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BEHAVIOR OF SPIRAL WAVE SPECTRA WITH A
RANK-DEFICIENT DIFFUSION MATRIX\ast 

STEPHANIE DODSON\dagger AND BJ\"ORN SANDSTEDE\ddagger 

Abstract. Spiral waves emerge in numerous pattern forming systems and are commonly modeled
with reaction-diffusion systems. Some systems used to model biological processes, such as ion channel
models, fall under the reaction-diffusion category and often have one or more nondiffusing species
which results in a rank-deficient diffusion matrix. Previous theoretical research focused on spiral
spectra for strictly positive diffusion matrices. In this paper, we use a general two-variable reaction-
diffusion system to compare the essential and absolute spectra of spiral waves for strictly positive and
rank-deficient diffusion matrices. We show that the essential spectrum is not continuous in the limit
of vanishing diffusion in one component. Moreover, we predict locations for the absolute spectrum
in the case of a nondiffusing slow variable. Predictions are confirmed numerically for the Barkley
and Karma models.
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1. Introduction. Spiral waves are frequently observed in nature, including chem-
ical oscillations in the Belousov--Zhabotinsky reaction [27, 26], cell signaling patterns
in slime molds [14], and in electrical activity in cardiac dynamics [25, 19]. Stable
spiral waves are observed in these systems, but bifurcations to complex and unstable
patterns are common, and these bifurcations can have profound results. For exam-
ple, rotating spiral waves in cardiac electrical activity have been linked to dangerous
tachycardiac rhythms, and the transition to break up can lead to life-threatening fib-
rillation and sudden cardiac death [19, 16]. Therefore, understanding the stability and
bifurcations of spiral waves poses interesting mathematical questions and is important
in applications.

Reaction-diffusion systems are canonical pattern forming systems describing bio-
logical and physical processes and take on the form

Ut = D\Delta U + F (U), U = U(y, t) \in Rn, D \in Rn\times n, y \in R2,(1.1)

where \Delta is the Laplacian and the smooth, typically nonlinear F (U) defines kinetic
reaction terms. The n species of U = [u1, . . . , un]

T diffuse with diffusion rates given by
the entries Djj of the positive diagonal matrix D for j = 1, . . . , n. Planar spiral waves
have a regular shape and rotate with angular frequency \omega 0. Thus, these pattens are
stationary solutions of (1.1) in a polar coordinate rotating frame, and stability can be
investigated by evaluating the spectrum of the reaction-diffusion operator linearized
about the spiral wave solution.
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3790 STEPHANIE DODSON AND BJ\"ORN SANDSTEDE

The propagation of electrical potentials in excitable media, such as neurons and
cardiac tissue, can be described by biophysically detailed ion channel models given
by the system

Vt = \Delta V + f(V, n), nt = g(V, n).

Here, V = V (y, t) \in R corresponds to the electrical potential, and n = (n1(y, t), . . . ,
nM (y, t))T \in RM areM dynamic gating variables explaining the opening and closing
of ion channels that facilitate the voltage propagation. Ion channel models can still be
written in the general reaction-diffusion framework, with the popular Hodgkin--Huxley
[8], Noble [15], and Beeler--Reuter [5] models falling into this category.

In this paper, we focus on two-component reaction-diffusion models. In ion chan-
nel models, the gating variable does not diffuse, and an appropriate ion channel model
is therefore of the form

ut = \Delta u+ f(u, v), vt = g(u, v),

where we now use (u, v) instead of (V, n). Often, small unphysical diffusion is added
to these components or included in qualitative models. Throughout, we will use \delta to
correspond to the small diffusion coefficient of interest, leading to the adjusted model

ut = \Delta u+ f(u, v), vt = \delta \Delta v + g(u, v),

where 0 < \delta \ll 1. We would expect that the spectra should change smoothly as
the diffusion coefficient \delta \rightarrow 0, and this is indeed true for the continuous spectra
of one-dimensional periodic wave trains [17]. Yet, we observe that spiral spectra
computed for \delta > 0 do not converge as \delta \searrow 0 to the spectrum computed for \delta = 0.
Figure 1 shows the differences in the spectra for the Barkley model, a two-variable
reaction-diffusion system, with \delta = 0.2 and \delta = 0. For \delta > 0, the spectral curves are
unbounded, whereas the curves remain bounded for \delta = 0. Furthermore, at the finite
limit points, adjacent curves meet and form the cusps seen in Figure 1. Additional
changes are seen in the absolute and point spectrum, with the absolute spectrum
collapsing to short branches that align with the essential spectrum cusp points. The
effect of a rank-deficient diffusion matrix on the structure of the spectra of planar
spiral waves has previously not been analyzed.

In this paper, we focus on changes in the continuous spectrum for spiral waves in
the \delta = 0 limit and investigate the mechanisms responsible for the discontinuities of
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Fig. 1. Barkley model: Differences in the essential, absolute, and point spectra for \delta > 0 and
\delta = 0. The point spectra were calculated on a bounded disk of radius 20.
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SPIRAL WAVE SPECTRA WITH VANISHING DIFFUSION 3791

essential spectrum observed in the limit of a rank-deficient diffusion matrix. Under
mild conditions on the linearization of the reaction terms, Theorems 1--2 provide
expressions for the spectral curves near the limit points. Our findings indicate the
discontinuity occuring in the \delta = 0 limit is dictated by the nondiffusing species.
Furthermore, we use the result of Theorem 1 to predict locations for the rank-deficient
absolute spectrum in Theorem 3.

We proceed as follows: Mathematical preliminaries of spiral waves and the rele-
vant spectral properties are described in section 2. The main results for the continuous
spectra of planar spiral waves are derived in sections 3--4. Implications for the loca-
tions of absolute spectrum are discussed in section 5. Finally, the results are applied
to the Barkley and Karma models in section 6.

2. Mathematical preliminaries.

2.1. Planar spiral waves and asymptotic wave trains. Planar spiral waves
are solutions to the reaction-diffusion equation (1.1) which rigidly rotate in time with
a constant angular temporal frequency \omega 0. Spiral waves are therefore stationary
solutions U\ast (r, \psi ) in the co-rotating frame under polar coordinates (r, \psi )

Ut = D\Delta r,\psi U + \omega 0U\psi + F (U), U \in Rn,

where \Delta r,\psi denotes the Laplacian expressed in polar coordinates. In the limit r \rightarrow \infty ,
the spiral solutions U\ast (r, \psi ) converge to 2\pi /\kappa -periodic functions U\infty (r + \psi /\kappa ) =
U\infty (x) referred to as asymptotic wave trains, which are stationary solutions to

Ut = DUxx + \omega Ux + F (U),

where \omega = \omega 0/\kappa . We focus on planar spiral waves that can be viewed as a source
which emits wave trains with positive group velocity. The spatial wave number \kappa is
selected by the spiral, and the nonlinear dispersion relation \omega = \omega \ast (\kappa ) of the wave
train connects \omega and \kappa . Our main assumption is the existence of a spiral wave solution
that depends smoothly on the diffusion coefficient \delta for 0 \leq \delta \ll 1.

Hypothesis 1. The spiral wave solution U\ast and the asymptotic wave train U\infty 
both depend smoothly on the diffusion coefficient \delta for 0 \leq \delta \ll 1.

While we do not have a proof that Hypothesis 1 holds, this hypothesis is well
supported by numerical evidence.

2.2. Essential spectrum of wave trains. We are interested in the continuous
spectrum of the reaction-diffusion operator linearized about a spiral wave pattern.
The reader is referred to [7, 21, 20, 9] for a detailed study of spectrum of operators
in nonlinear waves.

We start with the wave train spectrum, as it is directly linked to the continuous
spectrum of the spiral wave. The spectrum of the linearization

\scrL \infty V = DVxx + \omega Vx + FU (U\infty )V = \lambda \infty V

of the asymptotic wave trains U\infty (x) on the space L2(R,Rn) is given by the set of
\lambda \infty \in C for which the eigenvalue problem \scrL \infty V = \lambda \infty V has a nontrivial solution of
the form V (x) = e\nu x \=V (x), where \=V (x + 2\pi /\kappa ) = \=V (x) and \nu = i\gamma for \gamma \in R. Wave
train eigenvalues are therefore determined by nontrivial 2\pi /\kappa -periodic solutions \=V (x)
of

\scrL \infty (\lambda , \nu ) \=V = D (\partial x + \nu )
2 \=V + \omega (\partial x + \nu ) \=V + FU (U\infty ) \=V  - \lambda \infty \=V = 0(2.1)
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3792 STEPHANIE DODSON AND BJ\"ORN SANDSTEDE

and come in curves \lambda \infty = \lambda \infty (i\gamma ) parameterized by the Floquet exponent \nu = i\gamma .
From translational symmetry, one spectral curve includes \lambda \infty (0) = 0 for \nu = 0 with
eigenfunction V (x) = U \prime 

\infty (x). The orientation of each curve is defined as the direction
of increasing \gamma .

2.3. Essential spectrum of planar spiral waves. The spectrum of a planar
spiral wave is given by considering the spectrum of the operator

\scrL \ast V = D\Delta r,\psi V + \omega 0V\psi + FU (U\ast )V(2.2)

on L2(R,Rn) which contains isolated eigenvalues in the point spectrum and con-
tinuous curves of essential spectrum. The essential spectrum of the spiral wave is
determined by the far-field asymptotic dynamics, and it can be shown that the spiral
wave continuous spectral curves \lambda \ast (\nu ) are related to those of the wave trains via

\lambda \ast (\nu ) = \lambda \infty (\nu ) - \omega 0

\kappa 
\nu + i\omega 0\ell , \ell \in Z.(2.3)

Therefore, the linear dispersion relation for the spiral wave is determined by the
solvability of

\scrL \ast (\lambda , \nu ) \=V = D (\partial x + \nu )
2 \=V + \omega \=Vx + FU (U\infty ) \=V  - \lambda \ast \=V = 0.(2.4)

Since \nu \in iR, the real parts of the wave train and spiral wave continuous spectra
coincide. The i\omega 0\ell term provides additional vertically periodic branches due to the
rotational symmetry of the spiral wave.

2.4. Computation of essential spectra. In the remainder of the paper, we
focus on spiral waves described by a two-component reaction-diffusion system U =
(u, v)T set in a rotating frame with polar coordinates (r, \psi ) = (r, \phi  - \omega t),

ut = \Delta r,\psi u+ \omega u\psi + f(u, v),(2.5)

vt = \delta \Delta r,\psi v + \omega v\psi + g(u, v),

where 0 \leq \delta \ll 1. In this framework, u and v are typically referred to as the fast
and slow diffusing species, respectively. Many of the reduced systems, including the
Barkley, Karma, and Morris--Lecar models, have two components.

In these systems, the equation for the essential spectrum of the planar spiral wave
is then given by

\lambda \ast u =(\partial x + i\gamma )
2
u+ \omega ux + fu (U\infty (x))u+ fv (U\infty (x)) v,(2.6)

\lambda \ast v = \delta (\partial x + i\gamma )
2
v + \omega vx + gu (U\infty (x))u+ gv (U\infty (x)) v,

where the imaginary part \gamma of the spatial Floquet exponent parameterizes the essential
spectrum curves, and the nonlinear terms are linearized about the wave train U\infty (x).
In Theorems 1--2, we assume that the derivative gv (U\infty (x)) = \=g is a constant. To
simplify notation, we remove the explicit U\infty dependence in the linearizations and
instead write fu,v (U\infty (x)) = f1,2(x) and gu (U\infty (x)) = g1(x). The observed changes
in the essential spectrum are for large values of \gamma so that | \gamma | \gg 1. Sending \gamma \rightarrow \pm \infty 
corresponds to traversing the curve in opposite directions. To focus on the limiting
behavior (and the area near the cusp point for \delta = 0), we divide the system (2.6) by
\gamma 2, define \alpha = 1/\gamma , and group terms by orders of \alpha to arrive at

 - u+ \alpha (2iux) + \alpha 2 (uxx + \omega ux + f1(x)u+ f2(x)v  - \lambda u) = 0,(2.7)

 - \delta v + \alpha (2i\delta vx) + \alpha 2 (\delta vxx + \omega vx + g1(x)u+ \=gv  - \lambda v) = 0,(2.8)

D
ow

nl
oa

de
d 

06
/2

8/
22

 to
 1

28
.1

48
.1

94
.1

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPIRAL WAVE SPECTRA WITH VANISHING DIFFUSION 3793

where (u, v)(x + 2\pi /\kappa ) = (u, v)(x). The theorems and lemmas to follow analyze the
continuous spectrum assuming the conditions in Hypothesis 1 and using the formula-
tion in (2.7)--(2.8) for | \alpha | \ll 1.

