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1. Introduction

For graphs G and  H , we say that  G has a perfect  H -tiling  if  G contains  |V (G)|/| V (H)| vertex  disjoint  copies of H . For 
a positive  integer  r , the  r-th  power  of H denoted  H r , is the  graph on V (H) where  uv  ∈ E(Hr ) if  and only  if  the  distance  
between  u and  v in  H is  at most  r . We refer  to the  (r − 1)-st power  of a cycle as an (r − 1)-cycle.

Hajnal  and Szemerédi [5] proved  that  for  all  positive  integers  r and  n, if  r divides  n and  G is  a graph  on n vertices  with  
δ(G) ≥ 1 − 1

r n, then  G contains  a perfect  Kr -tiling.  Komlós, Sárközy, and Szemerédi [13] proved  that  for  all  r ≥ 2, there  
exists n0 such that  if  G is  a graph  on n ≥ n0 vertices  with  δ(G) ≥ 1 − 1

r n, then  G contains  a Hamiltonian  (r − 1)-cycle. 
Note that  if  r divides  n and  G contains  a Hamiltonian  (r − 1)-cycle, then  G contains  a perfect  Kr -tiling,  so the  result  of 
Komlós, Sárközy, and Szemerédi is stronger  for  fixed  r and  large n.

A graph  G is a k-partite  graph with  ordered partition  P = ( V1, . . . , Vk), if  P is a partition  of V (G) and V i is an independent  
set for  every  i  ∈ [k] . For all  i  = j  ∈ [k], let

δi j(G) =
min {degG(v , V j ) : v ∈ V i }

|V j |
and δP (G) = min

i= j∈[k]
δi j(G).

Fisher [4] conjectured  an analogue of the  Hajnal-Szemerédi  theorem  in  balanced multipartite  graphs;  that  is, if  G is  a 
balanced r-partite  graph on n vertices  with
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δP (G) ≥ 1 −
1
r

,

then  G contains  a perfect  Kr -tiling.  An earlier  example  of Catlin  [1] provides  a counterexample  to  Fisher’s conjecture  when  
r is odd, but  Magyar  and Martin  [17] proved  that  for  r = 3, Catlin’s counterexample  is the  only  one. Then Martin  and 
Szemerédi [19] proved  Fisher’s conjecture  for  r = 4. After  a relatively  large gap in  activity,  Keevash and Mycroft  [10] and  
independently  Lo and Markström  [15] proved  that  for  all  γ > 0 and  r ≥ 2, there  exists n0 such that  for  all  n ≥ n0 in  which  
r divides  n, if  G is a balanced r -partite  graph  on n vertices  with

δP (G) ≥ 1 −
1
r

+ γ ,

then  G contains  a perfect  Kr -tiling.  Later, an exact version  was proved  by Keevash and Mycroft  [11] which  again shows that  
Fisher’s conjecture  holds  for  sufficiently  large n unless r is odd in  which  case Catlin’s counterexample  is the  only  one.

Our main  result  can be viewed  as a strengthening  of the  asymptotic  versions  of all  of the  above results  (both  in  the  
multipartite  setting  and in  the  ordinary  setting).

Theorem 1.1. For all k ≥ r ≥ 2 and all 0 < γ ≤ 1
r

, there exists n0 such that  for all n ≥ n0 the following  holds. If G is a k-partite  graph 
on n vertices with  ordered partition  P = ( V1, . . . , Vk) such that  |V i | ≤ n/ r for  all i  ∈ [k] and

δP (G) ≥ 1 −
1
r

+ γ ,

then G contains a Hamiltonian  (r − 1)-cycle.

Note that  the  condition  |V i | ≤ n/ r for  all  i  ∈ [k] is necessary for  the  existence of a Hamiltonian  (r − 1)-cycle  since the  
(r − 1)-st  power  of a cycle on n vertices  has independence  number  n/ r . Also this  result  is seen to  be asymptotically  best 
possible by taking  a complete  k-partite  graph with  ordered  partition  P = ( V1, . . . , Vk) and letting  V i ⊆ V i for  all  i  ∈ [k]
with  |V i | = |V i |/ r + 1 and  deleting  all  edges inside  V1 ∪ · · · ∪V

k to get a k-partite  graph  G with  δP (G) just  below  1 − 1
r

which  has independence  number  larger  than  n/ r and thus  does not  contain  a Hamiltonian  (r − 1)-cycle.

2. Observations, definitions and tools

Observation 2.1. It  su cesffi  to prove Theorem 1.1 in the cases where r ≤ k ≤ 2r − 1 and all of the parts have order at least 
γ
2r

n.

Proof. Suppose Theorem 1.1 is  true  provided  2 ≤ r ≤ k ≤ 2r − 1 and  |V i | ≥
γ
2r n for  all  i  ∈ [k]. Now  suppose for  contradiction  

that  there  exists a counterexample  to Theorem 1.1.  Let k be minimal  such that  a counterexample  exists. Let n0 be the  
value coming  from  Theorem 1.1 when  k = k − 1 and  γ = γ

2r . Let G be a k -partite  counterexample  on n ≥ n0 vertices  with  
ordered  partition  P = ( U1, . . . , Uk ) where  k is minimal.

We first  claim  that  for  all  distinct  i , j  ∈ [k ], |U i | + | U j | > n/ r . Suppose not  and without  loss of generality  suppose that  
i  = k − 1 and  j  = k ; that  is, suppose |Uk − 1 | + | Uk | ≤ n/ r . Let V i = U i for  all  i  ∈ [k − 2] and Vk − 1 = Uk − 1 ∪ Uk and let  G
be the  (k − 1)-partite  graph  with  ordered  partition  P = ( V1, . . . , Vk − 1) obtained  by deleting  all  edges between  Uk − 1 and 
Uk . Since degG (v , Vk − 1) ≥ ( 1 − 1

r + γ )|Uk − 1| + (1 − 1
r + γ )|Uk | = ( 1 − 1

r + γ )|Uk − 1 ∪ Uk | for  all  v  ∈ V (G) \ Vk − 1 we have

δP (G) ≥ 1 −
1
r

+ γ .

But now  by minimality,  G ⊆ G has a Hamiltonian  (r − 1)-cycle  contradicting  the  fact that  G does not.  Thus we may  assume 
that  r ≤ k ≤ 2r − 1 as otherwise  the  two  smallest  parts  add up to  at most  n/ r .

Now  suppose G has a part  of order  less than  γ n = γ
2r n;  without  loss of generality,  suppose it  is Uk . Because |U i | ≤ n/ r

for  every  i  ∈ [k ] and i∈[k ] |U i | = n, the  fact that  |Uk | ≤ γ n < n/ r implies  that  k > r . By the  above, we may suppose that  
all  other  parts  have order  greater  than  n

r − γ n. Now  partition  Uk arbitrarily  as {U1
, . . . , Uk − 1} (allowing  for  empty  sets 

in  the  partition)  subject  to |U i | + | U i | ≤ n/ r for  all  i  ∈ [k − 1]. Let G be  the  (k − 1)-partite  graph  with  ordered  partition  
P = ( V1, . . . , Vk − 1) where  V i = U i ∪ U i for  all  i  ∈ [k − 1]. Since

1 −
1
r

+ γ |U i | ≥ 1 −
1
r

+ γ (|U i | + γ n) ≥ 1 −
1
r

+ γ |V i |,

we have

δP (G) ≥ 1 −
1
r

+ γ ,

and thus  by minimality  and the  choice of n0 , G ⊆ G has a Hamiltonian  (r − 1)-cycle  contradicting  the  fact that  G does 
not.
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The following  simple  fact is used implicitly  throughout  the  paper.

