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1. Introduction

For graphs Gand H,we say that G has a perfect H-tiling if G contains |V(G)|/| V(H)| vertex disjoint copies of H.For
a positive integer r,the r-th power of Hdenoted H', is the graph on V(H) where uv e E(H") if and only if the distance
between uand vin His at most r.We refer to the (r — 1)-st power of a cycle as an (T — 1)-cycle.

Hajnal and Szemerédi [5] proved that for all positive integers rand n, if rdivides nand Gis a graph on n vertices with
0G) = 1- :— n, then G contains a perfect Kr-tiling. Komlos, Sarkézy, and Szemerédi [13] proved that for all I 2 2, there
exists Ny such that if Gis a graph on N> ng vertices with 0(G) > 1 - % n, then G contains a Hamiltonian (r — 1)-cycle.
Note that if I divides nand G contains a Hamiltonian (r — 1)-cycle, then G contains a perfect K:-tiling, so the result of
Komlés, Sarkézy, and Szemerédi is stronger for fixed rand large n.

A graph G is a k-partite graph with ordered partition P = (V,,... Vi) if P is a partition of V(G) and Vi is an independent
set for every / € [K]. For all i = j e [K], let

6(G) = min {dega (v V) :V € Vi) and % (G) = min 6;(G).
[Vil i=je[K]

Fisher [4] conjectured an analogue of the Hajnal-Szemerédi theorem in balanced multipartite graphs; that is, if Gis a
balanced r-partite graph on n vertices with
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»(G)=z1-

then G contains a perfect Kr-tiling. An earlier example of Catlin [1] provides a counterexample to Fisher's conjecture when
I is odd, but Magyar and Martin [17] proved that for ' = 3, Catlin’s counterexample is the only one. Then Martin and
Szemerédi [19] proved Fisher's conjecture for I = 4. After a relatively large gap in activity, Keevash and Mycroft [10]and
independently Lo and Markstrdm [15] proved that for all ¥ > 0and I 2 2, there exists N such that for all 7= Ny in which
I divides N, if G is a balanced I-partite graph on N vertices with

5p(G)21—;+ Y,

then G contains a perfect K:-tiling. Later, an exact version was proved by Keevash and Mycroft [11] which again shows that
Fisher's conjecture holds for sufficiently large N unless I' is odd in which case Catlin’s counterexample is the only one.

Our main result can be viewed as a strengthening of the asymptotic versions of all of the above results (both in the
multipartite setting and in the ordinary setting).

Theoren.1forall k> r= 2andall 0 <Y < 1, there existsn, suchthat for all n > n, the following holds. If G is a k-partite graph
on n vertices with ordered partition P = (Voo V) suchthat |Vil < n/rfor all i [k] and

5(G)21- 1+,

then G contains a Hamiltonian (r — 1)-cycle.

Note that the condition |Vi|< n/rfor all ic [K] is necessary for the existence of a Hamiltonian (r- 1)-cyc|e since the
(r-1)-st power of a cycle on nvertices has independence number n/r . Also this result is seen to be asymptotically best
possible by taking a complete k-partite graph with ordered partiion P =(Vy,... Vi) and letting V; S Vi for all i e [K]
with |V;[= |Vi|/r + 1and deleting all edgesinside V, U - --UY, to get a k-partite graph G with % (G) just below 1- 1
which has independence number larger than n/r and thus does not contain a Hamiltonian (7 - 1)-cyc|e.

2. Observationglefinitionsand tools

Observatio.1/t sufficesto prove Theorem 1.1 inthe caseswhere r < k < 2r — 1 and all of the parts have order at least g_rn.

Proof. Suppose Theorem 1.1 is true provided 2< <K< 2r-1and |Vi|2 %n for all i € [K]. Now suppose for contradiction
that there exists a counterexample to Theorem 1.1. Let K be minimal such that a counterexample exists. Let Ny be the
value coming from Theorem 1.1when K=k —1and ¥ = % Let G be ak -partite counterexample on 1 = Ny vertices with
ordered partiton P =(Uy, ... Ux) where k is minimal.

We first claim that for all distinct i, j e [K], |Ui| + |Uj| > n/r.Suppose not and without loss of generality suppose that
i=k - 1and j=k; that is, suppose |Ux— 1|+ |Ux |<n/r.Let Vi= U for all ie[k - 2] and Vk-1= Ux_1U Ux and let G
be the (k - 1)-partite graph with ordered partition P = (Vs -- ka_1) obtained by deleting all edges between Uk _4 and
Uk . Since degg (Vs V1) 2 (1= 1+ V)|Uk 4|+ (1= L+ V)|Uk | = (1= 1+ V)|Uk_qu Uk | for all Ve V(G)\ Vk_; we have

6P(G)z1—;+ y.

But now by minimality, G< G has a Hamiltonian (r- 1)-cycle contradicting the fact that G does not. Thus we may assume
that ¥ < k < 2r — 1 as otherwise the two smallest parts add up to at most n/r.

Now suppose G has a part of order less than ¥ n= g—,n; without loss of generality, suppose it is Uk . Because |Ui| < n/r
for every fe[k] and jk;|Uil = n, the fact that [Uk|< Y n< n/rimplies that K > r.By the above, we may suppose that
all other parts have order greater than ?— Y n. Now partition Uk arbitrarily as {U1,- .. Uk_1} (allowing for empty sets
in the partition) subject to |Ui| +|U;| < n/rfor all i e[k - 1]. Let Gbe the (k — 1)-partite graph with ordered partition
P=(Vi ... Vk_4) where Vi=Uju U, for all i e [k - 1]. Since

1 1 1
1= oY Uiz - kYUY mE -ox Y (Vi
we have
1
6P(G)21-7+y,

and thus by minimality and the choice of Ny, GS G has a Hamiltonian (r- 1)-cycle contradicting the fact that G does
not.
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The following simple fact is used implicitly throughout the paper.

Fac®.2..et 0 > ( and G be a k-partite graph on n vertices with ordered partition P = (V, ... V ) suchthat every part has order
at least On. Forevery U ¢ V(G) suchthat |U| < 02n,if G = G- U ,then dp (G) 2 3p (G) - O.

Proof. For distinct i, j € [K] and every Ve V(G)n Vi, we have

dege (V; V(G)n V) S dege (v; V(G ) n V)) S deggs(Vv: V) Y]
IV(G)nVj| Vil Vil Vil

>9p(G) - 0.

Definition2.3((r — 1)-path/(r — 1)-walk). Let G be a graph and let W = X;,. .. X be an ordered sequence of vertices of G.
The sequence W is an (r - 1)-walk oflength if every I consecutive vertices in W form a clique in G.If W is an (r - 1)-walk
of length , then it is an (r — 1)-path oflength if there are no repeated vertices in the sequence X, - - - X .

The following fact is immediate when one first observes that the number of (r - 1)-walks of length  that are not (r-1)-
paths is at most , ‘N~ ', and that, for every set U € V(G), the total number of (" — 1)-walks of length  that contain a
vertex from Uis at most - |U|-n~ ' Throughout the remainder of the proof, we use the notaton @ bto indicate that

there exists an increasing function f(b) such that the result holds for every a< f(b).

Fac®.4.Suppose! O @, 1 and let G bean n-vertex graph and U c V(G) where |U| < On. If W is a collection of at least (Qn)
(r — 1)-walks of length , then at least (On) of the walks in W are (r — 1)-paths that avoid the set U .

