Microchimica Acta (2022) 189:254
https://doi.org/10.1007/500604-022-05355-w

ORIGINAL PAPER q

Check for
updates

Development of a nanocopper-decorated laser-scribed sensor
for organophosphorus pesticide monitoring in aqueous samples

David Bahamon-Pinzon'2® . Geisianny Moreira'?® . Sherine Obare3® . Diana Vanegas'*?

Received: 18 January 2022 / Accepted: 15 May 2022
© The Author(s) 2022

Abstract

Organophosphorus pesticides are widely used in industrial agriculture and have been associated with water pollution and
negative impacts on local ecosystems and communities. There is a need for testing technologies to detect the presence of
pesticide residues in water sources, especially in developing countries where access to standard laboratory methods is cost
prohibitive. Herein, we outline the development of a facile electrochemical sensor for amperometric determination of organo-
phosphorus pesticides in environmental water samples. A three-electrode system was fabricated via UV laser-inscribing on
a polyimide film. The working electrode was functionalized with copper nanoparticles with affinity toward organophosphate
compounds. The sensor showed a limit of detection (LOD) of 3.42 +1.69 uM for glyphosate, 7.28 +1.20 uM for glufosinate,
and 17.78 +£7.68 uM for aminomethylphosphonic acid (AMPA). Sensitivity was highest for glyphosate (145.52 +36.73
nA-uM~!-cm™?) followed by glufosinate (56.98 +10.87 nA-uM~!-cm™2), and AMPA (30.92+8.51 nA-uM~'-cm™2). The
response of the sensor is not significantly affected by the presence of several ions and organic molecules commonly present
in natural water samples. The developed sensor shows promising potential for facilitating environmental monitoring of

organophosphorus pesticide residues, which is a current need in several parts of the world.
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Introduction

Organophosphorus pesticides have been extensively
used in industrial agriculture. For instance, glyphosate
[N-(phosphonomethyl)glycine] is the most used herbicide
in the world [1], with applications in monocultures of geneti-
cally modified crops [2]. However, glyphosate can poten-
tially pollute soil, water bodies, and crops and negatively
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affect non-targeted organisms [3]. Moreover, glyphosate has
been found in human urine samples [4], and it has been asso-
ciated with endocrine system disruption and DNA damage in
humans [3]. In 2015, the World Health Organization (WHO)
and the International Agency in Research on Cancer (IARC)
classified glyphosate in Group 2A as probably carcinogenic
to humans [5]. The human health impacts from exposure to
glyphosate and its primary residue, aminomethylphosphonic
acid (AMPA), is an ongoing debate in the scientific com-
munity. Similarly, regulatory frameworks for glyphosate use
vary vastly depending on the country. For instance, glypho-
sate has a maximum residue limit (MRL) in drinking water
of 700 pg-L~! (4.14 uM) in the USA, according to the EPA
[6] and 0.1 pg-L'1 (0.59 nM) in the European Union [7, 8].

In this context, it is necessary to facilitate environmental
monitoring of glyphosate with a high spatial and tempo-
ral resolution, which is a critical need in parts of the world
where standard laboratory techniques are inaccessible or
cost-prohibitive. Currently, there are several technologies
for pesticides detection in laboratory settings, including
liquid chromatography-mass spectrometry (LC/MS) and
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high-performance liquid chromatography (HPLC). How-
ever, these methodologies generally require trained person-
nel, do not allow in situ and real-time monitoring, and are
expensive and time consuming [9]. Other techniques, such
as enzyme-linked immunosorbent assay (ELISA), use anti-
bodies, which can be expensive to produce and may require
low-temperature storage [10].

Considering the limitations of conventional laboratory-
based techniques for applications in developing countries,
it is necessary to develop detection methodologies that are
affordable and allow for rapid and in situ assessment of
water pollutants. Portable sensors operate based on molec-
ular interactions occurring at the sensor/sample interface.
These analytical devices transform a molecular recognition
event into a measurable signal, using an electrochemical or
optical transduction mechanism connected to a signal acqui-
sition system [11].