3. Statement of main results: Essential spectrum. Throughout, we will
make use of [22, Corollary 3.4], which states that the spectrum of a planar spiral wave
is invariant under the shift \lambda \mapsto \rightarrow \lambda +i\omega 0n for integers n \in Z, and therefore restrict our
analysis to rectangles of the form

(3.1) \Lambda R :=

\biggl\{ 
\lambda \in C : | Im\lambda | \leq 1

2
, | Re\lambda | < R

\biggr\} 
,

where R is positive or R = \infty .
Our first result, Theorem 1, focuses on the case of vanishing diffusion in the v-

component. For each | \alpha | \ll 1, we seek to find all \lambda \in \Lambda \infty for which the eigenvalue
problem

\lambda u = uxx +

\biggl( 
2i

\alpha 
+ \omega 

\biggr) 
ux  - 

1

\alpha 2
u+ f1(x)u+ f2(x)v,(3.2)

\lambda v = \omega vx + \=gv + g1(x)u(3.3)

has a nontrivial 2\pi /\kappa -periodic complex-valued solution (u, v)(x).

Theorem 1. Fix R > 0, \omega > 0, and \=g \in R, and assume that f1, f2, g1 are
given 2\pi /\kappa -periodic functions of class C4; then there is a constant \alpha 0 > 0 so that
the following is true. There is a unique function \lambda \ast 0 : [ - \alpha 0, \alpha 0] \rightarrow \Lambda R so that (3.2)--
(3.3) has a nontrivial 2\pi /\kappa -periodic solution for \lambda \in \Lambda R and | \alpha | \leq \alpha 0 if and only
if \lambda = \lambda \ast 0(\alpha ). Furthermore, the function \lambda \ast 0 is continuous, and there are constants
\lambda 2,3 \in R so that

\lambda \ast 0(\alpha ) = \=g + \lambda 2\alpha 
2 + 2i\lambda 3\alpha 

3 + o(\alpha 3),

which shows that the trace of this function in the complex plane is a cusp emerging
from \lambda \ast 0(0) = \=g.

We will provide more details of the expansions of \lambda \ast 0(\alpha ) and the associated eigen-
functions of (3.2)--(3.3) in Proposition 4.6 below. We collect two extensions of our
results in the following remark.

Remark 3.1. \bullet The spectrum is invariant under the shifts \lambda \mapsto \rightarrow \lambda +i\omega 0n, n \in 
Z [22]. Thus, more generally, the expansion of \lambda \ast 0(\alpha ) is

\lambda \ast 0(\alpha ) = \=g + i\omega 0n+ \lambda 2\alpha 
2 + i\lambda 3\alpha 

3 + o(\alpha 4), n \in Z.

In particular, the spectrum of a planar spiral wave with vanishing diffusion
features infinitely many cusps that emerge from each \lambda 0 = \=g+i\omega 0n for n \in Z.
The cusp structure at each \lambda 0 is formed from the positive and negative tails
of two curves, corresponding to \alpha > 0 and \alpha < 0, meeting at \lambda 0.

\bullet Theorem 1 also holds if we replace \=g by a 2\pi /\kappa -periodic function g2(x). The
expressions for the coefficients in the expansion of \lambda \ast 0(\alpha ) remain valid provided

we use the definition \=g := \kappa 
2\pi 

\int 2\pi /\kappa 

0
g2(y) dy.

Our second result focuses on the case where the equation for v includes diffusion
with a small diffusion constant 0 < \delta \ll 1. For each fixed 0 < \delta \ll 1, we will identify
a range of values of \alpha with | \alpha | \ll 1 for which the eigenvalue problem
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3794 STEPHANIE DODSON AND BJ\"ORN SANDSTEDE

Fig. 2. The three panels illustrate the behavior of the dispersion curves, and their complex
conjugates, of (3.2)--(3.3) for \delta = 0 and (3.4)--(3.5) for fixed 0 < \delta \ll 1 in a small fixed neighborhood
of \lambda = \=g. Panel (i) shows the trace of \lambda \ast 

0(\cdot ) given in Theorem 1 for (3.2)--(3.3), while panel (ii)
illustrates the trace of \lambda \ast (\cdot , \delta ) established in Theorem 2 for (3.4)--(3.5) with \delta > 0 fixed. Panel (iii)
shows that the traces of \lambda \ast 

0(\cdot ) and \lambda \ast (\cdot , 0) differ.

\lambda u = uxx +

\biggl( 
2i

\alpha 
+ \omega 

\biggr) 
ux  - 

1

\alpha 2
u+ f1(x)u+ f2(x)v,(3.4)

\lambda v = \delta vxx +

\biggl( 
2i\delta 

\alpha 
+ \omega 

\biggr) 
vx  - 

\delta 

\alpha 2
v + \=gv + g1(x)u(3.5)

has a nontrivial 2\pi /\kappa -periodic complex-valued solution (u, v)(x).

Theorem 2. Fix \omega > 0 and \=g \in R, and assume that f1, f2, g1 are given 2\pi /\kappa -
periodic functions of class C4; then there are constants \delta 0, s0 > 0 and functions
\alpha \ast , \lambda \ast : [ - s0, s0]\times (0, \delta 0] \rightarrow C with

\alpha \ast (s, \delta ) =
1

2

\biggl( 
s+

\sqrt{} 
s2 + 4

\surd 
\delta 

\biggr) 
,(3.6)

\lambda \ast (s, \delta ) =

\Biggl\{ 
\lambda \ast 0(| s| ) + O(

\surd 
\delta ), s \geq 0,

\=g  - s2

\omega (1 + O(\delta 
1
4 )) + O(

\surd 
\delta ), s \leq 0,

(3.7)

so that (3.4)--(3.5) has a nontrivial 2\pi /\kappa -periodic solution when (\alpha , \lambda ) = (\alpha \ast , \lambda \ast )(s, \delta ).

Theorem 2 implies that the \delta = 0 limit of the trace of the dispersion curve
\lambda \ast (\cdot , \delta ) is given by the trace of the dispersion curve \lambda \ast 0(\cdot ) for \delta = 0 plus the interval
[\lambda \ast 0(0)  - s20/\omega , \lambda 

\ast 
0(0)]. In particular, the essential spectrum at \delta = 0 differs from the

\delta = 0 limit of the essential spectra for \delta > 0 (Figure 2).

4. Proofs of main results: Essential spectrum. To prove Theorems 1--2,
we systematically construct the eigenfunction solutions to the appropriate system.
Lemmas 4.1--4.3 and Proposition 4.4 assume that v is a given smooth function and
establish a 2\pi /\kappa -periodic solution u = \scrD (\lambda , \alpha )v for (3.2). These results for the u-
equation are independent of \delta , and the cases \delta = 0 and \delta > 0 are then handled
separately in the construction of the v-eigenfunction. Lemma 4.5 and Proposition 4.6
use and refine the form of u to find a 2\pi /\kappa -periodic solution for (3.3) when \delta = 0, and
Theorem 2 follows a similar outline for the case of \delta > 0. Throughout the proofs, we
will ignore that the coefficient functions depend on \delta : we assumed in Hypothesis 1 that
these functions depend smoothly on \delta for 0 \leq \delta \ll 1, and including this dependence
does not change our arguments or expansions since the \delta -dependence shows up at
higher order.

We note that (3.4)--(3.5) is a singular perturbation of (3.2)--(3.3) since 0 \leq \delta \ll 1.
However, due to the presence of the additional small parameter 0 \leq \alpha \ll 1, (3.4)--(3.5)
cannot be rescaled so that there is a well-defined limit as (\alpha , \delta ) approaches zero. In
particular, methods such as geometric singular perturbation theory are not readily
applicable.
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Throughout, we will fix a constant T > 0 and denote the stable and unstable
spectral projections of a hyperbolic matrix A by P s and P u, respectively. We say a
function is continuously differentiable on a closed interval if it is differentiable on the
open interval, the one-sided derivatives at the boundary points exist, and the resulting
derivative is continuous on the closed interval. We denote the Banach space of linear
bounded operators between two given Banach spaces X and Y by L(X,Y ).

4.1. Periodic solutions of linear systems of differential equations. For
each natural number k \geq 0, we define the spaces

Y kper := Ck(R/TZ,Cn), Y 0 := C0([0, T ],Cn), Y k+1 := Y kper \cap Ck+1([0, T ],Cn).

Consider the inhomogeneous linear differential equation

(4.1) Ux = AU +G(x), U \in Cn, 0 \leq x \leq T.

The following lemma establishes the existence of T -periodic solutions of (4.1).

Lemma 4.1. Fix T > 0, and assume that the matrix A \in Cn\times n is hyperbolic; then
the following is true.

\bullet For each G \in Y 0, (4.1) has a unique T -periodic solution U = \scrS G \in Y 1, and
the operator \scrS \in L(Y 0, Y 1) is given by

[\scrS G](x) = eAx
\bigl( 
1 - eAT

\bigr)  - 1
\int T

0

eA(T - s)P sG(s) ds +

\int x

0

eA(x - s)P sG(s) ds

+ eA(x - T )
\bigl( 
1 - e - AT

\bigr)  - 1
\int 0

T

e - AsP uG(s) ds

+

\int x

T

eA(x - s)P uG(s) ds, 0 \leq x \leq T.

\bullet For each k \geq 0, we have \scrS \in L(Y kper, Y
k+1
per ).

\bullet For each k \geq 1, we can write \scrS as

\scrS G = A - k\scrS dkG

dxk
 - 

k\sum 
j=1

A - j d
j - 1G

dxj - 1
, G \in Y kper.(4.2)

Proof. Let Es,u := \scrR (P s,u) denote the generalized stable and unstable eigenspaces
of the matrix A. Using the variation-of-constants formula, the general solution of (4.1)
is given by

U(x) = eAxas + eA(x - T )au +

\int x

0

eA(x - s)P sG(s) ds

+

\int x

T

eA(x - s)P uG(s) ds, 0 \leq x \leq T,

with as,u \in Es,u. The coefficients as,u are uniquely determined upon enforcing the pe-
riodic boundary condition U(0) = U(T ), which yields the unique T -periodic solution
U(x) = [\scrS G](x) \in Y 0

per given by

[\scrS G](x) := eAx
\bigl( 
1 - eAT

\bigr)  - 1
\int T

0

eA(T - s)P sG(s) ds +

\int x

0

eA(x - s)P sG(s) ds

(4.3)

+ eA(x - T )
\bigl( 
1 - e - AT

\bigr)  - 1
\int 0

T

e - AsP uG(s) ds +

\int x

T

eA(x - s)P uG(s) ds

for G \in Y 0. Furthermore, (4.1) implies that (\scrS G)x \in Y 0 so that \scrS G \in Y 1.
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Next, if G \in Y 0
per, it follows directly from (4.1) and periodicity of \scrS G that the

derivative (\scrS G)x of \scrS G is also periodic. In particular, G \in Y kper implies \scrS G \in Y k+1
per .

Finally, when G \in Y kper for some k \geq 1, we apply integration by parts k times
in each of the integral terms that appear in the expression for the solution operator
\scrS . Upon each integration by parts, most of the boundary terms cancel due to the
T -periodicity of G, and the remaining terms combine to provide the identity (4.2).
We omit the details of this calculation.

4.2. Periodic solutions of linear second-order equations. Next, we apply
these results to second-order equations of the form

(4.4) uxx = a21u+ a22ux + g(x), u \in C, 0 \leq x \leq T.

