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Abstract
A digraph is d‐dominating if every set of at mostd ver-
tices has a common out‐neighbor. For all integers≥d 2,
let f d( ) be the smallest integer such that the vertices of
every 2‐edge‐colored (finite or infinite) complete digraph
(including loops) can be covered by the vertices of at most
f d( ) monochromaticd‐dominating subgraphs. Note that
the existence off d( ) is not obvious – indeed,the ques-
tion which motivated this paper was simply to determine
whether f d( ) is bounded, even ford = 2 . We answer this
question affirmatively for all ≥d 2, proving ≤ ≤f4 (2) 8
and ≤ ≤ ≥( )d f d d d2 ( ) 2 for all 3d

d
− 1
− 1

d

. We also give
an example to show that there is no analogous bound for
more than two colors. Our result provides a positive an-
swer to a question regarding an infinite analogue of the
Burr‐Erdős conjecture on the Ramsey numbers of
d‐degenerate graphs.Moreover,a special case of our re-
sult is related to properties ofd‐paradoxical tournaments.

K E Y W O R D S
infinite digraphs, monochromatic cover,paradoxical
tournaments, Ramsey

1 | INTRODUCTION

Throughout this note, a directed graph (or digraph for short) is a pair V E( , ), where V can be
finite or infinite and ⊆E V V× (so in particular, loops are allowed).A digraph is complete if
E V V= × . For ∈v V , we write ∈N v u v u E( ) = { : ( , ) }+ and ∈N v u u v E( ) = { : ( , ) }− . For a
positive integer k, we define ≔k k[ ] {1, …, }.
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Let G V E= ( , ) be a digraph. For ⊆X Y V, we say that X dominatesY if ∈x y E( , ) for all
∈ ∈x X y Y, . We say that G is d‐dominating if for all ⊆S V with ≤ ≤ S d S1 , dominates

some ∈w V . Note that it is possible for ∈w S, in which case we must have ∈w w E( , ) .
Reversing all edges of ad‐dominating digraph gives ad‐dominated digraph. These notions are
well studied for tournaments (see Section 4).

Note that regardless of whether G V E= ( , ) is a graph or a digraph, if H V E= ( ′, ′) with
⊆V V′ and ⊆E E′ , we will write ⊆H G and we will always refer to H as a subgraph ofG

rather than making a distinction between “subgraph” and “subdigraph.”
A cover of a digraph G V E= ( , ) is a set of subgraphs H H{ , …, }t1 such that V G( ) =

∈ V H( )i t i[ ] . By a 2‐coloring ofG V E= ( , ), we will always mean a 2‐coloring of the edges ofG;
that is, a function →c E: [2]. Given a 2‐coloring of G, we let Ei be the set of edges receiving
color i (i.e., E c i= ( { } )i

−1 ) and G V E= ( , )i i for ∈i [2]. A cover ofG by monochromatic subgraphs
is a cover H H{ , …, }t1 of G such that for all ∈i t[ ] there exists ∈j [2] such that ⊆H Gi j.

The following problem was raised in [4, problem 6.6] (see Section 3 for the context in which
this problem was raised).

Problem 1.1. Given a 2‐colored complete digraphK , is it possible to cover K with at
most four monochromatic 2‐dominating subgraphs? (If not four, some other fixed
number?)

Our main result is a positive answer for the qualitative part of Problem 1.1 in a more general
form.

Theorem 1.2. Let d be an integer with ≥d 2. In every 2‐colored complete digraphK ,
there exists a cover of K with at most  ( )d d2 × = 2i

d i d

d=1
− 1
− 1

d

monochromatic
d‐dominating subgraphs. In case of d = 2 there exists a cover of K with at most eight
monochromatic 2‐dominating subgraphs.

