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BEHAVIOR OF SPIRAL WAVE SPECTRA WITH A
RANK-DEFICIENT DIFFUSION MATRIX*
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Abstract. Spiral waves emerge in numerous pattern forming systems and are commonly modeled
with reaction-diffusion systems. Some systems used to model biological processes, such as ion channel
models, fall under the reaction-diffusion category and often have one or more nondiffusing species
which results in a rank-deficient diffusion matrix. Previous theoretical research focused on spiral
spectra for strictly positive diffusion matrices. In this paper, we use a general two-variable reaction-
diffusion system to compare the essential and absolute spectra of spiral waves for strictly positive and
rank-deficient diffusion matrices. We show that the essential spectrum is not continuous in the limit
of vanishing diffusion in one component. Moreover, we predict locations for the absolute spectrum
in the case of a nondiffusing slow variable. Predictions are confirmed numerically for the Barkley
and Karma models.
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1. Introduction. Spiral waves are frequently observed in nature, including chem-
ical oscillations in the Belousov—Zhabotinsky reaction [27, 26], cell signaling patterns
in slime molds [14], and in electrical activity in cardiac dynamics [25, 19]. Stable
spiral waves are observed in these systems, but bifurcations to complex and unstable
patterns are common, and these bifurcations can have profound results. For exam-
ple, rotating spiral waves in cardiac electrical activity have been linked to dangerous
tachycardiac rhythms, and the transition to break up can lead to life-threatening fib-
rillation and sudden cardiac death [19, 16]. Therefore, understanding the stability and
bifurcations of spiral waves poses interesting mathematical questions and is important
in applications.

Reaction-diffusion systems are canonical pattern forming systems describing bio-
logical and physical processes and take on the form

(1.1) U, = DAU + F(U), U=U(yt) €R", DR yecR?

where A is the Laplacian and the smooth, typically nonlinear F(U) defines kinetic
reaction terms. The n species of U = [uy, ..., u,]T diffuse with diffusion rates given by
the entries D;; of the positive diagonal matrix D for j = 1,...,n. Planar spiral waves
have a regular shape and rotate with angular frequency wgy. Thus, these pattens are
stationary solutions of (1.1) in a polar coordinate rotating frame, and stability can be
investigated by evaluating the spectrum of the reaction-diffusion operator linearized
about the spiral wave solution.
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The propagation of electrical potentials in excitable media, such as neurons and
cardiac tissue, can be described by biophysically detailed ion channel models given
by the system

Vo= AV + f(Vin),  ny = g(Vin).

Here, V = V(y,t) € R corresponds to the electrical potential, and n = (ny(y,t),...,
nar(y,t))T € RM are M dynamic gating variables explaining the opening and closing
of ion channels that facilitate the voltage propagation. Ion channel models can still be
written in the general reaction-diffusion framework, with the popular Hodgkin—Huxley
[8], Noble [15], and Beeler—Reuter [5] models falling into this category.

In this paper, we focus on two-component reaction-diffusion models. In ion chan-
nel models, the gating variable does not diffuse, and an appropriate ion channel model
is therefore of the form

ur = Au+ f(u,v), vy = g(u,v),

where we now use (u,v) instead of (V,n). Often, small unphysical diffusion is added
to these components or included in qualitative models. Throughout, we will use ¢ to
correspond to the small diffusion coefficient of interest, leading to the adjusted model

ut:Au+f(uav)a Ut :5Av—|—g(u,v),

where 0 < § < 1. We would expect that the spectra should change smoothly as
the diffusion coefficient 6 — 0, and this is indeed true for the continuous spectra
of one-dimensional periodic wave trains [17]. Yet, we observe that spiral spectra
computed for § > 0 do not converge as § \, 0 to the spectrum computed for § = 0.
Figure 1 shows the differences in the spectra for the Barkley model, a two-variable
reaction-diffusion system, with § = 0.2 and § = 0. For é > 0, the spectral curves are
unbounded, whereas the curves remain bounded for § = 0. Furthermore, at the finite
limit points, adjacent curves meet and form the cusps seen in Figure 1. Additional
changes are seen in the absolute and point spectrum, with the absolute spectrum
collapsing to short branches that align with the essential spectrum cusp points. The
effect of a rank-deficient diffusion matrix on the structure of the spectra of planar
spiral waves has previously not been analyzed.

In this paper, we focus on changes in the continuous spectrum for spiral waves in
the 9 = 0 limit and investigate the mechanisms responsible for the discontinuities of
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FiG. 1. Barkley model: Differences in the essential, absolute, and point spectra for § > 0 and
§ = 0. The point spectra were calculated on a bounded disk of radius 20.
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essential spectrum observed in the limit of a rank-deficient diffusion matrix. Under
mild conditions on the linearization of the reaction terms, Theorems 1-2 provide
expressions for the spectral curves near the limit points. Our findings indicate the
discontinuity occuring in the § = 0 limit is dictated by the nondiffusing species.
Furthermore, we use the result of Theorem 1 to predict locations for the rank-deficient
absolute spectrum in Theorem 3.

We proceed as follows: Mathematical preliminaries of spiral waves and the rele-
vant spectral properties are described in section 2. The main results for the continuous
spectra of planar spiral waves are derived in sections 3—4. Implications for the loca-
tions of absolute spectrum are discussed in section 5. Finally, the results are applied
to the Barkley and Karma models in section 6.

2. Mathematical preliminaries.

2.1. Planar spiral waves and asymptotic wave trains. Planar spiral waves
are solutions to the reaction-diffusion equation (1.1) which rigidly rotate in time with
a constant angular temporal frequency wy. Spiral waves are therefore stationary
solutions U, (r, 1) in the co-rotating frame under polar coordinates (r, )

Uy = DAWL/,U +woUy + F(U), UeR",

where A, ,, denotes the Laplacian expressed in polar coordinates. In the limit » — oo,
the spiral solutions U, (r,1) converge to 2m/k-periodic functions U (r + ¥/k) =
Us () referred to as asymptotic wave trains, which are stationary solutions to

U, = DU,y + wU, + F(U),

where w = wp/k. We focus on planar spiral waves that can be viewed as a source
which emits wave trains with positive group velocity. The spatial wave number & is
selected by the spiral, and the nonlinear dispersion relation w = w, (k) of the wave
train connects w and x. Our main assumption is the existence of a spiral wave solution
that depends smoothly on the diffusion coefficient § for 0 < § <« 1.

HypoTHESIS 1. The spiral wave solution U, and the asymptotic wave train Uy
both depend smoothly on the diffusion coefficient § for 0 < é < 1.

While we do not have a proof that Hypothesis 1 holds, this hypothesis is well
supported by numerical evidence.

2.2. Essential spectrum of wave trains. We are interested in the continuous
spectrum of the reaction-diffusion operator linearized about a spiral wave pattern.
The reader is referred to [7, 21, 20, 9] for a detailed study of spectrum of operators
in nonlinear waves.

We start with the wave train spectrum, as it is directly linked to the continuous
spectrum of the spiral wave. The spectrum of the linearization

LoV =DVye +wVy 4+ Fy(Uso)V = AV

of the asymptotic wave trains U, (x) on the space L?(R,R") is given by the set of
Aso € C for which the eigenvalue problem L.,V = AV has a nontrivial solution of
the form V(z) = e"*V (x), where V(x + 2n/k) = V(z) and v = iy for v € R. Wave
train eigenvalues are therefore determined by nontrivial 27 /k-periodic solutions V (z)
of

(2.1) LooOM )WV =D (0 + )2V 4w(0y+ 1)V + Fy(Uso)V — AoV =0
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and come in curves Ao, = A (i) parameterized by the Floquet exponent v = ivy.
From translational symmetry, one spectral curve includes Ao (0) = 0 for v = 0 with
eigenfunction V(x) = U, (x). The orientation of each curve is defined as the direction
of increasing ~.

2.3. Essential spectrum of planar spiral waves. The spectrum of a planar
spiral wave is given by considering the spectrum of the operator

(2.2) L.V = DA, 4V +woVy + Fy(U)V

on L*(R,R™) which contains isolated eigenvalues in the point spectrum and con-
tinuous curves of essential spectrum. The essential spectrum of the spiral wave is
determined by the far-field asymptotic dynamics, and it can be shown that the spiral
wave continuous spectral curves \.(v) are related to those of the wave trains via

(2.3) A (V) = Ao (V) — %y +iwel, (€.