To date, few electrochemical sensors for glyphosate
detection have been reported in the scientific literature.
For example, Do et al. (2015) developed a sensor based on
molecularly imprinted polymers functionalized with gold
nanoparticles for linear sweep voltammetry detection of
glyphosate residues in soybeans [9]. Moraes et al. (2010)
used multi-walled carbon nanotubes with copper phthalo-
cyanine in a glassy carbon electrode for differential pulse
voltammetry detection of pesticides in sodium phosphate
buffer [12]. Cao et al. (2019) developed a metal-organic
framework platform based on copper and 1,3,5-benzenetri-
carboxylic acid (BTC) immobilized on a tin oxide electrode
for differential striping pulse voltammetry quantification
in soybeans [13]. Poorahong et al. (2015) demonstrated
the development of an electrochemical sensor based on a
gold electrode electrodeposited with copper nanowires for
amperometric testing of fresh fruit and vegetable samples
[14]. Even though previously reported sensors showed high-
performance capabilities, the type of materials and sophisti-
cated fabrication techniques make these technologies hardly
reproducible in resource-constrained regions. Moreover, the
need for hazardous reagents in some these tests discourages
the use of the technology outside of laboratory settings [15].

Turbostratic graphene obtained from laser engraving onto
polyamide substrates has emerged as a relatively low-cost
material suitable for developing sensing platforms [16].
Herein, we report on the artisanal manufacture of a portable
sensor for assessment of organophosphorus pesticides resi-
dues in environmental water samples. The working mecha-
nism of the sensor is based on the anodic current response
generated from the formation of a complex between the nano-
copper on the sensor surface and the functional groups in the
organophosphate pesticides [14, 17]. The test is performed
in an electrochemical cell maintained at neutral pH and low
overpotential without the use of hazardous chemicals.
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Experimental section
Materials and reagents

Copper sulfate (CuSO,), ethanol (C,Hs;OH), potassium fer-
rocyanide (K,Fe(CN),), phosphate-buftered saline (PBS)
solution, sodium sulfate (Na,SO,), magnesium chloride
(MgCl,), aluminum chloride (AICl;), mercury (II) nitrate
hydrate (H,HgN,0O5), sodium hydroxide (NaOH), hydro-
chloric acid (HCI), ammonium nitrate (NH,NO;), humic
acid salt, atrazine, glufosinate-ammonium, and chlor-
pyrifos were obtained from Fisher Scientific (Waltham,
MA, USA). Potassium nitrate (KNO;), potassium chlo-
ride (KCl), sodium bicarbonate (NaHCO;), calcium chlo-
ride (CaCl,), magnesium sulfate (MgSO,), ammonium
chloride (NH,Cl) silver/silver chloride paste (Ag/Ag/Cl),
glyphosate [N-(phosphonomethyl)glycine], (aminomethyl)
phosphonic acid (AMPA), phosphoric acid (H;PO,), and
a certified reference material 44,690-U for glyphosate
(1000 pg-mL~! solution in distilled water) were purchased
from Sigma Aldrich Inc. (St. Louis, MO, USA). Kapton™
(polyimide) film (electrical grade polyimide film, 0.0050"
thick) was obtained from McMaster-Carr (Elmhurst, IL,
USA). Calcium sulfate was obtained from Watson (Caru-
thers, California, USA). Roundup® was bought from a
local agricultural store (Bayer Inc., Whippany, NJ, USA).

Sensing platform fabrication

Laser-inscribed graphene electrodes (LIG) were fabri-
cated based on the methodology by Tehrani and Bavarian
(2016) [18]. A three-clectrodes system (working, refer-
ence, and counter electrodes) was designed and scribed
on Kapton film using a UV laser engraver (NEJE Laser
Engraver Printer, 1500mW, 490 x 490 Pixel) to obtain
laser-inscribed graphene (LIG) electrodes. The follow-
ing parameters were used during laser scribing: distance
from the lens to the surface of the sample: 8 cm, num-
ber of scans: 2, burning time: 15 ms, brightness: 30%.
Silver chloride paste (Ag/AgCl) was applied to the refer-
ence electrode, and a metallic tape was incorporated at
the terminal of each electrode to protect the LIG from
abrasion damage during the connection of the bonding
pads with the potentiostat. A layer of nitrocellulose lac-
quer was applied as passivation material on the surface of
the electrodes’ stems.