For all integers ≥d 1, let f d( ) be the minimum number of monochromatic d‐dominating
subgraphs needed to cover an arbitrarily two‐colored complete digraph. Note that obviously
f (1) = 2 since the two sets of monochromatic loops provide an optimal cover. For ≥d 2,
Theorem 1.2 shows thatf d( ) is well‐defined. Example 1.3 below (adapted from [4, proposition
6.3]) combined with Theorem 1.2 gives

≤ ≤ ≤ ≤ ≥










f d f d d

d

d
d4 (2) 8 and 2 ( ) 2 − 1

− 1
for all integers 3.

d

(1)

Example 1.3. Let K be a complete digraph on at least d2 vertices and partition V K( )
into nonempty sets R R, …, d1 and B B, …, d1 , color all edges insideRi red, all edges inside
Bi blue, all edges fromRi to Bj red, all edges fromBi to Rj blue, all edges betweenRi and Rj

with ≠i j blue, and all edges betweenBi and Bj with ≠i j red. One can check that every
monochromatic d‐dominating subgraph of K is entirely contained inside one of the sets
R R B B, …, , , …,d d1 1 .
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Finally, the following example shows that for ≥d 2 there is no analogue of Theorem 1.2 for
more than two colors (c.f. [4, example 2.3]).

Example 1.4. Let V be a totally ordered set and let K be the complete digraph on V

where for all ∈i V i i, ( , ) is green and for all ∈i j V, with i j i j< , ( , ) is red and j i( , ) is
blue. Note that for ≥d 2 the only monochromatic d‐dominating subgraphs are the green
loops and thus no bound can be put on the number of monochromatic d‐dominating
subgraphs needed to coverV .

While we have completely solved the qualitative problem, we would be very interested to
see an improvement in the quantitative bounds (1) given above.

2 | COVERING DIGRAPHS, PROOF OF THEOREM 1.2

For a graphG, we denote the order of a largest clique (pairwise adjacent vertices) inG by ω G( ).
Given a 2‐colored complete digraphK and a set ⊆U V K( ), defineG U[ ] blue to be the graph onU
where ∈u v G U{ , } [ ] blue if and only if u v( , ) and v u( , ) are blue inK ; defineG U[ ] red analogously.

For all positive integers ω and d, let f d(0, ) = 0 and let f ω d( , ) be the smallest positive
integer D such that if K is a 2‐colored complete digraph on vertex setV where every loop has
the same color, say red, and ω G V ω( [ ] ) =blue , then V can be covered by at most D mono-
chromatic d‐dominating subgraphs.

Lemma 2.1.

(1) f (1, 2) = 1.
(2) ≤f ω d d f ω d( , ) ( ( − 1, ) + 1) for all ≤ ≤ω d1 (in particular, ≤f d d(1, ) ). In fact,

all d‐dominating subgraphs in the covering have the same color as the loops.

Note that the upper bound ≤ω d is not strictly necessary, but we include it here for clarity
since in the next lemma, we will prove a stronger result when ≥ω d + 1 .

Proof. Let K be a 2‐colored complete digraph on vertex setV where all loops have the
same color,say red.

(1) is trivial since for all distinct ∈u v V, both u u( , ) and v v( , ) are red and
ω G V( [ ] ) = 1blue implies that either u v( , ) or v u( , ) is red.

To see (2), note first that we may assume that K itself is not spanned by a red
d‐dominating subgraph, otherwise we are done. This is witnessed by a set

⊆U u u V= { , …, }d1 , such that there is no ∈w V with u w( , )i red for all ∈i d[ ].
For all ∈i d[ ] we define

∈W v V v u= { : ( , ) is red}.i i

Note that ∈u Wi i and K W[ ]i is spanned by a redd‐dominating subgraph for all ∈i d[ ].
Set  ∪⧹ ∈

V V W′ = ( )i d i[ ] and define

∈T v V u v= { ′ : ( , ) is blue}.i i
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Note, that by the definition of V v u′, ( , )i is also blue for all ∈v Ti and ∈i d[ ].
Moreover, from the selection of U , every vertex in V ′ receives a blue edge from some
vertex in U and therefore ∪V T′ = i

d
i=1 .