Therefore, the linear dispersion relation for the spiral wave is determined by the
solvability of

(2.4) LAV =D (8, +v)°V +wV, + Fy(Us)V — AV = 0.

Since v € iR, the real parts of the wave train and spiral wave continuous spectra
coincide. The iwgf term provides additional vertically periodic branches due to the
rotational symmetry of the spiral wave.

2.4. Computation of essential spectra. In the remainder of the paper, we
focus on spiral waves described by a two-component reaction-diffusion system U =
(u,v)T set in a rotating frame with polar coordinates (r,) = (r, ¢ — wt),

(2.5) u = Ayt + wuy + f(u,v),
v = 00, U + wuy + g(u,v),

where 0 < 6 < 1. In this framework, u and v are typically referred to as the fast
and slow diffusing species, respectively. Many of the reduced systems, including the
Barkley, Karma, and Morris—Lecar models, have two components.

In these systems, the equation for the essential spectrum of the planar spiral wave
is then given by

(2.6) At = (0 +17)° u + wug + fu (Uso (@)t + fo (Uso(x)) v,
A0 =0 (0, + i’y)2 v+ wvz + gy (Uso(2)) v+ gy (Uso(z)) v,

where the imaginary part 7 of the spatial Floquet exponent parameterizes the essential
spectrum curves, and the nonlinear terms are linearized about the wave train U ().
In Theorems 1-2, we assume that the derivative g, (Uso(2z)) = g is a constant. To
simplify notation, we remove the explicit U,, dependence in the linearizations and
instead write fy., (Uso(2)) = f1,2(z) and gy (Uso(z)) = g1(x). The observed changes
in the essential spectrum are for large values of v so that |y| > 1. Sending v — +o0
corresponds to traversing the curve in opposite directions. To focus on the limiting
behavior (and the area near the cusp point for § = 0), we divide the system (2.6) by
72, define @ = 1/7, and group terms by orders of « to arrive at

(2.7) —u 4 (2iug) + & (Upy + wiy + f1(x)u + fo(z)v — Iu) =0,
(2.8) —0v + a (2i6v,) + & (Vs + wv, + g1 (x)u + gv — M) =0,
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where (u,v)(x 4+ 27/k) = (u,v)(x). The theorems and lemmas to follow analyze the
continuous spectrum assuming the conditions in Hypothesis 1 and using the formula-
tion in (2.7)—(2.8) for |a| < 1.

3. Statement of main results: Essential spectrum. Throughout, we will
make use of [22, Corollary 3.4], which states that the spectrum of a planar spiral wave
is invariant under the shift A — A +iwgn for integers n € Z, and therefore restrict our
analysis to rectangles of the form

1
(3.1) AR := {/\E(C: Im/\|§2,|Re/\|<R},

where R is positive or R = oo.

Our first result, Theorem 1, focuses on the case of vanishing diffusion in the v-
component. For each |a| < 1, we seek to find all A € Ay, for which the eigenvalue
problem

2i 1
(3.2) A= Ugy + (al + w) Ug — U + fi(z)u + fo(x)v,
(3.3) A = wug + gu + g1(2)u

has a nontrivial 27 /k-periodic complex-valued solution (u,v)(z).

THEOREM 1. Fix R > 0, w > 0, and g € R, and assume that f1, fa,g1 are
given 27 /k-periodic functions of class C*; then there is a constant ag > 0 so that
the following is true. There is a unique function \j : [—ap,ap] — Agr so that (3.2)—
(3.3) has a nontrivial 27 /k-periodic solution for X € Ar and |a] < ag if and only
if A = Aj(a). Furthermore, the function A§ is continuous, and there are constants
A2,3 € R so that

Ao(@) = g+ Aaa? + 2ix30° + o(a?),

which shows that the trace of this function in the complex plane is a cusp emerging
from A\§(0) = g.

We will provide more details of the expansions of A§(«) and the associated eigen-
functions of (3.2)—(3.3) in Proposition 4.6 below. We collect two extensions of our
results in the following remark.

Remark 3.1. e The spectrum is invariant under the shifts A — A+iwgn, n €
Z [22]. Thus, more generally, the expansion of Aj(«) is

Ay(@) = g +iwon + Aaa? +idza® + o(a?), n € Z.

In particular, the spectrum of a planar spiral wave with vanishing diffusion
features infinitely many cusps that emerge from each Ay = g+iwgn for n € Z.
The cusp structure at each \g is formed from the positive and negative tails
of two curves, corresponding to a > 0 and « < 0, meeting at Ag.

e Theorem 1 also holds if we replace g by a 27/k-periodic function go(z). The
expressions for the coefficients in the expansion of \jj(«) remain valid provided

k [27/k

we use the definition g := 5= [;7" " g2(y) dy.

Our second result focuses on the case where the equation for v includes diffusion
with a small diffusion constant 0 < § < 1. For each fixed 0 < § < 1, we will identify
a range of values of « with |a| < 1 for which the eigenvalue problem
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Re A

F1G. 2. The three panels illustrate the behavior of the dispersion curves, and their complex
conjugates, of (3.2)—(3.3) for 6 =0 and (3.4)—(3.5) for fired 0 < § K 1 in a small fized neighborhood
of A = g. Panel (i) shows the trace of A\§(-) given in Theorem 1 for (3.2)—(3.3), while panel (ii)
illustrates the trace of \*(-,8) established in Theorem 2 for (3.4)—(3.5) with § > 0 fized. Panel (iii)
shows that the traces of A§(-) and A*(-,0) differ.

2i 1
(3.4) Nt = gy + (Oj + w) ws = —ut fi@)u+ folo),
oi
(3.5) AV = SV + (16 + w) Vg — %v +gv+gi1(x)u
e! a

has a nontrivial 27 /k-periodic complex-valued solution (u,v)(x).

THEOREM 2. Fiz w > 0 and g € R, and assume that f1, fo, g1 are given 27 /k-
periodic functions of class C*; then there are constants &y,so > 0 and functions
a*, \* : [=s0, s0] X (0,60] = C with

(3.6) o (s,5) = % (s +/s2 +4\/5> ,

oo xUsh + 0V, s20,
(3.7) A(s,0) = { go— (14 0(5%)) + O(V9), s <0,

so that (3.4)—(3.5) has a nontrivial 2/ k-periodic solution when (o, \) = (a*, A*)(s,9).

Theorem 2 implies that the § = 0 limit of the trace of the dispersion curve
A*(+,6) is given by the trace of the dispersion curve A§(-) for § = 0 plus the interval
A5(0) — s2/w, A\5(0)]. In particular, the essential spectrum at § = 0 differs from the
d = 0 limit of the essential spectra for § > 0 (Figure 2).

4. Proofs of main results: Essential spectrum. To prove Theorems 1-2,
we systematically construct the eigenfunction solutions to the appropriate system.
Lemmas 4.1-4.3 and Proposition 4.4 assume that v is a given smooth function and
establish a 27 /k-periodic solution u = D(A, a)v for (3.2). These results for the u-
equation are independent of &, and the cases 6 = 0 and 6 > 0 are then handled
separately in the construction of the v-eigenfunction. Lemma 4.5 and Proposition 4.6
use and refine the form of u to find a 27/k-periodic solution for (3.3) when ¢ = 0, and
Theorem 2 follows a similar outline for the case of § > 0. Throughout the proofs, we
will ignore that the coefficient functions depend on §: we assumed in Hypothesis 1 that
these functions depend smoothly on § for 0 < § < 1, and including this dependence
does not change our arguments or expansions since the d-dependence shows up at
higher order.

We note that (3.4)—(3.5) is a singular perturbation of (3.2)—(3.3) since 0 < ¢ < 1.
However, due to the presence of the additional small parameter 0 < o < 1, (3.4)—(3.5)
cannot be rescaled so that there is a well-defined limit as (o, d) approaches zero. In
particular, methods such as geometric singular perturbation theory are not readily
applicable.
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Throughout, we will fix a constant 7" > 0 and denote the stable and unstable
spectral projections of a hyperbolic matrix A by P® and P", respectively. We say a
function is continuously differentiable on a closed interval if it is differentiable on the
open interval, the one-sided derivatives at the boundary points exist, and the resulting
derivative is continuous on the closed interval. We denote the Banach space of linear
bounded operators between two given Banach spaces X and Y by L(X,Y).

