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Minimal Realizations and Determinantal
Representations in the Indefinite Setting

Joshua D. Jackson and Hugo J. Woerdeman

Abstract. For a signature matrix J, we show that a rational matrix
function M (z) that is strictly J-contractive on the unit circle T, has a

L . S A B . .
strict J @ J-contractive realization { C D} for an appropriate signature

matrix J; that is, M(z) = D + 2C(I — zA)"'B. As an application,
we use this result to show that a two variable polynomial p(z1,z2) of
degree (n1,n2), n2 = 1, without roots on {(0,0)} U (T x {0})UT? allows
a determinantal representation

p(z1,22) = p(0,0)det(ln,+1 — KZ), Z = z11n, @ 221n,, (1)

where K is a strict J @ J-contraction. This provides first evidence of a
new conjecture that a two variable polynomial p(z1, z2) of degree (n1, n2)
has a determinantal representation (1) with K a strict J & J-contraction
if and only if p(z1, 22) has no roots in {(0,0)} U T=.
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1. Introduction

For rational matrix functions in the one variable Schur class finite dimensional
contractive realizations exist, a result due to Arov [7]. That is, if M(z) is a
rational matrix function that is analytic and contractive on the unit disk,

there exists a contractive block matrix {g g} so that

M(z) =D +20(I —zA)"'B,|z| < 1.
The theory of realizations is of importance in control and systems theory and

in interpolation problems, and it provides a useful tool in operator theory in
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general. The above realization result was used in obtaining a determinantal
representation result for stable polynomials of two variables; see [17] (see also
[12]). Namely, a two variable polynomial p(z1, 22) of degree (nq,ny) without
roots on the open bidisk D?, where D = {z € C : |z| < 1}, can be shown to
allow the representation

p(z1,22) = p(0,0)det(In, 40, — KZ), Z =211, @ 201,

where K is a contraction. We will focus on the case when p(z1, z2) does not
have roots on the closed bidisk, in which case the matrix K can be chosen to
be a strict contraction [12,17].

In this paper we study generalizations of these results where matrices
are no longer contractive in the traditional sense, but now with respect to an
indefinite inner product. Equivalently, the condition I — K K* being positive
definite (notation: I — KK* > 0) is replaced by the condition that J —
KJK* > 0, where J = J* = J~! is a signature matrix representing the
indefinite inner product. The main result presented in Sect. 2 involves a
minimal realization results for rational matrix functions that are strictly J-
contractive. Next, in Sect. 3 we use these results to show that a two variable
polynomial p(z1, 22) of degree (ny, 1) without roots in {(0,0)}U(T x {0})UT?
allows a determinantal representation

p(zlv 22) = p(O’O) det(InlJrn'z - KZ)a Z = Zl]ﬂl D ZQInzv

where K is a J-contraction for an appropriate diagonal signature matrix J.
The negative signature of J is determined by the number of roots of p(z, z)
inside the open unit disk.

2. A Realization Theorem for Rational Matrix Functions

A signature matriz J is an operator that is both self-adjoint and unitary, i.e.
J = J* = J~1. A signature matrix diagonalizes as
+1
J = ..
+1
If J— KJK* > 0, then we call K a strict J-contraction.

Analogous to Arov’s result in the definite case, we will find a strict
J-contractive minimal realizations for rational matrix functions of the same
type. Realizations of J-contractive operator valued functions were studied in
depth in [1-6,10,19] in the context of reproducing kernel Pontryagin spaces,
with the papers [5,10,19] studying general minimal passive realizations of
operator valued generalized Schur functions where the state space as well as
the incoming and outgoing spaces are Pontryagin spaces, the case we study in
this section. The following result is a finite dimensional result addressing the
strict J-contractive case and our main tool is the Hahn—Banach hyperplane
separation theorem.

Theorem 2.1. Suppose M (z) is a square rational matriz function with no
poles on T and J is a signature matriz. Then the following are equivalent:
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L J—M(z)JM(2)* >0 for |z =1,

2. There is a strict J -contraction [é g} for some signature matriz J

J
giving a minimal realization for M(z), i.e.
M(z) =D+ Cz(I —2A)"'B. (2)

Recall that the realization (2) is minimal if the matrix A is of minimal
possible size. The size of this minimal A is the so-called McMillan degree of

The proof of (1) — (2) will rely on using the hyperplane separation
theorem. Indeed, we will be concerned with finding a positive semidefinite
element of the affine space

Lo—&—W:{[gg]—L[gﬂL*:T:T*}, (3)

where L = is fixed and J is some diagonal signature matrix. Note

AB

CD

that Lo corresponds to T' =0, i.e.

