�) and '(M,N j(M; q�); q�, 1
j ) into (C.7)

yields by (8.16), (8.17), (8.18), (C.12), (C.14) and (C.15) that, given (M, q�) 2 U1 ⇥ B�, all
solutions � 2 R1(⇥1) to the equation (C.10) lie in one of the disks D j("), j 2 Z>0, with center

� j := �

⇣
1 � j2

⌘
"2

1(1 + i↵)

1 + ↵2 ,

and radius r j satisfying (8.20), provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1. In
addition, given (M, q�) 2 U1 ⇥ B�, each disk D j(") \ R1, j 2 Z>0 contains precisely one solution
� 2 C to (C.10). Hence, the meromorphic function � 7! t+(⇣tf("); �, ")�1 admits, for each j 2 Z>0,
a unique zero � j," in D j(") and is injective and analytic in a neighborhood of � j,". Thus, since
injective holomorphic functions have non-vanishing derivatives, � j," must be a simple zero of
t+(⇣tf("); · , ")�1 or, equivalently, a simple pole of t+(⇣tf("); ·, "). So, for each j 2 Z>0, the number
of poles of t+(⇣tf("); · , ") in D j(") is one (including multiplicity).

Similarly, by tracking the solution s+(⇣; �, ") with initial condition ŝ+(�, ") backward in (8.14)
from 0 to ⇣tf("), we obtain that all solutions � 2 R1(⇥1) to

q� =
1

s+(⇠tf(�, "); �, ")
, (C.16)

for q� 2 B�, lie in one of the disks D j("), j 2 Z<0 with center

� j := �

⇣
1 � j2

⌘
"2

1(1 � i↵)

1 + ↵2 ,

and radius r j satisfying (8.20). Given (M, q�) 2 U1 ⇥ B�, each disk D j(") \ R1, j 2 Z<0 contains
precisely one solution � 2 C to (C.16) and, thus, contains precisely one pole of s+(⇣tf("); ·, "),
which is simple.

All in all, we obtain the right estimate in (8.21), provided 0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and
0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1.

Using an analogous procedure, one tracks the solution Td,�(⇣; �, ") forward in (8.9) from ⇣tf(")
to 0, where we use (4.8) from Proposition 4.2. We obtain that all solutions � 2 R1(⇥1) to

q+ =
1

t�(0; �, ")
, (C.17)

for some q+ 2 B�, lie in one of the disks D j("), j 2 Z>0. Given (M, q+) 2 U1 ⇥ B�, each disk
D j(") \ R1, j 2 Z>0 contains precisely one solution � 2 C to (C.17) and, thus, contains precisely
one pole of t�(0; · , "), which is simple. In addition, all solutions � 2 R1(⇥1) to

q+ =
1

s�(0; �, ")
, (C.18)

for some q+ 2 B�, lie in one of the disks D j("), j 2 Z<0. Given (M, q+) 2 U1 ⇥ B�, each disk
D j(") \ R1, j 2 Z<0 contains precisely one solution � 2 C to (C.18) and, thus, contains precisely
one pole of s�(0; · , "), which is simple. Hence, we obtain the left estimate in (8.21), provided
0 < "1 ⌧ ⇥1 ⌧ � ⌧ 1 and 0  |"2| ⌧ ⇥1 ⌧ � ⌧ 1. ⇤

Remark C.1. It follows from the Riemann surface unfolding and Möbius transformation (C.9)in
the proof of Proposition 8.7 that the parameter j measures the winding number of solutions to the
scalar Riccati equation (8.13) around its fixed points. The estimate |r j|  C� j2M(")3 on the radius
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in Proposition 8.7 is necessary to bound the disks D j(") uniformly in j 2 Z \ {0,±1} away from
the closed right-half plane. Indeed, provided 0 < "1 ⌧ � ⌧ 1 and 0  |"2| ⌧ � ⌧ 1, it holds
|Re � j| > C� j2M(")3, no matter the size of j 2 Z \ {0,±1}. We emphasize that such a bound was
not necessary in the existence analysis in [28].

Proof of Lemma 8.13. In this proof C > 1 denotes any constant, which is independent of " and
�.

Using the bases of ker(P�(0; 0, ")) and P+(0; 0, ")[C4] derived in Lemma 8.12, we can, by
Proposition 4.3, take a vector

 0 2 ker(P�(0; 0, "))? \ P+(0; 0, ")[C4]?

= ker(I4 � P�(0; 0, ")⇤) \ (I4 � P+(0; 0, ")⇤)[C4].
(C.19)

satisfying
�������
 0 �

0
BBBBB@0, 0,�

1

@⇣ ẑ0(0; ")
,

1
@⇣ ẑ0(0; ")

1
CCCCCA
>
�������
 Ce⌘⇣tf ("), (C.20)

where we observe from (4.11) and (4.12) that it holds
���@⇣ ẑ0(0; ") + 2 � 2i↵

���  Ck"k, (C.21)

noting �(0) = �1. Now, let  0(⇣; ") be the solution to (8.33) with initial condition  0(0; ") =  0.
Since the inner product between solutions to (8.1) and (8.33) is preserved, we find that (C.19)
implies that

 0(⇣; ") 2 ker(P�(⇣; 0, "))? = ker(I4 � P�(⇣; 0, ")⇤). (C.22)

holds for all ⇣  0. Next, we prove the estimates (8.34) and (8.35) hold for  0(⇣; ").