4.1. Periodic solutions of linear systems of differential equations. For
each natural number k£ > 0, we define the spaces

Yk = CFR/TZ,C"), Y°:=C%0,T],C"), YF1.=YvE ncrt(o,1],C").

per per

Consider the inhomogeneous linear differential equation
(4.1) U, = AU + G(x), UecCn, 0<z<T.
The following lemma establishes the existence of T-periodic solutions of (4.1).

LEMMA 4.1. Fiz T > 0, and assume that the matriz A € C™*" is hyperbolic; then
the following is true.
e For each G € Y, (4.1) has a unique T-periodic solution U = SG € Y, and
the operator S € L(Y°,Y'!) is given by

T T
[SG)(z) = e (1 — eAT)il/ AT =) PsG(s)ds —|—/ M@= PSGQ(s) ds
0 0

0
+ eAl@=T) (1- efAT)_l/ e A5 PUG(s) ds
T

+/ A=) PuG(s) ds, 0<z<T.
T

e For each k >0, we have S € L(YE,  YEI!

per’ < per )
e For each k > 1, we can write S as

e I @
AT

Jj=1

GeYk

dei =1 per’

(4.2) SG =A"FS

Proof. Let E®" := R (P%") denote the generalized stable and unstable eigenspaces
of the matrix A. Using the variation-of-constants formula, the general solution of (4.1)
is given by

Ulz) = e?%a® + A Do 4 / @) PSG(s) ds
0

+/ eA(I_S)PuG(s) ds, 0<z<T,
T

with a®" € E5". The coefficients a®" are uniquely determined upon enforcing the pe-

riodic boundary condition U(0) = U(T'), which yields the unique T-periodic solution
U(x) = [SG](x) € Y7, given by

(4.3)

T T
[SG)(x) == e?® (1- eAT)il/ AT=9 P3G (s) ds +/ A= PG (s) ds
0 0

0 x
+ eAl@=T) (1- e’AT)fl/ e A PUG(s) ds +/ @) PUG(s) ds
T T

for G € Y. Furthermore, (4.1) implies that (SG), € Y so that SG € Y'!.
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Next, if G € Y2, it follows directly from (4.1) and periodicity of SG that the

per»
derivative (SG), of SG is also periodic. In particular, G € Y%, implies SG € Yift,

er

Finally, when G € kaer for some k > 1, we apply integration by parts k times
in each of the integral terms that appear in the expression for the solution operator
S. Upon each integration by parts, most of the boundary terms cancel due to the
T-periodicity of G, and the remaining terms combine to provide the identity (4.2).

We omit the details of this calculation. 0
4.2. Periodic solutions of linear second-order equations. Next, we apply
these results to second-order equations of the form

(4.4) Upe = Q21U + a2ouy + g(x), ueC, 0<zx<T.

We write Py for the projection of C? onto the first component and define the vector
ez == (9) € C%. Finally, we modify our function spaces and define

Xk, =CFR/TZ,C), X°:=C°0,7],C), X" :=XxF . ncC*'([0,7T],C)

per

for any natural number k& > 0.

LEMMA 4.2. Fixz T > 0, and assume that asy,ass are such that the matriz A :=

(a(2)1 ar, ) € C**2 has eigenvalues v, v with Rev® < 0 < Rev"; then the following is

true.
e For each g € X°, (4.4) has a unique T-periodic solution u = Tg € X? given
by
[Tyl(z) = [PrSeag](x)
(4.5)
s s -1 T s z s
= P |eV” (1—e" T) / e (T=9) PSeyq(s) ds —|—/ e @=3) PSeyg(s) ds
0 0
u u _1 0 u x u
+ev" (@=T) <1 —e v T) / eV *Pleyqg(s)ds —|—/ V" (@=9) Pleyg(s) ds} ,
T T
0<x<T,
and we have
2 |P1Ps€2| |P1Pu€2‘
4. < , .
(4.6) 1T z(x0,x3,,) < | — o mm([Rer)T ( Re | + Revr|
e For each k > 1, we have T € L(X},,, XF3?) with

k .
4.7 = kg, 9% 5, ¥ k
( . ) Tg=PA 862@_213114 eQw, gEXper,
Jj=1

and for g € Xger

d®g
4.8) |PLATFSes—2
w |patsagd]
< 2 |P1Ps€2| |P1Pu62| dkg
= 1 —e-min(Rev**NT \ |Revs|[vs]k ~ |Revt||vu|F ) |dak

0
Xper
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Proof. The second-order equation (4.4) can be rewritten as the system

49) U, = (agl a;) U+t (g(ox)> — AU + eag(z), U= (;‘) .

Since A is hyperbolic by assumption, Lemma 4.1 shows that (4.9) has a unique T-
periodic solution in Y?! for each ¢ € X" and that this solution is given by U =
Seag. Hence, u = P;Seyg =: Tg is the unique T-periodic solution of (4.4) in X2.
Substituting S from Lemma 4.1 and using that eA* P = ¢”"*PS and eA* P" = ¢V * P"
establishes (4.5) and shows that 7 € L(X°, X2).

To prove (4.6), we note that

e | s || < B for x>0,  ||e®| gl < RV for 2 < 0.

Hence, we obtain from (4.5) that

eRev’z T . x . '
|Tg|lxo < max 7/ el (T=9) g —|—/ R’ (@=9) qs | | P Poey|
0<z<T |\ 1 —eRev* T [, 0

eRev"(z—T) 0 N T N
+ (1 —Reu"T/ e~ Rev's g _|_/ eRev (z—s) ds ) |P1Pu62:| |Q‘X0
—¢ T T

< 2 |P1PS62| ‘P1Pu€2| | | .
— 1 — e~ min(|Revs1|)T |Re I/S| |Reyu| gixo;

which establishes (4.6).
Finally, for g € Xl’;er, (4.2) in Lemma 4.1 shows that 7 has the representation

given in (4.7). Furthermore, proceeding as in the preceding paragraph and using the

estimates

1

S 4T

1

AF S T
H H - |I/u|k

Es

establishes the estimate (4.8). O

4.3. Solutions to the linearized eigenvalue problem for the u-component.
We fix T' = 27/ and consider the differential equation

2i 1
(4.10) Upy = — —l—i—w Uy + —u+ g(x), ueC, 0 <z <2m/k,
o o?

for |a| < 1. The following result establishes the existence of 27 /k-periodic solutions
of (4.10). We note that the results of Lemmas 4.3 and 4.5 and Propositions 4.4 and
4.6 hold for |a| < 1. For clarity, we consider the case o > 0 in the proofs.

LEMMA 4.3. Fiz w > 0; then there are constants ag > 0 and Cy > 0 so that
the following is true. For each |a| < ag and each g € X°, (4.10) has a unique 27 /k-
periodic solutionu = T (a)g € X2, and the operator T () satisfies 1T (@)]lL(xo,xg,,) <
Cola|. Furthermore, we have

(4.11) IT(a)glxo < Coa?|g|x: for g€ X,

per per

(4.12) |T(a)g + a?g + Qioz?’ggc|Xger < COOZ4|9|Xge[, for g € Xger.
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Proof. First, we rewrite the second-order equation (4.10) as the first-order system

(413) U, = <? L w) U+ (g) 9(@) = A(QU + esg(z), U= <“) .

v Uu
a? @ r

The eigenvalues v4 of A(w) are roots of the polynomial 12 + (2 + w) v — J3, which
are given by

(4.14) Revy = +(1 + O(Va)) %, Imvy = _1%0(\/&).

In particular, there is an ag > 0 so that the matrices A(«) are hyperbolic with
|Revy| > Jw/da for all 0 < a < ap, and Lemma 4.2 guarantees that (4.13) has a
unique 27 /k-periodic solution for each 0 < a < g and that this solution is given by
u="T(a)g.