We write P1 for the projection of C2 onto the first component and define the vector
e2 := ( 01 ) \in C2. Finally, we modify our function spaces and define

Xk
per := Ck(R/TZ,C), X0 := C0([0, T ],C), Xk+1 := Xk

per \cap Ck+1([0, T ],C)

for any natural number k \geq 0.

Lemma 4.2. Fix T > 0, and assume that a21, a22 are such that the matrix A :=
( 0 1
a21 a22 ) \in C2\times 2 has eigenvalues \nu s, \nu u with Re \nu s < 0 < Re \nu u; then the following is

true.
\bullet For each g \in X0, (4.4) has a unique T -periodic solution u = \scrT g \in X2 given
by

[\scrT g](x) = [P1\scrS e2g](x)

= P1

\Biggl[ 
e\nu 

sx
\Bigl( 
1 - e\nu 

sT
\Bigr)  - 1

\int T

0

e\nu 
s(T - s)P se2g(s) ds +

\int x

0

e\nu 
s(x - s)P se2g(s) ds

(4.5)

+e\nu 
u(x - T )

\Bigl( 
1 - e - \nu 

uT
\Bigr)  - 1

\int 0

T

e - \nu 
usP ue2g(s) ds +

\int x

T

e\nu 
u(x - s)P ue2g(s) ds

\biggr] 
,

0 \leq x \leq T,

and we have

\| \scrT \| L(X0,X0
per)

\leq 2

1 - e - min(| Re \nu s,u| )T

\biggl( 
| P1P

se2| 
| Re \nu s| 

+
| P1P

ue2| 
| Re \nu u| 

\biggr) 
.(4.6)

\bullet For each k \geq 1, we have \scrT \in L(Xk
per, X

k+2
per ) with

\scrT g = P1A
 - k\scrS e2

dkg

dxk
 - 

k\sum 
j=1

P1A
 - je2

dj - 1g

dxj - 1
, g \in Xk

per,(4.7)

and for g \in Xk
per\bigm| \bigm| \bigm| \bigm| P1A

 - k\scrS e2
dkg

dxk

\bigm| \bigm| \bigm| \bigm| 
X0

per

(4.8)

\leq 2

1 - e - min(| Re \nu s,u| )T

\biggl( 
| P1P

se2| 
| Re \nu s| | \nu s| k

+
| P1P

ue2| 
| Re \nu u| | \nu u| k

\biggr) \bigm| \bigm| \bigm| \bigm| dkgdxk

\bigm| \bigm| \bigm| \bigm| 
X0

per

.
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Proof. The second-order equation (4.4) can be rewritten as the system

Ux =

\biggl( 
0 1
a21 a22

\biggr) 
U +

\biggl( 
0

g(x)

\biggr) 
:= AU + e2g(x), U =

\biggl( 
u
ux

\biggr) 
.(4.9)

Since A is hyperbolic by assumption, Lemma 4.1 shows that (4.9) has a unique T -
periodic solution in Y 1 for each g \in X0 and that this solution is given by U =
\scrS e2g. Hence, u = P1\scrS e2g =: \scrT g is the unique T -periodic solution of (4.4) in X2.
Substituting \scrS from Lemma 4.1 and using that eAxP s = e\nu 

sxP s and eAxP u = e\nu 
uxP u

establishes (4.5) and shows that \scrT \in L(X0, X2
per).

To prove (4.6), we note that

\| eAx| Es\| \leq eRe \nu sx for x \geq 0, \| eAx| Eu\| \leq eRe \nu ux for x \leq 0.

Hence, we obtain from (4.5) that

| \scrT g| X0 \leq max
0\leq x\leq T

\Biggl[ \Biggl( 
eRe \nu sx

1 - eRe \nu sT

\int T

0

eRe \nu s(T - s) ds +

\int x

0

eRe \nu s(x - s) ds

\Biggr) 
| P1P

se2| 

+

\biggl( 
eRe \nu u(x - T )

1 - e - Re \nu uT

\int 0

T

e - Re \nu us ds +

\int x

T

eRe \nu u(x - s) ds

\biggr) 
| P1P

ue2| 
\biggr] 
| g| X0

\leq 2

1 - e - min(| Re \nu s,u| )T

\biggl( 
| P1P

se2| 
| Re \nu s| 

+
| P1P

ue2| 
| Re \nu u| 

\biggr) 
| g| X0 ,

which establishes (4.6).
Finally, for g \in Xk

per, (4.2) in Lemma 4.1 shows that \scrT has the representation
given in (4.7). Furthermore, proceeding as in the preceding paragraph and using the
estimates

\| A - k| Es\| \leq 1

| \nu s| k
, \| A - k| Eu\| \leq 1

| \nu u| k

establishes the estimate (4.8).

4.3. Solutions to the linearized eigenvalue problem for the \bfitu -component.
We fix T = 2\pi /\kappa and consider the differential equation

(4.10) uxx =  - 
\biggl( 
2i

\alpha 
+ \omega 

\biggr) 
ux +

1

\alpha 2
u+ g(x), u \in C, 0 \leq x \leq 2\pi /\kappa ,

for | \alpha | \ll 1. The following result establishes the existence of 2\pi /\kappa -periodic solutions
of (4.10). We note that the results of Lemmas 4.3 and 4.5 and Propositions 4.4 and
4.6 hold for | \alpha | \ll 1. For clarity, we consider the case \alpha > 0 in the proofs.

Lemma 4.3. Fix \omega > 0; then there are constants \alpha 0 > 0 and C0 > 0 so that
the following is true. For each | \alpha | \leq \alpha 0 and each g \in X0, (4.10) has a unique 2\pi /\kappa -
periodic solution u = \scrT (\alpha )g \in X2, and the operator \scrT (\alpha ) satisfies \| \scrT (\alpha )\| L(X0,X0

per)
\leq 

C0| \alpha | . Furthermore, we have

| \scrT (\alpha )g| X0
per

\leq C0\alpha 
2| g| X1

per
for g \in X1

per,(4.11) \bigm| \bigm| \scrT (\alpha )g + \alpha 2g + 2i\alpha 3gx
\bigm| \bigm| 
X0

per
\leq C0\alpha 

4| g| X3
per

for g \in X3
per.(4.12)
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Proof. First, we rewrite the second-order equation (4.10) as the first-order system

(4.13) Ux =

\biggl( 
0 1
1
\alpha 2  - 2i

\alpha  - \omega 

\biggr) 
U +

\biggl( 
0
1

\biggr) 
g(x) =: A(\alpha )U + e2g(x), U =

\biggl( 
u
ux

\biggr) 
.

The eigenvalues \nu \pm of A(\alpha ) are roots of the polynomial \nu 2 +
\bigl( 
2i
\alpha + \omega 

\bigr) 
\nu  - 1

\alpha 2 , which
are given by

Re \nu \pm = \pm (1 + O(
\surd 
\alpha ))

\sqrt{} 
\omega 

2\alpha 
, Im \nu \pm =

 - 1 + O(
\surd 
\alpha )

\alpha 
.(4.14)

In particular, there is an \alpha 0 > 0 so that the matrices A(\alpha ) are hyperbolic with
| Re \nu \pm | \geq 

\sqrt{} 
\omega /4\alpha for all 0 < \alpha \leq \alpha 0, and Lemma 4.2 guarantees that (4.13) has a

unique 2\pi /\kappa -periodic solution for each 0 < \alpha \leq \alpha 0 and that this solution is given by
u = \scrT (\alpha )g.

It remains to verify the estimates for \scrT (\alpha ). For 0 < \alpha \ll 1, the stable and
unstable eigenspaces of A(\alpha ) are given by

Es = R
\biggl( 1
\nu  - 

1

\biggr) 
, Eu = R

\biggl( 1
\nu +

1

\biggr) 
,

and the associated spectral projections can be written as

P sU =

\biggl( 
1

\nu +
 - 1

\nu  - 

\biggr)  - 1 \biggl( 1
\nu  - 
1

\biggr) \biggl( 
 - 1,

1

\nu +

\biggr) 
U, P uU =

\biggl( 
1

\nu  - 
 - 1

\nu +

\biggr)  - 1 \biggl( 1
\nu +

1

\biggr) \biggl( 
 - 1,

1

\nu  - 

\biggr) 
U.

We conclude from (4.14) that for all 0 < \alpha \ll 1,

| \nu \pm | =
1 +O(

\surd 
\alpha )

\alpha 
,

1

| \nu \pm | 
= \alpha (1 + O(

\surd 
\alpha )),

1

| \nu  -  - \nu +| 
=

\surd 
\alpha (1 + O(\alpha 2))

2
\surd 
\omega 

,
1

1 - e - 2\pi min(| Re \nu \pm | )/\kappa \leq 2.

Hence, we have

| P1P
se2| =

\bigm| \bigm| \bigm| \bigm| \bigm| 1

\nu  - \nu  - +

\biggl( 
1

\nu +
 - 1

\nu  - 

\biggr)  - 1
\bigm| \bigm| \bigm| \bigm| \bigm| = 1

| \nu  -  - \nu +| 
=

\surd 
\alpha (1 + O(\alpha 2))

2
\surd 
\omega 

and similarly

| P1P
ue2| =

\surd 
\alpha (1 + O(\alpha 2))

2
\surd 
\omega 

.

Substituting these expressions into (4.6), we see that there is an \alpha 0 > 0 so that

\| \scrT (\alpha )\| L(X0,X0
per)

(4.6)

\leq 2

1 - e - 2\pi min(| Re \nu \pm | )/\kappa 

\biggl( 
| P1P

se2| 
| Re \nu s| 

+
| P1P

ue2| 
| Re \nu u| 

\biggr) 
\leq 4\alpha 

\omega 

for all 0 < \alpha < \alpha 0 as claimed.
Next, we establish (4.11) by using the estimate (4.8) in the expression (4.7) with

k = 1. Since

A - 1 = \alpha 2

\biggl( 
2i
\alpha + \omega 1

1
\alpha 2 0

\biggr) 
,
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we see that P1A
 - 1e2 = \alpha 2. Hence, (4.7)--(4.8) with k = 1 for g \in X1

per yield

| \scrT (\alpha )g| X0
per

(4.7)

\leq 
\bigm| \bigm| P1A

 - 1\scrS e2gx
\bigm| \bigm| 
X0

per
+ | P1A

 - 1e2| | g| X0
per

(4.8)

\leq 4

\biggl( 
| P1P

se2| 
| Re \nu s| 

1

| \nu s| 
+

| P1P
ue2| 

| Re \nu u| 
1

| \nu u| 

\biggr) 
| gx| X0

per
+ | P1A

 - 1e2| | g| X0
per

\leq 8

\omega 
\alpha 2 | gx| X0

per
+ \alpha 2| g| X0

per

as claimed.
Finally, we take g \in X3

per. Calculating P1A
 - je2 iteratively for j = 1, 2, 3 shows

that

P1A
 - 1e2 = \alpha 2, P1A

 - 2e2 = 2i\alpha 3 + \omega \alpha 4, | P1A
 - 3e2| \leq 5\alpha 4,

and (4.7)--(4.8) with k = 3 gives

| \scrT (\alpha )g + \alpha 2g + 2i\alpha 3gx| X0
per

\leq 
\bigm| \bigm| P1A

 - 3\scrS e2gxxx
\bigm| \bigm| 
X0

per
+ \omega \alpha 4| gx| X0

per
+ | P1A

 - 3e2| | gxx| X0
per

\leq 4

\biggl( 
| P1P

se2| 
| Re \nu s| 

1

| \nu s| 3
+

| P1P
ue2| 

| Re \nu u| 3
1

| \nu u| 3

\biggr) 
| gxxx| X0

per

+ (5 + \omega )\alpha 4| g| X2
per

\leq C0\alpha 
4| g| X3

per
,

which completes the proof of (4.12).

Next, we consider the eigenvalue problem (3.2) for the u-component, which is
given by the differential equation
(4.15)

uxx =  - 
\biggl( 
2i

\alpha 
+ \omega 

\biggr) 
ux +

1

\alpha 2
u+ (\lambda  - f1(x))u - f2(x)v u \in C, 0 \leq x \leq 2\pi /\kappa .