To motivate the following definition, let us first comment that, at various times, we will need to connect disjoint (r-1)-
paths to form longer (r- 1)-paths. To highlight some issues that might arise in as simple a setting as possible, consider the
case when k=7 =3and let Gbe a balanced 3-partite graph with ordered partition (V1, Vo, V3) and let Py = Uy, ... Ug
and P, = wy,... W4 be two disjoint 2-paths each on 6 vertices. Suppose that we would like to find a 2-path Qso that
the sequence P;Q P, is itself a 2-path. This would be impossible if, say, Uy € V4, Us e V5, and Ug € V3 while Wy e Vs,
W, e V4 and W3 e V3. To see this, note that, in this setting, if Uy € V4, Use V5, and Ug e V3 and Uq,- - - H3p is a 2-path,
then for every 0< i< p- 1and Je [3], we must have that Usisj € V. To deal with issues such as this, we will require that
(r - 1)-walks conform to the following definition.

Definition2.5(Properly terminated). Suppose that Gis a k-partite graph with ordered partion (V... Vi) and let W =
V4Vy.. ¥p be an (r— 1)-walk where P2 r.We say that Wis properly terminatedif Vi e Vi and Vp-r+i € Vi for all i e[r].
That is, Wis properly terminated if its first rvertices traverse the sets V4, ... Vr in order and its last rvertices traverse
the sets V¢, ...V, in order.

More generally, if P =(Uq, ... U;) is an ordered sequence of rdisjoint sets, we say that the initial r vertices of W respect
the sequenceP if v; ¢ U; for every [ e [r]. Similarly, we say that the final r vertices of W respect the sequenceP if Vp_r+i€ Uj
for every i € []. So, Wis properly terminated if both the initial rvertices of Wand the final rvertices of Wrespect the
sequence (Vq, - - - Vy).

Definition2.6(Balanced). Let P be a collection of disjoint sets. We say that P is balanced if every set in P has the same
order.

If Gis an r-partite graph with ordered partition P = (Vs Vi), we say that G is balanced if P is balanced and we say
that a set U € V(G) is balanced if |Un Vi|=|Un V| for all i, j e [r].

A few times in the proof we will make use of a Chernoff bound on the concentration of binomial and hypergeometric
distributions [8, Corollary 2.3 and Theorem 2.10]

Theorem2.7 (Chernoff bound). Suppose X has binomial or hypergeometric distribution and g < a < 3/2. Then P (IX-E X| 2
a2
aEX) < 2¢” 3EX

3. Overviewof the proof

We are attempting to prove that all sufficiently large k-partite graphs, in which all parts have at most n/r vertices, with
proportional minimum degree at least 1 — }+ Y have a Hamiltonian (r - 1)-cycle. We are able to split the work into two
tasks.

The first (and main) task is to prove the result in the case of balanced r-partite graphs. Lemma 3.1 below establishes
that in a large balanced r-partite graph, and two properly terminated (r- 1)-paths with the same ordering, Kand K, there
is a Hamiltonian (1 - 1)-path that starts with Kand ends with K . If the graph is balanced and r-partite, then we simply
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Fig. 1An example for Lemma 3.2in the casewhere k=6, 7= 4, (ij1,0j,2:1j3.1j,4) = (2 3,56), (1,1 1je1,201j41,31j4+1,4) = (1,3 4, 6) and the 8-vertex
3-path, Pj.

apply this with K= K and we are done. If not, then we use Lemma 3.2 below to partition the graph into balanced r-partite
pieces and then stitch them together to create the (r — 1)-cycle we require.

Lemma3.1(Balanced case).Foreveryr > 2 and Y < } there exists n, such that for every n > n, the following holds. Let G be a
balancedr-partite graph on n vertices with ordered partition P = (Voo V,) suchthat

6P(G)21—;+y.

Supposethat K and K are r-cliques suchthat either K= K or Kn K = g@andlet v;:= Vin Kand v, := V;n K foreveryie[r].
Thenthere is a Hamiltonian (r — 1)-path P of G- (K y K ) suchthat vy, . .. v, P, Vio. ¥ isan (r-1)-walk in G.

The second task is to show that G can be partitioned into a small number of balanced r-partite graphs that each contain
a Hamiltonian (1 - 1)-path and that these (r — 1)-paths can be stitched together to form a Hamiltonian (r - 1)-path of
the original graph G.Lemma 3.2 below shows that the graph can be partitioned into balanced r-partite graphs G;,-.. G,
each with the appropriate minimum degree condition, together with short (r- 1)-paths connecting Gj to G in sequence
in such a way that every vertex is accounted for. Then applying Lemma3.1to each G; we will construct the desired
Hamiltonian (r — 1)-cycle.

The technical issue for finding the partition is essentially numerical, requiring the sizes of the sets forming each G; to be
the same and to partition each vertex class. Once these constraints are achieved, we are able to meet the minimum degree
condition by applying a Chernoff bound to show that a randomly chosen partition satisfying the numerical constraints will
have the required degree condition with high probability.

Lemma3.2(Partitioning and Sequencing).Forallr > 2 o< Y < } andr < k < 2r — 1, there exist constants g < ni B g vy
suchthat if G is a k-partite graph on n > n, vertices with ordered partition P = (Vo Vi) in which Yn < | V| % | Vk=q| -+ - <
|V4] < % and

1
%(G)21-_+Y,
then there existsan (r — 1)-path P, with [V( Py)| < Bnsuchthat if V; = Vi\ v( PO) for i e [k], then the following holds:

(A1) there exists a positive integer ~suchthat for all i ¢ [k], there existsa partition V, = {V/(i,1),... V(i, )} (with V(i, j) possibly
empty) such that for all j e[| there exists 1< ij,<---<ij, < ksuch that |V(ij, j)|=---=|V(ij;Jj)| =pnand if
ieKI\N{ij:---ijr}then V(i j) = & and

(A2) letting P; = (V(ij 4, j),- .. V(i j)) and G; bethe natural r-partite graph induced by P ;, we have that 6pj(G/-) z21-1+ %

(A3) We can prepend r vertices and appendr vertices to P0 to createan (r — 1)-path P, suchthat the initial r vertices of P, respect
the sequenceP and the final r vertices of P, respectthe sequenceP .

(A4) Thereexist vertex disjoint (r — 1)-paths Py, ... P_ ;in G- V(Py) eachon 2r vertices suchthat for all j e [ - 1] the initial r
vertices of P; respectthe sequenceP j and the final r vertices of P; respectthe sequenceP j+q (Fig. 1).

Lemma 3.1 and Lemma 3.2 together immediately imply Theorem 1.1.
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Fig. 2Using induction to build the desired connection between P 1 and P, for Lemma 4.1.

Proof of Theorem 1.By Lemma 3.1 we can assume K> rand by Observation 2.1 we can assume that K< 2r — 1 and every
part of P has order at least ¥ nwhere ¥ =Y > 0. Without loss of generality we can further assume that ¥ n < | V| <
|Vk=q| S-S |Vy| < % Therefore, we can apply Lemma3.2to G (with Y playing the role of V). Define P = Py and for
each Gj, apply Lemma 3.1to Gj with K= Pj_ynGj and K = P;nG;j to get a Hamiltonian (r— 1)-path Q;. Now PyQq...Q
is the desired Hamiltonian (r — 1)-cyc|e.