Copper nanoparticles were incorporated on the working
electrode via electrodeposition in a solution of 250 mM
copper sulfate (CuSO,) and 2.5 mM sodium sulfate
(Na,S0O,), according to the process described by Vanegas
et al. [16]. A copper rod was used as the anode and the
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working electrode as the cathode. A constant potential of
9 V was applied for 1 s. Prior to the electrodeposition step,
the copper rod was electropolished with a solution consist-
ing of 25% ethanol and 25% phosphoric acid for 30 s at
9 V to remove any impurities from its surface. A scheme
of the fabrication process of the electrodes is shown in
Fig. S1. Electrodes with similar electrochemical response
were selected using cyclic voltammetry (Fig. S2).

Material characterization

Scanning electron microscopy (SEM) and energy-dispersive
X-ray spectroscopy (EDS) were performed in a scanning
electron microscope SU5000 with an accelerating voltage of
5kV to study the morphology and elemental composition of
LIG and LIG-Cu electrodes. X-ray diffraction (XRD) analy-
sis was performed in a PANalytical Empyrean at a potential
of 45 kV and a current of 40 mA. X-ray photoelectron spec-
troscopy (XPS) analysis of LIG-Cu was conducted in an
XPS/UVS-SPECS System using a PHOIBOS 150 Analyzer
with an anode voltage of 10 kV, power of 300 W, and emis-
sion current of 30 mA.

Electrochemical performance characterization

DC-potential amperometry (DCPA) was selected as the
detection technique for glyphosate testing. DCPA experi-
ments were performed using a portable potentiostat (ABE-
Stat, Diagenetix, Honolulu, USA [19]). The following
settings were applied: constant potential of 100 mV, polari-
zation time of 60 min, and continuous stirring at 450 rpm.
20 mL of PBS buffer (pH: 7.2) was used as the working
solution for DCPA testing. To generate a calibration curve,
10 pL aliquots of glyphosate solution (8 mM) were suc-
cessively injected into the electrochemical cell every 3 min.
Each glyphosate addition generated a change in electrical
current, which was recorded using the ABE STAT software
(Diagenetix, Honolulu, USA).

Performance parameters were calculated based on the
DCPA curves. The analytical sensitivity is equal to the slope
of the linear portion of the calibration curve (Eq. 1) divided
by the geometric surface area of the working electrode (0.05
sz)_

i =sC+ i ey

where:

i current (nA)

s slope (nA-uM™)

i, current intercept (nA)
The lower limit of detection (LOD) was calculated as:
LOD =30/s )

Where:

o standard deviation of the baseline (nA)

s slope of the calibration curve (nA-uM™")

Finally, the response time (fy5) was obtained by fitting the
data from three successive steps changes in concentration
to the exponential rise to a maximum model (Eq. 4), using
the sum of chi-square to minimize the error. The response
time is defined as the time when 95% of the stable response
is obtained (Eq. 4) [18]. The performance parameters of
the sensor were also calculated using the commercial for-
mulation Roundup, AMPA, and other organophosphorus
compounds (glufosinate-ammonium and chlorpyrifos) as
analytes.

igs = ip +a(l —e™™) 3)

where:

igs current obtained at the response time (UA)

baseline of each step (1UA)

a  upper limit or stable response (UA)
b  model constant

tys response time (s)

—1n(0.05<";° + 1))

fos = - @)

The effect of the pH, selectivity, and stability of the sen-
sor was evaluated using an amperometric test. For all the
experiments, the electrodes were polarized at 100 mV in
20 mL of PBS buffer (pH 7.2) during one hour. The detailed
methodology for each analysis, including the determination
of the electroactive surface area (ESA), can be found in the
supplemental information.