Note that if ω = 1, then ∅T =i for all ∈i d[ ] and thus ∪∈
Wi d i[ ] is a cover of K with

d red d‐dominating subgraphs; that is, ≤f d d d f d(1, ) = ( (0, ) + 1) .
Otherwise, we have that ≤ω K T ω( [ ] ) − 1i blue and thus K is covered by at most

⋅d d f ω d d f ω d+ ( − 1, ) = ( ( − 1, ) + 1)

red d‐dominating subgraphs. □

Lemma 2.2. Let K be a 2‐colored complete digraphK whereR is the set of red loops and
B is the set of blue loops. If ≥ω G R d( [ ] ) + 1blue , thenV K( ) can be covered by at mostd red
d‐dominating subgraphs and at most one blue d‐dominating subgraph. Likewise, if

≥ω G B d( [ ] ) + 1red . In particular, this implies ≤f ω d d( , ) + 1 for ≥ω d + 1 .

Proof. Suppose ≥ω G R d( [ ] ) + 1blue and let ⊆X x x x R= { , …, , }d d1 +1 be a set of order
d + 1 which witnesses this fact; that is, for all distinct ∈x x X x x, , ( , )i j i j is blue. For
∈i d[ ] we define

∈W v V K v x= { ( ) : ( , ) is red}.i i

Note that ∈x Wi i and K W[ ]i is spanned by a red d‐dominating subgraph for all
∈i d[ ].

Set ∪  ∪⧹ ∈
V X V K W′ = ( ( ) ( ) )i d i[ ] and note that for all ∈ ⧹v V X v X′ , [ , ] is blue. To see

that G V[ ′] blue is d‐dominating, let ⊆S V ′ with ≤ ≤ S d1 . Since   X S> , there exists
∈ ⧹x X Si and by the properties mentioned above, every edge inS x[ , ]i is blue. So there is

one blue d‐dominating subgraph which covers V ′, which together with the red
d‐dominating subgraphsK W K W[ ], …, [ ]d1 gives the result.

When ≥ω G B d( [ ] ) + 1red , the proof is the same by switching the colors. □

Now we are ready to prove our main result.

Proof of Theorem 1.2. Let ∪V K R B( ) = whereR B, are the vertex sets of the red and blue
loops, respectively.If ≥ω G R d( [ ] ) + 1blue or ≥ω G B d( [ ] ) + 1red , then by Lemma 2.2,
∪R B can be covered by at mostd + 1 monochromaticd‐dominating subgraphs. So suppose

≤ω G R d( [ ] )blue and ≤ω G B d( [ ] )red . Now by Lemma 2.1, each ofK R[ ] and K B[ ] can be
covered by at most 4 monochromaticd‐dominating subgraphs whend = 2 , and by at most

≤ d di
ω i

i
d i

=1 =1 monochromaticd‐dominating subgraphs when ≥d 3. □

3 | MOTIVATION: AN INFINITE ANALOGUE OF THE
BURR‐ERDŐS CONJECTURE

In this section, we provide the context for Problem 1.1 and the general solution provided by
Theorem 1.2.
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A graph G is d‐degenerate if there is an ordering of the vertices v v, , …1 2 such that for all
≥ ∩ ≤ i N v v v d1, ( ) { , …, }i i1 −1 (equivalently, every subgraph has a vertex of degree at mostd).

Burr and Erdős conjectured [3] that for all positive integersd, there existsc > 0d such that every
2‐coloring of Kn contains a monochromatic copy of everyd‐degenerate graph on at mostc nd

vertices.This conjecture was recently confirmed by Lee [8].
The motivation for Problem 1.1 relates to the following conjecture also raised in [4, problem

1.5, conjecture 10.2] which is an infinite analogue of the Burr‐Erdős conjecture.

Conjecture 3.1. For all positive integersd, there exists a real numberc > 0d such that if
G is a countably infinite d‐degenerate graph with no finite dominating set,then in every
2‐coloring of the edges ofKℕ, there exists a monochromatic copy ofG with vertex set ⊆V ℕ
such that the upper density ofV is at leastcd.