Exponential dichotomies. To prove the estimates (8.34), we establish exponential dichotomies
for the weighted systems

 ⇣ =
�
�A(⇣; 0, ")⇤ + ̂±

�
 ,  2 C4, (C.23)

on (�1, ⇣tf(")] and [0,1), respectively, with "-independent constants. These exponential di-
chotomies arise by transferring exponential dichotomies of

�⇣ = (A(⇣; 0, ") � ̂�) �, � 2 C4, (C.24)

�⇣ = (A(⇣; 0, ") � ̂+) �, � 2 C4, (C.25)

to their adjoint problems.
We start by establishing an exponential dichotomy for (C.24) on (�1, ⇣tf(")]. By Proposi-

tion 4.2 and (4.5) it holds

kA(⇣tf(") + ⇣; 0, ") � AL(⇣� + ⇣)k  C�k"k, ⇣  0, (C.26)

provided 0 < "1 ⌧ � ⌧ 1 and 0  |"2| ⌧ � ⌧ 1, where C� > 0 is an "-independent constant and,
recalling (6.3), we denote

AL(⇣) :=
 

I2[0] I2[1]
R⇤(⇣) (I2 [1] +J2[1]) �2I2

⇥
ẑ⇤(⇣)

⇤
!
.
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By estimate (4.9) in Proposition 4.2, the coe�cient matrix AL(⇣) converges exponentially to an
asymptotic matrix as ⇣ ! �1, which admits a spectral gap at Re(⌫) = ̂� = �/

p
1 + ↵2 2

(� 1
4 , 0). Hence, by [50, Lemma 3.4], system

�⇣ = (AL(⇣) � ̂�) �, � 2 C4,

has an exponential dichotomy on (�1, 0] with associated rank 2 projections PL(⇣). By roughness
of exponential dichotomies, cf. [13, Proposition 5.1], and estimate (C.26), system (C.24) admits,
provided 0 < "1 ⌧ � ⌧ 1 and 0  |"2| ⌧ � ⌧ 1, an exponential dichotomy on (�1, ⇣tf(")] with
"-independent constants and projections PL(⇣; "). Thus, cf. [13, p. 17], it must hold

ker(PL(⇣; ")) = ker(P�(⇣; 0, ")), ⇣ 2 (�1, ⇣tf(")]. (C.27)

Next, we establish an exponential dichotomy for (C.25) on (�1, ⇣tf(")]. By (4.5), (4.12) and
Proposition 4.3 we have

kA(⇣; 0, ") � ARk  Ck"k, ⇣ � 0,

provided 0 < "1 ⌧ � ⌧ 1 and 0  |"2| ⌧ � ⌧ 1, where we denote

AR =

0
BBBB@
I2[0] I2[1]
I2[0] 2I2

hp
2 � 2i↵

i
1
CCCCA .

Hence, since AR admits a spectral gap at ̂+ = 1+Re
p

2 + 2i↵+ 
p

1 + ↵2, roughness of exponen-
tial dichotomies, cf. [13, Proposition 5.1], yields that system (C.25) admits, provided 0 < "1 ⌧

� ⌧ 1 and 0  |"2| ⌧ � ⌧ 1, an exponential dichotomy on [0,1) with "-independent constants
and projections PR(⇣; "). Thus, cf. [13, p. 17], it must hold

PR(⇣; ")[C4] = P+(⇣; 0, ")[C4], ⇣ 2 [0,1). (C.28)

All in all, we conclude the adjoint systems (C.23) have exponential dichotomies on (�1, ⇣tf(")]
and [0,1), respectively, with "-independent constants and corresponding projections I4�PL(⇣; ")⇤

and I4�PR(⇣; ")⇤. Thus, by identities (C.19), (C.22), (C.27) and (C.28), we obtain the exponential
decay estimates

k 0(⇣; ")k  Cê�(⇣tf (")�⇣)
k 0(⇣tf("); ")k, ⇣  ⇣tf("),

k 0(⇣; ")k  Ce�̂+⇣k 0(0; ")k  Ce�̂+⇣ , ⇣ � 0,
(C.29)

where the last inequality follows from (C.20) and (C.21). Thus, proving (8.34) now reduces to
finding an appropriate bound on k 0(⇣tf("); ")k, which we will establish later.