Statistical analysis

ANOVA was used to determine significant differences
amongst three or more treatments (p <0.05). A Tukey test
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was performed for pair-wise comparison whenever treat-
ments were significantly different. For 2-treatments com-
parison, a r-test (p <0.05) was performed. Table S1 shows
the test, levels, and response variables for each analysis. The
software JMP (JMP Pro 16, SAS Institute Inc., Cary, NC,
USA) was used for all statistical analyses.

Results and discussion
Materials characterization

Laser-inscribed graphene electrodes (LIG) and LIG modi-
fied with copper nanoparticles (LIG-Cu) were characterized
in terms of morphology and elemental composition using
scanning electron microscopy (SEM), scanning transmis-
sion electron microscopy (STEM), energy-dispersive X-ray
spectroscopy (EDS), and X-ray diffraction (XRD). Fig-
ure la shows the SEM micrographs of the LIG surface,
with a sponge-like morphology, similar to the SEM images
obtained by Mogera et al. (2015) for carbonaceous materials
based on laser-assisted transformation of biomass materials
[20]. Unlike Bernal stacked graphitic carbon nanomaterials,
the LIG electrode surface displays random rotation between
adjacent carbon layers, as well as misaligned stacking, which
are characteristic features of highly decoupled turbostratic

Fig. 1 Scanning Electron Microscopy (SEM) images of a laser-
inscribed graphene (LIG) with a magnification of 2.50 k and b LIG
with copper nanoparticles (LIG-Cu) with a magnification of 10.0 k. ¢
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graphene materials [20, 21]. According to the EDS analysis
(Fig. 1d), the LIG electrode surface is composed of 96.4%
of carbon and 3.4% of oxygen. Figure 1b shows the SEM
micrograph of the LIG electrode after copper electrodeposi-
tion (i.e., LIG-Cu). As seen in the Fig. 1b and S3a, copper
nanoparticles were successfully synthesized on the surface
of the LIG electrodes, resulting in the relatively homogene-
ous distribution of crystal-shaped nanoparticles with a size
ranging from 80 to 500 nm (Fig. 1c and S3b-c). Accord-
ing to Huang et al. (2005), electrocrystallization of copper
onto carbon electrodes is tightly dependent on nucleation
overpotential and time [22]. In this case, we presume that
the process of copper electrodeposition onto LIG electrodes
follows progressive nucleation kinetics with three-dimen-
sional diffusion-controlled growth. Tehrani and Bavarian
(2016) obtained similar results with copper nanocubes elec-
trodeposited on the surface of graphene electrodes [17]. The
EDS spectrum of LIG-Cu (Fig. 1e) reveals several peaks for
copper and a strong peak for oxygen that does not appear
in the LIG spectrum. The resulting surface composition of
LIG-Cu is 70.6% of carbon, 21.1% of copper, and 8.3% of
oxygen (Fig. 1d, e). The increasing oxygen content on the
surface of the electrode can be explained by the appearance
of copper oxide, which was confirmed via XPS characteriza-
tion (Fig. S4a). The XRD spectrum for LIG-Cu electrodes
(Fig. S4b) shows four peaks at 20 of 36.4, 42.3, 61.4, and

Sze |Dwell HT  Scanfov STEMMOG |Poeisze |Spot | 500nm
2048 4.00ps 300KV 328pm 305k 1602em 3

M Spectrum 7
Wt% o
706 03
211 02
83 02

Scanning transmission electron microscopy (STEM) of LIG-Cu elec-
trodes. Energy-dispersive X-ray spectroscopy (EDS) curves of d LIG
and e LIG-Cu
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73.5°, confirming the presence of copper oxide (Cu,0) in
the surface of the electrodes.