We will vary \lambda in the rectangle \Lambda R of width 2R and height one that we defined
in (3.1). For fixed functions f1, f2 \in X0

per, we define the multiplication operators
B1(\lambda ), B2 \in L(X0) via B1(\lambda )v := (\lambda  - f1(x))v and B2v :=  - f2v and note that the
map

B1 : \Lambda R  - \rightarrow L(X0), \lambda \mapsto  - \rightarrow B1(\lambda )

is analytic. The next result establishes the existence of 2\pi /\kappa -periodic solutions of
(4.15).

Proposition 4.4. For each fixed choice of R > 0, \omega > 0, and f1, f2 \in X0
per,

there are constants \alpha 1 > 0 and C1 > 0 so that the following is true. For each
(\lambda , \alpha ) \in \Lambda R \times [ - \alpha 1, \alpha 1] \setminus \{ 0\} and v \in X0, (4.15) has a unique 2\pi /\kappa -periodic solution
u = \scrD (\lambda , \alpha )g \in X2, where

\scrD (\lambda , \alpha ) = (1 - \scrT (\alpha )B1(\lambda ))
 - 1\scrT (\alpha )B2.

The function

\scrD (\cdot , \alpha ) : \Lambda R  - \rightarrow L(X0, X0
per), \lambda \mapsto  - \rightarrow \scrD (\lambda , \alpha )

is well defined and analytic in \lambda for each fixed \alpha \in [ - \alpha 0, \alpha 0] \setminus \{ 0\} , and we have
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\| \scrD (\lambda , \alpha )\| L(X0,X0
per)

\leq C1\alpha , \| \scrD \lambda (\lambda , \alpha )\| L(X0,X0
per)

\leq C1\alpha 
2.(4.16)

Finally, setting \scrD (\lambda , 0) := 0, the mapping \scrD : \Lambda R \times [ - \alpha 1, \alpha 1] \rightarrow L(X0, X0
per) is

analytic in \lambda , and \scrD and its derivatives in \lambda are continuous in \alpha .

Proof. The eigenvalue problem (4.15) coincides with (4.10) provided we set g(x) =
B1(\lambda )u + B2v in (4.10). Lemma 4.3 therefore shows that there is an \alpha 0 > 0 so that
(4.15) has a solution u \in X2 for some \alpha \in (0, \alpha 0] if and only u \in X0

per satisfies

(4.17) u = \scrT (\alpha ) (B1(\lambda )u+B2v) ,

where \scrT (\alpha ) has been defined in Lemma 4.3. We set M := max(| f1| X0
per

+R, | f2| X0
per

)
and note that Lemma 4.3 implies that there is a constant C0 so that the estimates

\| \scrT (\alpha )B1(\lambda )\| L(X0
per)

\leq C0M\alpha , \| \scrT (\alpha )B2\| L(X0,X0
per)

\leq C0M\alpha 

hold uniformly in (\lambda , \alpha ) \in \Lambda R \times (0, \alpha 0]. Choosing \alpha 1 := min(\alpha 0,
1

2C0M
), we see that

\| \scrT (\alpha )B1(\lambda )\| X0
per

\leq 1
2 for (\lambda , \alpha ) \in \Lambda R \times (0, \alpha 1], and the fixed-point equation (4.17)

therefore has a unique solution

u = (1 - \scrT (\alpha )B1(\lambda ))
 - 1\scrT (\alpha )B2v =: \scrD (\lambda , \alpha )v

in X0
per for each (\lambda , \alpha ) \in \Lambda R \times (0, \alpha 1] and v \in X0. Furthermore, we have

\scrD (\lambda , \alpha ) = (1 - \scrT (\alpha )B1(\lambda ))
 - 1\scrT (\alpha )B2 \in L(X0, X0

per)

with

\| \scrD (\lambda , \alpha )\| L(X0,X0
per)

= \| (1 - \scrT (\alpha )B1(\lambda ))
 - 1\| L(X0

per)
\| \scrT (\alpha )B2\| L(X0,X0

per)

\leq 2\| \scrT (\alpha )B2\| L(X0,X0
per)

\leq 2C0M\alpha 

for (\lambda , \alpha ) \in \Lambda R \times (0, \alpha 1].
Analyticity of \scrD (\lambda , \alpha ) in \lambda follows from analyticity of B1(\lambda ). To estimate the

derivative \scrD \lambda (\lambda , \alpha ), we differentiate the identity

(1 - \scrT (\alpha )B1(\lambda ))\scrD (\lambda , \alpha ) = \scrT (\alpha )B2

with respect to \lambda to get

 - \scrT (\alpha )
dB1

d\lambda 
(\lambda ))\scrD (\lambda , \alpha ) + (1 - \scrT (\alpha )B1(\lambda ))\scrD \lambda (\lambda , \alpha ) = 0.

Since dB1

d\lambda (\lambda ) = 1, we find

\scrD \lambda (\lambda , \alpha ) = (1 - \scrT (\alpha )B1(\lambda ))
 - 1\scrT (\alpha )\scrD (\lambda , \alpha )

and therefore

\| \scrD \lambda (\lambda , \alpha )\| L(X0,X0
per)

\leq \| (1 - \scrT (\alpha )B1(\lambda ))
 - 1 \| L(X0,X0

per)
\| \scrT (\alpha )\| X0

per
\| \scrD (\lambda , \alpha )\| L(X0,X0

per)

\leq 4C2
0M\alpha 2

as claimed. Note that \scrD (\lambda , \alpha ) and its derivatives in \lambda converge to zero in L(X0, X0
per)

as \alpha \searrow 0, and we can therefore extend \scrD (\lambda , \alpha ) into \alpha = 0 by setting \scrD (\lambda , 0) = 0.
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4.4. Solutions to the linearized eigenvalue problem for the \bfitv -component
for \bfitdelta = 0. It remains to find nontrivial 2\pi /\kappa -periodic solutions of the eigenvalue
problem (3.3), given by

(4.18) \lambda v = \omega vx + \=gv + g1(x)u,

where u = \scrD (\lambda , \alpha )v is the unique 2\pi /\kappa -periodic solution of (4.15) for a given function
v, whose existence was shown in Proposition 4.4. Our first result shows existence of
solutions to (4.18) without enforcing periodicity in x.

Lemma 4.5. Fix R > 0, \omega > 0, \=g \in R, and f1, f2, g1 \in X0
per; then there are

constants \alpha 2 > 0 and C2 > 0 so that the following is true. For each (\lambda , \alpha ) \in \Lambda R \times 
[ - \alpha 2, \alpha 2] \setminus \{ 0\} , (4.18) with u = \scrD (\lambda , \alpha )v has a nontrivial solution v = \scrC (\lambda , \alpha ) \in X1,
and this solution is unique up to a constant factor. In addition the following are true:

\bullet We have

\scrC (\lambda , \alpha ) = (1 +\scrQ (\lambda , \alpha )) - 1e(\lambda  - \=g)x/\omega ,(4.19)

[\scrQ (\lambda , \alpha )h](x) :=
1

\omega 

\int x

0

e(\lambda  - \=g)(x - y)/\omega g1(y)[\scrD (\lambda , \alpha )h](y) dy, h \in X0.

(4.20)

\bullet For each fixed \alpha \in [ - \alpha 2, \alpha 2] \setminus \{ 0\} , the mappings

\scrQ (\cdot , \alpha ) : \Lambda R \rightarrow L(X0), \lambda \mapsto \rightarrow \scrQ (\lambda , \alpha ), \scrC (\cdot , \alpha ) : \Lambda R \rightarrow X0, \lambda \mapsto \rightarrow \scrC (\lambda , \alpha )

are analytic in \lambda with\bigm\| \bigm\| \bigm\| \bigm\| dk

d\lambda k
\scrQ (\lambda , \alpha )

\bigm\| \bigm\| \bigm\| \bigm\| 
L(X0)

\leq C2\alpha ,

\bigm| \bigm| \bigm| \bigm| dkd\lambda k
\scrC (\lambda , \alpha )

\bigm| \bigm| \bigm| \bigm| 
X0

\leq C2,(4.21) \bigm| \bigm| \bigm| \scrC (\lambda , \alpha ) - e(\lambda  - \=g)x/\omega 
\bigm| \bigm| \bigm| 
X0

\leq C2\alpha 

for k = 0, 1 uniformly in (\lambda , \alpha ) \in \Lambda R\times (0, \alpha 2]. Furthermore, setting \scrQ (\lambda , 0) =
0 and \scrC (\lambda , 0) = 0 shows that \scrQ and \scrC are analytic in \lambda and continuous in \alpha 
on \Lambda R \times [ - \alpha 2, \alpha 2].

Proof. Let \alpha 1 be the constant from Proposition 4.4. For each 0 < \alpha \leq \alpha 1, a
function v \in X1 is then a solution of (4.18) for u = \scrD (\lambda , \alpha )v with v(0) = 1 if and
only if v \in X0 satisfies the fixed-point equation

v(x) = e(\lambda  - \=g)x/\omega  - 1

\omega 

\int x

0

e(\lambda  - \=g)(x - y)/\omega g1(y)[\scrD (\lambda , \alpha )v](y) dy

=: e(\lambda  - \=g)x/\omega  - [\scrQ (\lambda , \alpha )v](x).

Using the estimates for \scrD (\lambda , \alpha ) from Proposition 4.4, we have

\| \scrQ (\lambda , \alpha )\| L(X0) \leq 
1

\omega 

\int 2\pi /\kappa 

0

| e(\lambda  - \=g)(2\pi /\kappa  - y)/\omega | dy \| \scrD (\lambda , \alpha )\| L(X0) | g1| X0
per

\leq 2\pi 

\omega \kappa 
e2\pi (R+| \=g| )/(\omega \kappa )C1\alpha =: \~C1\alpha .

In particular, setting \alpha 2 := min(\alpha 1,
1

2 \~C1
), we can solve the fixed-point equation

v = e(\lambda  - \=g)x/\omega  - \scrQ (\lambda , \alpha )v
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3802 STEPHANIE DODSON AND BJ\"ORN SANDSTEDE

uniquely for v for each (\lambda , \alpha ) \in \Lambda R \times (0, \alpha 2] to get

v = \scrC (\lambda , \alpha ) := (1 +\scrQ (\lambda , \alpha ))
 - 1

e(\lambda  - \=g)x/\omega .

Furthermore,

| \scrC (\lambda , \alpha )| X0 \leq 2e2\pi (R+| \=g| )/(\kappa \omega ) =: \~C2,

| \scrC (\lambda , \alpha ) - e(\lambda  - \=g)x/\omega | X0 = | \scrQ (\lambda , \alpha )\scrC (\lambda , \alpha )| X0 \leq \~C1
\~C2\alpha ,

and setting C2 := max( \~C1, \~C2, \~C1
\~C2) completes the proof of the estimates. Finally,

analyticity of \scrD (\lambda , \alpha ) implies analyticity of \scrQ (\lambda , \alpha ) and \scrC (\lambda , \alpha ), and the estimates for
the derivatives in \lambda follow in a similar fashion.

Our next result characterizes the set of \lambda \in \Lambda R for which the eigenvalue problem

\lambda u = uxx +

\biggl( 
2i

\alpha 
+ \omega 

\biggr) 
ux  - 

1

\alpha 2
u+ f1(x)u+ f2(x)v,(4.22)

\lambda v = \omega vx + \=gv + g1(x)u(4.23)

has a nontrivial 2\pi /\kappa -periodic solution for an appropriate | \alpha | \ll 1.