It remains to verify the estimates for 7(a). For 0 < a < 1, the stable and
unstable eigenspaces of A(«a) are given by

Bl Bl
ES:R v_ Eu:R vy
() =-=(3)

and the associated spectral projections can be written as

-1 ,1 -1 ,1

() D 2 1) ()
| ZZN 7 1 vy V- vy 1 v_

We conclude from (4.14) that for all 0 < o < 1,

14+ 0(Va) 1

vy| = ————, — =a(l+ 0(Wa)),
el = O L i+ orva)

I /@l +0@?) i _,
|V_7I/+| - 2\/(; ’ 1_6727Tmin(|Rel/iD/m —

Hence, we have
-1
. 1 1 1
et (-2)
14

and similarly

1 Va(l +0(a2)

-l 2

Va(l+0(a?)
e

Substituting these expressions into (4.6), we see that there is an ag > 0 so that

|PyPYes| =

(4.6) 2 |PyPes| | P1PYes| 4o
< <
1T () Lexoxg,) < < [Revs| ' [Rewvt| ) =

per 1 — e—27min(|Revy|)/k w

for all 0 < a < g as claimed.
Next, we establish (4.11) by using the estimate (4.8) in the expression (4.7) with

k = 1. Since
2i

o2
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we see that PyA™ ey = o®. Hence, (4.7)-(4.8) with k =1 for g € X[, yield

(4.7)
[T (a)glxs,, < |P1A7156291|Xger+|P1A7162||g|xger

(4.8) ‘P1P562| 1 |P1Pu€2| 1

< _ L el I PA—I

= ('Reys| | |Revt| vt |gfr‘Xger+| 1 62||9|Xger
8

< 5@ loslxp,, +olglxg,,

as claimed.

Finally, we take g € ijer. Calculating Py A= 7e, iteratively for j = 1,2,3 shows
that

P A ey = o2, PiA 2ey = 2ia® 4+ wa?, |PLA 3ey| < 5at,
and (4.7)—(4.8) with k = 3 gives
T (a)g + a?g + Ziaggx|xger < |P1A*3Seggwm|xo + wa4|gx|xger+ |PLA™3e5|| g2 | x0
Der

per
<4 |P1Ps€2| 1 |P1Pu62‘ 1
U [Rews| P [Rewt P nP
+ (5 +w)alglxz,
S COa4|g|Xg’er7

|gzx9:|X0

per

which completes the proof of (4.12). 0

Next, we consider the eigenvalue problem (3.2) for the u-component, which is
given by the differential equation
(4.15)

2i 1
um<al+w> um+?u+(>\ff1(x))uff2(x)v u € C, 0<z<2r/k.

We will vary X in the rectangle Ar of width 2R and height one that we defined

in (3.1). For fixed functions fi,fo € X3, we define the multiplication operators

B1(\), By € L(XY) via Bi(A)v := (XA — fi(x))v and Byv := —fov and note that the
map

By :Ag — L(X%), X+ Bi(\)
is analytic. The next result establishes the existence of 27 /k-periodic solutions of
(4.15).

PROPOSITION 4.4. For each fized choice of R > 0, w > 0, and fi,f> € XY

per’
there are constants a; > 0 and C; > 0 so that the following is true. For each

(A, @) € Ag x [—a1,a1]\ {0} and v € X°, (4.15) has a unique 27 /k-periodic solution
u="D(\a)g € X?, where

D\, @) = (1 —T(a)B1(\) T (a)Bs.
The function
D(,a): Arp — L(X°, X)), Ar— D\ )

is well defined and analytic in X for each fized o € [—a, o] \ {0}, and we have
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(4.16) HD()\,CY)||L(XO7X0 ) < Cia, HD/\OHO‘)HL(XO,XO ) < Cla2.

per per

Finally, setting D(X,0) := 0, the mapping D : Ap x [—on, ] — L(XY, X3,,) is
analytic in A, and D and its derivatives in A\ are continuous in c.

Proof. The eigenvalue problem (4.15) coincides with (4.10) provided we set g(z) =
Bi(M)u + Bav in (4.10). Lemma 4.3 therefore shows that there is an ag > 0 so that
(4.15) has a solution u € X? for some a € (0, ag] if and only u € X7, satisfies

(4.17) u="T(a)(Bi(A\)u+ Bav),

where T '(a) has been defined in Lemma 4.3. We set M := max(| fi|xg,, + R, |f2]xq,,)

and note that Lemma 4.3 implies that there is a constant C so that the estimates
T () Bi(N)|Lxa,,) < CoMa, [T () Bzl (x0,x0,,) < CoMa

hold uniformly in (A, &) € Ag x (0, ag]. Choosing «; := min(«p, ﬁ), we see that
[T () Bi(M | xo,, < 3 for (A\,@) € Ag x (0,1], and the fixed-point equation (4.17)
therefore has a unique solution

u=(1-T(a)Bi(\) T (a)Byv =: D\, a)v
in X0, for each (A, &) € Ag x (0,a1] and v € X°. Furthermore, we have

D\, a) = (1 —T(a)Bi(\) " 'T(a)By € L(X°, X°,)

per

with

1D a)llpexo,xo,,) = 11 = T(@)Bi(A\) " lzx,,)

per per

< 2| T () Bz|| x0,x0_y < 2CoMa

per

T () Bz| L(x0,x0.,)

per

for (\,a) € Ag x (0, aq].
Analyticity of D(A, ) in A follows from analyticity of By(A). To estimate the
derivative Dy (A, «), we differentiate the identity

(1= T(a)B1(AN)D(A ) = T () By
with respect to A\ to get
aB

dA

Since 4B1(X) = 1, we find

—T(a) (AM)D(A ) + (1 = T () B1(N)Da(A, ) = 0.

D\, @) = (1 = T(a)B1(N) " T ()D(A, @)
and therefore

DA, @)l Lxo,xq,,)

< (1= T(@B1(M) ™ llxo xs.)
< 4C2Mo?

T( @) xg

per

D()\, Oé) ”L(XO,XU )

per

as claimed. Note that D(), o) and its derivatives in A converge to zero in L(X°, XJ,)

as a \, 0, and we can therefore extend D(\, o) into o = 0 by setting D(A\,0) =0. O
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4.4. Solutions to the linearized eigenvalue problem for the v-component
for 6 = 0. It remains to find nontrivial 27 /k-periodic solutions of the eigenvalue
problem (3.3), given by

(4.18) AV = wu, + gu + g1(2)u,

where u = D()\, a)v is the unique 27/k-periodic solution of (4.15) for a given function
v, whose existence was shown in Proposition 4.4. Our first result shows existence of
solutions to (4.18) without enforcing periodicity in x.

LEMMA 4.5. Fizr R > 0, w > 0, g € R, and f1, fo,q1 € chr, then there are
constants as > 0 and Cy > 0 so that the following is true. For each (A, a) € Ag X
[—ag, as] \ {0}, (4.18) with u = D(\, a)v has a nontrivial solution v = C(\,a) € X1,
and this solution is unique up to a constant factor. In addition the following are true:

e We have
(419)  C(\ @) = (1+ Q(\ ) te?—9z/w,
(4.20) |
[Q()\,a)h](x) = %/0 e(’\_g)(z_y)/“m(y)[l)()\,a)h](y) dy, he X0

o For each fizred o € [—ag, o] \ {0}, the mappings
Q(-,a): Ar — L(X%), A= Q(\, a), C(,a): Ar — X A= C(\ )

are analytic in A with

k

(4.21) C\ o) <Oy

AR o

< CQav ' d

[0,
’ (A a) — e~ g)w/w‘xo < Cha

L(XO)

for k = 0,1 uniformly in (A, @) € Agr x (0, ag]. Furthermore, setting Q(X,0) =
0 and C(A\,0) =0 shows that Q and C are analytic in A and continuous in o
on Ag X [—az, as].
Proof. Let aq be the constant from Proposition 4.4. For each 0 < a < a1, a
=1

function v € X! is then a solution of (4.18) for u = D(\, a)v with v(0) if and
only if v € X0 satisfies the fixed-point equation

; / " eADE g, () DA, a)o](y) dy
0

— D/ (O3, a)o](x).

v(z) = W92/ _

Using the estimates for D(A, &) from Proposition 4.4, we have

1 271'/
1 / =DA% 4y DO, )5 x0) |91 xo
0

w per

1R, @)l (xo)

IN

< 2T 2B/ 0 = (e,
WK

In particular, setting as := min(ay, %), we can solve the fixed-point equation
1

v=eP"92/v _ 9\ a)
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uniquely for v for each (A, ) € Ag X (0, az] to get
v=C(\a):=(1+Q(\a)) eP-9z/w,

Furthermore,

IC(\, @)| xo < 227 EHID/(v0) —. G
IC(\, @) — eP=97/%] o = |[Q(N, @)C(\, )| xo < C1Cha,
and setting Co := max(é’l, Cy, C4 C’g) completes the proof of the estimates. Finally,

analyticity of D(A, «) implies analyticity of Q(\, @) and C(\, «), and the estimates for
the derivatives in A follow in a similar fashion. 0

Our next result characterizes the set of A € A for which the eigenvalue problem

2i 1
(4.22) A= Uy + (Oj + o.)) Uz = 5 + fi(@)u + fo(z)v,
(4.23) AV = wuy + gu + g1 (x)u

has a nontrivial 27 /k-periodic solution for an appropriate |a| < 1.