Glyphosate detection

Amperometry was used to examine the response of the
sensor to the presence of glyphosate within the 4-24 uM
concentration range. We applied a constant potential
of 100 mV during 60 min as a conditioning process that
results in a stable current response [16]. Figure 2a shows
a representative real-time DCPA experiment in which LIG
and LIG-Cu working electrodes were exposed to increasing
concentrations of glyphosate. As seen in this figure, the cur-
rent response of bare LIG electrodes was not significantly
affected by the exposure to the analyte (Fig. 2a, black curve).
On the other hand, a typical staircase amperometric response
was obtained after the injection of glyphosate to the electro-
chemical cell using LIG-Cu electrodes (Fig. 2a, red curve).
Additionally, the ESA of LIG-Cu (0.035+0.004 cm?) was
higher than LIG (0.026 +0.002 cm?), indicating a higher
conductivity of the LIG-Cu electrodes (Fig. S5). The change
of oxidative current in the presence of glyphosate is medi-
ated through three mechanisms: (i) the deprotonation of the
glyphosate molecule to form divalent cations at neutral pH,
(i) the formation of copper and copper oxide in the surface
of the electrode when a potential of 100 mV is applied at a
pH of 7.2 [23], and (iii) the complexation between depro-
tonated glyphosate and copper at a pH of 7.2 in aqueous
solution [17], which results in an anodic current.

Thus, the oxidative current at each step is correlated
with the concentration of glyphosate in the electrochemi-
cal cell, with strong linearity within the concentration range
tested in the experiments (R*> 0.99) (Fig. 2b). The limit
of detection (LOD), sensitivity, and response time of the
sensor are 3.42 +1.69 uM, 145.52+36.73 nA-uM~"-cm™,
and 62.00+13.02 s, respectively. The average LOD of the
sensor is slightly lower than the MRL established by the
EPA (700 pug-L~! or 4.14 uM), which demonstrates its usa-
bility for in-field screening of glyphosate pollution. When

Fig.2 The a Representative a
amperometric response of LIG

and LIG-Cu electrodes in PBS 300 4
solution (pH 7.2) at a polari- {
zation potential of 100 mV
(rolling average, n=>5). Black
arrows represent injections of

a glyphosate solution to the
electrochemical cell. b Calibra-
tion curve of LIG-Cu electrodes
in the presence of glyphosate
(error bars represent standard
deviation; n=18)
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the LIG-Cu electrode is connected to a high-end benchtop
potentiostat (MultiPalmSens4, PalmSens) instead of a low-
cost portable potentiostat (ABE-Stat), the LOD was as low
as 0.69+0.32 uM, and the sensitivity was 111.76 +13.44
nA-uM~!-cm~2 (Fig. $6), which demonstrates the potential
applicability of the sensor as an analytical laboratory tool.
This is an attractive option for regions with limited labora-
tory capacity since the cost of the standard equipment, sup-
plies (including columns), and reagents for glyphosate test-
ing (e.g., HPLC-FLD, LC-MS/MS) is considerably higher
than the cost of a benchtop potentiostat. Let alone the inten-
sive training of personnel, equipment maintenance, build-
ing infrastructure (including ambient controls), and other
sources of increased cost that can be avoided by the relative
simplicity of electrochemical testing.

The effect of the pH on the performance of the LIG-Cu
sensor was evaluated. As observed in Fig. S7, the highest
amperometric response from a single injection of analyte is
obtained within the pH range from 7 to 8. Thus, we selected
PBS (pH 7.2) as the buffer for the detection tests.

Effect of different organophosphorus pesticides

The LIG-Cu sensor was also tested for the detection of
Roundup, which is a commercial glyphosate-based for-
mulation used worldwide. Additionally, we evaluated the
response to other organophosphorus compounds commonly
found in agriculture-impacted waters where synthetic pesti-
cides are routinely applied: AMPA, glufosinate-ammonium,
and chlorpyrifos (Fig. 3a). Figure 3b depicts the real-time
DCPA response of the LIG-Cu sensor exposed to increasing
concentrations of different organophosphorus compounds.
As seen in the figure, the current of the sensor did not change
when chlorpyrifos was added to the electrochemical cell
(purple curve in Fig. 3b), and the addition of AMPA and
glufosinate-ammonium generated a much lower current
response compared to Roundup and glyphosate. The per-
formance parameters of the sensor for the organophospho-
rus compounds are summarized in Fig. 3d. The statistical

b 250 ~

i (NA)=7.14 C (uM)+30.50
R?=0.9989

n
3
L
‘.
P

Current (nA)

Time (min)