Proposition 4.6. Fix \omega > 0, \=g \in R, R > | \=g| , and f1, f2, g1 \in X3
per; then there

are constants \alpha 3 > 0 and C3 > 0 so that the following is true. There is a unique
function \lambda \ast 0 : [ - \alpha 3, \alpha 3] \rightarrow \Lambda R so that (4.22)--(4.23) has a nontrivial 2\pi /\kappa -periodic
solution for (\lambda , \alpha ) \in \Lambda R \times [ - \alpha 3, \alpha 3] if and only if \lambda = \lambda \ast 0(\alpha ). Furthermore, upon
defining the real constants

\lambda 2 :=
\kappa 

2\pi 

\int 2\pi /\kappa 

0

f2(x)g1(x) dx, \lambda 3 :=
\kappa 

2\pi 

\int 2\pi /\kappa 

0

f \prime 2(x)g1(x) dx,

we have the expansion

| \lambda \ast 0(\alpha ) - (\=g + \lambda 2\alpha 
2 + 2i\lambda 3\alpha 

3)| \leq C3\alpha 
4

for the dispersion curve, and the associated eigenfunctions (u, v)(x;\alpha ) satisfy\bigm| \bigm| u(x;\alpha ) - (\alpha 2f2(x) + 2i\alpha 3f \prime 2(x))
\bigm| \bigm| 
X0

per
\leq C3\alpha 

4,\bigm| \bigm| v(x;\alpha ) - (1 + \alpha 2v2(x) + 2i\alpha 3v3(x))
\bigm| \bigm| 
X0

per
\leq C3\alpha 

4,

where

v2(x) =
1

\omega 

\biggl( 
\lambda 2x - 

\int x

0

f2(y)g1(y) dy

\biggr) 
, v3(x) =

1

\omega 

\biggl( 
\lambda 3x - 

\int x

0

f \prime 2(y)g1(y) dy

\biggr) 
.

Proof. We will use the notation and constants introduced in Lemma 4.5. Propo-
sition 4.6 and Lemma 4.5 show that (4.22)--(4.23) has a nontrivial solution (u, v) \in 
X2

per\times X1
per for some (\lambda , \alpha ) \in \Lambda R\times (0, \alpha 2] if and only if (u, v) = (\scrD (\lambda , \alpha )\scrC (\lambda , \alpha ), \scrC (\lambda , \alpha ))

\in X0
per\times X0

per with v(2\pi /\kappa ) = v(0). It therefore suffices to solve \Delta (\lambda , \alpha ) := v(2\pi /\kappa ) - 
v(0) = 0. Using the expression for \scrC (\lambda , \alpha ) from Lemma 4.5, we can write \Delta (\lambda , \alpha ) as

\Delta (\lambda , \alpha ) = e2\pi (\lambda  - \=g)/(\kappa \omega )  - 1 - 1

\omega 

\int 2\pi /\kappa 

0

e(\lambda  - \=g)(2\pi /\kappa  - y)/\omega g1(y)[\scrD (\lambda , \alpha )v](y) dy

= e2\pi (\lambda  - \=g)/(\kappa \omega )  - 1 - [\scrQ (\lambda , \alpha )\scrC (\lambda , \alpha )] (2\pi /\kappa )(4.24)
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SPIRAL WAVE SPECTRA WITH VANISHING DIFFUSION 3803

and conclude that \Delta (\lambda , \alpha ) is analytic in \lambda . Lemma 4.5 shows that

| [\scrQ (\lambda , \alpha )\scrC (\lambda , \alpha )] (2\pi /\kappa )| \leq \| \scrQ (\lambda , \alpha )\| L(X0)| \scrC (\lambda , \alpha )| X0 \leq C2
2\alpha .

Using the extensions of \scrQ and \scrC into \alpha = 0, it follows that

\Delta (\lambda , 0) = e2\pi (\lambda  - \=g)/(\kappa \omega )  - 1

so that \lambda = \=g \in \Lambda R is the only solution in \Lambda R when \alpha = 0. Since \Delta \lambda (\=g, 0) =
2\pi /(\kappa \omega ) \not = 0, we can solve \Delta (\lambda , \alpha ) = 0 near (\=g, 0) uniquely by the implicit function
theorem and conclude that there is an \alpha 3 > 0 and a unique function \lambda 0\ast : [0, \alpha 3] \rightarrow C
with \lambda 0\ast (0) = \=g so that \Delta (\lambda , \alpha ) = 0 for (\lambda , \alpha ) \in \Lambda R \times [0, \alpha 3] if and only if \lambda = \lambda 0\ast (\alpha ).

It remains to establish the expansions for \lambda = \lambda 0\ast (\alpha ) and the associated solutions
(u, v) := (u, v)(x;\alpha ) of (4.22)--(4.23). Setting B1(\lambda )v := (\lambda  - f1(x))v and B2v :=
 - f2v, we can represent (u, v, \lambda ) via

u = \scrD (\lambda , \alpha )v = (1 - \scrT (\alpha )B1(\lambda ))
 - 1\scrT (\alpha )B2v,(4.25)

v = e(\lambda  - \=g)x/\omega  - 1

\omega 

\int x

0

e(\lambda  - \=g)(x - y)/\omega g1(y)u(y) dy,(4.26)

0 = e2\pi (\lambda  - \=g)/(\kappa \omega )  - 1 - 1

\omega 

\int 2\pi /\kappa 

0

e(\lambda  - \=g)(2\pi /\kappa  - y)/\omega g1(y)u(y) dy,(4.27)

where \lambda is always given by \lambda 0\ast (\alpha ). Throughout, we will denote by C a constant that
depends only on \omega , \=g, R, | f1| X3

per
, | f2| X3

per
, and | g1| X3

per
and that may change from

estimate to estimate. We will use Landau symbols only when we can estimate them
by such a constant multiplied by the argument of the Landau symbol.

First, (4.21) shows that v = \scrC (\lambda \ast (\alpha ), \alpha ) = O(1). Equation (4.25) and the estimate
(4.16) for \scrD then imply that u = O(\alpha ), and using this estimate in (4.27) proves that
\lambda 0\ast (\alpha ) = \=g +O(\alpha ). Using these expansions in (4.26), we conclude that

v = 1 +O(\alpha ), vx =
\lambda  - \=g

\omega 
v  - g1(x)

\omega 
u = O(\alpha ),

and we therefore have | v| X1
per

\leq C for a constant C as above. Using the estimate

| \scrT (\alpha )g| X0
per

\leq C0\alpha 
2| g| X1

per
from Lemma 4.3, we obtain from (4.25) that

| u| X0
per

\leq \| (1 - \scrT (\alpha )B1(\lambda ))
 - 1\| L(X0,X0

per)
| \scrT (\alpha )B2v| X0

per
\leq 2C0\alpha 

2| B2v| X1
per

\leq 2C0C\alpha 
2,

which shows that u = O(\alpha 2). Using this estimate for u in (4.27) gives

\lambda 0\ast (\alpha ) =: \=g + \lambda 2(\alpha ), \lambda 2(\alpha ) = O(\alpha 2)(4.28)

and therefore

vx =
\lambda  - \=g

\omega 
v  - g1(x)

\omega 
u = O(\alpha 2).

In particular, we can write v = 1 + \~v with | \~v| X1
per

\leq C\alpha 2.
Next, we verify the expansion for u. We write

u = \alpha 2f2 + 2i\alpha 3f \prime 2 + \~u(4.29)

D
ow

nl
oa

de
d 

06
/2

8/
22

 to
 1

28
.1

48
.1

94
.1

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3804 STEPHANIE DODSON AND BJ\"ORN SANDSTEDE

and need to show that \~u = O(\alpha 4). Equation (4.25) can be written as u = \scrT (\alpha )B1(\lambda )u - 
\scrT (\alpha )(f2v), and substituting our expression for u as well as v = 1+\~v into this equation
gives

\alpha 2f2 + 2i\alpha 3f \prime 2 + \~u = \alpha 2\scrT (\alpha )B1(\lambda )f2 + 2i\alpha 3\scrT (\alpha )B1(\lambda )f
\prime 
2 + \scrT (\alpha )B1(\lambda )\~u(4.30)

 - \scrT (\alpha )f2  - \scrT (\alpha )(f2\~v).

Since B1(\lambda )f2 and B1(\lambda )f
\prime 
2 are in X

1
per and | f2\~v| X1

per
= O(\alpha 2), we can use the estimate

(4.11) to get\bigm| \bigm| \alpha 2\scrT (\alpha )B1(\lambda )f2 + 2i\alpha 3\scrT (\alpha )B1(\lambda )f
\prime 
2 + \scrT (\alpha )(f2\~v)

\bigm| \bigm| 
X0

per
\leq C\alpha 4.

Furthermore, since f2 \in X3
per, (4.12) shows that\bigm| \bigm| \scrT (\alpha )f2 + \alpha 2f2 + 2i\alpha 3f \prime 2

\bigm| \bigm| 
X0

per
\leq C\alpha 4.

Hence, (4.30) becomes

\~u = \scrT (\alpha )B1(\lambda )\~u+O(\alpha 4)

in X0
per, and since \| \scrT (\alpha )B1(\lambda )\| L(X0) \leq 1

2 , we conclude that | \~u| X0 \leq C\alpha 4 as claimed.
Our last step is to verify the expansions for v and \lambda 0\ast (\alpha ). We substitute the

expansions (4.28) and (4.29) into (4.26) to get

v(x) = e(\lambda  - \=g)x/\omega  - 1

\omega 

\int x

0

e(\lambda  - \=g)(x - y)/\omega g1(y)u(y) dy

= e\lambda 2(\alpha )x/\omega  - 1

\omega 

\int x

0

e\lambda 2(\alpha )(x - y)/\omega g1(y)
\bigl( 
\alpha 2f2(y) + 2i\alpha 3f \prime 2(y) + O(\alpha 4)

\bigr) 
dy

=

\biggl[ 
1 +

\lambda 2(\alpha )

\omega 
x

\biggr] 
 - \alpha 2

\omega 

\int x

0

g1(y)f2(y) dy  - 
2i\alpha 3

\omega 

\int x

0

g1(y)f
\prime 
2(y) dy +O(\alpha 4).

We know that v(0) = v(2\pi /\kappa ) which shows that

\lambda 2(\alpha ) =
\alpha 2\kappa 

2\pi 

\int 2\pi /\kappa 

0

g1(y)f2(y) dy +
2i\alpha 3\kappa 

2\pi 

\int 2\pi /\kappa 

0

g1(y)f
\prime 
2(y) dy +O(\alpha 4)

=: \lambda 2\alpha 
2 + 2i\lambda 3\alpha 

3 +O(\alpha 4)

as claimed. Substituting this expression into the expansion for v gives

v(x) = 1 +
\alpha 2

\omega 

\biggl( 
\lambda 2x - 

\int x

0

g1(y)f2(y) dy

\biggr) 
+

2i\alpha 3

\omega 

\biggl( 
\lambda 3x - 

\int x

0

g1(y)f
\prime 
2(y) dy

\biggr) 
+O(\alpha 4).

This completes the proof of Proposition 4.6 and the construction of the spectral
expansion for the case \delta = 0.

We emphasize that the results in this section extend immediately to the case
where the coefficient \=g is a 2\pi /\kappa -periodic function and not a constant.

4.5. Periodic solutions of linear second-order equations with center
directions. In preparation for the case of \delta > 0, we seek to find nontrivial periodic
solutions to second-order equations of the form

(4.31) vxx = b21v + b22vx + h(x), v \in C, 0 \leq x \leq T,

where the associated first-order system is not guaranteed to be hyperbolic.
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Lemma 4.7. Fix T > 0 and coefficients b21, b22. Assume that there is an r > 0
such that the eigenvalues \eta c, \eta s of the matrix B := ( 0 1

b21 b22 ) satisfy Re \eta s <  - 2r and
| Re \eta c| \leq r; then the following is true. For each h \in X0, (4.31) has a T -periodic
solution v(x) \in X2

per if and only if (i) there exists an ac \in Ec so that

v(x) = P1

\Bigl( 
e\eta 

cxac + [Jh](x)
\Bigr) 
, 0 \leq x \leq T(4.32)

where

[Jh](x) =

\int x

0

e\eta 
c(x - s)P ce2h(s) ds+

e\eta 
sx

1 - e\eta sT

\int T

0

e\eta 
s(T - s)P se2h(s) ds

+

\int x

0

e\eta 
s(x - s)P se2h(s) ds

and (ii)

(e\eta 
cT  - 1)ac + [P cJh](T ) = 0.(4.33)

Proof. We write (4.31) as the system

(4.34) Vx =

\biggl( 
0 1
b21 b22

\biggr) 
V +

\biggl( 
0

h(x)

\biggr) 
:= BV + e2h(x), V =

\biggl( 
v
vx

\biggr) 
.