I — —-BJB* —BJD*
= |-DJB*J - DJD*|’

and then

T — ATA* —ATC* .
W:{[ _CTA* —CTC*] T=T }

Let PSD denote the cone of positive semidefinite matrices, and PD denote
the cone of positive definite matrices. We will use the trace inner product,
ie. (X,Y) = tr(XY™). With this inner product, the Hermitian matrices of
a fixed size form an inner product space over the reals. We will make use of
the Hahn-Banach Separation Theorem on this inner product space to prove
the following lemma.

Lemma 2.2. Let Lo+W be the affine space (3). If (Lo, K) > 0 for all nonzero
K € PSDNW-, then (Lo + W) N PD # 0.

Proof. We will prove the contrapositive. Suppose (Lo +W)NPD = (). By the
Hahn-Banach Separation Theorem, there exists a hyperplane that separates
Lo +W and PD. That is, there exists a matrix K # 0 and real number ¢
such that (X, K) <cforall X € Lo+ W, and (X, K) > c for all X € PD.

We first claim that we may choose ¢ to be 0. Suppose for the sake of
contradiction that ¢ > 0, so we have (X,K) > ¢ > 0 for all X € PD. If
for some fixed Xg € PD we have (Xy, K) = b, we can choose € < ¢/b, so
that 0 < (eXo,K) < ¢. As eXy € PD, this contradicts that (X,K) > ¢
for all X € PD. We must therefore have that ¢ < 0. We next claim that
we may choose ¢ = 0. If for some Xy € PD we have (X;,K) < 0, then
lim,, .00 (nX1, K) = —o0, which would violate any inequality (X, K) > c.
And thus, (X, K) > 0 for all X € PD, justifying the choice ¢ = 0.

Note also that (X, K) > 0 for all X € PD implies that K € PSD. Next
we claim that K € W=. Suppose, once more for the sake of contradiction,
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that K ¢ W+. Choose a W € W such that (K, W) # 0. Then (Lo +tW, K) =
(Lo, K) + t(W, K) takes on any real value when we let ¢ vary. This violates
that (Lo +tW, K) < 0 for all t. Hence, K € W-.

Let X € Lo+ W. Then X = Lo+ W for some W € W. Then (Lg, K) =
(X, K) <0, where we use that K € W+. O

Now let us suppose that K € PSD N W+, Write K = [CI;* %}, with
P = P* R = R*. We then have

(K, W)y=0 YWeWw
P Q] [T—ATA* —ATC*]\ _ .
— <{Q R} ’ [ _CTA* —CTC*]> =0, V=T
< trPT — trPATA* —trQCTA* — trQ*ATC* — trRCTC* =0,NT =T~
e (P~ A*PA— A"QC — C*Q*A— C*RC,T) =0, VT =T*
< P=A"PA+A"QC +C*Q*"A+ C*"RC

s P=[4* O] [P Q] [A]

Q" R| |C
o 1. . P Q .
Thus the condition that K € W~ is equivalent to K = O R|’ with P =
P*R = R* and P = [A C ] [Q* R} {C’] We may similarly rewrite the

condition that (Lo, K') > 0. Observe the following.

/[P Q| [-BJB* —BJD*
= —trPBJB* —trQDJB* — trQ*BJD* + trRJ — trRDJD*
=trRJ —trB*PBJ —trB*QDJ — trD*Q*BJ — trD*RDJ

=G 1227 7 o] )

We now arrive at a lemma that is equivalent to Lemma 2.2.

Lemma 2.3. If, for every nonzero K = [P Q} > 0 with P = P*,R = R*,

d o
P = [A* C¥] {5 g} {g] : (4)
we have
<R— [B* D*] [(5* %] [g} ,J> > 0, (5)

then there exists a positive definite element of the affine space

(k-3 27}

We will also make use of the following lemma.
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P Q : P Q| .
Lemma 2.4. Suppose {Q* R > 0 satisfies (4). Then O R s a sum of pos-
itive semidefinite rank 1 matrices [5% %ﬂ with P, = [A* C*] [5% %ﬂ {é]
Proof. Since 0" R > 0, we can write {Q* R} = [H} [G H ] Together

with (4), this implies
GG" = (A"G+C"H)(A*"G+ C*H)".

By Douglas’ Lemma [9], there exists a unitary U such that GU = (4*G +
C*H). We diagonalize U as U = VAV* with V, A unitary, A diagonal. Then

GVA = (A*G+ C*H)V.