PROPOSITION 4.6. Fiz w >0, g € R, R > |g|, and f1, f2,91 € Xper, then there
are constants ag > 0 and Cs > 0 so that the following is true. There is a unique
function NS : [—as,a3] = Ag so that (4.22)—(4.23) has a nontrivial 27 /k-periodic
solution for (A\,a) € A X [—ag,as] if and only if X = Xj(«). Furthermore, upon
defining the real constants

K 27 /K K 27 /K

A= o ; f2(z)g1(z) dz, Ag = o ; f3(@)g1(z) dz,

we have the expansion
INs (@) — (7 + Xoa® 4 2iNz3a?®)| < Cza?
for the dispersion curve, and the associated eigenfunctions (u,v)(x; ) satisfy
[u(es) — (02fa() + 2i0” fy(@))] , < Cra
[v(z:0) = (14 a?va(2) + 2ia’vs(w))| < Caa,

where

@ = (e [ Rwad). w1 (- [ Beamw).

Proof. We will use the notation and constants introduced in Lemma 4.5. Propo-
sition 4.6 and Lemma 4.5 show that (4.22)—(4.23) has a nontrivial solution (u,v) €
X2 x X}, for some (A, o) € Arx (0, ag] if and only if (u,v) = (D(X, @)C(X, @), C(A, )

with v(2m/k) = v(0). It therefore suffices to solve A(\, o) :=v(27/K) —

c Xger X Xger
v(0) = 0. Using the expression for C(A, a) from Lemma 4.5, we can write A(\, ) as

~ 1 27 /K B
AQa) = @09/ 1 LT ocmeen g, D03 ) ) ay
0

(4.24) = 2" (=9)/(xw) _ 1 _[Q(N, a)C(N, a)] (27/K)
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and conclude that A(A, ) is analytic in A\. Lemma 4.5 shows that
[QMN, @)C(N, )] (27/K)] < [[QMA, @)l L(x0)[C(A, @) xo < Clav.
Using the extensions of Q and C into a = 0, it follows that
A(X0) = e27(A=9)/(rw) _q

so that A = § € Ag is the only solution in Ap when a = 0. Since Ax(g,0) =
27 /(kw) # 0, we can solve A(X, @) = 0 near (g,0) uniquely by the implicit function
theorem and conclude that there is an a3 > 0 and a unique function \? : [0, 3] — C
with A2(0) = g so that A(\,a) = 0 for (A, @) € Ag x [0, as] if and only if A = \(a).

It remains to establish the expansions for A = A\%(a) and the associated solutions
(u,v) = (u,v)(z;a) of (4.22)—(4.23). Setting By(A)v := (A — fi(x))v and Bav :=
— fov, we can represent (u,v,A) via

.25 u = a)v=(1—-T(x)B; - o) Bav
(4.25) DA\, a)v = (1 = T()Bi(\)) T (a)Bav,

_ 1 z _
(4.26) v= o — ~ / A==/ g, (y)u(y) dy,

0
~ 1 27 /K -
(4.27) e / A= DCT/m=0)]w g, (y)u(y) dy,
0

where )\ is always given by A\?(a). Throughout, we will denote by C a constant that
depends only on w, g, R, |f1\Xger, |f2|X8ew and |91|X§’er and that may change from
estimate to estimate. We will use Landau symbols only when we can estimate them
by such a constant multiplied by the argument of the Landau symbol.

First, (4.21) shows that v = C(A\«(a), @) = O(1). Equation (4.25) and the estimate
(4.16) for D then imply that u = O(«), and using this estimate in (4.27) proves that

A (a) = g+ O(a). Using these expansions in (4.26), we conclude that

N s
v=1+0(a), vy= A-g 9@,
w w

= O(a),

and we therefore have |v| X1, < C for a constant C' as above. Using the estimate
[T (2)g]x0,, < COO‘2|9|X§,er from Lemma 4.3, we obtain from (4.25) that

Julxs,, < [[(1 =T () Bi(N) ™ pxo,xo,) T (@) Bav|xs,, < 2Co0?|Bav|xs, < 2CoCa?,
which shows that u = O(a?). Using this estimate for u in (4.27) gives

(4.28) M(a) =: g+ Xa(a), A2(a) = O(a?)

and therefore

MU — Mu = 0(a?).

w

Vyp =

In particular, we can write v =1+ 0 with [0]x1 < Ca?.
Next, we verify the expansion for u. We write

(4.29) u=a’fy + 2’ fy + i
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and need to show that & = O(a*). Equation (4.25) can be written as u = T (a) By (A)u—
T (a)(f2v), and substituting our expression for u as well as v = 1+ into this equation
gives

(4.30) a2 fy + 20 fy 4+ 1 = T () Bi(\) f2 + 2i®T (a)B1(N) f5 + T (@) B1(\)a
= T(a)f2 = T(@)(f20).

Since By (\) f2 and B () f3 are in X[, and | f20]x1 = O(a?), we can use the estimate
(4.11) to get

|oz27(a)B1(/\)f2 + 23T (@) By (\) f5 + T(a)(f217)|chr < Cat.

Furthermore, since fo € X3, (4.12) shows that

|T(a)fo 4+ fo + 2ia3f2’|X0 < Ca’.
Hence, (4.30) becomes
i =T (e)Bi(A)i+ O(a?)

in X9, and since || T (a)B1(A)||L(x0) < 3, we conclude that |i|yo < Ca? as claimed.
Our last step is to verify the expansions for v and A(«). We substitute the

expansions (4.28) and (4.29) into (4.26) to get

1

f/ =D g, (y)uly) dy

— oA —D)z/w _
v(r) =e 2 ),

— re(@)z/w _ % /gﬂ 2 (@E=0)/@ g, (4) (o fo(y) + 2ia® f4(y) + O(at)) dy
0
/\ 2 x i 3 x
_ [1 4 22(0) x} - / 01 () faly) dy — 22 / B W) o) dy +0(ah).

We know that v(0) = v(27/k) which shows that

Oézlf 27 /K

or a1y f2(y)dy +

=: Aaa? + 2iN3a° + O(a4)

20’k
2T

27 /K
Mo(a) = / @) i) dy +0(at)

as claimed. Substituting this expression into the expansion for v gives

w

a? ¥ 2ia? ¥
o) =142 (o= [T + 25 (e [ a0 a)+ ol
0 0
This completes the proof of Proposition 4.6 and the construction of the spectral
expansion for the case § = 0. 0

We emphasize that the results in this section extend immediately to the case
where the coefficient g is a 27/k-periodic function and not a constant.

4.5. Periodic solutions of linear second-order equations with center
directions. In preparation for the case of § > 0, we seek to find nontrivial periodic
solutions to second-order equations of the form

(431) Ve = b21V + baov, + h(:L'), v eC, 0<x<T,

where the associated first-order system is not guaranteed to be hyperbolic.
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LEMMA 4.7. Fiz T > 0 and coefficients ba1,baa. Assume that there is an r > 0
such that the eigenvalues n°,n° of the matriz B := (bzl bm) satisfy Ren® < —2r and
|Ren®| < r; then the following is true. For each h € X°, (4.31) has a T-periodic
solution v(x ) € X2, if and only if (i) there exists an a® € E° so that

(4.32) v(x):Pl(W a© + [Jh)(z )), 0<z<T

where
T ensm T s
[Jh](z) = / " (=5 Peeyh(s) ds + 7571/ e (T=3) Pse,h(s) ds
0 L—em Jo
+ / e @=3) Psesyh(s) ds
0
and (ii)
(4.33) (" T —1)a® 4 [PSJh)(T) = 0.