Enforcing periodicity in the stable direction as in Lemma 4.1 and using the variation-
of-constants formula in the center direction establishes the expression (4.32) of the
solution v(x) in X2. The solution v lies in X2

per if and only if V (T ) - V (0) = 0. Since
P s(V (T ) - V (0)) = 0 by construction, this condition reduces to P c(V (T ) - V (0)) = 0,
and substituting the expressions for V (0) and V (T ) gives (4.33).

4.6. Solutions to the linearized eigenvalue problem for \bfitdelta > 0. The next
result focuses on the eigenvalue problem

\lambda u = uxx +

\biggl( 
2i

\alpha 
+ \omega 

\biggr) 
ux  - 

1

\alpha 2
u+ f1(x)u+ f2(x)v,(4.35)

\lambda v = \delta vxx +

\biggl( 
2i\delta 

\alpha 
+ \omega 

\biggr) 
vx  - 

\delta 

\alpha 2
v + g1(x)u+ \=gv(4.36)

for 0 < \delta \ll 1. For each fixed \delta > 0, we will identify values of (\lambda , \alpha ) for which
(4.35)--(4.36) has a nontrivial 2\pi /\kappa -periodic solution.

Theorem 2. Fix \omega > 0 and \=g \in R, and assume that f1, f2, g1 are given 2\pi /\kappa -
periodic functions of class C4; then there are constants \delta 0, s0 > 0 and functions
\alpha \ast , \lambda \ast : [ - s0, s0]\times (0, \delta 0] \rightarrow C with

\alpha \ast (s, \delta ) =
1

2

\biggl( 
s+

\sqrt{} 
s2 + 4

\surd 
\delta 

\biggr) 
,(4.37)

\lambda \ast (s, \delta ) =

\Biggl\{ 
\lambda \ast (| s| ) + O(

\surd 
\delta ), s \geq 0,

\=g  - s2

\omega (1 + O(\delta 
1
4 )) + O(

\surd 
\delta ), s \leq 0,

(4.38)

so that (4.35)--(4.36) has a nontrivial 2\pi /\kappa -periodic solution when (\alpha , \lambda ) = (\alpha \ast , \lambda \ast )
(s, \delta ).
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Proof. Fix R \geq | \=g| , and let \lambda vary in \Lambda R. Throughout, we will denote by C a
constant that depends only on \omega , \=g, R, | f1| X3

per
, | f2| X3

per
, and | g1| X3

per
and that may

change from estimate to estimate. We will use Landau symbols only when we can
estimate them by such a constant multiplied by the argument of the Landau symbol.

We showed in Proposition 4.4 that for each given v \in X0 the unique solution
of (4.35) is given by u = \scrD (\lambda , \alpha )v \in X2

per, and it therefore suffices to solve (4.36)
with u = \scrD (\lambda , \alpha )v. Throughout the proof, we will use the scaling \delta = \alpha 2\beta 2 with
0 < \alpha , \beta \leq 1. These results hold for | \alpha | \ll 1, and as before, the proofs consider the
case \alpha > 0 for clarity. With these definitions, (4.36) becomes

(4.39) vxx =  - 
\biggl( 
2i\alpha \beta 2 + \omega 

\alpha 2\beta 2

\biggr) 
vx +

\biggl( 
\lambda + \beta 2  - \=g

\alpha 2\beta 2

\biggr) 
v  - 1

\alpha 2\beta 2
g1(x)[\scrD (\lambda , \alpha )v](x).

We will use Lemma 4.7 to reformulate (4.39) as a fixed-point problem. The roots
of the characteristic equation

\eta 2 =  - 
\biggl( 
2i\alpha \beta 2 + \omega 

\alpha 2\beta 2

\biggr) 
\eta +

\biggl( 
\lambda + \beta 2  - \=g

\alpha 2\beta 2

\biggr) 
associated with (4.39) are given by

\eta c(\lambda , \alpha , \beta ) =
\lambda + \beta 2  - \=g

\omega 
+O(\alpha \beta 2), \eta s(\lambda , \alpha , \beta ) =  - \omega +O(\alpha \beta 2)

\alpha 2\beta 2
.(4.40)

These expressions are analytic in \lambda \in \Lambda R with | Re \eta c| \leq C, Re \eta s \leq  - \omega 
2\alpha 2\beta 2 , and

| \eta c,s\lambda (\lambda , \alpha , \beta )| \leq C uniformly in \Lambda R. Hence, there is an \alpha 4 so that the assumptions of
Lemma 4.7 are met for 0 < \alpha \leq \alpha 4. We conclude that (4.39) has a nontrivial solution
v \in X2 if and only if

v = e\eta 
c(\lambda ,\alpha ,\beta )xP1a

c  - \scrJ (\lambda , \alpha , \beta )B3\scrD (\lambda , \alpha )v, \scrJ (\lambda , \alpha , \beta ) :=
1

\alpha 2\beta 2
P1J(\lambda , \alpha , \beta )

(4.41)

for some ac \in Ec, where B3 \in L(X0) is given by [B3v](x) = g1(x)v(x), the operator
J(\lambda , \alpha , \beta ) \in L(X0) is defined by

[J(\lambda ,\alpha , \beta )h](x) =

\int x

0

e\eta 
c(\lambda ,\alpha ,\beta )(x - s)P c(\lambda , \alpha , \beta )e2h(s) ds

+
e\eta 

s(\lambda ,\alpha ,\beta )x

1 - e2\pi \eta s(\lambda ,\alpha ,\beta )/\kappa 

\int 2\pi /\kappa 

0

e\eta 
s(\lambda ,\alpha ,\beta )(2\pi /\kappa  - s)P s(\lambda , \alpha , \beta )e2h(s) ds

+

\int x

0

e\eta 
s(\lambda ,\alpha ,\beta )(x - s)P s(\lambda , \alpha , \beta )e2h(s) ds,

and the center and stable spectral projections are of the form

P c(\lambda , \alpha , \beta ) =
1

1 - \eta c

\eta s

\biggl( 
1
\eta c

\biggr) \bigl( 
1, - 1

\eta s

\bigr) 
, P s(\lambda , \alpha , \beta ) =

1

1 - \eta c

\eta s

\biggl( 1
\eta s

1

\biggr) \bigl( 
 - \eta c, 1

\bigr) 
.

To solve the fixed-point problem (4.41), it suffices to show that \scrJ B3\scrD lies in
L(X0) and has norm strictly less than one. In addition to proving this contraction
property, we will derive an expansion of \scrJ , as this will help us find expansions of the
dispersion curve. We define
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[\scrJ c
0 (\lambda )h](x) :=

1

\omega 

\int x

0

e(\lambda  - \=g)(x - s)/\omega h(s) ds(4.42)

and set

\scrJ (\lambda , \alpha , \beta ) = \scrJ c(\lambda , \alpha , \beta ) + \scrJ s(\lambda , \alpha , \beta ), \scrJ c,s(\lambda , \alpha , \beta ) :=
1

\alpha 2\beta 2
P1P

c,sJ(\lambda , \alpha , \beta ).

Using the identities

1

\alpha 2\beta 2
P1P

c(\lambda , \alpha , \beta )e2 =
 - 1

\alpha 2\beta 2(\eta s  - \eta c)
=

1

\omega 
+O(\alpha \beta 2),(4.43)

1

\alpha 2\beta 2
P1P

s(\lambda , \alpha , \beta )e2 =
 - 1

\omega 
+O(\alpha \beta 2)

and proceeding as in the proof of Lemma 4.2, we obtain

\| \scrJ c(\lambda , \alpha , \beta )\| L(X0) =

\bigm\| \bigm\| \bigm\| \bigm\| 1

\alpha 2\beta 2
P1P

cJ

\bigm\| \bigm\| \bigm\| \bigm\| 
L(X0)

\leq C
| P1P

ce2| 
\alpha 2\beta 2

\leq C,(4.44)

\| \scrJ s(\lambda , \alpha , \beta )\| L(X0) =

\bigm\| \bigm\| \bigm\| \bigm\| 1

\alpha 2\beta 2
P1P

sJ

\bigm\| \bigm\| \bigm\| \bigm\| 
L(X0)

\leq | P1P
se2| 

\alpha 2\beta 2

C

| Re \eta s| 
(4.45)

\leq C

| Re \eta s| 
\leq C\alpha 2\beta 2,

\| \scrJ c(\lambda , \alpha , \beta ) - \scrJ c
0 (\lambda )\| L(X0) \leq C\beta 2.(4.46)

Hence, \| \scrJ (\lambda , \alpha , \beta )\| L(X0) \leq C, and a similar estimate shows that we also have
\| \scrJ \lambda (\lambda , \alpha , \beta )\| L(X0) \leq C, which we will use below. Using the estimate (4.16) for
\scrD , we conclude that

\| \scrJ (\lambda , \alpha , \beta )B3\scrD (\lambda , \alpha )\| L(X0) \leq C| g1| X0C1\alpha \leq C\alpha .

Thus, there is an \alpha 4 > 0 such that (4.41) has a unique (up to scalar multiples)
nontrivial solution v \in X2 for each (\lambda , \alpha , \beta ) with \lambda \in \Lambda R, 0 < \alpha \leq \alpha 4, and 0 < \beta \leq 1,
and upon setting ac = (1, \eta c)t this solution is given by

v = (1 + \scrJ (\lambda , \alpha , \beta )B3\scrD (\lambda , \alpha ))
 - 1

e\eta 
c(\lambda ,\alpha ,\beta )x

= (1 + \scrJ c
0 (\lambda )B3\scrD (\lambda , \alpha ))

 - 1
e(\lambda  - \=g)x/\omega +O(\beta 2),

where we used (4.40), (4.45), and (8).
It remains to solve the periodicity condition (4.33) with ac as given above. Since

P1P
c = 1 on Ec, we can apply P1 to (4.33), which upon using again the estimates

(4.40), (4.45), and (8) results in the equivalent equation

\Delta (\lambda , \alpha , \beta ) := e2\pi \eta 
c(\lambda ,\alpha ,\beta )/\kappa  - 1

(4.47)

 - 
\Bigl[ 
\scrJ c(\lambda , \alpha , \beta )B3\scrD (\lambda , \alpha ) (1 + \scrJ (\lambda , \alpha , \beta )B3\scrD (\lambda , \alpha ))

 - 1
e\eta 

c(\lambda ,\alpha ,\beta )x
\Bigr] 
(2\pi /\kappa )

= e2\pi (\lambda +\beta 
2 - \=g)/(\kappa \omega )  - 1

 - 
\Bigl[ 
\scrJ c
0 (\lambda )B3\scrD (\lambda , \alpha ) (1 + \scrJ c

0 (\lambda )B3\scrD (\lambda , \alpha ))
 - 1

e(\lambda  - \=g)x/\omega 
\Bigr] 
(2\pi /\kappa ) + O(\alpha \beta 2)

= 0
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3808 STEPHANIE DODSON AND BJ\"ORN SANDSTEDE

that we need to solve. Comparing (4.42) and (8) with the expressions (4.19) and
(4.20) for the solutions of the \delta = 0 equation, we see that we can write (8) as

\Delta (\lambda , \alpha , \beta ) = e2\pi (\lambda +\beta 
2 - \=g)/(\kappa \omega )  - 1 - [\scrQ (\lambda , \alpha )\scrC (\lambda , \alpha )] (2\pi /\kappa ) + O(\alpha \beta 2) = 0.(4.48)

We showed in the proof of Proposition 4.6 that the equation \Delta (\lambda , \alpha , 0) = 0 with
\beta = 0 has the unique solution \lambda = \lambda \ast 0(\alpha ) = \=g + O(\alpha 2) so that \Delta (\lambda \ast 0(\alpha ), \alpha , 0) = 0
for all \alpha . Hence, setting \lambda = \lambda \ast 0(\alpha ) + \mu with \mu near zero, we see that (4.48) can be
written as

\Delta (\lambda \ast 0(\alpha ) + \mu , \alpha , \beta ) = \Delta (\lambda \ast 0(\alpha ) + \mu , \alpha , \beta ) - \Delta (\lambda \ast 0(\alpha ), \alpha , 0)

= e2\pi (\lambda 
\ast 
0(\alpha )+\mu +\beta 

2 - \=g)/(\kappa \omega )  - e2\pi (\lambda 
\ast 
0(\alpha ) - \=g)/(\kappa \omega )

 - [\scrQ (\lambda \ast 0(\alpha ) + \mu , \alpha )\scrC (\lambda \ast 0(\alpha ) + \mu , \alpha )

 - \scrQ (\lambda \ast 0(\alpha ), \alpha )\scrC (\lambda \ast 0(\alpha ), \alpha )] (2\pi /\kappa ) + O(\alpha \beta 2).