Fact 2.2. Let σ > 0 and G be a k-partite  graph on n vertices with  ordered partition  P = ( V1, . . . , Vk) such that  every part  has order 
at least σn. For every U ⊆ V (G) such that  |U | ≤ σ2n, if G = G − U , then δP (G ) ≥ δP (G) − σ .

Proof. For distinct  i , j  ∈ [k] and every  v ∈ V (G ) ∩ V i , we have

degG (v , V (G ) ∩ V j )

|V (G ) ∩ V j |
≥

degG (v , V (G ) ∩ V j )

|V j |
≥

degG(v , V j )

|V j |
−

|U |
|V j |

≥ δP (G) − σ.

Definition 2.3 ((r −  1)-path/ (r −  1)-walk).  Let G be a graph  and let  W = x1, . . . , x be an ordered  sequence of vertices  of G. 
The sequence W is an (r − 1)-walk  of length if  every  r consecutive  vertices  in  W form  a clique  in  G. If W is an (r − 1)-walk  
of length  , then  it  is an (r − 1)-path  of length if  there  are no repeated  vertices  in  the  sequence x1, . . . , x .

The following  fact is immediate  when  one first  observes that  the  number  of (r − 1)-walks  of length  that  are not  (r − 1)-
paths is at most  2 · n− 1 , and that,  for  every set U ⊆ V (G), the  total  number  of (r − 1)-walks  of length  that  contain  a 
vertex  from  U is  at most   · |U | · n− 1 . Throughout  the  remainder  of the  proof,  we use the  notation  a b to  indicate  that  
there  exists an increasing  function  f (b) such that  the  result  holds  for  every a ≤ f (b).

Fact 2.4. Suppose 1
n

σ α, 1 and let G be an n-vertex  graph and U ⊆ V (G) where |U | ≤ σn. If W is a collection of at least (αn)
(r − 1)-walks  of length , then at least (σn) of the walks in W are (r − 1)-paths that  avoid the set U .

To motivate  the  following  definition,  let  us first  comment  that,  at various  times,  we will  need to  connect  disjoint  (r − 1)-
paths to  form  longer  (r − 1)-paths.  To highlight  some issues that  might  arise in  as simple  a setting  as possible, consider  the  
case when  k = r = 3 and  let  G be  a balanced 3-partite  graph  with  ordered  partition  (V1 , V2, V3) and let  P1 = u1, . . . , u6
and P2 = w 1, . . . , w 6 be two  disjoint  2-paths  each on 6 vertices.  Suppose that  we would  like  to  find  a 2-path  Q so  that  
the  sequence P1 Q P2 is itself  a 2-path.  This would  be impossible  if, say, u4 ∈ V1 , u5 ∈ V2 , and u6 ∈ V3 while  w 1 ∈ V2 , 
w 2 ∈ V1 and w 3 ∈ V3 . To see this,  note  that,  in  this  setting,  if  u4 ∈ V1 , u5 ∈ V2 , and u6 ∈ V3 and u1, . . . , u3p is a 2-path,  
then  for  every  0 ≤ i  ≤ p − 1 and  j  ∈ [3] , we must  have that  u3i+ j ∈ V j . To deal with  issues such as this,  we will  require  that  
(r − 1)-walks  conform  to the  following  definition.

Definition 2.5 (Properly terminated).  Suppose that  G is  a k-partite  graph with  ordered  partition  (V1, . . . , Vk) and let  W =
v1 v2 . . .v p be an (r − 1)-walk  where  p ≥ r . We say that  W is  properly terminated if  v i ∈ V i and v p− r+ i ∈ V i for  all  i  ∈ [r ] . 
That is, W is  properly  terminated  if  its  first  r vertices  traverse the  sets V1, . . . , Vr in  order  and its  last r vertices  traverse  
the  sets V1 , . . . , Vr in  order.

More  generally, if  P = ( U1, . . . , Ur ) is an ordered  sequence of r disjoint  sets, we say that  the  initial  r vertices of W respect 
the sequence P if  v i ∈ U i for  every  i  ∈ [r ]. Similarly,  we say that  the  final  r vertices of W respect the sequence P if  v p− r+ i ∈ U i

for  every  i  ∈ [r ] . So, W is  properly  terminated  if  both  the  initial  r vertices  of W and  the  final  r vertices  of W respect  the  
sequence (V1, . . . , Vr ).

Definition 2.6 (Balanced). Let P be a collection  of disjoint  sets. We say that  P is balanced if  every  set in  P has the  same 
order.

If  G is an r-partite  graph with  ordered  partition  P = ( V1, . . . , Vr ), we say that  G is  balanced if P is balanced and we say 
that  a set U ⊆ V (G) is balanced if  |U ∩ V i | = | U ∩ V j | for  all  i , j  ∈ [r ] .

A few  times  in  the  proof  we will  make use of a Chernoff  bound  on the  concentration  of binomial  and hypergeometric  
distributions  [8, Corollary  2.3 and Theorem  2.10]

Theorem 2.7 (Chernoff bound). Suppose X has binomial  or hypergeometric distribution  and 0 < a < 3/ 2. Then P (|X − E X| ≥
aE X) ≤ 2e− a2

3 E X .

3. Overview of the proof

We are attempting  to  prove  that  all  sufficiently  large k-partite  graphs, in  which  all  parts  have at most  n/ r vertices,  with  
proportional  minimum  degree at least 1 − 1

r + γ have a Hamiltonian  (r − 1)-cycle. We are able to  split  the  work  into  two  
tasks.

The first  (and main)  task is to  prove the  result  in  the  case of balanced r-partite  graphs. Lemma 3.1 below  establishes 
that  in  a large balanced r-partite  graph, and two  properly  terminated  (r − 1)-paths  with  the  same ordering,  K and  K , there  
is a Hamiltonian  (r − 1)-path  that  starts  with  K and  ends with  K . If  the  graph is balanced and r-partite,  then  we simply  

3
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Fig. 1.An example  for  Lemma 3.2 in  the  case where  k = 6, r = 4, (i j ,1 , i j ,2 , i j ,3 , i j ,4) = ( 2, 3, 5, 6), (i j+ 1,1, i j+ 1,2 , i j+ 1,3 , i j+ 1,4) = ( 1, 3, 4, 6) and the 8-vertex  
3-path,  P j .

apply  this  with  K = K and we are done. If not,  then  we use Lemma 3.2 below  to partition  the  graph  into  balanced r-partite  
pieces and then  stitch  them  together  to create the  (r − 1)-cycle  we require.

Lemma 3.1 (Balanced case). For every r ≥ 2 and γ < 1
r

, there exists n0 such that  for every n ≥ n0 the following  holds. Let G be a 
balanced r-partite  graph on n vertices with  ordered partition  P = ( V1, . . . , Vr ) such that

δP (G) ≥ 1 −
1
r

+ γ .

Suppose that  K and K are r-cliques  such that  either K = K or K ∩ K = ∅ and let v i := V i ∩ K and  v i := V i ∩ K for every i  ∈ [r ]. 
Then there is a Hamiltonian  (r − 1)-path  P of G − ( K ∪ K ) such that  v1, . . . , v r , P, v1

, . . . , v r is an (r − 1)-walk  in G .