Proof. We write (4.31) as the system

(4.34) v, — (bgl b;) V4 (h(%;)) — BV + esh(z), V= <U”> .

Enforcing periodicity in the stable direction as in Lemma 4.1 and using the variation-
of-constants formula in the center direction establishes the expression (4.32) of the
solution v(x) in X?. The solution v lies in X2 . if and only if V(T') — V(0) = 0. Since

Ps(V(T)—V(0)) = 0 by construction, this condition reduces to P*(V(T') -V (0)) = 0,
and substituting the expressions for V(0) and V(T') gives (4.33). ad

4.6. Solutions to the linearized eigenvalue problem for 6 > 0. The next
result focuses on the eigenvalue problem

2i 1
(4.35 = st (2 4) s = Gk St Rl
o
(4.36) AV = Uz + 49 +tw)v, — iv + g1 (x)u+gv
«@ a?

for 0 < § < 1. For each fixed 6 > 0, we will identify values of (A, ) for which
(4.35)—(4.36) has a nontrivial 27r/k-periodic solution.

Theorem 2. Fiz w > 0 and g € R, and assume that f1, f2,gq1 are given 27 /k-
periodic functions of class C*; then there are constants &y,so > 0 and functions
OZ*, A [—80,8()] X (0,(50] — C with

(4.37) ot (s,6) = % (s +1/82 + 4\/S> :

(4.38) A*(,5) :{ Ml +0(3) 20

so that (4.35)—(4.36) has a nontrivial 2w /k-periodic solution when (o, \) = (a*, \*)
(s,9).
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Proof. Fix R > |g|, and let A vary in Ag. Throughout, we will denote by C a
constant that depends only on w, g, R, \f1|Xger, |f2|XSer’ and |gl|Xger and that may
change from estimate to estimate. We will use Landau symbols only when we can
estimate them by such a constant multiplied by the argument of the Landau symbol.

We showed in Proposition 4.4 that for each given v € X° the unique solution
of (4.35) is given by u = D(A\,a)v € X2, and it therefore suffices to solve (4.36)
with u = D(\,a)v. Throughout the proof, we will use the scaling § = o?3% with
0 < a,B < 1. These results hold for |a| < 1, and as before, the proofs consider the

case « > 0 for clarity. With these definitions, (4.36) becomes

: 2 A 2 _ 5
139 o= (0 o4 (ST o @O @)

We will use Lemma 4.7 to reformulate (4.39) as a fixed-point problem. The roots
of the characteristic equation

i + A+ B —g
7= () (M)

associated with (4.39) are given by

A+3%2—3 9 w+ O(a8?)
(4'40) 77C(>\, aaﬂ) = Y + O(aﬁ ), ns()\,a,ﬁ) = _Tﬂ?
These expressions are analytic in A € Ag with |Ren®| < C, Ren® < 72;2%27 and
In3V° (A, o, B)] < C uniformly in Ar. Hence, there is an oy so that the assumptions of
Lemma 4.7 are met for 0 < a < ay. We conclude that (4.39) has a nontrivial solution
v € X? if and only if

(4.41)

C 1
v=e"aBrp e J (N, «, 8)BsD(\, a)v, T\ a,B) = aTﬁzpl‘](/\’ a, f)
for some a¢ € E°, where Bz € L(X") is given by [Bsv](z) = g1(z)v(x), the operator

J(\, a, B) € L(X?) is defined by

[J()\,a7ﬁ)h]($) — / G"C(’\’O"B)(I‘S)PC(A,a,ﬁ)egh(s) ds
0
ens(Avaxﬁ)w

+ 1 — e2mm*(\a,B)/k

2 /K
/ e MaB)2m/n=9) S\ o, B)esh(s) ds
0
+ / ens(/\,o(,ﬂ)(:rfs)PS()\’ a’ ﬂ)BQh(S) ds,
0

and the center and stable spectral projections are of the form
Pvas) = —— (L) -2),  Povas = — (7)) (ne)
, _1_%: nc ) ns ) y _1_%: 1 777 .

To solve the fixed-point problem (4.41), it suffices to show that JBsD lies in
L(X?) and has norm strictly less than one. In addition to proving this contraction
property, we will derive an expansion of 7, as this will help us find expansions of the
dispersion curve. We define
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(4.42) [TENR)(x) == 1 /T e(A_g)(”‘s)/“h(s) ds

W Jo

and set

TN, p) =T N, )+ TN, B), TP\ a,p) = LPlPC’SJ(/\,Oé,ﬁ)-

o232
Using the identities
(4.43) ! P P\, Bleg = __t 1 + O(aB?)
' g R = G e T

z§§3?@ﬂﬁwf4§+omﬁ>

and proceeding as in the proof of Lemma 4.2, we obtain

P P L] B =
I O P el

< |R§ns| < Ca?p?,
(4.40) 170, 5) = T Wlacxs) < O

Hence, ||[T(\,a,B)|r(xey < C, and a similar estimate shows that we also have
|Tx(N, a0, B)||L(xoy < C, which we will use below. Using the estimate (4.16) for
D, we conclude that

| T (X, 0, B)BsD(X, @) || (x0) < Clgi|x0Cra < Ca.

Thus, there is an a4 > 0 such that (4.41) has a unique (up to scalar multiples)
nontrivial solution v € X? for each (A, a, ) with A € A, 0 < a < ay,and 0 < 3 <1,
and upon setting a® = (1,7°)? this solution is given by

v=(1+J(\a,B)BsD(\,a)) " el e
= (1 + joc(A)B?,’D(A, Oé))il e(Afg)I/W + O(ﬂ2)7

where we used (4.40), (4.45), and (8).

It remains to solve the periodicity condition (4.33) with a® as given above. Since
PP =1 on E° we can apply P; to (4.33), which upon using again the estimates
(4.40), (4.45), and (8) results in the equivalent equation

(4.47)
A\, a, ) := 2™ )k _ g

- [JC()\,a,ﬁ)BgD()\,a) (1 +J(A,a,ﬁ)ng(A,a))*le"c“vavﬂ)w} (27 /k)
_ 2RO g) (k) _

~ [FEVBD( ) (14 Tg (N BsD(A, ) =92/ (2 /k) + O(a?)
—0
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that we need to solve. Comparing (4.42) and (8) with the expressions (4.19) and
(4.20) for the solutions of the § = 0 equation, we see that we can write (8) as

(4.48) A(\ a, B) = 2T OFF=0)/(50) _ 1 _[Q(), a)C(\, @)] (27/k) + O(aB?) = 0.

We showed in the proof of Proposition 4.6 that the equation A(\, a, 0) = 0 with
B = 0 has the unique solution A = A\j(a) = g+ O(a?) so that A(\j(a),a,0) = 0
for all a.. Hence, setting A = Af(«) + ¢ with p near zero, we see that (4.48) can be
written as

AN (@) + ps e, B) = Ao (@) + s v, B) = A(Ag (@), v, 0)
— 2r(N (@) +u+B2=g)/(sw) _ 2m(A5(@)=7)/ (kw)
= [Qo(@) + 1, )C(Ag(a) + 1, )
—Q(A5(a), )C(AG (@), a)] (27 /k) + O(ap?).
Next, the estimates (4.21) for Q and C imply that

d
QAR )| <o

for all (A, «). Thus, (4.48) becomes
AG(@) + 1,0, 8) = 2 -+ §) + Ol + 5717) + Olam) + O(af?) = 0,

which we can solve uniquely for p = p*(a, 8) with p*(a, 8) = —B%(1 + O(«a)). In
summary, we proved that (8) has a solution (A, @, 3) € Ag % (0, a4], (0, B4] if and
only if

(4.49) A=M(a,8) with M(a,B) = Ni(a) — 2 (1+ O(a)).