In Section 4 we describe the three lemmas needed to prove Lemma 3.1. Then in Sections 5to 8, we prove those lemmas.
Finally in Section 9 we prove Lemma 3.2.

4. Statemenbdf theprincipallemmas

We prove Lemma 3.1 using the absorbing method of Rd&dl, Ruciriski, and Szemerédi. As is typical with this method, we
have connecting, absorbing, and covering lemmas.

Lemmad4.1(Connecting lemma). Foreveryr > 2 and 0 < V < } there exists T > ( sych that the following holds for every n. Let G be
an r-partite graph with ordered partiton P = (V,,...V,).Let = r(2r - 2). Supposethat (U,,. .. ;) is a sequenceof setssuch
that Ujc Viforie[r], U= ,’.=1 U;, and

. 1
foreveryie[rlandv e V\ V;, |Uj| 2 Vn anddegG(V, U)z 1- - +V U 1)

Thenfor every pair of properly terminated (r — 1)-walks P, and P, in G there existat leastTn (r — 1)-walks Q of length contained
in U,y - - - uU, suchthat P, Q P, is a properly terminated (r — 1)-walk.

Lemmad.2(Absorbing lemma). Forr > 2, supposethat rl7 B y < } and let G be a balanced r-partite graph on n vertices with
ordered partition P = (Vi Ve ) suchthat

1
(G =1- - +V.
Thenthere exists a properly terminated (r — 1)-path Pgys suchthat |V (Pqps)| < B, and, for every balancedset Z ¢ V(G)\ V/(Paps)

for which | Z| < 32n, there existsa Hamiltonian (r — 1)-path of G[V(Pgps) U Z] that beginswith the same(r — 1) vertices as Pyps and
endswith the same(r — 1) vertices as Pyps.

Lemmad.3(Coveringlemma). Forr > 2, supposethat % ML a y< } and let G be a balanced r-partite graph on n vertices
with ordered partition P = (Vy,...V,) and ’

6P(G)z1—;+y.

Forsome M < M, there exist vertex disjoint properly terminated (r — 1)-paths Py, ... Py suchthat W = V(G)\ . y V(P;) is
balancedand |W | < Qn.
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Before proving these three lemmas, we first show how to use Lemmas 4.1, 4.2, and 4.3to prove the balanced case of
Theorem 1.1.

Proof of Lemma 3.We can select My, V, 0, and B so that
_—_ vag y.
By Lemma 4.2, there exists a properly terminated- (© — 1) path P, disjoint from K and K such that
* | Pabs| < B1; and
« for every balanced set Z< V(G) such that |Z| <820 there exists a Hamiltonian (r — 1)-path of G[V(Pgu,) U Z] that

starts and ends with the same (r — 1)-vertices as Pabs.

Let G = G- V(Pyu)uV(K)uV(K) .
Uniformly at random select subsets Uy, - - - Ur such that for every i e[r], Uic V(G)n Vi and |Ui| = Vn . By the

Chernoff and union bounds, there exists an outcome such that (1) holds. Fix such an outcome and let U= Uyu - - - W, and
let G = G - V(U).

By Lemma 4.3, for some M < My, there exist vertex disjoint properly terminated (- 1)-paths Py,--- Pum in G such
that W= V(G )\ 2, V(P) is balanced and |W|< On. Since (1) holds, Fact2.4and Lemma 4.1imply that we can find

m + 2 disjoint (r — 1)-paths, each of length = 2r(r = 2), in G[U] that connect

* Kto Pabs,
* Paps to Py, )
e Pi_yto Pi,for 2<i< M; and
e Puto K
to form a (r - 1)-path P.Let Z=|V(G)\ V(P)|, and note that
[Z|<|U|+|W]|<r Vn + On<B2n.

Therefore, there exists a Hamiltonian (r- 1)-path of G[P,ysU Z] that starts and ends with the same (r - 1) vertices as Paps.
If vi= Vv, for every i €[], then we have constructed a Hamiltonian (r — 1)-cycle. If Vi = Vv, for every i € [r], then we have
constructed a Hamiltonian (r — 1)-path that starts with Kand ends with K .

5. Proofof theconnectingemma(Lemma 4.1)

Although we present the proof of Lemma 4.1in full, it closely follows proofs of similar lemmas given in [7] and [6].

Definition5.1.Let G be a graph on nvertices. For U € V(G), we say that Wis (U, 0)-richif there are at least On vertices
Ue Ufor which N(u) contains W, otherwise Wis called (U,G)—poor.

The following simple observation and fact are critical for the inductive proof of the connecting lemma.

Observatiors.2.Forr > 3, let G be a graph on n vertices, let P = (V- Vr ) be an ordered partition of V(G), and let U, € V,.
Supposethat

W=xg,.. .x,_1,z}, .. .2,1_1, . ..zf,...zf_1,y1, R VA
isan (r - 2)-walk of length (s+ 2)(r - 1) suchthat W n V, = gthat is (U,, O)-rich. Then,by the definition of (U,, O)-rich, there are
at least (0n)s* 1 tuples (w0, . . . w°) suchthat {w?9, ... w%} c U, and N(w') contains W for each( < i < s. Therefore,for eachsuch
tuple

Xqp oo .x,_1,W0,21, . ..zﬂ_1,w1, . .zf, . ..zrs_1,ws,y1, ce Yoy

isan (r - 1)-walk oflength (s+ 2)r — 1.

By double counting, the following fact formalizes the observation that most neighborhoods do not contain many poor
paths for the simple reason that, by definition, poor paths are not contained in many neighborhoods,

Fac$.3.Forr > 3, p = 0and 0 > 0 the following holds. If G is a graph on n vertices and U c V(G), then there are at least|U| - On
vertices u e U such that only at most OnP of the (r — 2)-walks of length p contained in N(u) are (U, 02)-poor.
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Proof. Let Vpoor be the set of ordered (P + 1)-tuples (U, V4. .. V¥p) e VP*1 sych that

s Uec U,
« W=vy,...¥pisa(U, 02)poor (r- 2)-walk, and
+ N(u) contains W

Because the number of ordered P-tuples is at most ”, we have that |Vpoor| < 02nP*1 (cf. Definition 5.1). Let U € U be the

set of vertices U e U such that more than On® of the (r — 2)-walks of length P contained in N(u) are (U, 02)-poor. Then,
|U |-0nP < |Vpoor| £ G2nP*1.

Therefore, |U | < On and the conclusion follows.

Proof of Lemma 4.1We will prove the lemma by induction on r.For the base case, note that when = 2, we have = 4

and, by (1), the statement easily holds with T = V5/4. To see this, note that we can select vertices X1, Y1 € Uy, and Yo € Uy
such that PyX; and ¥1Y2P, are 1-paths. This can be done with (1/2+ V)|U,]| choices for Yo, (1/2+ V)|U,| choices for ¥4

and (1/2+ V)|U4| choices for X4 (recall that we only require (r- 1)-wa|ks). This gives at least % 3 total selections and for

every such selection we have

IN(x1) n N(y1) n Uz| 2 dega(Xq: Uz) + dega(V+: Uz) = |Up| 2 2V|Uy| 2 2V2N.

For the induction step, let F = 3 and suppose that the result holds for F— 1. Let = 2(r— 1) - 2, g = (r- V2(r-1)-2)=
(r-1)s,and P=q+ 2(r - 1), and note that

p+s+2=((r=1)s+2(r=1)+s+2=r(s+2)=2r(r-1)=. )

Applying the induction hypothesis with V/2,r-1, and gplaying the roles of V, r,and respectively we get that there
exists M > 0 (playing the role of T) such that the following holds.