The second task is to  show  that  G can be partitioned  into  a small  number  of balanced r-partite  graphs that  each contain  
a Hamiltonian  (r − 1)-path  and that  these (r − 1)-paths  can be stitched  together  to  form  a Hamiltonian  (r − 1)-path  of 
the  original  graph G . Lemma 3.2 below  shows that  the  graph can be partitioned  into  balanced r-partite  graphs G1 , . . . , G , 
each with  the  appropriate  minimum  degree condition,  together  with  short  (r − 1)-paths  connecting  Gi to Gi+ 1 in  sequence 
in  such a way  that  every  vertex  is accounted  for. Then applying  Lemma 3.1 to  each Gi we will  construct  the  desired  
Hamiltonian  (r − 1)-cycle.

The technical  issue for  finding  the  partition  is essentially  numerical,  requiring  the  sizes of the  sets forming  each Gi to be 
the  same and to  partition  each vertex  class. Once these constraints  are achieved, we are able to  meet  the  minimum  degree 
condition  by applying  a Chernoff  bound  to  show  that  a randomly  chosen partition  satisfying  the  numerical  constraints  will  
have the  required  degree condition  with  high  probability.

Lemma 3.2 (Partitioning  and Sequencing). For all r ≥ 2, 0 < γ ≤ 1
r

, and r < k ≤ 2r − 1, there exist constants 0 < 1
n0

 β  σ γ
such that  if G is a k-partite  graph on n ≥ n0 vertices with  ordered partition  P = ( V1, . . . , Vk) in which γ n ≤ | Vk | ≤ | Vk− 1| ≤ · · · ≤
|V1| ≤ n

r
and

δP (G) ≥ 1 −
1
r

+ γ ,

then there exists an (r − 1)-path  P0
with  |V ( P

0)| ≤ β n such that  if V i = V i \ V (P
0
) for i  ∈ [k], then the following  holds:

(A1) there exists a positive integer such that  for all i  ∈ [k], there exists a partition  V i = { V (i , 1), . . . , V (i , )} (with  V (i , j) possibly 
empty) such that  for all j  ∈ [] there exists 1 ≤ i j ,1 < · · · < i j ,r ≤ k such that  |V (i j ,1, j )| = · · · = | V (i j ,r , j )| ≥ β n and  if 
i  ∈ [k] \ { i j ,1, . . . , i j ,r }, then V (i , j) = ∅, and

(A2) letting  P j = ( V (i j ,1, j), . . . , V (i j ,r , j)) and G j be the natural  r-partite  graph induced by P j , we have that  δP j
(G j ) ≥ 1 − 1

r + γ
2

.

(A3) We can prepend r vertices and append r vertices to P0
to create an (r − 1)-path  P0 such that  the initial  r vertices of P0 respect 

the sequence P and the final  r vertices of P0 respect the sequence P1.
(A4) There exist vertex disjoint  (r − 1)-paths P1, . . . , P− 1 in G − V (P0) each on 2r vertices such that  for all j  ∈ [  − 1] the initial  r

vertices of P j respect the sequence P j and the final  r vertices of P j respect the sequence P j+ 1 (Fig. 1).

Lemma 3.1 and  Lemma 3.2 together  immediately  imply  Theorem 1.1.
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Fig. 2.Using induction to build the desired connection between P 1 and P 2 for Lemma 4.1.

Proof of Theorem 1.1.By Lemma 3.1 we  can assume k > r and  by Observation 2.1 we  can assume that  k ≤ 2r − 1 and  every  
part  of P has order  at least γ n where  γ ≥ γ > 0. Without  loss of generality  we can further  assume that  γ n ≤ | Vk | ≤
|Vk− 1| ≤ · · · ≤ |V1 | ≤ n

k . Therefore, we can apply  Lemma 3.2 to  G (with  γ playing  the  role  of γ ). Define  P = P0 and for  
each G j , apply  Lemma 3.1 to  G j with  K = P j− 1 ∩ G j and K = P j ∩ G j to  get a Hamiltonian  (r − 1)-path  Q i . Now  P0 Q1 . . .Q
is the  desired  Hamiltonian  (r − 1)-cycle.

In  Section 4 we  describe  the  three  lemmas  needed to prove Lemma 3.1. Then in  Sections 5 to  8, we prove those lemmas. 
Finally  in  Section 9 we  prove  Lemma 3.2.

4. Statement of the principal lemmas

We prove  Lemma 3.1 using  the  absorbing  method  of Rödl, Ruciński, and Szemerédi. As is typical  with  this  method,  we 
have connecting,  absorbing,  and covering  lemmas.

Lemma 4.1 (Connecting lemma). For every r ≥ 2 and 0 < ν ≤ 1
r

there exists τ > 0 such that  the following  holds for every n. Let G be 
an r-partite  graph with  ordered partition  P = ( V1, . . . , Vr ). Let  = r (2r − 2). Suppose that  (U1, . . . , Ur ) is a sequence of sets such 
that  U i ⊆ V i for i  ∈ [r ], U = r

i= 1 U i , and

for every i ∈ [r ] and v ∈ V \ V i , |U i | ≥ νn and degG(v , U i ) ≥ 1 −
1
r

+ ν |U i |. (1)

Then for every pair  of properly terminated  (r − 1)-walks  P1 and P2 in G , there exist at least τ n (r − 1)-walks  Q of  length contained 
in U1 ∪ · · · ∪Ur such that  P1 Q P2 is a properly  terminated  (r − 1)-walk.

Lemma 4.2 (Absorbing lemma). For r ≥ 2, suppose that  1
n  β  γ < 1

r
and let G be a balanced r-partite  graph on n vertices with  

ordered partition  P = ( V1, . . . , Vr ) such that

δP (G) ≥ 1 −
1
r

+ γ .

Then there exists a properly terminated  (r − 1)-path  Pabs such that  |V (Pabs)| ≤ β n, and, for every balanced set Z ⊆ V (G) \ V (Pabs)
for which  |Z| ≤ β 2n, there exists a Hamiltonian  (r − 1)-path  of G[V (Pabs) ∪ Z] that  begins with  the same (r − 1) vertices as Pabs and 
ends with  the same (r − 1) vertices as Pabs.

Lemma 4.3 (Covering lemma). For r ≥ 2, suppose that  1
n

1
M 0

α γ < 1
r

and let G be a balanced r-partite  graph on n vertices 
with  ordered partition  P = ( V1, . . . , Vr ) and

δP (G) ≥ 1 −
1
r

+ γ .

For some M ≤ M0, there exist vertex disjoint  properly terminated  (r − 1)-paths P1, . . . , PM such that  W = V (G) \ M
i= 1 V (Pi ) is 

balanced and |W | ≤ αn.

5
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Before proving  these three  lemmas,  we first  show  how  to  use Lemmas 4.1, 4.2, and 4.3 to  prove the  balanced case of 
Theorem 1.1.

Proof of Lemma 3.1.We can select M0 , ν, α, and β so that

1
n

≤
1
n0

1
M0

ν, α  β  γ .

By Lemma 4.2,  there  exists a properly  terminated- (r − 1) path  Pabs disjoint  from  K and K such that

• | Pabs| ≤ β n; and
• for  every balanced set Z ⊆ V (G) such that  |Z| ≤ β 2n there  exists a Hamiltonian  (r − 1)-path  of G[V ( Pabs) ∪ Z] that  

starts  and ends with  the  same (r − 1)-vertices  as Pabs.