Finally, for each fixed § > 0, we parameterize the curve § = o232 in order to
write A* = \*(s,0). Define

(4.50) (afs,9),8(s,9)) = % <s +\/s2+4V6, —s+\/s2+ 4\/3)

for |s| < 1. Then,

(57 0)’ S Z 0’

(451) (a(5,0), B(5,0)) = {(0, ), s<0,

and maxs<; |(cr, B)(s,6) — (o, B)(s,0)| < 6¥/4. Using (4.50), write A*(s,6) := A*(a(s,
3),8(s,0)), and from (4.49) we find

(4.52) X*(5,8) = Nj (a5, 8)) — 52(s,6) (1 + O(a(s,)))

For § small, we have

Ao(a(s,8)) = Ag(s), s=0,

Aj(as,8)) = Ay(a(s,0)) = {Ag sy k2

hence

(4.53) Aa(a(s,6)) — A(als, 0)] = O(a®) = O(5"/2) Ws| < 1.
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Thus, using formulation (4.52) along with estimates in (4.51) and (4.53), we find that
there exist sy, d, > 0 such that

61/2 >0

A*(s,0) =9 _ (S)2+ ( >14 1/2 o

s? (L+0(5'4)) + 0(s%/?), s <o,
uniformly in |s| < s, and 0 < § < d,. Hence, we have proved that (4.35)—(4.36) has a
nontrivial 27 /k-periodic solution if and only if A = A.(s,d) as defined above. d
5. Predictions for spiral waves on bounded disks when & = 0. The

essential spectrum does not supply stability information for spirals on bounded disks
of radius R; instead the absolute spectrum is relevant. The absolute spectrum provides
limit points to which infinitely many discrete eigenvalues converge to as R — oo
[21, 22]. For bounded domains, the essential spectrum nevertheless furnishes useful
knowledge of the spatial eigenvalue distribution, which is exploited in Theorem 3 to
predict absolute spectrum locations. As the absolute spectrum and spatial eigenvalues
are described in detail in [7, 21, 22, 20, 9], we provide only a brief description of these
topics.

For each A € C, there exist infinitely many spatial eigenvalues v € C and eigen-
functions that satisfy relation (2.4). Spatial eigenvalues v depend continuously on
A. For A > 1, we divide v into two disjoint groups labeled “left” for those v with
Rerv < 0 and “right” for those v with Rerv > 0. Spatial eigenvalues v will retain
their labels even if their real part changes sign as A varies. The essential spectrum is
defined by the set of A for which there exists a purely imaginary spatial eigenvalue.
When crossing a positively (negatively) orientated essential spectrum curve from right
to left, a right (left) spatial eigenvalue crosses the imaginary axis. The absolute spec-
trum is defined as values of A\ for which one right and one left spatial eigenvalue have
precisely the same real part: the absolute spectrum must necessarily lie to the left of
an essential spectrum branch.

For the scenario § = 0, there are three essential spectrum curves that influence
the possible locations of the absolute spectrum. We denote the essential spectrum
curve that is tangent to the imaginary axis by X% and the two curves that form the
cusp by %! and ©%2. Next, we denote the region of the A-plane enclosed by X

ess ess” ess)?
$oland $52 by Q. Furthermore, we label the spatial eigenvalues that lie on iR
along these essential spectrum curves as vy, v, , and Vfr , where the superscripts give
the sign of Re v; for A > 1 and subscripts designate the order in which the spatial
eigenvalues cross the imaginary axis.

Two separate cases emerge for the orientation of essential spectrum branches that
compose the cusp structure at A\g. The curve orientation is dictated by the sign of
the imaginary o® term in A\?(a). A positive coefficient (Case 1) leads to £512 having
the same orientation as ESSS, and a negative coefficient (Case 2) produces curves of
opposite orientation (see Figure 3). In both cases, X0 is negatively oriented, and
crossing this curve from right to left results in the spatial eigenvalue v, crossing the
imaginary axis (Figure 3). Theorem 3 builds on the setting and results stated in

Theorem 1 to predict the locations of the absolute spectrum for each case.

THEOREM 3. Assume that the conditions of Theorem 1 are satisfied so that the
essential spectrum for § = 0 is given by A\j(a) = Ao + A2a? + 2idza® + o(a?), where
Ao := g and expressions for Ay 3 were given in Proposition 4.6. For Aa < 0, predictions
of absolute spectrum locations are as follows.
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el 9] Im(2) Im(2)
ess X
% p—
| u
oX
n 0 0
N ess o o)
Dabs o X e -
u "o | X [ v
\ (m] X ] e (V) o Re(v)
ye2 vy v
(a) Case 1.

Fic. 3. Schematic illustration for two cases of essential spectrum branches. Arrows on essential
spectrum branches indicate the orientation. Insets show the distribution of spatial eigenvalues v(\):
crosses (squares) indicate spatial eigenvalues v(X) that have positive (negative) real part for A >
1. Shaded region between essential spectrum curves is denoted Q. (a) Case 1 (A3 > 0): Same
orientation of essential spectrum branches, leading to the absolute spectrum falling to the left of the
cusp point. (b) Case 2 (A3 < 0): Opposite orientation of essential spectrum branches, leading to
the absolute spectrum to the right of the cusp point.

1. Case 1 (A3 > 0): If Re vy (\) < Re vi (\) for all X € Q, then there are no
absolute spectra curves within Q. Moreover, locally the absolute spectrum is
given by the set

Sas={A€C: X=X —1% 0<7r<rp}

for some small real ro > 0.
2. Case 2 (A3 <0): The set Q@ contains a curve of absolute spectrum.

The proof of Theorem 3 follows from arguments of the orientation of essential
spectrum curves and crossings of spatial eigenvalues. If A3 = 0, the result holds by
replacing A3 with the leading-order nonzero imaginary term in A{(«).

Proof. Case 1: First, the orientation of essential spectrum curves and assumption
on the spatial eigenvalues ensures there is no absolute spectrum curve within Q (see
schematic in Figure 3(a)). An absolute spectrum curve will be given by the set of A
for which left and right spatial eigenvalues have the same positive real part.

We use \2(a) to solve locally for o = a()) to find the spatial eigenvalues given
by v = iy = i/a. We have \)(a) = \g — Aaa? + iA3a® which is written such that
A2, Az > 0. After shifting the curve by A\, we want to find solutions a/(\) of

(5.1) Fla,\) = —Aoa? +id3a® — A =0

and determine for which values of A two spatial eigenvalues have the same real part.
Using a Newton’s polygon, set o = A'/2w, which transforms (5.1) to

—Xow? +iAgAY 2w —1 = 0.
Near A = 0, we have w? = —1/)s, and there are two unique roots a; o = A/2w; 2(A'/?)
of (5.1), where w; 2 are analytic in A2 and w1 ,2(0) = %i/+/A2. The third root of

(5.1) for A near zero is found by by solving (5.1) for a near a = —i\y/ A3, which results
in az(A\) = —id2/A3 + O(\). Mapping these a-roots to v =i/« gives
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vi(A) = W = \/?(1 +0(\2)),

) = S = 21+ 00,
() = =32 + 00

The two relevant spatial eigenvalues are vy and v5. We set Re vy = Re 15, which holds
to leading order in A precisely when Rev; 5 = 0, that is, when A < 0. Thus, locally
near Ao, there exists a small 79 > 0 such that an absolute spectrum curve is given by

EabS:{)\ECZ)\:)\Q—TQ, 0<T<T0}.

Case 2: The results for Case 2 follow from the orientations of the essential spec-
trum curves. Upon crossing ¥ from right to left a left spatial eigenvalue crosses the
imaginary axis. Crossing X412 from right to left results in a right spatial eigenvalue
crossing the imaginary axis. Since spatial eigenvalues are analytic in A, there must
be values of A € ) for which the real parts of the right and left spatial eigenvalues

coincide to give an absolute spectrum curve. ]

In Case 1, we prove the existence of an absolute spectrum branch locally near
Ao which extends leftward in the complex plane. Theorem 3 guarantees the existence
of a spectral curve within €2 for Case 2, signifying that these models can undergo an
absolute instability if 2 reaches into the positive half plane.

6. Application to Barkley and Karma models. In this section, the results
of Theorems 1-3 are applied to planar spiral waves formed in the Barkley and Karma
models, which are well-studied nonlinear reaction-diffusion systems [3, 4, 24, 23, 12,
13, 6, 10, 11]. As we will see, these two models also furnish examples of the two
absolute spectrum cases.

6.1. Barkley model. The Barkley model is given by

1
uy = Au+ —u(l —u) (u—vl_b),
€

vy = 0AV+u— v,

where we fix parameters a = 0.7, b = 0.001, and € = 0.02. For these parameters, there
is numerical evidence that a stable spiral wave exists [2]. The effects of removing
diffusion are studied by modifying the diffusion coefficient § for the slowly diffusing
species v in the interval [0,0.2]. The angular frequency changes with § and falls
between wy = 1.87 (§ = 0.2) and wg = 2.09 (§ = 0). Note that g = —1.