Claim5.4./f ucu such that U] 2 Vn/2 forall i e [r - 1], and

1
dege(v,U;)) = 1- = +V |U;|forallv e V\ V;, (3)

then for every pair of (r — 2)-walks Xy,. .. X_q and yy, ... y,_4 suchthat x;, y; e U, for all i e [r — 1] there exist at least /n9
(r - 2)-walks of length q contained in U,u...uU,_, suchthat Xy, ... Xr_4, Q, Yy, .- - Yr_qisan (r - 2)-walk.

r-1

Pick T, 0> 0so that T 0 U,V First note that, by (1), there are at least ? 2 Opways to select ¥r € Ur so that
YrPy is an (r = 1)-path. Next, because |Ur| 2 Vn > On, Fact5.3 implies that there exists V* € Ur such that

atmost On® of the (r — 2)-walks of length p contained in N (v*) are (U;, 02)-poor. (4)
For every i e [r = 1], let U; = N(v*, U;). Note that |U;|= Z1|U;| = Vn/2 and for every Ve V\ V;

1 1 r 1
deg(v, U;) 2 |U;| - -V il z|Uil - o=V — 1|Ui|2 1- — 7t VUi
Therefore, we can iteratively prepend vertices Yr-q,--- ¥4 to ¥YrP> and append vertices Xy,---X—4 to Py in at least
2r-2
@ ways (Fig. 2) so that the following holds:
« X, Yie U, for ie[r-1]; and
e both Py Xq, .- X_q and Yqr- - - ¥r—1» ¥r» Py are (r = 1)-walks.
By Claim 5.4, the number of (r— 2)-walks Q of length g contained in Uyu---W,_ suchthat Xq,e - Xro s @ Yqoe v ¥y

is an (r — 2)-path is at least Mn9.
Therefore, there are at least
v2n 2r-2
- .unq=2—2r+2_v2.ynp220np
2

(r - 1)-walks

x1,...x,_1,Q,y1,...y,_1=)(1,...3(,_1,21,...zr1_1,...z§,...zr5_1,y1,...y,_1

such that
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« N(v*) contains Xqs-« - Xr_4: Q Yiqro v - ¥r_q;
o Xgpe oo Xres Q@ Yqs- - Y-y is an (= 2)-walk of length P; and
e both Py Xq, .- Xr—q and Y4, - - ¥rs P, are (r = 1)-walks.

By (4), only On® of these paths are (U, 02)-poor so at least OnP of these paths are (Ur, 02)-rich. By Observation 5.2, for

every such (Ur, 02)rich walk, there are at least 020 °* ' ordered tuples (WO, . .. w®) such that {WO, ... w%} < U, and
Xqs Xgs oo Xe_ g WO,Z], .. .zﬂ_1, wl, .. .zf, .. .zf_1, W Yoo Yoy
is an (r = 1)-walk of length P+ S+ 1= - 1(cf. (2)). Recalling that there were at least On ways to select Yr gives us that

S+ 1

the number of (r — 1)-walks @ of length  such that P{QP, is an (r — 1)-walk is at least On-0nP . 02n = 0%*4n >

n |
6. Proofof theabsorbingemma(Lemma 4.2)

Definition6.1.Let 2< < | let Gbe an r-partite graph, and let X be a balanced subset of V(G). A properly terminated
(r-1)-path @j,...@ in Gis an absorberof X if there is an ordering of the vertices {2;,--- @ }U Xthat starts with the
sequence 41, - - - -1 and ends with the sequence @- ry+¢,-- -8 that is an (r- 1)-path in G.

The proof of the absorbing lemma follows by a standard probabilistic argument after the proof of the Lemma 6.3 below.
We will use the well known “supersaturation” result of Erdés [3] (see [20, Theorem 2.11]).

TheorenB.2(Supersaturation). Forall r > 2, ¢ > 0, and positive integers s,, . . . 5, there existsn, and ¢ suchthat if G is a r-partite
r-uniform hypergraph with ordered partition (V... V,) and at least c n" edges,then G contains at least cn®1*S2* =+ S complete
r-partite graphswith s; verticesin V; for all i g [r].

Lemma6.3.forallrz2andt a O Yy  lthefollowing holdswith = 3r2-r:
Let G bea balancedr-partite graph on n vertices with ordered partition (V,. .. V;) suchthat & (G) =z 1- 1+ V.Iif Xc V(G)
is a balanced set of sizer ,then there are at least (Qn) absorbersof Xin G.

Proof. Let X1, - - Xr be an ordering of X such that Xi € Vi for i € [].
We first describe what an absorber of X will look like. Suppose

RV Ak RV ANV,
2% v,

P=vl. . wvlvZ..v2.. y 1. /

1 1 r 1
is an (7 — 1)-path of order 2 where V! €V for all i e [r]. Forall i, j €[], set S/ = 2if i=j and S| = 3 otherwise.
Let P be the (s},...sl,...S,...s)-blow up of Pwhere D/ is the set corresponding to V;. That is, replace each
vertex v with a set D; of order S, and if {v/, v/} is an edge of P ,add all edges between D] and D; .

We claim that, if we suppose that D u---UD]_ u D}, u---uDj < N(x), for all i [r], then P contains an absorber

of X.Forall i = je[r], label the vertices of D! asa, b/, c! and label the vertices of D! asa and ¢! Let
N 1 1 101 152 2pH2 2 202 2 r "B’ r r
Qy=aj-- a,x1b2- . brc1 e cag a,b1x2b3- . brc1 AR A arb1 .- ,br_1x,c:1 .- cﬁ

and

= al 1¢1p1 152¢1 1h252 202022 2233302 . . ¢2 r oA r
Qy=aj--alcib) .- blajc) - - clbias. - azcicabs- - bzajajcs- - €2 - bl .- b_ ac - c,

ie., Qo= Ty - T, where
—al..alclpl.. pla2ct. . ¢l
T,=aj--aciby-- brasc; - - ¢/,
SN TN R A R PN
Ti=by--b_,a--ac - cb,

— h r I A r
Tr=by--b_ac . -c.

i i i i i
'bra1+1"ai+1ci+1"cf for2<1<r-1,and

Note that Q4 and Q3 are properly terminated (r- 1)-paths which start with the same rvertices and end with the same I
vertices, so P contains an absorber for X .See Fig. 3.

Exampleb.4.In the case of I = 3, the 2-paths Q1 and Q; are as follows:

1alalx,blblclclcla2a2a2h2x.,b2c2c2c2adada3h3b3x.,c3cd3cd
Qq = ajaaix bybiciciciatasazbix,biciciciaiasasbibixscicics
Q2

12131:1p1h18201 01p252420202h25343 0233433 0303
a1a2asc1b2b3a1czc3b1a2a3c1czb3a1a203b1b2asc1czcs.

8
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T ZTo I3

Fig. 3.An absorber for X ={Xq, X3, X3} from Lemma 6.3. The edges between D,‘/‘s and between X and D,) are indicated by solid black lines. The edges of
Q1 are not shown. The edges of Q5 that are not in Q1 are shown.