Let G = G − V (Pabs) ∪ V (K) ∪ V (K ) .
Uniformly  at random  select subsets U1 , . . . , Ur such that  for  every i  ∈ [ r ], U i ⊆ V (G ) ∩ V i and |U i | = νn . By the  

Chernoff  and union  bounds, there  exists an outcome  such that  (1) holds.  Fix such an outcome  and let  U = U1 ∪ · · · ∪Ur and 
let  G = G − V (U).

By Lemma 4.3,  for  some M ≤ M 0 , there  exist  vertex  disjoint  properly  terminated  (r − 1)-paths  P1 , . . . , PM in  G such 
that  W = V (G ) \ M

i= 1 V (Pi ) is balanced and |W | ≤ αn. Since (1) holds,  Fact 2.4 and  Lemma 4.1 imply  that  we can find  
m + 2 disjoint  (r − 1)-paths,  each of length   = 2r (r − 2), in  G[U ] that  connect

• K to  Pabs,
• Pabs to  P1 ,
• Pi− 1 to  Pi , for  2 ≤ i  ≤ M;  and
• PM to  K

to  form  a (r − 1)-path  P . Let Z = | V (G) \ V (P)| , and note  that

|Z| ≤ |U | + |W | ≤ r νn + αn ≤ β 2n.

Therefore, there  exists a Hamiltonian  (r − 1)-path  of G[ Pabs ∪ Z] that  starts  and ends with  the  same (r − 1) vertices  as Pabs. 
If v i = v i for  every  i  ∈ [r ], then  we have constructed  a Hamiltonian  (r − 1)-cycle. If v i = v i for  every i  ∈ [r ], then  we have 
constructed  a Hamiltonian  (r − 1)-path  that  starts  with  K and  ends with  K .

5. Proof of the connecting lemma (Lemma 4.1)

Although  we present  the  proof  of Lemma 4.1 in  full,  it  closely follows  proofs  of similar  lemmas  given in  [7] and  [6].

Definition 5.1. Let G be  a graph on n vertices.  For U ⊆ V (G), we say that  W is  (U , σ)-rich if  there  are at least σn vertices  
u ∈ U for  which  N(u) contains  W , otherwise  W is  called  (U , σ)-poor.

The following  simple  observation  and fact are critical  for  the  inductive  proof  of the  connecting  lemma.

Observation 5.2. For r ≥ 3, let G be a graph on n vertices, let P = ( V1, . . . , Vr ) be an ordered partition  of V (G), and let Ur ⊆ Vr . 
Suppose that

W = x1, . . . ,xr− 1, z1
1, . . . ,z1

r− 1, . . . ,zs
1, . . . ,zs

r− 1, y1, . . . ,yr− 1

is an (r − 2)-walk  of length (s + 2)(r − 1) such that  W ∩ Vr = ∅ that  is (Ur , σ)-rich. Then, by the definition  of (Ur , σ)-rich, there are 
at least (σn)s+ 1 tuples (w 0, . . . , w s) such that  {w 0, . . . , w s} ⊆ Ur and N(w i ) contains W for  each 0 ≤ i  ≤ s. Therefore, for each such 
tuple

x1, . . . ,xr− 1, w 0, z1
1, . . . ,z1

r− 1, w 1, . . . ,zs
1, . . . ,zs

r− 1, w s, y1, . . . ,yr− 1

is an (r − 1)-walk  of length (s + 2)r − 1.

By double  counting,  the  following  fact formalizes  the  observation  that  most  neighborhoods  do not  contain  many  poor  
paths for  the  simple  reason that,  by definition,  poor  paths  are not  contained  in  many  neighborhoods,

Fact 5.3. For r ≥ 3, p ≥ 0 and σ > 0 the following  holds. If G is a graph on n vertices and U ⊆ V (G), then there are at least |U | − σn
vertices u ∈ U such that  only at most σnp of the (r − 2)-walks  of length p contained in N(u) are (U , σ2)-poor.

6
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Proof. Let Vpoor be the  set of ordered  (p + 1)-tuples  (u, v1, . . . , v p) ∈ V p+ 1 such that

• u ∈ U ,
• W = v1, . . . , v p is a (U , σ2)-poor  (r − 2)-walk,  and
• N(u) contains  W .

Because the  number  of ordered  p-tuples  is at most  np , we have that  |Vpoor | ≤ σ2np+ 1 (cf. Definition 5.1).  Let U ⊆ U be the  
set of vertices  u ∈ U such that  more  than  σnp of the  (r − 2)-walks  of length  p contained  in  N(u) are (U , σ2)-poor.  Then,

|U | ·σnp ≤ |Vpoor | ≤ σ2np+ 1.

Therefore, |U | ≤ σn and the  conclusion  follows.

Proof of Lemma 4.1.We will  prove  the  lemma  by induction  on r . For the  base case, note  that  when  r = 2, we have  = 4
and, by (1), the  statement  easily holds  with  τ = ν5/ 4. To see this,  note that  we can select vertices  x1, y1 ∈ U1 , and y2 ∈ U2
such that  P1x1 and y1 y2 P2 are 1-paths.  This can be done with  (1/ 2 + ν)|U2| choices for  y2 , (1/ 2 + ν)|U1| choices for  y1

and (1/ 2 + ν)|U1| choices for  x1 (recall  that  we only  require  (r − 1)-walks).  This gives at least νn
2

3 total  selections  and for  
every  such selection  we have

|N(x1) ∩ N(y1) ∩ U2| ≥ degG(x1, U2) + degG( y1, U2) − |U2| ≥ 2ν|U2| ≥ 2ν2n.

For the  induction  step, let  r ≥ 3 and  suppose that  the  result  holds  for  r − 1. Let s = 2(r − 1) − 2, q = ( r − 1)(2(r − 1) − 2) =
(r − 1)s, and p = q + 2(r − 1), and note  that

p + s+ 2 = ((r − 1)s + 2(r − 1)) + s+ 2 = r (s + 2) = 2r (r − 1) = . (2)

Applying  the  induction  hypothesis  with  ν/ 2, r − 1, and q playing  the  roles of ν, r , and respectively  we get that  there  
exists μ  > 0 (playing  the  role  of τ ) such that  the  following  holds.

Claim 5.4. If U i ⊆ U i such that  |U i | ≥ νn/ 2 for all i  ∈ [r − 1], and

degG(v , U i ) ≥ 1 −
1

r − 1
+ ν |U i | for all v ∈ V \ V i , (3)

then for every pair  of (r − 2)-walks  x1, . . . , xr− 1 and y1, . . . , yr− 1 such that  xi , y i ∈ U i for all i  ∈ [ r − 1] there exist at least μnq

(r − 2)-walks  of length q contained in U1 ∪ . . . ∪Ur− 1 such that  x1, . . . , xr− 1, Q , y1, . . . , yr− 1 is an (r − 2)-walk.

Pick τ , σ > 0 so  that  τ σ μ , ν. First note  that,  by (1), there  are at least νn
r ≥ σn ways  to  select yr ∈ Ur so that  

yr P2 is an (r − 1)-path.  Next, because |Ur | ≥ νn > σn, Fact 5.3 implies  that  there  exists v∗ ∈ Ur such that

at most σnp of the (r − 2)-walks of length p contained in N (v∗ ) are (Ur , σ2)-poor. (4)

For every  i  ∈ [r − 1], let  U i = N(v∗ , U i ). Note that  |U i | ≥
r− 1

r |U i | ≥ νn/ 2 and  for  every  v ∈ V \ V i

deg(v , U i ) ≥ |U i | −
1
r

− ν |U i | ≥ |U i | −
1
r

− ν
r

r − 1
|U i | ≥ 1 −

1
r − 1

+ ν |U i |.