Essential spectrum curves are calculated using numerical continuation methods
on system (2.6) as described in [18]. Computations are performed with MATLAB
on a 256 grid point periodic domain with Fourier spectral methods used for spatial
derivatives. Below, these numerically computed spectral curves will be compared to
the analytical predictions.

Figure 4 shows essential spectrum curves of the spiral wave calculated for 6 = 0
and § = 0.2. Vertically periodicity of the branches arises due to the Floquet symmetry
of the spiral eigenfunctions. As noted above and as indicated in the theorems, the
curves look very different for these two cases. For § = 0.2, the curves are unbounded.
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Fic. 5. Essential spectra for the Barkley model under changing diffusion. Inset at top right
focuses on area near Ao.

In the case § = 0, adjacent branches meet at the limit points Ay and form cusps. The
limit points are predicted to be A\g = —1 + iwgn.

Numerically computed curves for decreasing § are shown in Figure 5 with the
inset focusing on the region near \g. For small, nonzero values of , curves begin to
turn toward the \g limit point before diverging.

We verify the form of \2(a) computed in Theorem 1 by analyzing the convergence
of numerically computed spectral curves; denote these curves by A.. From \}(a), we
expect Re (JAc — Ao|) = O(a?) and Im (|]A. — \g|) = O(a?). Log-log plots of the
convergence are shown in Figure 6 and show the O(a?) dependence of the real terms.
Note that Im (|]A. — Ao|) = O(a®). This leads to the following observation.

COROLLARY 6.1. If the linearized term g1 () is a constant, then A3 = 0 in \(a).

This corollary is immediately proved by integrating A3 and using the periodicity of
fa(z). The linearization g;(x) = 1 in the Barkley model, and Corollary 6.1 therefore
applies.

Numerical computations of absolute spectra following methods in [18] for § = 0
and § = 0.2 are shown in Figure 1. There is an exceptional difference between the
two: the Y-shaped branches present for § = 0.2 are replaced by short segments that
lie to the left of the essential spectrum branches for 6 = 0.
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Fic. 6. Convergence of real and imaginary parts of the essential spectrum computed with
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Fic. 7. Shown are the essential spectra in the Karma model for § = 0 and 6 = 0.1. When
§ = 0, cusps form in the essential spectrum at Ao = —4 + iwgn.

Under the nonlinearities and parameters used here for the Barkley model, the
orientation of the essential spectrum curves means the system falls into absolute
spectrum Case 1 described in Theorem 3. The numerical computations confirm the
existence of an absolute spectrum branch that emerges leftward from X\ (Figure 1(a)).
Moreover, no absolute spectrum is numerically found within €.

6.2. Karma model. The Karma model is given by

2
up = 1.1Au + 400 (—u + (1.5414 — v*) (1 — tanh(u — 3)) u2) )

vy = 5AU+4 (1_2_#1{95('&_ ].) —'U> 5

where px = 1.2. Asin [1, 12, 13, 6], we consider a smoothed version of the Heaviside
function given by 6,(u) = (1 + tanh(su))/2 for s = 4. Alternans are numerically ob-
served for this set of parameter values [12, 13, 6], and spirals have angular frequencies
of wy =49.81 (6 = 0.1) and wy = 51.66 (6 = 0). Again, there are distinct differences
between the essential and absolute spectra for 6 > 0 and § = 0 in Figure 7. Here,
g=—4.

From Theorem 1 the cusps are predicted to emerge from A\g = —4+iwgn, which is
confirmed numerically (Figure 8). For § = 0, essential spectrum curves in the Karma
model form loops that reverse the branch orientations before forming the cusp point,
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Fic. 8. Formation of cusps in Karma model for § = 0. Loops in the essential spectrum
change the local orientation (indicated by arrows) at the cusp points. Spectra computed by numerical
continuation.

and a computation shows that A3 < 0. Thus, the Karma model falls into absolute
spectrum Case 2, and Theorem 3 predicts absolute spectrum to the right of Ag in
region 2. The numerical computation of the absolute spectrum shown in Figure 8
confirms this prediction.

Furthermore, the existence of leading absolute spectrum branches in ) grants the
possibility of the system undergoing an absolute instability. In fact, regardless of §
these branches do destabilize when the system parameter py is increased above 1.4.

7. Discussion.

Summary. The central question we pursued is how the continuous spectra of
planar spiral waves behave in the limit of vanishing diffusion in one of the components
of a reaction-diffusion system. We found that these spectra behave discontinuously
near cusp points of the essential spectrum of the zero-diffusion limit. We also priovide
explicit expansions of these spectra in the spatial Floquet exponent 1/a and the small
diffusion coefficient § that hold for 0 < a <« 1 and 0 < § <« 1 and whose coefficients
are determined by the diffusionless variable. We verified these predictions numerically
in the Barkley and Karma models.

We also discussed the absolute spectra of spiral waves on bounded disks for 6 = 0.
The sign of A3 from \J(a) divides models into the two distinct cases described in
Theorem 3. Absolute spectra lie strictly outside of the region Q if A3 > 0. If instead
A3 < 0, then there is absolute spectrum inside €. These two cases occur in the Barkley
and Karma models as demonstrated in section 6.

Wave train spectra. As mentioned in the introduction, the essential spectra
of the asymptotic wave trains depend smoothly on ¢ in the zero-diffusion limit [17].
Interestingly, cusp points are not observed for the essential spectra of these wave
trains when 6 = 0. Figure 9 shows essential spectra for the wave train in the Barkley
model for decreasing values of §. The limiting behavior of the wave train essential
spectrum can be obtained directly from the spectral relationship (2.4) and is given by

i

A (@) = Ao + Xaa® +idza® +w (a) +o(at).
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FiG. 9. Essential spectrum of wave trains in the Barkley model limits to a vertical branch under
§— 0.

Only the imaginary parts of the spectra differ between A2 () and A(«). In the
limit o — 0, we have Re \?(a) — g, implying Re A% () — g, but Im A2 («) becomes
infinite due to the addition of the imaginary 1/« term.

For the spiral wave at 6 = 0, the limit points Ay arise because the v-equation
decouples at small values of o. To further understand the origins of the differences
between wave train and spiral spectra, consider the linear dispersion relation for the
wave train in the co-moving frame:

D0y + )’V 4w(@ +v)V + Fy(Uss(2))V — AoV = 0.

For a two-variable system as studied above with § = 0 and v = iy, the v-equation
takes the form

AoV = w (Op +17) v+ g1 (z)u + gv.

Here, the v-equation still retains direct input from -y, unlike the corresponding equa-
tion for the spiral (4.18). The « provides an unbounded term for which A, must
compensate in order to retain bounded eigenfunctions.

Outlook. There are a number of questions that we did not address. One such
question is whether persistence of planar spiral waves that are assumed to exist for
0 = 0 into the region 0 < § < 1 could be established using singular perturbation
theory. Similarly, we discussed only the essential spectra of planar spiral waves in the
vanishing-diffusion limit, and the behavior of point spectrum was not addressed here.
Moreover, we focused on two-component system, and it is natural to ask whether our
results hold for general n-component systems, potentially with several nondiffusing
variables: we expect that each nondiffusing variable creates its own cusps but have
not attempted to prove this. Finally, while Theorem 1 remains true if we allow g to
be a 2w /k-periodic function, we did not prove the same for Theorem 2, though we
expect this to hold as well.

On bounded disks, the spectrum consists entirely of discrete eigenvalues, which fall
into disjoint sets that either align along curves of the absolute spectrum, are members
of the extended point spectrum, or arise from the imposed boundary conditions [21,
22]. Theorem 3 predicts the locations of absolute spectrum depending on the sign of
A3, but the effect of vanishing diffusion on boundary and extended point spectrum
remains an open question.

We leave the reader with a word of caution: the essential spectrum may be
significantly different in the two cases of small positive and zero diffusion 6. This

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/28/22 to 128.148.194.10 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3816

STEPHANIE DODSON AND BJORN SANDSTEDE

fact has potentially significant consequences for the stability of patterns formed in ion
channel models, and care should be taken during computations.
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