0 5 10 15 20 25
Concentration of glyphosate (uM)
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d
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Glyphosate 145.52 +36.73 (a) 342+ 1.69 (a)
Roundup 183.65+27.33 (a) 4.50+ 0.66 (a)
Glufosinate 56.98 £ 10.87 (b) 7.28 +1.20 (a)
AMPA 30.92 +8.51 (b) 17.78 +7.68 (b)

Fig.3 The a Chemical structure of tested organophosphorus com-
pounds: glyphosate, glufosinate, aminomethylphosphonic acid
(AMPA), and chlorpyrifos. b Representative amperometric response
of LIG-Cu electrodes in PBS (pH 7.2) at a polarization potential of
100 mV (rolling average, n=>5). Black arrows represent injections of

analysis indicates that there is no significant difference
between glyphosate and Roundup for the LOD and sensi-
tivity (p>0.05), suggesting low interference from complex
mixtures (e.g., the inactive ingredients in Roundup). Moreo-
ver, the sensitivity for AMPA and glufosinate-ammonium
is significantly lower than the sensitivity with glyphosate;
and the LOD for AMPA is significantly higher compared
to glyphosate. In general, these results show a higher sensi-
tivity of the sensor towards glyphosate than other organo-
phosphorus compounds potentially present in real water
samples. Our hypothesis is that phosphonic acid and carbox-
ylic acid groups of glyphosate bind strongly to the copper
oxide nanocrystals on the surface of the sensor. On the other
hand, AMPA only has a phosphonic acid group, and glu-
fosinate only has a carboxylic acid group, thus exhibiting a
weaker binding with the sensor surface. Finally, the absence

@ Springer

each one of the organophosphorus compounds to the electrochemical
cell. ¢ Calibration curve of LIG-Cu electrodes in the presence of dif-
ferent organophosphorus compounds. Error bars represent standard
error (n>3) d Performance parameters of the sensor. Same letters
represent groups with no significant difference for each variable

of acidic groups in chlorpyrifos explains the null current
response from the sensor. Thus, demonstrating promising
applicability of the sensor for testing environmental water
without the need for sample pre-treatments such as filtration.

Effect of different dissolved ions

In the selectivity analysis, the change in current was reported
in comparison to both negative and positive controls: DI
water (Millipore, St. Louis, MO, USA) was used as nega-
tive control to determine whether dissolved ions generated a
response significantly different than the normal background
noise produced by the injection of DI water (Fig. 4a). The
response of the sensor is not significantly affected by the
presence of the tested ions at relevant concentrations in
the environment. Concentrations tested are higher than
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Fig.4 Matrix effects: a Difference in baseline current of the LIG-Cu
sensor after the injection of possible interfering ions into the electro-
chemical cell filled with PBS buffer (pH 7.2) at a polarization poten-

concentrations typically found in environmental water sam-
ples, except for humic acid and calcium chloride, which were
tested within the range of concentrations in the environment.
The change in current is significantly lower than a positive
control at low concentrations of glyphosate (4 puM), which
is compatible with the MRL established by the EPA. Fig-
ure 4b shows that the capacity of the sensor to detect glypho-
sate at a higher concentration (20 pM) was not affected by
the presence of the tested compounds.

It is worth noticing that the amperometric test was per-
formed at a polarization potential of 100 mV. A low ampero-
metric potential, as used in this and other studies [24-26], is
advantageous to avoid oxidation of electroactive molecules
potentially present in the water sample. For instance, ascor-
bic acid and uric acid can be oxidized at a minimum poten-
tial of +400 mV in amperometric tests [27, 28].

Stability and shelf life of LIG-Cu sensors

To determine the extent to which the LIG-Cu sensors can
be stored at ambient conditions after fabrication, the current
response to glyphosate exposure was evaluated for sensors
stored for different time spans up to 21 days. Upon fabrica-
tion, the electrodes were placed in a plastic Petri dish and
stored in a cabinet in the laboratory. The air in the labora-
tory is maintained at a constant temperature of 23°C. The
statistical analysis indicates that there are no significant
differences in the response of the sensors stored between

b 2501
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tial of 100 mV. b Sensor response to glyphosate (final concentration
of 19.9 uM) in the presence of possible interferents. Same letters rep-
resent groups with no significant difference (p <0.05)

5 hand 21 days after fabrication (Fig. 5). Future work must
focus on enhancing the reproducibility of the manufacturing
process in order to minimize the variability among LIG-Cu
sensors. The observed variability in the current produced by
the sensors may be explained by the lack of tight controls
in environmental conditions, particularly relative humidity
which has been shown to affect the behavior of graphene-
based materials [29]. This issue may be resolved by storing
the sensors in vacuum-sealed packages.