Therefore, we can iteratively  prepend  vertices  yr− 1 , . . . , y1 to yr P2 and append vertices  x1, . . . , xr− 1 to P1 in  at least 
ν2n

2

2r− 2
ways (Fig. 2) so that  the  following  holds:

• xi , y i ∈ U i for  i  ∈ [r − 1] ; and
• both  P1, x1, . . . , xr− 1 and y1, . . . , yr− 1, yr , P2 are (r − 1)-walks.

By Claim 5.4, the  number  of (r − 2)-walks  Q of length  q contained  in  U1 ∪ · · · ∪Ur− 1 such that  x1 , . . . , xr− 1, Q , y1, . . . , yr− 1
is an (r − 2)-path  is at least μnq .

Therefore, there  are at least

ν2n

2

2r − 2

· μnq = 2− 2r + 2 · ν2 · μnp ≥ 2σnp

(r − 1)-walks

x1, . . . ,xr− 1, Q , y1, . . . ,yr− 1 = x1, . . . ,xr− 1, z1
1, . . . ,z1

r− 1, . . . ,zs
1, . . . ,zs

r− 1, y1, . . . ,yr− 1

such that

7
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• N(v ∗ ) contains  x1, . . . , xr− 1 , Q y1, . . . , yr− 1 ;
• x1, . . . , xr− 1, Q , y1, . . . , yr− 1 is an (r − 2)-walk  of length  p; and
• both  P1, x1, . . . , xr− 1 and y1, . . . , yr , P2 are (r − 1)-walks.

By (4), only  σnp of these paths  are (Ur , σ2)-poor  so at least σnp of these paths are (Ur , σ2)-rich.  By Observation 5.2,  for  
every  such (Ur , σ2)-rich  walk,  there  are at least σ2n

s+ 1
ordered  tuples  (w 0 , . . . , w s) such that  {w 0, . . . , w s} ⊆ Ur and

x1, x2, . . . ,xr− 1, w 0, z1
1, . . . ,z1

r− 1, w 1, . . . ,zs
1, . . . ,zs

r− 1, w s, y1, . . . ,yr− 1

is an (r − 1)-walk  of length  p + s + 1 =  − 1 (cf. (2)). Recalling that  there  were  at least σn ways to  select yr gives us that  
the  number  of (r − 1)-walks  Q of length  such that  P1 Q P2 is an (r − 1)-walk  is at least σn · σnp · σ2n

s+ 1 = σ2s+ 4n ≥
τ n .

6. Proof of the absorbing lemma (Lemma 4.2)

Definition 6.1. Let 2 ≤ r ≤ , let  G be  an r-partite  graph, and let  X be  a balanced subset of V (G). A properly  terminated  
(r − 1)-path  a1 , . . . , a in  G is  an absorber of X if  there  is an ordering  of the  vertices  {a1, . . . , a } ∪ X that  starts  with  the  
sequence a1, . . . , ar− 1 and ends with  the  sequence a− r+ 1 , . . . , a that  is an (r − 1)-path  in  G .

The proof  of the  absorbing  lemma  follows  by a standard  probabilistic  argument  after  the  proof  of the  Lemma 6.3 below.
We will  use the  well  known  “supersaturation”  result  of Erdős [3] (see  [20, Theorem  2.11]).

Theorem 6.2 (Supersaturation). For all r ≥ 2, c > 0, and positive integers s1, . . . , sr , there exists n0 and c such that  if G is a r-partite  
r-uniform  hypergraph with  ordered partition  (V1, . . . , Vr ) and at least c nr edges, then G contains at least cns1+ s2+···+ sr complete 
r-partite  graphs with  si vertices in V i for all i  ∈ [r ].

Lemma 6.3. For all r ≥ 2 and 1
n

α α γ 1
r

the following  holds with   = 3r 2 − r:

Let G be a balanced r-partite  graph on n vertices with  ordered partition  (V1, . . . , Vr ) such that  δP (G) ≥ 1 − 1
r + γ . If X ⊆ V (G)

is a balanced set of size r , then there are at least (αn) absorbers of X in  G .

Proof. Let x1, . . . , xr be an ordering  of X such  that  xi ∈ V i for  i  ∈ [r ].
We first  describe  what  an absorber of X will  look  like.  Suppose

P = v1
1 . . .v1

r v2
1 · · ·v2

r · · ·v r− 1
1 · · ·v r− 1

r v r
1 · · ·v r

r

is an (r − 1)-path  of order  r 2 where  v j
i ∈ V i for  all  i  ∈ [r ] . For all  i , j  ∈ [r ] , set s

j
i = 2 if  i  = j and s

j
i = 3 otherwise.

Let P be the  (s1
1
, . . . , s1

r , . . . , sr
1
, . . . , sr

r )-blow  up of P where  D j
i is the  set corresponding  to  v j

i . That is, replace each 

vertex  v j
i with  a set D j

i of order  s
j
i , and if  {v j

i
, v

j
i } is an edge of P , add all  edges between  D j

i and D j
i .

We claim  that,  if  we suppose that  D i
1 ∪ · · · ∪D i

i− 1 ∪ Di
i+ 1 ∪ · · · ∪Di

r ⊆ N(xi ), for  all  i  ∈ [r ], then  P contains  an absorber 

of X . For all  i  = j  ∈ [r ], label  the  vertices  of D j
i as a

j
i
, b

j
i
, c

j
i and label  the  vertices  of D i

i as ai
i and ci

i . Let

Q1 = a1
1 · · ·a1

r x1b1
2 · · ·b1

r c1
1 · · ·c1

r a2
1 · · ·a2

r b2
1x2b2

3 · · ·b2
r c2

1 · · ·c2
r · · ·ar

1 · · ·ar
r b

r
1 · · ·br

r− 1xr c
r
1 · · ·cr

r

and

Q2 = a1
1 · · ·a1

r c1
1b1

2 · · ·b1
r a2

1c1
2 · · ·c1

r b2
1a2

2 · · ·a2
r c2

1c2
2b2

3 · · ·b2
r a3

1a3
2c2

3 · · ·c2
r · · ·br

1 · · ·br
r− 1ar

r c
r
1 · · ·cr

r ,

i.e., Q2 = T1 · · ·Tr where

T1 = a1
1 · · ·a1

r c1
1b1

2 · · ·b1
r a2

1c1
2 · · ·c1

r ,

Ti = bi
1 · · ·bi

i− 1ai
i · · ·ai

r c
i
1 · · ·ci

i b
i
i+ 1 · · ·bi

r a
i+ 1
1 · · ·ai+ 1

i ci
i+ 1 · · ·ci

r for 2 ≤ i ≤ r − 1, and

Tr = br
1 · · ·br

r− 1ar
r c

r
1 · · ·cr

r .

Note that  Q1 and Q2 are properly  terminated  (r − 1)-paths  which  start  with  the  same r vertices  and end with  the  same r
vertices,  so P contains  an absorber for  X . See Fig. 3.