Write A = diag(e?*), and let coly(X) denote the fth column of a matrix X.
Then

coly(GV) - €% = col,((A*G + C*H)V). (6)

We can then write

o 8= (o (G ) (o ([]9)) == &)

Py Q

O R ] is rank 1, and (6) implies that
¢ 1w

Py = [A* €] [5% gﬂ [g}

for each £. This completes the proof of the lemma. O

where each {

Proof of Theorem 2.1. (2) — (1). Suppose there is a strict [J J} -contraction

é g giving a minimal realization for M (z). As M(z) does not have poles

on T and the realization is minimal, we have that I — zA is invertible for
z € T (see, e.g., [8, Theorem 3.3]). By definition of a J-contraction, we may

write
J 1 [AB][J ][4 Cc*] _ PQl_,
J C D J| |B*D*|  |Q*R
where P = P* and R = R*.
This gives the following identities:

P=J—-AJA* — BJB*,
Q= —AJC* — BJD*,
R=J-CJC*— DJD*,
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We then have (when z is not a pole of M(z)),
J—M(z)JM(z)*
=J—-DJD* —2C(I — 2z2A)"'BJD*
— 2DJB*(I — zA*)"'C*
—22C0(I — 2A)"'BJB*(I — zA*)~'C*,
= R+ CJC* 4+ 20(I — 2zA)"H(Q + AJC¥)
+ 2(Q* + CTAY)(I — 2A*)~tC*
+ 22C(I — 2A)"Y(P — J + AJA*)(I — zA")"LC™,
=R+ 20(I —2A)7'Q + 2Q*(I — zA)~'C*
+22C(I — 2A)*P(I — 2A")1C*
+ CJC* +2C(I — 2A)YAJC* + 2CTA*(I — 2A*)~LC*
+ 220(I — zA) Y AJA* — J)(I — 2A*)"LC™.
We now note that
R+20(I —2A)7'Q + 2Q*(I — 2A) " 'C*+220(I — zA) ' P(I — zA*)~'C*

= — ZA* —1 %
= [20(1 — 2A) 1] L]; g} {Z(I 47e } (7)
and
CJC* 4 20(I — zA)LAJC* 4+ 20T A* (I — 2A*)~1C* (8)

+22C(1 — zA)"YAJA* — J)(I — 2A*)~C*
= O — 2A)"! [(1 — 2A)J(I — A7) + 5(I — zA)JA*
+2AJ(I — ZA*) — 22J + zzAJA*} (I —zA") "o,
- C(I—zA)’l{(l —zz)j} (I —zA%)"10". 9)

Expression (7) is positive definite for any choice of z with I — zA invertible.
Expression (9) is equal to zero when |z| = 1. We therefore have that

J—=M(2)JM(z)* >0 for |z| = 1.

C D
be a minimal realization for M(z). As M(z) does not have poles on T, the
minimality assures that I — zA is invertible when z € T. Any other minimal
realization for M(z) can be written as

- L)

for some invertible S (see Theorem 3.1 in [8]). We would like to find an S

(1) — (2). Suppose J — M(z)JM(z)* > 0 for |z| = 1, and let {A B}

that will transform our minimal realization into a strict [J J] -contraction,
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i.e.

J ] _[S$T'ASSTIB] [ ][sT'AS sTIB]T
J cs D J||l ¢s D ’

or equivalently,

Vsl e e
J Il |CD J| |C D 1
— [SJS* ] B [A B} [sjs* } {A BT -
J CD J| |C'D ’
Now we observe that every invertible Hermitian matrix T can be factored
as T = VJV* where V is invertible and J is a diagonal signature matrix.
Indeed, since T is invertible and Hermitian, it is unitarily diagonalizable with
nonzero diagonal entries, T = UDU*. We can factor D = |D|"/2J|D|'/2,
where the negative terms in J correspond to the negative entries of D. Then
T = U|D|\2J|D|*?U* = V.JV*.
So, if we set T = SJS*, then we need only to show that there exists
invertible T' = T™* such that

sl e a

It is worth noting that the above is a positive definite Stein equation, so if a
solution T exists, it is necessarily invertible (see [18], Section (13.2).

By Lemma 2.3, it is sufficient to show that for nonzero {C];* g} >0, if
x| P QLA
p-twet|g 7] ()
« e | P QB
<R [B* D] [Q* R] [D} ,J> > 0.

. . P
By Lemma 2.4, without loss of generality we may assume that [ 0

N

x* = P = [A® C°] {P Q} m — (A2 + C*y) (" A+ y7C),

then

Q
R
is of rank 1. Let

Then

Q"R
giving that z = e(A*z + C*y) for some §. We can rewrite this as (I —
e A*)z = e C*y, and thus
z =1 —e?A") 710y, (11)

Q] _o.