Now we show that there are (”3'2_') copies of P which contain the absorber of X as described above. By a Chernoff

bound (Theorem 2.7), for all i € [r] there exists a partition Vi={V/,...V/} such that for all i, j € [r] and all Ve V(G)\ V;,
deg v,V/] 2 1-_+2 V.
r 2

One can see that constructing greedily (from the middle out), there are at least (%")r2 properly ordered (r- 1)—paths
P=vy.. V., of order r? such that for all i €[],
{Vir+1r cVirvi- Virwieqr - - - V(i+1)r} < N(Xi)-
Treating each such copy as an edge in an f2-partite r2_uniform hypergraph H with ordered partition (v1,.. .. ,Vq,

VI
... V) and applying Theorem 6.2to H,we have that there exists at least An%~" copies of the (S1,. .. s, .. Sy 8-
blow up of P.

Proof of Lemma 4.2et 0 be such that % OB ,let =3r2-r,and let A be the collection of all ordered sequences
(ay,. .. @) of vertices such that for every ie[] and je[r],if @ eV}, then i=Jj (modr). Let X be the collection of all
balanced r-subsets of V(G). For every X e X, let

Ax={(a,---2a)eA :ay, ... isanabsorberof X},
and note that, by Lemma 6.3, we have

|Ax| 2 (an) . )

Now create a random set Aran by select each sequence in A independently at random with probability p= B1'1n_+ 1,

sosince [A |=n |
Bn
7
and, by (5), for every Xe X,

ElAX n Aranl 2 p(an) 2 4B2n'

So, by the Chernoff bound and the union bound, with high probability

Bn

Pran < 3 and JAxnAg|23B2n  forevery X e X.

EJA an| = PIA | <

LetArep contain the pairs of tuples in A in which a vertex is repeated, i.e.,

A ={{ST}:STeA,S=T, and a vertex appears at least twice in sequence S , T}.
We can construct every pair in Arep by selecting an arbitrary vertex, placing that vertex in 2 of the 2 possible entries, and
then arbitrarily filing the remaining 2 — 2 entries, so

2 _
ElArepnAranl=p2|AreP|Sp2'n' 2 -n? ZSBZH‘

By the Markov bound, with probability 1/2, we have that |A rep| < 2B2n. Therefore, there must exist some random outcome
A an such that if we remove every pair in A, N Ay and every sequence that is not absorbing for some X € X to form A
then we have that
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Al BA3) ;

s« |AnA,|=p2n for every Xe X;

* the sequences in A are pairwise vertex-disjoint; and

« for every Pe A, P is an absorber for some X e X, so P is an (r - 1)-path.

Lemma 4.1 (with (V4,---V:) and Y playing the roles of (Uy, - - - 1) and V, respectively) and Fact 2.4 together imply
that we can connect the (I - 1)-paths in A (in an arbitrary order) with paths of length r(or - 2) <2 to form the desired
absorbing (r = 1)-path Pu,s. We have that |V(Paps)| = | Al + r(2r - 2)(|A|- 1) < 3] A|<pn.

Let Zc V(G)\ V(P,) be a balanced set where |Z] < [32”. We can partition Z into balanced I-subsets so that each part
is in X . Since there are at most |Z)/r <B2n parts in such a partiton, we can greedily match each part X to some path
Pe A nAx. Since P is an absorber of X, we can construct the desired Hamiltonian (r — 1)-path of G[V (P U Z].

7. Theregularityjlemma

We now review Szemerédi’'s well-known regularity lemma [21].

Definition7.1Jn a graph G for each pair of disjoint non-empty sets A, BS V(G) we write G[A, B] for the bipartite subgraph
of Gwith vertex classes Aand Band whose ed%es are all edges of G with one endvertex in Aand the other in B,and
denote the density of G[A B] by dc(A, B) = e(—lejﬁjgl—]l

We say that G[A, B] is (0, €)-reqularif de(X,Y)=d+ € for every XS Aand Y S Bwith |X| 2 €|A| and |Y| 2 €|B|, and
we write that G[A, B] is (20, €)-regularto mean that G[A, B] is (d, €)-regular for some d 2 d.

Also, we say that G[A, B] is (d, €)-super-regularif G[A, B] is (20, €)-regular, every vertex of Ahas at least (d - &)|B|

neighbors in B ,and every vertex of B has at least (d- €)|A| neighbors in  A.
The following results are well-known elementary consequences of the definitions.

Lemma?7.2(Slicing Lemma). For every d, €, 3 > 0, if G[A, B] is (d, £)-regular, and X ¢ Aand Y c B have sizes|X| =z p| A| and
|Y| = B| B|. then G[ X, Y] is (d, &/B) -regular.

Lemma?7.3foreveryd, €> Qwith €< % if G[A, B] is (=4, &)-regular, then there are sets X ¢ Aand Y c B with sizes|X| z
(1- &)|Al,and |Y| = (1 - €)|B| suchthat G[ X, Y] is (d, 2€)-super-regular.

Definition7.4.Let G be a graph on nvertices and suppose that Cis a collection of disjoint subsets of V(G). Define the
(G, C d, &)-cluster graphto be the graph with vertex set C in which distinct A, Be Cform an edge if G[A B] is (=4, £)-
regular.

Definition7.5.Let P = (V4,. .. V) be an ordered partition of V(G). We say that a collection C of vertex disjoint subsets of
V(G) respectsP if for every Ce Cwe have C S Vi for some i € [r]. If Crespects P, we let P(C) be the partition (G, ... G)
of Cin which every Ce Cisin G when Cc V.

We now state the standard degree form of the regularity lemma.

Lemma7.6(DegreeForm of Szemerédi'skRegularity Lemma). Forevery € > 0 and 0 < d < 1 and integersr and N there exists N, such
that the following holds. If G is an r-partite graph on n vertices with ordered partition P, then there exists a partition U, . .. Uy of
V(G) and a spanning subgraph R of G suchthat the following holds:

e Nog< N< Ny,

‘| U0| < &n;

S| Ul=- = Unl;

« the collection Uy, . . . Uy respectsthe partition (V4,... V),

+ degr(v) = degg(V) - (d+ &)nfor everyv e V(G);

| E(R[Uj]) = 0 forevery1< i< N;and

« forevery1< i< j< N,the graph R[U;, Uj] either (= d, £)-regular or hasno edges.

From the degree form of the regularity lemma, it is easy to show that we have Lemma 7.7 below. Since the proof is
standard, we only provide a sketch.

Lemma7.7Supposethat
A
n N1 NO r

10
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Let G be a balanced r-partite graph on n vertices with ordered partition P. Thenthere exists C, which is a collection of vertex disjoint
subsetsof V(G) and R a spanning subgraph of G suchthat

(R1) No<|Q < Ny;

(R2) Ccoversall but at most &n vertices of G;

(R3) everyelementin Chasthe sameorder;

(R4) Crespectsthe partition P and the partition P(C) = (C,,. .. ) is balanced;

(R5) forevery v e V(G), we have degr(V) = degs(Vv) — (d+ &)n;

(R6) for every U e C we have Eg(U) = ¢ and for every pair of distinct A, B e C either E(R[A, B]) = gor R[A, B] is (> d, €)-regular;
and

(R7) if Gisthe (G, C, d, €)-cluster graph, then dp (¢)(G) = ép (G) - 1.