Example 6.4. In the  case of r = 3, the  2-paths  Q1 and Q2 are as follows:

Q1 = a1
1a1

2a1
3x1b1

2b1
3c1

1c1
2c1

3a2
1a2

2a2
3b2

1x2b2
3c2

1c2
2c2

3a3
1a3

2a3
3b3

1b3
2x3c3

1c3
2c3

3

Q2 = a1
1a1

2a1
3c1

1b1
2b1

3a2
1c1

2c1
3b2

1a2
2a2

3c2
1c2

2b2
3a3

1a3
2c2

3b3
1b3

2a3
3c3

1c3
2c3

3.

8
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Fig. 3.An absorber  for  X = { x1 , x2 , x3} from  Lemma 6.3.  The edges between  D j
i ’s and between  X and  D j

i are indicated  by solid  black lines. The edges of 
Q1 are not  shown.  The edges of Q2 that  are not  in Q1 are shown.

Now  we show  that  there  are (n3r 2− r ) copies of P which  contain  the  absorber of X as  described  above. By a Chernoff  
bound  (Theorem 2.7),  for  all  i  ∈ [r ] there  exists a partition  V i = { V 1

i
, . . . , V r

i } such that  for  all  i , j  ∈ [r ] and all  v  ∈ V (G) \ V i ,

deg v , V j
i ≥ 1 −

1
r

+
γ

2
V j

i
.

One can see that  constructing  greedily  (from  the  middle  out),  there  are at least (
γ
2

n)r2
properly  ordered  (r − 1)-paths  

P = v1 . . .v r2 of order  r 2 such that  for  all  i  ∈ [r ],

{v ir + 1, . . . ,v ir + i− 1, v ir + i+ 1, . . . ,v (i+ 1)r } ⊆ N(xi ).

Treating  each such copy as an edge in  an r 2 -partite  r 2-uniform  hypergraph  H with  ordered  partition  (V 1
1
, . . . , V 1

r , . . . , V r
1
,

. . . , V r
r ) and applying  Theorem 6.2 to  H , we have that  there  exists at least αn3r2− r copies of the  (s1

1
, . . . , s1

r , . . . , sr
1
, . . . , sr

r )-
blow  up of P .

Proof of Lemma 4.2.Let α be such that  1
n

α  β , let   = 3r 2 − r , and let  A be the  collection  of all  ordered  sequences 
(a1, . . . , a ) of vertices  such that  for  every  i  ∈ [] and j  ∈ [r ], if  ai ∈ V j , then  i  ≡ j (mod r ). Let X be the  collection  of all  
balanced r-subsets  of V (G). For every  X ∈ X , let

A X = {( a1, . . . ,a ) ∈ A : a1, . . . ,a is an absorber of X },

and note that,  by Lemma 6.3,  we have

|A X | ≥ (αn) . (5)

Now  create a random  set A ran by select each sequence in  A independently  at random  with  probability  ρ = β 1.1n−+ 1 , 
so since |A | = n ,

E|A ran | = ρ|A | ≤
βn

4
,

and, by (5), for  every X ∈ X ,

E|A X ∩ A ran | ≥ ρ(αn) ≥ 4β2n.

So, by the  Chernoff  bound  and the  union  bound,  with  high  probability

|A ran | ≤
βn

3
and |A X ∩ A ran | ≥ 3β2n for every X ∈ X .

Let A rep contain  the  pairs  of tuples  in  A in  which  a vertex  is repeated, i.e.,

A rep = {{ S, T} : S, T ∈ A , S= T, and a vertex appears at least twice in sequence S , T}.

We can construct  every pair  in  A rep by selecting  an arbitrary  vertex,  placing  that  vertex  in  2 of  the  2 possible entries,  and 
then  arbitrarily  filling  the  remaining  2  − 2 entries,  so

E|A rep ∩ A ran | = ρ2|A rep | ≤ ρ2 · n ·
2
2

· n2− 2 ≤ β 2n.

By the  Markov  bound,  with  probability  1/ 2, we have that  |A rep | ≤ 2β2n. Therefore, there  must  exist  some random  outcome  
A ran such that  if  we remove  every  pair  in  A rep ∩ A ran and every  sequence that  is not  absorbing  for  some X ∈ X to form  A
then  we have that

9
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• | A | ≤ β n/( 3) ;
• | A  ∩ A X | ≥ β 2n for  every  X ∈ X ;
• the  sequences in  A are pairwise  vertex-disjoint;  and
• for  every  P ∈ A , P is an absorber for  some X ∈ X , so P is an (r − 1)-path.

Lemma 4.1 (with  (V1, . . . , Vr ) and γ playing  the  roles of (U1 , . . . , Ur ) and ν, respectively)  and Fact 2.4 together  imply  
that  we can connect  the  (r − 1)-paths  in  A (in  an arbitrary  order)  with  paths  of length  r (2r − 2) < 2 to form  the  desired  
absorbing  (r − 1)-path  Pabs. We have that  |V (Pabs)| = | A | + r (2r − 2)(|A | − 1) < 3| A | ≤ β n.

Let Z ⊆ V (G) \ V (Pabs) be a balanced set where  |Z| ≤ β 2n. We can partition  Z into  balanced r -subsets so that  each part  
is in  X . Since there  are at most  |Z|/ r < β 2n parts  in  such a partition,  we can greedily  match  each part  X to  some path  
P ∈ A  ∩ A X . Since P is an absorber of X, we can construct  the  desired  Hamiltonian  (r − 1)-path  of G[V (Pabs) ∪ Z].

7. The regularity lemma

We now  review  Szemerédi’s well-known  regularity  lemma  [21].

Definition 7.1. In a graph  G , for  each pair  of disjoint  non-empty  sets A, B ⊆ V (G) we write  G[ A, B] for  the  bipartite  subgraph  
of G with  vertex  classes A and  B and  whose  edges are all  edges of G with  one endvertex  in  A and  the  other  in  B , and 
denote  the  density of  G[ A, B] by dG( A, B) = e(G[ A,B])

|A||B| .
We say that  G[ A, B] is (d, ε)-regular if  dG( X, Y) = d ± ε for  every  X ⊆ A and  Y ⊆ B with  |X| ≥ ε|A| and |Y| ≥ ε|B|, and 

we write  that  G[ A, B] is (≥ d, ε)-regular to  mean that  G[ A, B] is (d , ε)-regular  for  some d ≥ d.
Also, we say that  G[ A, B] is (d, ε)-super-regular if  G[ A, B] is (≥ d, ε)-regular,  every vertex  of A has  at least (d − ε)|B|

neighbors in  B , and every  vertex  of B has at least (d − ε)| A| neighbors in  A.

The following  results  are well-known  elementary  consequences of the  definitions.

Lemma 7.2 (Slicing Lemma). For every d, ε, β > 0, if G[ A, B] is (d, ε)-regular, and X ⊆ A and Y ⊆ B have sizes |X| ≥ β| A| and 
|Y| ≥ β| B|, then G[ X, Y] is (d, ε/β) -regular.

Lemma 7.3. For every d, ε > 0 with  ε < 1
2

, if G[ A, B] is (≥ d, ε)-regular, then there are sets X ⊆ A and  Y ⊆ B with  sizes |X| ≥
(1 − ε)| A|, and |Y| ≥ (1 − ε)|B| such that  G[ X, Y] is (d, 2ε)-super-regular.

Definition 7.4. Let G be  a graph  on n vertices  and suppose that  C is a collection  of disjoint  subsets of V (G). Define  the  
(G, C, d, ε)-cluster graph to  be the  graph  with  vertex  set C in  which  distinct  A, B ∈ C form  an edge if  G[ A, B] is (≥ d, ε)-
regular.