Analytical application

To test the capacity of the sensor to detect glyphosate in
environmental water samples, a calibration curve was
obtained using glyphosate in simulated fresh water. The per-
formance parameters of the sensor were not affected when
glyphosate was diluted in PBS buffer or in synthetic fresh
water (Fig. S8). Additionally, the sensor was challenged
using a certified reference material (44,690-U 1000 pg-mL~!
glyphosate solution in distilled water) at different concen-
trations of glyphosate: 4, 12, and 20 uM. Recovery rates
from 98.6 to 124.8% were obtained (Table 1), confirming
the capacity of the sensor to detect glyphosate.

Comparison with other sensors

Finally, while the LOD of the LIG-Cu sensor is higher
than other sensors reported in the literature (Table 2), it
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Fig.5 Difference in the amper-
ometric current of the sensor in
PBS solution at a polarization
potential of 100 mV after the
injection of glyphosate (final
concentration of 19.9 uM) at
different storage times. Same
letters represent groups with no
significant difference

N

(&)

o
1

ACurrent (nA)
3

5h 1 day

Table 1 Glyphosate concentration using a certified reference mate-
rial. RSD recovery standard deviation

Concentration in the Concentration Recovery (%) RSD (%)
sample (UM) found (UM)

4 49 123.4 37.8

12 15.0 124.8 16.0

20 19.7 98.6 5.5

is still useful for detecting glyphosate concentrations in
water at the regulatory threshold established by the EPA.
Even though some sensors use enzymes to obtain a sensible
and selective analysis for glyphosate quantification [26],
enzymatic sensors are susceptible to temperature damage,
and require special storage conditions. Also, the poten-
tial presence of inhibitory molecules in the sample (e.g.,
heavy metals) may compromise the detection mechanisms
[30]. Finally, the sensor described herein was fabricated
with affordable materials (fabrication cost was estimated at
$1.9 per sensor) and relatively simple fabrication methods.
Thus, facilitating adoption and adaptation of the technol-
ogy in regions where glyphosate testing is needed, but the
manufacturing of exotic nanosensors may be completely
unrealistic and perhaps unnecessary.

@ Springer
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Conclusions

An electrochemical sensor was developed for the detection
of organophosphorus pesticides with higher analytical sen-
sitivity toward glyphosate. The sensing platform consists of
laser-inscribed graphene electrodes decorated with copper
nanoparticles. An amperometric test in PBS (pH 7.2) at a
potential of +100 mV was used as the detection technique.
The exposure of the electrodes to glyphosate results in an
increase of the anodic current. When hooked to an affordable
portable potentiostat, the LOD of the sensor is slightly lower
than the MRL established by the EPA. The response of the
sensor is pH dependent, and its highest analytical sensitiv-
ity was achieved when the working solution is maintained
within the 7-8 pH range at standard temperature and pres-
sure conditions. Future work will focus on sensor improve-
ment in terms of reproducibility and stability. While the
performance metrics of the sensor are not as impressive as
other glyphosate sensors previously published, major advan-
tages of the nanosensor presented herein are the following:
(i) relatively facile manufacturing process, (ii) operational
versatility to be used both in-laboratory and in-field settings,
and (iii) overall lower cost compared with standard analyti-
cal techniques for pesticide testing. Thus, the developed
sensor has the potential to be used for pollution monitoring
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in regions where heavy application of organophosphate pes-
ticides may be of concern. In particular, for rural and low-
income communities where glyphosate pollution represents
an environmental and sociocultural problem.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00604-022-05355-w.
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