Proof sketchPick € and d such that 7v1; € €& d d Lemma7.6implies that there exists a spanning subgraph R of

Gand Ugy Uy, ... Un a collection of vertex disjoint subsets of V(G) such that the conclusions of Lemma 7.6 hold with €,
d, rand 2Ng playing the roles of €, d, rand Ny. In particular, we have that N = 2Ny and Uy, - - - Un covers all but at most
€ nof the vertices of G .Therefore, by removing a small fraction of the sets from the collection U4, ... Un we can create C

a collection of vertex disjoint subsets of V(G) such that (R1) - (R6) all hold.
To see that (R7) holds as well, let PO = (C,- ) andleti, je [r] such that i = j.For every Ce GandvecC ,(R2),
(R3), (R5), and (R6) imply that
dega(C: G) _ degalV, V(G) _ degalV, V)) = €
G NG| n/r
degg(V, Vj) - (d+ €)n - &n
n/r

26p(G) - N

We make the following definition to help describe the version of the well-known blow-up lemma that we will need.

Definition7.8.For a graph R and C be a collection of vertex disjoint subsets of V(R), we let K(C R) be the graph on V(O
such that for every distinct X, ¥ e V(R) the graph K(C R) has the edge {X, ¥} if and only if xand yare in distinct sets
A Be Cand E(R[A, B]) =@

For a subgraph Hof K(C R), a copyof Hin R that respectsC s an injective function f:V(H)— V(R) such that {X ¥} e
E(H) implies {f(x), f(¥)} e E(R) and, for every Ve V(H) and Ce C ve Cimplies f(v)ecC.
Lemma?7.9(Blow-up Lemma[12]). Supposethat % € 4, fj. Let G bea graph on n vertices; let C be a collection of vertex disjoint
subsetsof V(G) eachof sizem; and let R be a spanning subgraph of G suchthat for every U e C, we have Ex(U) = @, and for every
pair of distinct A, B e C either E(R[A, B]) = @or R[A, B] is (= dd, €)-super-regular. If H ¢ K(C R) and (H) < D, then there exists
acopyof Hin R that respectsC.

8. Proofof thecoverindemma(Lemma 4.3)

Definition8.1.Let G be a graph and let K be the copies of K; in G .A fractional K,-tiling of a graph Gis a weight function
w: E(K) > R s in which, for every Ve V(G), the sum of the weights on the copies of K that contain vis at most one.
That is, we have that

{w(K) :KeKandKcontainsv }<1  foreveryv € V(G).

The size of wis {W(K) :Ke K}, and we say that wis perfectif the size of wis exactly |V(G)|/r.Note that wis perfect
if and only if

{w(K):KeKandKcontainsv }=1  foreveryv € V(G).

We will use the following lemma which can be found as a corollary to[18, Lemma 2.2]. (See also, [14,10].)

Lemma8.2./f G is a balanced r-partite graph on n vertices with partiton P and & (G) = 1 - } then G has a perfect fractional
K, -tiling.

RemarkB.3.Here we could have shortened our proof by using existing results on perfect Kr-tilings in multipartite graphs
(see [10,15]). We chose to only use the above lemma on perfect fractional K:-tilings, which is relatively short, to make this
paper more self-contained.

11
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The following lemma is a consequence of Lemma 7.2 (The Slicing Lemma), Lemma 7.3, and Lemma 7.9 (The Blow-up
Lemma).

Lemma8.4.Let % € d acx< } let G be an r-partite graph with ordered partition (V, ... V,) and for i e [r] let C; be an
m-subset of V;. Supposethat the setsC,, . . . C; are pairwise (2d, € )-regular and for everyi e [r], we have C; c C;. If z is a positive
integer suchthat |G\ C|+ z< (1 - a )m for everyi e [r], then there exists P a properly terminated (r - 1)-path in G[C1 u--- G
suchthat for every i e [r] the path P intersects C, in exactly z vertices.

Proof. Note that the conditions imply that |C;| =2 A m + Z for every i € [I]. So, Lemma 7.2 (the Slicing Lemma), implies
that the sets C,.- - - C. are pairwise (2d,€%3)regular. By applying Lemma 7.3 , times, we can construct C; € G for

i e [r] such that |C; | 2 Z and the sets C1, ... £ are pairwise (d, 51/3)-super-regu|ar. Lemma 7.9 (the Blow-up Lemma) then
implies the existence of the desired (r- 1)-path P.

Proof of Lemma 4.%elect constants Ng, My, €, 0 Il and d so that

12 Y e a a d n y<l
n Mgy N, r

Lemma 7.7 implies the existence of a collection C of disjoint subsets of V(G) such that

<1 Qs Ny
« Ccovers all but at most €n of the vertices in V(G);
+ there exists msuch that for every Ce Cwe have |C|= m;

+ Crespects P and if we let P = P(Q) and G= (G, C d, €), then P is balanced and

6P(G)21—;+%.

Lemma 8.2 implies that there exists a perfect fractional Kr-tiling of G and let Ky, - .- Ky be an arbitrary ordering of the
copies of K in G that receive positive weight in such a fractional Ki-tiling. Note that M < ’\11 and that there are positive
weights W, - - - Wy such that for every Ce C,

M
{w; : K; contains the cluster C } = 1,
i=1
and ,-’L wi=|Q/rz(1-&n/(mr) Foreachie[M], let Z= (1- A)wim and note that
M M
m n n
z = (1-@)wim 2(1-0) Q- -M2(1-0)(1-&_ -M2(1-0)_.
i=1 i=1
We can now prove the lemma by constructing disjoint properly terminated (r- 1)-paths Py, ... Pm such that for each

i e [M], the (r - 1)-path Pj has length exactly ©Z because then 7;1 V(P;) = (1- Q)n.
To see that such a construction is possible, assume that, for some t € [M], we have constructed t — 1 disjoint properly

terminated (1 - 1)-paths Py, ... Pt_4 such that for every j e[t — 1] the path Pj is contained in the clusters of Kj and for
every cluster C contained in Kj the (r - 1)-path P; intersects Cin exactly Z; vertices.
Let Cy,- - - £ be the clusters in K:. We can assume that Cj € Vi for i € [r] since the partiion C respects the partition
P and the clusters Cy, - - - £ are pairwise (29, €)-regular. Forie[r], let C; € C; be the vertices in Ci that do not intersect
one of the previously constructed paths Pq,- .- Pr—q. Recall that for i € [r], we have that K¢ contains the cluster Ci, so
t-1
ICG\C|+ 2=\ z:K;containsthe cluster C i / + z
j=1
M
< Z; 1K contains the cluster C i
j=1
M
< (1- O )w;m:K; contains the cluster C ; = (1- a)m.

J=1

Therefore, Lemma 8.4 implies that there exists an (r — 1)-path P: contained in G[C, U - - - 5] such that, for i €[], the path
Pt intersects C; in exactly Z vertices.

12
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9. Proofof the partitioningand sequencingemma(Lemma 3.2)

Before we begin the proof, we give some further terminology and observations regarding properly ordered paths.

For 1< k < k, we say that an (r — 1)-path Vq,... ¥k is increasing if for every 1< i< i <k we have that Vi e V; and
vi e Vj with /<, ie., apath is increasing if it traverses the sets V4, .. Vi in order (though it might skip any number
of the sets). All of the paths that we will construct can be partitioned into subpaths on either I or I + 1 vertices that are
increasing. We call such an (r — 1)-path properly ordered. We now give a more formal definition.