Definition 7.5. Let P = ( V1, . . . , Vr ) be an ordered  partition  of V (G). We say that  a collection  C of vertex  disjoint  subsets of 
V (G) respects P if  for  every  C ∈ C we have C ⊆ V i for  some i  ∈ [r ] . If C respects P , we let  P (C) be the  partition  (C1 , . . . , Cr )
of C in  which  every  C ∈ C is in  Ci when  C ⊆ V i .

We now  state the  standard  degree form  of the  regularity  lemma.

Lemma 7.6 (Degree Form of Szemerédi’s Regularity Lemma). For every ε > 0 and 0 < d < 1 and integers r and N0 there exists N1 such 
that  the following  holds. If G is an r-partite  graph on n vertices with  ordered partition  P , then there exists a partition  U0, . . . , UN of 
V (G) and a spanning subgraph R of G such that  the following  holds:

• N0 ≤ N ≤ N1 ;

• | U0| ≤ εn;

• | U1| = · · · = |UN |;
• the collection U1, . . . , UN respects the partition  (V1, . . . , Vr );

• degR(v) ≥ degG(v) − (d + ε)n for every v  ∈ V (G);

• | E(R[U i ]) = 0 for every 1 ≤ i  ≤ N;  and

• for every 1 ≤ i  < j  ≤ N , the graph R[U i , U j ] either (≥ d, ε)-regular  or has no edges.

From the  degree form  of the  regularity  lemma,  it  is easy to  show  that  we have Lemma 7.7 below.  Since the  proof  is 
standard,  we only  provide  a sketch.

Lemma 7.7. Suppose that

1
n

1
N1

ε d η, 1
N0

, 1
r

.

10
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Let G be a balanced r-partite  graph on n vertices with  ordered partition  P . Then there exists C, which  is a collection of vertex disjoint  
subsets of V (G) and R a spanning subgraph of G such that

(R1) N0 ≤ |C| ≤ N1 ;
(R2) Ccovers all but at most εn vertices of G;
(R3) every element in Chas the same order;
(R4) C respects the partition  P and the partition  P (C) = ( C1, . . . , Cr ) is balanced;
(R5) for every v  ∈ V (G), we have degR(v) ≥ degG(v) − ( d + ε)n;
(R6) for every U ∈ C, we have ER(U) = ∅, and for every pair of distinct  A, B ∈ C, either E(R[ A, B]) = ∅or R[ A, B] is (≥ d, ε)-regular;  

and
(R7) if G is the (G, C, d, ε)-cluster graph, then δP (C)(G) ≥ δP (G) − η.

Proof sketch.Pick ε and d such that  1
N1

ε ε d d. Lemma 7.6 implies  that  there  exists a spanning  subgraph  R of 
G and  U0, U1, . . . , UN a collection  of vertex  disjoint  subsets of V (G) such that  the  conclusions  of Lemma 7.6 hold  with  ε , 
d , r and  2N0 playing  the  roles of ε, d, r and  N0 . In particular,  we have that  N ≥ 2N0 and U1, . . . , UN covers all  but  at most  
ε n of  the  vertices  of G . Therefore, by removing  a small  fraction  of the  sets from  the  collection  U1 , . . . , UN we can create C
a collection  of vertex  disjoint  subsets of V (G) such that  (R1) - (R6)  all  hold.

To see that  (R7) holds  as well,  let  P (C) = ( C1, . . . , Cr ) and let  i , j  ∈ [r ] such that  i  = j . For every  C ∈ Ci and v ∈ C , (R2), 
(R3), (R5), and (R6) imply  that

degG(C, Cj )

|Cj |
≥

degR(v , V (Cj ))

|C||Cj |
≥

degR(v , V j ) − εn

n/ r

≥
degG(v , V j ) − (d + ε)n − εn

n/ r
≥ δP (G) − η.

We make the  following  definition  to  help  describe the  version  of the  well-known  blow-up  lemma  that  we will  need.

Definition 7.8. For a graph  R and  C be a collection  of vertex  disjoint  subsets of V (R), we let  K(C, R) be the  graph  on V (C)
such that  for  every  distinct  x, y ∈ V (R) the  graph K(C, R) has the  edge {x, y} if  and only  if  x and  y are  in  distinct  sets 
A, B ∈ C and E(R[ A, B])  = ∅.

For a subgraph  H of  K(C, R), a copy of H in  R that respects C is an injective  function  f : V (H) → V (R) such that  {x, y} ∈
E(H) implies  { f (x),  f ( y)} ∈ E(R) and, for  every  v  ∈ V (H) and C ∈ C, v  ∈ C implies  f (v) ∈ C .

Lemma 7.9 (Blow-up  Lemma [12]).  Suppose that  1
m

ε d, 1
D

. Let G be a graph on n vertices; let Cbe a collection of vertex disjoint  
subsets of V (G) each of size m; and let R be a spanning subgraph of G such that  for every U ∈ C, we have ER(U) = ∅, and for every 
pair of distinct  A, B ∈ C, either E(R[ A, B]) = ∅or R[ A, B] is (≥ dd, ε)-super-regular. If H ⊆ K(C, R) and (H) ≤ D, then there exists 
a copy of H in  R that respects C.

8. Proof of the covering lemma (Lemma 4.3)

Definition 8.1. Let G be  a graph  and let  K be the  copies of Kr in  G . A fractional  Kr -tiling  of a graph G is  a weight  function  
w  : E(K ) → R ≥ 0 in  which,  for  every v  ∈ V (G), the  sum of the  weights  on the  copies of Kr that  contain  v is  at most  one. 
That is, we  have that

{w (K) : K ∈ K and K contains v } ≤ 1 for every v ∈ V (G).

The size of w is  {w (K) : K ∈ K }, and we say that  w is  perfect if  the  size of w is  exactly  |V (G)|/ r . Note that  w is  perfect  
if  and only  if

{w (K) : K ∈ K and K contains v } = 1 for every v ∈ V (G).

We will  use the  following  lemma  which  can be found  as a corollary  to [18,  Lemma 2.2]. (See also, [14,10].)

Lemma 8.2. If G is a balanced r-partite  graph on n vertices with  partition  P and δP (G) ≥ 1 − 1
r

, then G has a perfect fractional  
Kr -tiling.

Remark 8.3. Here we could  have shortened  our  proof  by using  existing  results  on perfect  Kr -tilings  in  multipartite  graphs 
(see [10,15]).  We chose to  only  use the  above lemma  on perfect  fractional  Kr -tilings,  which  is relatively  short,  to  make this  
paper more  self-contained.

11
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The following  lemma  is a consequence of Lemma 7.2 (The  Slicing  Lemma), Lemma 7.3,  and Lemma 7.9 (The  Blow-up  
Lemma).

Lemma 8.4. Let 1
m

ε d α < 1
r

, let G be an r-partite  graph with  ordered partition  (V1, . . . , Vr ) and for i  ∈ [r ], let Ci be an 
m-subset of V i . Suppose that  the sets C1, . . . , Cr are pairwise (≥ d, ε)-regular  and for every i  ∈ [r ], we have Ci ⊆ Ci . If z is a positive 
integer such that  |Ci \ Ci | + z ≤ ( 1 − α )m for every i  ∈ [r ], then there exists P a properly terminated  (r − 1)-path  in G[C1 ∪ · · · ∪Cr ]
such that  for every i  ∈ [r ] the path P intersects Ci in exactly z vertices.