Tracking the adjoint solution along the absolutely unstable plateau. Along the absolutely
unstable plateau, we approximate the coe�cient matrix of the adjoint equation (8.33) using (4.13)
in Proposition 4.3 as

���A(⇣; 0, ")⇤ + Aad(⇣; ")
���  C�e�⌘(⇣�⇣tf (")), ⇣ 2 [⇣tf("), 0], (C.30)

where we denote

Aad(⇣; ") :=
0
BBBB@
I2[0] I2[0]
�I2[1] 2I2

h
ẑ0(⇣; ")

i
1
CCCCA .
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One observes that system

 ⇣ = Aad(⇣; ") ,

is explicitly solvable and its evolution matrix is given by

Tad(⇣, y; ") := B(⇣; ")�1
T̃ad(⇣, y; "), B(⇣; ") :=

0
BBBBB@
I2

h
ẑ00(⇣)

i
I2[0]

I2[0] I2
h
ẑ00(⇣)

i
1
CCCCCA ,

T̃ad(⇣, y; ") :=
0
BBBBB@
I2

h
ẑ00(⇣)

i
I2[0]

I2
h
ẑ0(y) � ẑ0(⇣)

i
I2

h
ẑ00(y)

i
1
CCCCCA ,

where we suppress the "-dependency in the coe�cient matrices. We emphasize ẑ00(⇣) , 0 for all
⇣ 2 [⇣tf("), 0], since the solution ẑ0(⇣) does not lie on a stationary point of the planar system (4.11).

Using the variation of constants formula we find that  ad(⇣; ") := B(⇣; ") 0(⇣; ") solves

 ad(⇣; ") = T̃ad(⇣, 0; ") 0(0; ") +
Z ⇣

0
T̃ad(⇣, y; ")F(y; ") ad(y; ")dy, ⇣ 2 [⇣tf("), 0], (C.31)

with F(y; ") := � (A(y; 0, ")⇤ + Aad(y; ")) B(y; ")�1. As in the proof of Proposition 8.9, our plan is
to estimate terms in (C.31) in order to approximate  ad(⇣; ") by  0,ad(⇣; ") := T̃ad(⇣, 0; ") 0(0; ")
using a Neumann series expansion. First, using (4.14) in Proposition 4.3, it holds

���T̃ad(⇣, y; ")
���  C, ⇣, y 2 [⇣tf("), 0]. (C.32)

Second, using that ẑ0(⇣; ") solves (4.11), we obtain the identity

ẑ00(y)
ẑ00(⇣)

= e2
R ⇣

y ẑ0(x)dx
, ⇣, y 2 [⇣tf("), 0], (C.33)

where we suppress "-dependency. On the other hand, by (4.8) and (4.10) in Proposition 4.2 and
by (4.13) in Proposition 4.3, it holds

C Re (ẑ0 (⇣tf("); ")) � | log(�)|�1. (C.34)

Now let ⇣ 2 [⇣tf("), 0] and consider the "- and �-independent constant ⌘ > 0 in (C.30). Take ⇣1
to be the smallest number in [⇣tf("), ⇣] such that |ẑ0(y; ")|  ⌘

8 for y 2 [⇣1, ⇣], if such a number
exists, otherwise take ⇣1 = ⇣. Thus, it either holds |ẑ0(⇣1, ")| � ⌘

8 or ⇣1 = ⇣tf("). Using (4.5), (C.33)
and (C.34), we approximate

1���@⇣ ẑ0(⇣; ")
���


e2Re
R ⇣
⇣1

ẑ0(y;")dy

���@⇣ ẑ0(⇣1, ")
���


e2
R ⇣
⇣1
|ẑ0(y;")|dy

|ẑ0(⇣1, ")|2 � |µ(")|
 C| log(�)|2e

⌘
4 (⇣�⇣tf (")), (C.35)

for ⇣ 2 [⇣tf("), 0], provided 0 < "1 ⌧ � ⌧ 1 and 0  |"2| ⌧ � ⌧ 1. Combining the latter
with (C.30) yields

kF(⇣; ")k  C�| log(�)|2e�
3⌘
4 (⇣�⇣tf (")), ⇣ 2 [⇣tf("), 0]. (C.36)

Finally, by (C.20) and (C.32), we have
��� 0,ad(⇣; ") � (0, 0,�1, 1)>

���  Ce⌘⇣tf ("), ⇣ 2 [⇣tf("), 0]. (C.37)

All in all, applying (C.32), (C.36) and (C.37) to the variation of constants formula (C.31) and
using a Neumann series expansion as in Proposition 8.9, we arrive at

k ad(⇣; ") �  0,ad(⇣; ")k  C
| log(�)|2�

e
3⌘
4 (⇣�⇣tf ("))

, ⇣ 2 [⇣tf("), 0].

Combining the latter with (C.35) and (C.37), proves (8.35). Finally, evaluating (8.35) at ⇣ = ⇣tf(")
yields (8.34) by combining (C.29) with (C.34), where we use that ẑ0(⇣; ") solves (4.11). ⇤
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