Definition9.1(Properly ordered/ j-th subsequence).Let P= v4V,- - ¥, be an (I — 1)-path and let f :[P] - [ k] be such that
Vi) € V. We say that P is properly ordered if there exists 0 = Pg, Py, - - - Pg= P such that for all f € [q],7 < Pi— Pi—q ST+ 1
and f(pi_q+ 1) <---<f(p;).For je[d], let Vp,_,+1,--- ¥p; be the J-th subsequence of P.

Given a properly ordered path P = Vpgrt: s Vo, Vpie1 " Vo, Vpg_,+1°° Vp,, we will say that the j-th subsequence,

pi_+11- - V¥p;, S if for i € [K], we have Zi = 1 when one of the vertices in the subsequence is in the pa
Vo, Vp,, hastype ze Z* if for i e [K have Z = 1wh f the vert the sub the part
Vi and Z = 0otherwise. From the definiton of properly ordered, this means that Vpj_4+1:- - - ¥p; has type zezkif
Zi=|{Vp,_ +1:- - ¥p;}n Vi| for every i e [K].

It is clear that we need the parts which contain every ' consecutive vertices in Pto be distinct. Given a properly
ordered (r - 1)-path, we will have this critical property if and only if the following condition is met for every je [d— 1],
andie{Pj-1+ 1,---Ppj}and i e{Pj+ 1, - Pju1}:

If viand v; are contained in the same part, theni —i2r. (6)

We can restate this observation in the following way: The parts which contain every r consecutive vertices in P are distinct
if and only if for every j e [d— 1] when we let zbe the type of the j-th subsequence and Z be the type of the (J + 1)-th
subsequence we have the following:

k i
Foreveryi e [K],ifzi = Z; = 1, then zy + z,2r. (7)
V=i+1 v=1
Note that if the j-th and (j+ 1)-th subsequences of P both contain exactly rvertices (so, I\(,=1 Zy = '\(,=1 Z,=r),then (7)
can be restated as the following:
i k i
Foreveryi € [K],ifzi = Z; = 1, then Zy=1r1- Zy < z,. (8)
v=1 V=i+1 v=i
If the ordered pair (2, 2) satisfies (7), then we say that (z,2) is valid.
Proof of Lemma 3.2t 2< < k< 2r - 1and let B and U be constants such that
1 1
— g < —.
=B Vs - ©)
Let G be an n-vertex k-partite graph with ordered partiton P = (Vq, ... Vi) of V = V(G) such that
n
Yns |V €| Vil S-S V< o (10)
and
1
%(G)z1-_+V. (11)

If |V4]2 7 - 20n, we define 1< S< kto be the largest integer such that |Vs| 2 % — 20n; otherwise, we set S= 0.

We start by greedily building a path P, such that when V = V\ V(P)) and V; = V;\ V(P)) for every i € [K], the
following holds:

(T1) |V | is divisible by r;

(T2) |Vi|=|V |/rfor every i e[S];

(T3) |V;| 2 Onfor every ie{s+ 1,...k};

(T4) |V;| S|V |/r - Onfor every ie{s+1,...Kk};
(T5) |V | = (1- 3r20)n; and

(T6) Po is properly ordered and properly terminated.

13
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Let Z© pe the (0, 1)-vector in Z¥ in which the first (r + 1) entries are one and the remaining K— I — 1 entries are zero.
For je[r+ 1], let 20) be 20 minus the Jj-th standard basis vector, i.e., all of the last K— r — 1 entries of ) are zero and
all of the first (r+ 1) entries of 20) are one except for the Jj-th entry, which is zero. Using (7) and (8)it is not hard to verify
that the following holds for every J, j e [r + 1]:

V1) (29, 20) s valig;
(v2) (27, 20)) is valid when j< j + 1; and
v3) (27, 207) is not valid when j = j + 2.

Let 0< Cy < be such that N — Cy is divisible by I and for i € [5], let

I’I—CO_

ci= | Vil. (12)

r

Note, by (10)and the definition of s, we have that 7 — 20n< |V <--- < V4| < 7, so
20N 2 Cs2 Cs_q 22612 0. (13)

The sequences of vectors

0o 2, 2+, 20, 2=, gt ) ¢ A9 oo AV, g ), L),

will serve as our template for Po-
That is, we greedily build P, so that

» the first Co subsequences are of type 20 (these are the only subsequences that have (r + 1) instead of r vertices);

« the next (" — s+ 1) subsequences have types 2+ "V, 21, 21, . 2tV reqpectively;

* the next Cs subsequences are of type Z(s), followed by Cs- 1 subsequences of type 21
of type Z(1); and

* the last subsequence is of typ

, ... followed by C{ subsequences

e 2(M+1)

Note that it is possible to build Po in this way by (11), (13), (V1) and (V2) (To see that (13)is critical here, note that, by
(V3), we need that if t € [5] is such that ¢t = 0, then Ct—q = Ct_p =--- = €y = 0.) Define
S
g=Cy+(r=s+1)+ Cj+1 (14)
j=1

and note that gis the number of subsequences in Po-

Claim9.2.The Po constructed as describedabove satisfies conditions (T1)—(T6).

Proof of Claim 9.2.
(T6): The construction of Po requires Po to be properly ordered and properly terminated (even when Cy = 0).
(T1): Recallthat each subsequence has r vertices except the first Cg, which have I + 1. By (14), the number of vertices in Po
is
S
p=colr+ 1)+ (r—s+1)r+ Cjr+r=Ccy+qr. (15)
j=1
So, since N — Cy is divisible by r,we have that |V |=n- pis divisible by r.
(T5): By (13), (14), (15) and the fact that S< rand Cy < r,we have that
S
p=Co+ qr=cy(r+ 1)+ (r-s+2r+r c;<30rn. (16)
j=1
(T3):By(10), for all i e {S+ 1, .. K},
|Vi| =|Vi\ V(Py)| 2 ¥ n-30r?n> 0On.

(T2): By (12)and (15), for all i € [9],

-C n- c p-cC n-p 14
0 0 0
_|VI|= - = =_| |

n
|V’-|=|V,'|—q+ C,‘=|V;|—q+
r r r r

14
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(T4): Considertwo cases: If S+ 1< /<, then, because every subsequence of Py except exactly one intersects Vi, we have

-C n 14 14
P 0+1< _—20n-E+2=u-2Gn+2<u—Gn.
r r r r

[Vil=1Vil-a+1=]Vi| -

If r+ 1< i<k, (10)implies that |Vi|< n/i<n/(r+ 1), sowith (16),

]

n n n p [V
- - < _--30m-0ng —- —-0n= — - 0n.
roor(r+1) " r roor r

This concludes the proof of Claim 9.2.

Vi|<|Vi|l £
VIS VIl S

Now we consider (A1). We stress that the issue here is largely numerical, which explains the general nature of the next
two claims. Claim 9.3 provides the template and Claim 9.4 shows that V can be partitioned according to the template so
that (A1) holds. The purpose of partitioning according to this specific template is to set things up so that (A3) and (A4) will
be able to be satisfied in the end.

Let Z be the set of (0, 1)-vectors in Z¥ such that the first s entries are one and exactly ' — sof the remaining k— s
entries are one (so, for every Ze Zz exactly rof the kentries of zare one and the remaining K — rentries are zero). Note

S .

that = =3 is the order of Z.