. P
Note that y # 0, as otherwise {Q* R
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Now

(r-1z 27|53 5] 7)
— - (15 0 |- 9| [B] )

—v -] [Pl o []]

=y*Jy—a*BJB*x —x*BJD*y —y*DJB*x — y*DJD"y

=y (J — DJD* — eI — e~ A)"\BJD* — DJB*(I — ¢ A*)1 "¢
e O — e P A BIBA (I — eiGA*)flc*eiO)y

=y (7= M) M) )y,

Since we assumed J — M (z)JM(z)* > 0 for |z| = 1, the above expression is
positive and equation (5) holds.

We therefore have that there exists a matrix T' for which equation (10)
holds, and we are done. O

Note that the proof of (2) — (1) does not use the finite dimensionality
(as long as one assumes that T is in the resolvent set of A); compare also
with [19, Proposition 2.4].

3. Determinantal Representations

The problem of writing polynomials as determinants of linear matrix poly-
nomials has attracted a lot of attention in the past few decades; see, e.g.,
[11-13,15-17,20]. In this section, we will focus on determinantal representa-
tions with an indefinite norm constraint. It was shown in [17] that a nonzero
bivariate polynomial p(z1, 22) of degree (n1,ns) is without roots in D? if and
only if it allows the determinantal representation

p(z1,22) = p(0,0)det(Ip, 4ny, — KZ), Z =211, ® 221,,,

with the (n1 + n2) X (n1 + n2) matrix K being a contraction. In addition,

p(21, z2) is without roots in D" if and only if it allows the above determinantal
representation with K a strict contraction. The proof was streamlined in [12].

In [11] a different determinantal representation appears, where it was
shown that if a bivariate polynomial p(z,w) with bidegree (m,n) has its roots
in

(D x C)UT?U ((C\D) x C), or (CxD)UT?U (C x (C\D)),

then we can write

p(z,w) =p(0,0)det [ U 21, — I, ,
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where U is unitary, ns is the number of zeros of p(z,0) in D, and n; = n—na.
For more on this type of determinantal representation and related results see
also [15,16].

In this section we provide evidence for the following conjecture.

Conjecture 3.1. Let p(z1, z2) be a nonzero polynomial of degree (ny,ns2). Then
p(21, 22) is without roots in {(0,0)} U T? if and only if there is a diagonal
signature matriz J and strict J-contraction K so that

p(z1,22) = p(0,0) det(I — K (211, ® 221,,)). (12)

The if direction is easily checked. Clearly, we cannot have that p(0,0) =
0, since in that case (12) implies that p(z1,22) = 0. If now (21, z2) is in the
bitorus T2, we get that Z = 2 1,,, ® 221, is unitary, and since Z commutes
with J, we get that

J—-KZJZ*K =J—-KJK* > 0.

Due to a standard Stein equation result (see, e.g, [18]) this gives that K Z has
as many eigenvalues in the open unit disk as J has negative eigenvalues, and
as many eigenvalues outside the closed unit disk as J has positive eigenvalues.
In particular, KZ does not have the number 1 as an eigenvalue , and thus
we find that p(z1, 22) # 0 when (21, 22) € T2

Using Theorem 2.1, we will prove the following.

Theorem 3.2. Suppose p(z1, 22) is a bivariate polynomial with bidegree (ny, 1)
and p(z1,22) # 0 on {(0,0)} U(T x {0}) UT?. Then p admits a determinantal
representation

p(z1,22) = p(0,0)det(I, +1 — KZ),

0 —I
where k is the (constant) number of roots of p(z1, z2) inside D for fized zo € T,
and

J:

where Z =z11,,®z2, and K s a strict [g 3] -contraction with J = {Im_k 0 }

—1 if the one root of p(z1,22) for fixred z1 € T is inside D,
1 if the root is outside D.

We first need the following observation.

Lemma 3.3. Suppose p(z1, z2) is a bivariate polynomial with bidegree (ny,ns)
and p(z1, 22) # 0 on T2. Then, if we let z; vary over T, the number of roots of
the polynomial p., (z2) := p(z1, 22) has k inside D and ny — k roots outside D,
where k is independent of zy. A similar statement holds when interchanging
the roles of z1 and zs.