Next, the estimates (4.21) for \scrQ and \scrC imply that\bigm| \bigm| \bigm| \bigm| dd\lambda (\scrQ (\lambda , \alpha )\scrC (\lambda , \alpha ))
\bigm| \bigm| \bigm| \bigm| 
X0

\leq C2
2\alpha 

for all (\lambda , \alpha ). Thus, (4.48) becomes

\Delta (\lambda \ast 0(\alpha ) + \mu , \alpha , \beta ) =
2\pi 

\kappa \omega 
(\mu + \beta 2) + O(| \mu + \beta 2| 2) + O(\alpha \mu ) + O(\alpha \beta 2) = 0,

which we can solve uniquely for \mu = \mu \ast (\alpha , \beta ) with \mu \ast (\alpha , \beta ) =  - \beta 2(1 + O(\alpha )). In
summary, we proved that (8) has a solution (\lambda , \alpha , \beta ) \in \Lambda R \times (0, \alpha 4],\times (0, \beta 4] if and
only if

\lambda = \lambda \ast (\alpha , \beta ) with \lambda \ast (\alpha , \beta ) = \lambda \ast 0(\alpha ) - \beta 2 (1 + O(\alpha )) .(4.49)

Finally, for each fixed \delta \geq 0, we parameterize the curve \delta = \alpha 2\beta 2 in order to
write \lambda \ast = \lambda \ast (s, \delta ). Define

(\alpha (s, \delta ), \beta (s, \delta )) =
1

2

\biggl( 
s+

\sqrt{} 
s2 + 4

\surd 
\delta , - s+

\sqrt{} 
s2 + 4

\surd 
\delta 

\biggr) 
(4.50)

for | s| \leq 1. Then,

(\alpha (s, 0), \beta (s, 0)) =

\Biggl\{ 
(s, 0), s \geq 0,

(0, | s| ), s \leq 0,
(4.51)

and max| s| \leq 1 | (\alpha , \beta )(s, \delta ) - (\alpha , \beta )(s, 0)| \leq \delta 1/4. Using (4.50), write \lambda \ast (s, \delta ) := \lambda \ast (\alpha (s,
\delta ), \beta (s, \delta )), and from (4.49) we find

\lambda \ast (s, \delta ) = \lambda \ast 0 (\alpha (s, \delta )) - \beta 2(s, \delta ) (1 + O(\alpha (s, \delta ))) .(4.52)

For \delta small, we have

\lambda \ast 0(\alpha (s, \delta )) - \lambda \ast 0(\alpha (s, 0)) =

\Biggl\{ 
\lambda \ast 0(\alpha (s, \delta )) - \lambda \ast 0(s), s \geq 0,

\lambda \ast 0(\alpha (s, \delta )) - \=g, s \leq 0;

hence

| \lambda \ast 0(\alpha (s, \delta )) - \lambda \ast 0(\alpha (s, 0))| = O(\alpha 2) = O(\delta 1/2) \forall | s| \leq 1.(4.53)
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Thus, using formulation (4.52) along with estimates in (4.51) and (4.53), we find that
there exist s\ast , \delta \ast > 0 such that

\lambda \ast (s, \delta ) =

\Biggl\{ 
\lambda 0\ast (s) + O(\delta 1/2), s \geq 0,

\=g  - s2
\bigl( 
1 + O(\delta 1/4)

\bigr) 
+O(\delta 1/2), s \leq 0,

uniformly in | s| \leq s\ast and 0 < \delta < \delta \ast . Hence, we have proved that (4.35)--(4.36) has a
nontrivial 2\pi /\kappa -periodic solution if and only if \lambda = \lambda \ast (s, \delta ) as defined above.

5. Predictions for spiral waves on bounded disks when \bfitdelta = 0. The
essential spectrum does not supply stability information for spirals on bounded disks
of radius R; instead the absolute spectrum is relevant. The absolute spectrum provides
limit points to which infinitely many discrete eigenvalues converge to as R \rightarrow \infty 
[21, 22]. For bounded domains, the essential spectrum nevertheless furnishes useful
knowledge of the spatial eigenvalue distribution, which is exploited in Theorem 3 to
predict absolute spectrum locations. As the absolute spectrum and spatial eigenvalues
are described in detail in [7, 21, 22, 20, 9], we provide only a brief description of these
topics.

For each \lambda \in C, there exist infinitely many spatial eigenvalues \nu \in C and eigen-
functions that satisfy relation (2.4). Spatial eigenvalues \nu depend continuously on
\lambda . For \lambda \gg 1, we divide \nu into two disjoint groups labeled ``left"" for those \nu with
Re \nu < 0 and ``right"" for those \nu with Re \nu > 0. Spatial eigenvalues \nu will retain
their labels even if their real part changes sign as \lambda varies. The essential spectrum is
defined by the set of \lambda for which there exists a purely imaginary spatial eigenvalue.
When crossing a positively (negatively) orientated essential spectrum curve from right
to left, a right (left) spatial eigenvalue crosses the imaginary axis. The absolute spec-
trum is defined as values of \lambda for which one right and one left spatial eigenvalue have
precisely the same real part: the absolute spectrum must necessarily lie to the left of
an essential spectrum branch.

For the scenario \delta = 0, there are three essential spectrum curves that influence
the possible locations of the absolute spectrum. We denote the essential spectrum
curve that is tangent to the imaginary axis by \Sigma 0

ess and the two curves that form the
cusp by \Sigma c,1ess and \Sigma c,2ess. Next, we denote the region of the \lambda -plane enclosed by \Sigma 0

ess,
\Sigma c,1ess, and \Sigma c,2ess by \Omega . Furthermore, we label the spatial eigenvalues that lie on iR
along these essential spectrum curves as \nu  - 1 , \nu 

 - 
2 , and \nu 

+
1 , where the superscripts give

the sign of Re \nu j for \lambda \gg 1 and subscripts designate the order in which the spatial
eigenvalues cross the imaginary axis.

Two separate cases emerge for the orientation of essential spectrum branches that
compose the cusp structure at \lambda 0. The curve orientation is dictated by the sign of
the imaginary \alpha 3 term in \lambda 0\ast (\alpha ). A positive coefficient (Case 1) leads to \Sigma c,1,2ess having
the same orientation as \Sigma 0

ess, and a negative coefficient (Case 2) produces curves of
opposite orientation (see Figure 3). In both cases, \Sigma 0

ess is negatively oriented, and
crossing this curve from right to left results in the spatial eigenvalue \nu  - 1 crossing the
imaginary axis (Figure 3). Theorem 3 builds on the setting and results stated in
Theorem 1 to predict the locations of the absolute spectrum for each case.

Theorem 3. Assume that the conditions of Theorem 1 are satisfied so that the
essential spectrum for \delta = 0 is given by \lambda \ast 0(\alpha ) = \lambda 0 + \lambda 2\alpha 

2 + 2i\lambda 3\alpha 
3 + o(\alpha 3), where

\lambda 0 := \=g and expressions for \lambda 2,3 were given in Proposition 4.6. For \lambda 2 < 0, predictions
of absolute spectrum locations are as follows.
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Re(#)

Im(#)

Re(ν)

Im(ν)
⌃abs

⌃c,1
ess

⌃c,2
ess

⌃0
ess

⌫�1 ⌫+1

⌫�2

⌦

(a) Case 1.

Re(#)

Im(#)

Re(ν)

Im(ν)

⌃abs

⌃c,1
ess

⌃c,2
ess

⌃0
ess

⌫�1

⌫+1
⌫�2

⌦

(b) Case 2.

Fig. 3. Schematic illustration for two cases of essential spectrum branches. Arrows on essential
spectrum branches indicate the orientation. Insets show the distribution of spatial eigenvalues \nu (\lambda ):
crosses (squares) indicate spatial eigenvalues \nu (\lambda ) that have positive (negative) real part for \lambda \gg 
1. Shaded region between essential spectrum curves is denoted \Omega . (a) Case 1 (\lambda 3 > 0): Same
orientation of essential spectrum branches, leading to the absolute spectrum falling to the left of the
cusp point. (b) Case 2 (\lambda 3 < 0): Opposite orientation of essential spectrum branches, leading to
the absolute spectrum to the right of the cusp point.

1. Case 1 (\lambda 3 > 0): If Re \nu  - 1 (\lambda ) < Re \nu +1 (\lambda ) for all \lambda \in \Omega , then there are no
absolute spectra curves within \Omega . Moreover, locally the absolute spectrum is
given by the set

\Sigma abs =
\bigl\{ 
\lambda \in C : \lambda = \lambda 0  - r2, 0 < r < r0

\bigr\} 
for some small real r0 > 0.

2. Case 2 ( \lambda 3 < 0): The set \Omega contains a curve of absolute spectrum.

The proof of Theorem 3 follows from arguments of the orientation of essential
spectrum curves and crossings of spatial eigenvalues. If \lambda 3 = 0, the result holds by
replacing \lambda 3 with the leading-order nonzero imaginary term in \lambda 0\ast (\alpha ).

Proof. Case 1: First, the orientation of essential spectrum curves and assumption
on the spatial eigenvalues ensures there is no absolute spectrum curve within \Omega (see
schematic in Figure 3(a)). An absolute spectrum curve will be given by the set of \lambda 
for which left and right spatial eigenvalues have the same positive real part.

We use \lambda 0\ast (\alpha ) to solve locally for \alpha = \alpha (\lambda ) to find the spatial eigenvalues given
by \nu = i\gamma = i/\alpha . We have \lambda 0\ast (\alpha ) = \lambda 0  - \lambda 2\alpha 

2 + i\lambda 3\alpha 
3 which is written such that

\lambda 2, \lambda 3 > 0. After shifting the curve by \lambda 0, we want to find solutions \alpha (\lambda ) of

\scrF (\alpha , \lambda ) =  - \lambda 2\alpha 2 + i\lambda 3\alpha 
3  - \lambda = 0(5.1)

and determine for which values of \lambda two spatial eigenvalues have the same real part.
Using a Newton's polygon, set \alpha = \lambda 1/2w, which transforms (5.1) to

 - \lambda 2w2 + i\lambda 3\lambda 
1/2w3  - 1 = 0.

Near \lambda = 0, we have w2 =  - 1/\lambda 2, and there are two unique roots \alpha 1,2 = \lambda 1/2w1,2(\lambda 
1/2)

of (5.1), where w1,2 are analytic in \lambda 1/2 and w1,2(0) = \pm i/
\surd 
\lambda 2. The third root of

(5.1) for \lambda near zero is found by by solving (5.1) for \alpha near \alpha =  - i\lambda 2/\lambda 3, which results
in \alpha 3(\lambda ) =  - i\lambda 2/\lambda 3 +O(\lambda ). Mapping these \alpha -roots to \nu = i/\alpha gives
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\nu 1(\lambda ) =
i

\lambda 1/2w1(\lambda 1/2)
=

\sqrt{} 
\lambda 2
\lambda 
(1 + O(\lambda 1/2)),

\nu 2(\lambda ) =
i

\lambda 1/2w2(\lambda 1/2)
=  - 

\sqrt{} 
\lambda 2
\lambda 
(1 + O(\lambda 1/2)),

\nu 3(\lambda ) =  - \lambda 3
\lambda 2

+O(\lambda ).