Claim9.3.Thereexistsak x ( 0, 1 )-matrix A= [ai,j] suchthat the columns of A are the vectorsin Z where the columns of A are
ordered so that

« the first columnis(1,...4,0,...0)7;

rtimes k- rtimes
« thelastcolumnis(1,...4,0,.--0,1,...1)7; and

stimes k- rtimes r - stimes
- foreveryje[ - 1]andie [K],

ifaj ;= ajj.q=1then av;<  A&,jq  (cf.(8). a7
v=1 v=1

Proof of Claim 9.3lhe proof is by induction on kK — s. Note that if either K= ror = s, then the claim is trivially true. In
particular, this establishes the base case since K — S= 0implies K= = s. Now suppose that K> > s. Let Z pe the vectors

in Z in which the (S+ 1)-th entry isone and let Z =Z\Z Let =|Z |= ,::5:11 and =1|Z |= k_,_s_s1 . By the induc-
tion hypothesis (with k, r,and S+ 1 playing the roles of k, r,and s, respectively), we can populate the first  columns of A
with the vectors in £ so that the first column is (1,---;1,0,---0)T,the th column is (1, ---4,0,--.0, 1,-.-1 )T,

Itimes K- times S+ 1times K- rtimes - S— 1times
and (17) holds for j e[ = 1]. Similarly, by the induction hypothesis (with K= S— 1, I = s, and 0 playing the roles
of k, r, and s, respectively), we can populate the remaining columns of A with Z so that the ( + 1)-th column is
(1, 40,1 ---4, 0---0 )7, the last column is (1,-- -4, 0,---0, 1, ---4)7, and (17)holds for + 1< j< ~-1.

Stimes r - stimes k-r-1tmes Stimes k- I times - Stimes
The claim then follows because (17) holds when J =

Let A be the matrix guaranteed by Claim 9.3.

Claim9.4.Leth = (| V1 |, |V2|, L |Vk|)T. Thereexistsx e Z suchthat x; 2 gn for every j e [| and suchthat Ax = b.
Proof of Claim 9.4Ve will iteratively construct a sequence of vectors X0, xV, .. X7 ez such that X= X7 meets the
conditions of the claim. For ¢ = 0, define b = b— Ax(; n(V) = f-(=1 b,-t ; and the following properties:

1) " > 0is divisible by r;

P2) b = nO/rtor every 1<i< s

(P3) 0< b,.(t) <n®/rfor every s+ 1< i<k and
(P4) th) = Bnfor every je[] .

To begin the construction, we let M= Bn and X§O) = mfor every j €[] . Clearly, we have that (P4) holds for t = 0. First

note that n(® = |V |=r mso, by (T1), we have that (P1) holds for t = 0. By (T2), we also have that

15
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b,-(O) =|Vyr- m=n©/r  foreveryi e[s],
so (P2) holds for t = 0. By (T3), we have b > bj— m>0n—- m> gfor every S+ 1< i<k, and with (T4) we have that
b <|Vyr-ons|Vyr- m=n©/r foreverys+1sisk

Therefore, (P3) also holds for t = 0.

Now assume (P1), (P2), (P3), and (P4) hold for some t 2 0. If = 0 for every | € [K], then Ax®) = b, 50 with (P4), we
canlet t = T and end the construction, because x= X = X() meets the conditions of the claim. Otherwise, let | = {ie[K]:
b,-([) = n(/r}. Note that (P2) implies that [S] € / and by (P3) we have that b,-(t) <n®/r = 1for every i e [k]\ I. We clearly
have that |/| < r and, by (P1), (P2) and (P3), there exists / €/ < [K] such that |/ | = and b,-(t) > 0for every i e! . Now let
/t) be the column of A such that 8; i = 1if and only if iel . If we then let

b®

(t) s o f
X+ it = 0
)

X; otherwise

it is clear that (P1), (P2), (P3), and (P4) all hold with  setto {+ 1.

(t+1) _
X; =

Now we use the preceding claims to show that (A1) and (A2) hold. Let i € [K] and recall that, since AX= b, we have

-1@,j " Xj = bi =| V,|. Therefore, for every i e[K], we can uniformly at random select a partiton of V; into  parts
V(i, 1),..-V(i,) sothat for every je[] , we have |V(i, )| = &, - Xj. (Note that we are allowing parts to be empty in
these partitions).

Let j €[] , and note that since exactly rentries in the j-th column of Aare 1, there exists a unique sequence 1< /)4 <
<o <ijr< ksuch that |V(ij 4, f)|=---=|V(ijn i) = X; 2 Bn, so (A1) holds.

Let Pj=(V(ijq4,i)---V(ijr ) and Gj= G[V(ijq ) u---uV(ij J)]. Therefore, (11), (T5), and the Chernoff and
union bounds imply that, with high probability, there exists an outcome where for every je[] ,he[r],and Ve V\ Vim»
we have that

N

y
+

deg(v, V(ijn )2 1- [\V(ijn J) (18)

r
Fix such an outcome. Note that V(Po), V(Gy),...V(G) is a partiton of V(G), and for every j €[] , Gj is a balanced
r-partite graph with ordered partition Pj such that each part has order at least Bn and, with (18) we have

1.y
i.e., (P2) holds.
To see that (A4) holds, note that, by the ordering of the columns of A (cf. (17)) and (18), we can greedily construct -1
vertex disjoint (r- 1)-paths Py, ... P_ 1 each on exactly 2rvertices so that, for every j e[ — 1], the initial rvertices of

P; respect the sequence Pj and the final rvertices of Pj respect the sequence Pj+1.

Finally, we now show that (A3) holds. To see this, first note that, by Claim 9.3, if we let zbe the last column of A and
Z be the first column of A, then by (8), we have that (2, 2) is valid. Therefore, since (T6) implies that the (r- 1)-path Po
is properly terminated, we can use (18) to greedily prepend r vertices to Po to create an (r — 1)-path in which the initial r
vertices respect the sequence P while avoiding the path P- ;. Again because P, is properly terminated, (18) implies that
we can greedily append rvertices to this path to create an (r- 1)-path Py so that the final I vertices of Py respect the
sequence P1 and so that Py avoids P. This completes the proof.

10. Conclusion

10.1. Exactversion

The main open problem which remains is to prove an exact version of Theorem 1.1. Note that it is possible that in the
unbalanced case, there are extra variants of Catlin’s example.

10.2. Total degreeversion

Another direction is to consider minimum total degree conditions for perfect K:-tilings and Hamiltonian (r- 1)-paths.
In this direction, Johansson, Johansson, and Markstrém [9] proved that if Gis a balanced 3-partite graph on n vertices with
6(G) = n/2, then Ghas a perfect Ks-tiling. Later, Lo and Sanhueza-Matamala [16] proved that if Gis a balanced r-partite

graph on n vertices with 0G =z 1- 23—, +0(1) n, then Ghas a perfect Kr-tiling, which is asymptotically best possible.
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It would be interesting to study the unbalanced version of this result and extend it to Hamiltonian (r- 1)-cycles. This was
done for ' = 2in [2], but the degree condition is quite complicated (in some sense necessarily so, since it is asymptotically
tight in all cases)and thus determining an asymptotically tight minimum degree condition for perfect K:-tilings in all valid
k-partite graphs seems challenging.

As a start, we conjecture the following sufficient condition for perfect Kr-tilings (which will be asymptotically necessary
in certain cases).

Conjecturd0.1/€tk>r> 2and Y > 0. If Gis ak-partite graph with all parts at mostn/rand 6(V;) = 1 - % + Y n—|V;|for
all i  [k], then G hasa perfect K, -tiling.
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