Proof. We need to show that the number £ is independent of z; € T. If that
were not the case, then since the roots of a polynomial vary continuously
with its coefficients, there would exist z; € T where the number of roots
inside D changes value, but that can only happen when a root crosses the
unit circle. Thus, there would be z5 € T such that p(z1, 22) = 0, which is a
contradiction. O
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Proof of Theorem 3.2. Without loss of generalization, we assume that p(0, 0)
= 1. Let us write p(z1, 22) = po(z1) + 22p1(21). First, we assume that po(z1)
and p1(z1) do not have a common factor, and we put M(z) = —Z;gzg
As po(z1) and p;1(z1) do not have a common factor, the poles of M(z;) are
exactly the roots of po(21). The condition that p(z1,z2) # 0 on T2, gives that
for |z1] = 1, we have that the root of p.,(z2) := p(z1,22) is either always
inside D or outside . With the choice of J as stated in the theorem, we now
obtain that J — M (z1)JM (z1)* > 0 for |z;| = 1.

Since p(z1,22) has no roots in T x {0}, we have that M(z1) has no
poles on T. Apply now Theorem 2.1, giving that M(z;) has a realization
M(z1) = D+ 21C(I — 21A)~1 B, with

o (22)

a strict J @ J-contraction. We now claim that
p(z1,22) = det(I — K(z11,, ® 22)).
Indeed, with no =1,
p(21,22) = po(z1) det (I, — zaM (21))
= po(z1) det (In2 — 20D — 2502 (I, — Azl)*lB)

_ Po(z1) I, — Az —Bz
det(l,, — Az) —Cz1 I, — 22D

_ pO(Zl) . AB Zl[’ﬂl
N det(Inl — AZl) det (In1+n2 |:C D:| |: ZQIIL2:|> .

The term % is equal to 1 as the poles of M(z1) coincide exactly

det { (13)

with the roots of py(z1) and the realization is minimal, and we have have
p(21,292) = det(I, 4n, — KZ) where K and Z are as desired.

If p has a factor containing z; alone, we may factor p as p(z1,22) =
h(z1)q(z1, z2), with h(0) = 1, such that ¢ has no factors containing z; alone.
In this case we apply the previous paragraph to obtain a determinantal rep-
resentation ¢(zy,2) = det(I — K(z11 @ 23)) for ¢ with K a strict J @& J-
contraction. Next, if {\;}7_; are the roots of h(z1), then

1
n A1
hz) =0 - %) =det [ I, — | - || =det( —Az).

i=1 v 1

An

Choosing J to be the diagonal signature matrix with +1’s in the positions
corresponding to the \; that lie outside D and -1’s corresponding to the \;
that lie inside D, we obtain that A is a J-contraction. Now A & K is a strict
J@® J @ J-contraction and p(zy, zo) = det(I — (A® K) (211, @ 22)), providing
the desired determinantal representation of p. O
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The condition that p(z1, z2) has no roots in T x {0} is needed in the
proof, as we use Theorem 2.1 and consequently we need M (z1) not to have
poles on T. However, polynomials p(z1, z2) with roots in T x {0} can still have
the desired determinantal representations. Indeed, for p(z1, z3) = 1 —21 4329,
we find for instance that

10 12
7= (0 0) - (33)

gives a desired determinantal representation. Also, for p(z1, 29) = (1 —21)% +
5z, the choice

10 0 1.4783 2.1294 —2.8379
J=1010 |,K=|-01074 0.5217 —0.3497 | ,
00-1 —3.1181 —-3.2919 5.0000

works. It could be that an argument where we approximate pg(z1) with
polynomials without roots in T might work, as long as we would have a
way of ensuring that the corresponding limit of strict J & J-contractions
would still be a strict J @ J-contractions (for instance, by proving that
J®J—K(J®J)K* > el >0 for some specified € in Theorem 2.1).

The case when 1y > 1 may be approached as follows. Write p(z1, 22) =

vz o pr(21)2%, and write p}gﬁzﬁ) as det(I — zoM (21)), where M (z1) corre-

sponds to some appropriate linearization of 2, 25 1;’522; The trick will

now be to find an appropriate similarity U(z1) so that U(z1)M (21)U(z1)~!
is strictly J-contractive. In [12] this approach was successfully executed in
the definite case where the linearization chosen was a companion matrix, and
the similarity U(z1) was found by performing a Fejér-Riesz factorization of
a related Bezoutian. In [14] this approach was further pursued in the indef-
inite case, and resulted in a determinantal representation with a non-strict
J-contraction in some cases (see [14, Theorem 5.1] for details). However, this
approach does not lead to a strict J-contraction. It is possible that a different
choice of linearization and/or similarity U(z;) could be more effective in this
regard. As an aside, we mention that [14, Chapter 6] also contains a descrip-
tion and Matlab codes how to compute the strict J-contractive realizations
and determinantal representations numerically.
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