The two relevant spatial eigenvalues are \nu 1 and \nu 2. We set Re \nu 1 = Re \nu 2, which holds
to leading order in \lambda precisely when Re \nu 1,2 = 0, that is, when \lambda < 0. Thus, locally
near \lambda 0, there exists a small r0 > 0 such that an absolute spectrum curve is given by

\Sigma abs =
\bigl\{ 
\lambda \in C : \lambda = \lambda 0  - r2, 0 < r < r0

\bigr\} 
.

Case 2: The results for Case 2 follow from the orientations of the essential spec-
trum curves. Upon crossing \Sigma 0

ess from right to left a left spatial eigenvalue crosses the
imaginary axis. Crossing \Sigma c,1,2ess from right to left results in a right spatial eigenvalue
crossing the imaginary axis. Since spatial eigenvalues are analytic in \lambda , there must
be values of \lambda \in \Omega for which the real parts of the right and left spatial eigenvalues
coincide to give an absolute spectrum curve.

In Case 1, we prove the existence of an absolute spectrum branch locally near
\lambda 0 which extends leftward in the complex plane. Theorem 3 guarantees the existence
of a spectral curve within \Omega for Case 2, signifying that these models can undergo an
absolute instability if \Omega reaches into the positive half plane.

6. Application to Barkley and Karma models. In this section, the results
of Theorems 1--3 are applied to planar spiral waves formed in the Barkley and Karma
models, which are well-studied nonlinear reaction-diffusion systems [3, 4, 24, 23, 12,
13, 6, 10, 11]. As we will see, these two models also furnish examples of the two
absolute spectrum cases.

6.1. Barkley model. The Barkley model is given by

ut = \Delta u+
1

\epsilon 
u(1 - u)

\biggl( 
u - v + b

a

\biggr) 
,

vt = \delta \Delta v + u - v,

where we fix parameters a = 0.7, b = 0.001, and \epsilon = 0.02. For these parameters, there
is numerical evidence that a stable spiral wave exists [2]. The effects of removing
diffusion are studied by modifying the diffusion coefficient \delta for the slowly diffusing
species v in the interval [0, 0.2]. The angular frequency changes with \delta and falls
between \omega 0 = 1.87 (\delta = 0.2) and \omega 0 = 2.09 (\delta = 0). Note that \=g =  - 1.

Essential spectrum curves are calculated using numerical continuation methods
on system (2.6) as described in [18]. Computations are performed with MATLAB
on a 256 grid point periodic domain with Fourier spectral methods used for spatial
derivatives. Below, these numerically computed spectral curves will be compared to
the analytical predictions.

Figure 4 shows essential spectrum curves of the spiral wave calculated for \delta = 0
and \delta = 0.2. Vertically periodicity of the branches arises due to the Floquet symmetry
of the spiral eigenfunctions. As noted above and as indicated in the theorems, the
curves look very different for these two cases. For \delta = 0.2, the curves are unbounded.
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Fig. 4. Essential spectra for the Barkley model for \delta = 0 and \delta > 0.
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1.9

2

2.1

2.2

Fig. 5. Essential spectra for the Barkley model under changing diffusion. Inset at top right
focuses on area near \lambda 0.

In the case \delta = 0, adjacent branches meet at the limit points \lambda 0 and form cusps. The
limit points are predicted to be \lambda 0 =  - 1 + i\omega 0n.

Numerically computed curves for decreasing \delta are shown in Figure 5 with the
inset focusing on the region near \lambda 0. For small, nonzero values of \delta , curves begin to
turn toward the \lambda 0 limit point before diverging.

We verify the form of \lambda 0\ast (\alpha ) computed in Theorem 1 by analyzing the convergence
of numerically computed spectral curves; denote these curves by \lambda c. From \lambda 0\ast (\alpha ), we
expect Re (| \lambda c  - \lambda 0| ) = O(\alpha 2) and Im (| \lambda c  - \lambda 0| ) = O(\alpha 3). Log-log plots of the
convergence are shown in Figure 6 and show the O(\alpha 2) dependence of the real terms.
Note that Im (| \lambda c  - \lambda 0| ) = O(\alpha 5). This leads to the following observation.

Corollary 6.1. If the linearized term g1(x) is a constant, then \lambda 3 = 0 in \lambda 0\ast (\alpha ).

This corollary is immediately proved by integrating \lambda 3 and using the periodicity of
f2(x). The linearization g1(x) = 1 in the Barkley model, and Corollary 6.1 therefore
applies.

Numerical computations of absolute spectra following methods in [18] for \delta = 0
and \delta = 0.2 are shown in Figure 1. There is an exceptional difference between the
two: the Y-shaped branches present for \delta = 0.2 are replaced by short segments that
lie to the left of the essential spectrum branches for \delta = 0.
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Fig. 6. Convergence of real and imaginary parts of the essential spectrum computed with
continuation in the Barkley model for \delta = 0.
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Fig. 7. Shown are the essential spectra in the Karma model for \delta = 0 and \delta = 0.1. When
\delta = 0, cusps form in the essential spectrum at \lambda 0 =  - 4 + i\omega 0n.

Under the nonlinearities and parameters used here for the Barkley model, the
orientation of the essential spectrum curves means the system falls into absolute
spectrum Case 1 described in Theorem 3. The numerical computations confirm the
existence of an absolute spectrum branch that emerges leftward from \lambda 0 (Figure 1(a)).
Moreover, no absolute spectrum is numerically found within \Omega .

6.2. Karma model. The Karma model is given by

ut = 1.1\Delta u+ 400

\biggl( 
 - u+

\bigl( 
1.5414 - v4

\bigr) 
(1 - tanh(u - 3))

u2

2

\biggr) 
,

vt = \delta \Delta v + 4

\biggl( 
1

1 - e - \mu K
\theta s(u - 1) - v

\biggr) 
,

where \mu K = 1.2. As in [1, 12, 13, 6], we consider a smoothed version of the Heaviside
function given by \theta s(u) = (1 + tanh(su))/2 for s = 4. Alternans are numerically ob-
served for this set of parameter values [12, 13, 6], and spirals have angular frequencies
of \omega 0 = 49.81 (\delta = 0.1) and \omega 0 = 51.66 (\delta = 0). Again, there are distinct differences
between the essential and absolute spectra for \delta > 0 and \delta = 0 in Figure 7. Here,
\=g =  - 4.

From Theorem 1 the cusps are predicted to emerge from \lambda 0 =  - 4+i\omega 0n, which is
confirmed numerically (Figure 8). For \delta = 0, essential spectrum curves in the Karma
model form loops that reverse the branch orientations before forming the cusp point,
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Fig. 8. Formation of cusps in Karma model for \delta = 0. Loops in the essential spectrum
change the local orientation (indicated by arrows) at the cusp points. Spectra computed by numerical
continuation.

and a computation shows that \lambda 3 < 0. Thus, the Karma model falls into absolute
spectrum Case 2, and Theorem 3 predicts absolute spectrum to the right of \lambda 0 in
region \Omega . The numerical computation of the absolute spectrum shown in Figure 8
confirms this prediction.

Furthermore, the existence of leading absolute spectrum branches in \Omega grants the
possibility of the system undergoing an absolute instability. In fact, regardless of \delta 
these branches do destabilize when the system parameter \mu k is increased above 1.4.

7. Discussion.
Summary. The central question we pursued is how the continuous spectra of

planar spiral waves behave in the limit of vanishing diffusion in one of the components
of a reaction-diffusion system. We found that these spectra behave discontinuously
near cusp points of the essential spectrum of the zero-diffusion limit. We also priovide
explicit expansions of these spectra in the spatial Floquet exponent 1/\alpha and the small
diffusion coefficient \delta that hold for 0 \leq \alpha \ll 1 and 0 \leq \delta \ll 1 and whose coefficients
are determined by the diffusionless variable. We verified these predictions numerically
in the Barkley and Karma models.

We also discussed the absolute spectra of spiral waves on bounded disks for \delta = 0.
The sign of \lambda 3 from \lambda 0\ast (\alpha ) divides models into the two distinct cases described in
Theorem 3. Absolute spectra lie strictly outside of the region \Omega if \lambda 3 > 0. If instead
\lambda 3 < 0, then there is absolute spectrum inside \Omega . These two cases occur in the Barkley
and Karma models as demonstrated in section 6.

Wave train spectra. As mentioned in the introduction, the essential spectra
of the asymptotic wave trains depend smoothly on \delta in the zero-diffusion limit [17].
Interestingly, cusp points are not observed for the essential spectra of these wave
trains when \delta = 0. Figure 9 shows essential spectra for the wave train in the Barkley
model for decreasing values of \delta . The limiting behavior of the wave train essential
spectrum can be obtained directly from the spectral relationship (2.4) and is given by

\lambda 0\infty (\alpha ) = \lambda 0 + \lambda 2\alpha 
2 + i\lambda 3\alpha 

3 + \omega 

\biggl( 
i

\alpha 

\biggr) 
+ o(\alpha 4).

D
ow

nl
oa

de
d 

06
/2

8/
22

 to
 1

28
.1

48
.1

94
.1

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPIRAL WAVE SPECTRA WITH VANISHING DIFFUSION 3815

Fig. 9. Essential spectrum of wave trains in the Barkley model limits to a vertical branch under
\delta \rightarrow 0.

Only the imaginary parts of the spectra differ between \lambda 0\infty (\alpha ) and \lambda 0\ast (\alpha ). In the
limit \alpha \rightarrow 0, we have Re\lambda 0\ast (\alpha ) \rightarrow \=g, implying Re\lambda 0\infty (\alpha ) \rightarrow \=g, but Im\lambda 0\infty (\alpha ) becomes
infinite due to the addition of the imaginary 1/\alpha term.

For the spiral wave at \delta = 0, the limit points \lambda 0 arise because the v-equation
decouples at small values of \alpha . To further understand the origins of the differences
between wave train and spiral spectra, consider the linear dispersion relation for the
wave train in the co-moving frame:

D (\partial x + \nu )
2 \=V + \omega (\partial x + \nu ) \=V + FU (U\infty (x)) \=V  - \lambda \infty \=V = 0.

For a two-variable system as studied above with \delta = 0 and \nu = i\gamma , the v-equation
takes the form

\lambda \infty v = \omega (\partial x + i\gamma ) v + g1(x)u+ \=gv.

Here, the v-equation still retains direct input from \gamma , unlike the corresponding equa-
tion for the spiral (4.18). The \gamma provides an unbounded term for which \lambda \infty must
compensate in order to retain bounded eigenfunctions.

Outlook. There are a number of questions that we did not address. One such
question is whether persistence of planar spiral waves that are assumed to exist for
\delta = 0 into the region 0 < \delta \ll 1 could be established using singular perturbation
theory. Similarly, we discussed only the essential spectra of planar spiral waves in the
vanishing-diffusion limit, and the behavior of point spectrum was not addressed here.
Moreover, we focused on two-component system, and it is natural to ask whether our
results hold for general n-component systems, potentially with several nondiffusing
variables: we expect that each nondiffusing variable creates its own cusps but have
not attempted to prove this. Finally, while Theorem 1 remains true if we allow \=g to
be a 2\pi /\kappa -periodic function, we did not prove the same for Theorem 2, though we
expect this to hold as well.

On bounded disks, the spectrum consists entirely of discrete eigenvalues, which fall
into disjoint sets that either align along curves of the absolute spectrum, are members
of the extended point spectrum, or arise from the imposed boundary conditions [21,
22]. Theorem 3 predicts the locations of absolute spectrum depending on the sign of
\lambda 3, but the effect of vanishing diffusion on boundary and extended point spectrum
remains an open question.

We leave the reader with a word of caution: the essential spectrum may be
significantly different in the two cases of small positive and zero diffusion \delta . This
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fact has potentially significant consequences for the stability of patterns formed in ion
channel models, and care should be taken during computations.
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