The cased = 1 was solved completely in [4] (regardless of whether G has a finite dom-
inating set or not). For certain 2‐colorings of Kℕ, Theorem 1.2 implies a positive solution to
Conjecture 3.1 for ≥d 2. As an example of such a 2‐coloring, suppose that for some finite
subset ⊆F ℕ, we partition ⧹Fℕ into (finitely or infinitely many) infinite sets  X X= { , …, , …}n1 .
For all i j, , let ∈c [2]i j, and color the edges from Xi to Xj so that for all
∈ ∈v X u X u v c, { : { , } has color }i j i j, is cofinite (by using the half graph coloring1 when ≠c ci j j i, ,

for instance). This last condition ensures that if there exist X X, …,i in1 and Xj such that
⋯ ≕c c c= =i j i j, ,n1 , then every finite collection of vertices in ∪ ⋯ ∪X Xi in1 has infinitely

many common neighbors of color c in Xj.
The above coloring of Kℕ naturally corresponds to a 2‐colored complete digraph in the

following way: Let K be a 2‐colored complete digraph on where we color X X( , )i j with color c

if for all ∈v Xi, ∈u X u v c{ : { , } has color }j is cofinite. Now by Theorem 1.2,K can be covered
by ≤t f d( + 1) monochromatic d( + 1) ‐dominating subgraphs G G, …, t1 . Since ⧹Fℕ =

∈ ∈  X( )i t X V G[ ] ( )i , there exists ∈i t[ ] such that ≔ ∈V Xi X V G( )i has upper density at least
∕ f d1 ( + 1) . Without loss of generality, suppose the edges ofGi are red. By the construction,Vi

has the property that for all ⊆S Vi with ≤ ≤ S d1 + 1, there is an infinite subset ⊆W Vi such
that every edge inE S W( , ) is red. As shown in [4, proposition 6.1], ifG is a graph satisfying the
hypotheses of Conjecture 3.1,then there exists a red copy of G which spans Vi and thus has
upper density at least ∕ f d1 ( + 1) .

4 | CONNECTION TO PARADOXICAL TOURNAMENTS

Our method of bounding f d( ) was to extend the problem and boundf ω d( , ) for all ≤ ≤ω d1 .
We proved that f (1, 2) = 1 and ≤f d d(1, ) for all ≥d 3. Naturally, we wondered if the upper
bound on f d(1, ) could be improved when ≥d 3, since any improvement on f d(1, ) would
improve the general upper bound on f d( ). However, this cannot be done.

Theorem 4.1. f d d(1, ) = for all ≥d 3.

1Given a totally ordered setZ and disjoint ⊆X Y Z, the half graph coloring of the complete bipartite graphKX Y, is a
2‐coloring of the edges ofKX Y, where for all ∈ ∈i X j Y i j, , { , } is red if and only if ≤i j .
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We discovered that the lower bound of Theorem 4.1 would follow from the existence of certain
d‐dominated tournaments.The problem of the existence ofd‐dominated tournaments was pro-
posed by Schütte and was first proved by Erdős [6] with the probabilistic method, then Graham and
Spencer [7] gave an explicit construction using sufficiently large Paley tournaments.Babai [1]
coined the termd‐paradoxical tournament for what we refer to asd‐dominated tournament. In this
spirit, we say that a tournament is perfectlyd‐paradoxical if it isd‐dominating,d‐dominated, has no
d( + 1) ‐dominating subtournaments, and has nod( + 1) ‐dominated subtournaments.

It follows from a result of Esther and George Szekeres [9] that the Paley tournaments
QT QT,7 19 are perfectly 2‐paradoxical and perfectly 3‐paradoxical tournaments, respectively. It is
an open question (which to the best of our knowledge has not been posed in the literature
before now) whether every Paley tournament is perfectlyd‐paradoxical for somed. While this
question remains open, Bukh [2], responding to our query, gave a beautiful (part‐deterministic
and part‐probabilistic) construction of a perfectly d‐paradoxical tournament for all ≥d 2.

Theorem 4.2 (Bukh [2]). For all integers ≥d 2, there existsa perfectly d‐paradoxical
tournament.

The interested reader can find the proof of Theorem 4.2 and the detailed derivation of
Theorem 4.1 from Theorem 4.2 in [5].
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