Proof. Note that  the  conditions  imply  that  |Ci | ≥ α m + z for  every  i  ∈ [ r ]. So, Lemma 7.2 (the  Slicing  Lemma), implies  
that  the  sets C1

, . . . , Cr are pairwise  (≥ d, ε2/ 3)-regular.  By applying  Lemma 7.3 r
2 times,  we can construct  Ci ⊆ Ci for  

i  ∈ [r ] such that  |Ci | ≥ z and the  sets C1
, . . . , Cr are pairwise  (d, ε1/ 3)-super-regular.  Lemma 7.9 (the  Blow-up  Lemma)  then  

implies  the  existence of the  desired  (r − 1)-path  P.

Proof of Lemma 4.3.Select constants  N0 , M0 , ε, α , η and d so that

1
n

1
M0

1
N1

ε α α d η γ < 1
r

.

Lemma 7.7 implies  the  existence of a collection  C of disjoint  subsets of V (G) such that

• | C| ≤ N1
• C covers all  but  at most  εn of  the  vertices  in  V (G);
• there  exists m such  that  for  every  C ∈ C we have |C| = m;
• C respects P and if  we let  P = P (C) and G= ( G, C, d, ε), then  P is balanced and

δP (G) ≥ 1 −
1
r

+
γ

2
.

Lemma 8.2 implies  that  there  exists a perfect  fractional  Kr -tiling  of G, and let  K1, . . . , K M be an arbitrary  ordering  of the  
copies of Kr in  G that  receive positive  weight  in  such a fractional  Kr -tiling.  Note that  M ≤ N1

r and that  there  are positive  
weights  w 1, . . . , w M such that  for  every  C ∈ C,

M

i= 1

{w i : K i contains the cluster C } = 1,

and 
M
i= 1 w i = | C|/ r ≥ ( 1 − ε)n/( mr ). For each i  ∈ [M ], let  zi = (1 − α )w i m and note that

M

i= 1

zi =
M

i= 1

(1 − α )w i m ≥ (1 − α )|C|
m

r
− M ≥ ( 1 − α )(1 − ε)

n

r
− M ≥ (1 − α)

n

r
.

We can now  prove the  lemma  by constructing  disjoint  properly  terminated  (r − 1)-paths  P1, . . . , PM such that  for  each 
i  ∈ [M ], the  (r − 1)-path  Pi has length  exactly  r zi because then  

m
i= 1 V ( Pi ) ≥ (1 − α)n.

To see that  such a construction  is possible, assume that,  for  some t ∈ [M ], we have constructed  t − 1 disjoint  properly  
terminated  (r − 1)-paths  P1 , . . . , Pt − 1 such that  for  every  j  ∈ [t − 1] the  path  P j is contained  in  the  clusters  of K j and for  
every  cluster  C contained  in  K j the  (r − 1)-path  P j intersects  C in  exactly  z j vertices.

Let C1, . . . , Cr be the  clusters  in  K t . We can assume that  Ci ⊆ V i for  i  ∈ [r ] since the  partition  C respects the  partition  
P and the  clusters  C1 , . . . , Cr are pairwise  (≥ d, ε)-regular.  For i  ∈ [r ], let  Ci ⊆ Ci be the  vertices  in  Ci that  do not  intersect  
one of the  previously  constructed  paths P1 , . . . , Pt− 1 . Recall that  for  i  ∈ [r ], we have that  K t contains  the  cluster  Ci , so

|Ci \ Ci | + zt =

⎛
⎝

t− 1

j= 1

z j : K j contains the cluster C i

⎞
⎠+ zt

≤
M

j= 1

z j : K j contains the cluster C i

≤
M

j= 1

(1 − α )w jm : K j contains the cluster C i = ( 1 − α )m.

Therefore, Lemma 8.4 implies  that  there  exists an (r − 1)-path  Pt contained  in  G[C1 ∪ · · · ∪Cr ] such that,  for  i  ∈ [r ], the  path  
Pt intersects  Ci in  exactly  zt vertices.

12
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9. Proof of the partitioning and sequencing lemma (Lemma 3.2)

Before we begin  the  proof,  we give some further  terminology  and observations  regarding  properly  ordered  paths.
For 1 ≤ k ≤ k, we say that  an (r − 1)-path  v1 , . . . , vk is increasing if  for  every 1 ≤ i  < i ≤ k we have that  v i ∈ V j and 

v i ∈ V j with  j  < j , i.e., a path  is increasing  if  it  traverses the  sets V1 , . . . , Vk in  order  (though  it  might  skip  any number  
of the  sets). All  of the  paths  that  we will  construct  can be partitioned  into  subpaths  on either  r or r + 1 vertices  that  are 
increasing.  We call such an (r − 1)-path  properly ordered. We now  give a more  formal  definition.

Definition 9.1 (Properly ordered/ j-th  subsequence). Let P = v1 v2 · · ·v p be an (r − 1)-path  and let  f : [p] → [ k] be such that  
v f (i) ∈ V j . We say that  P is properly ordered if  there  exists 0 = p0, p1, . . . , pq = p such that  for  all  i  ∈ [q] , r ≤ pi − p i− 1 ≤ r + 1
and f (pi− 1 + 1) < · · · < f (pi ). For j  ∈ [q], let  v p j− 1+ 1, . . . , v p j be the  j-th  subsequence of P.

Given a properly  ordered  path  P = v p0+ 1 . . .v p1
v p1+ 1 · · ·v p2 · · ·v pq− 1+ 1 · · ·v pq , we will  say that  the  j -th  subsequence, 

v p j− 1+ 1 , . . . , v p j , has type z ∈ Z k if  for  i  ∈ [k], we have zi = 1 when  one of the  vertices  in  the  subsequence is in  the  part  
V i and zi = 0 otherwise.  From the  definition  of properly  ordered,  this  means that  v p j− 1+ 1, . . . , v p j has type  z ∈ Z k if  
zi = |{ v p j− 1+ 1, . . . , v p j } ∩ V i | for  every  i  ∈ [k].

It  is clear that  we need the  parts  which  contain  every  r consecutive  vertices  in  P to  be distinct.  Given a properly  
ordered  (r − 1)-path,  we will  have this  critical  property  if  and only  if  the  following  condition  is met  for  every j  ∈ [q − 1] , 
and i  ∈ {p j− 1 + 1, . . . , p j }, and i ∈ {p j + 1, . . . , p j+ 1}:

If v i and v i are contained in the same part, then i − i ≥ r. (6)

We can restate this  observation  in  the  following  way:  The parts  which  contain  every  r consecutive  vertices  in  P are  distinct  
if  and only  if  for  every  j  ∈ [q − 1] when  we let  z be  the  type  of the  j-th  subsequence and z be the  type  of the  ( j  + 1)-th  
subsequence we have the  following:

For every i ∈ [k], if z i = zi = 1, then
k

v= i+ 1

zv +
i

v= 1

zv ≥ r . (7)

Note that  if  the  j-th  and ( j  + 1)-th  subsequences of P both  contain  exactly  r vertices  (so, k
v= 1 zv = k

v= 1 zv = r ), then  (7)
can be restated  as the  following:

For every i ∈ [k], if z i = zi = 1, then
i

v= 1

zv = r −
k

v= i+ 1

zv ≤
i

v= i

zv . (8)

If the  ordered  pair  (z, z ) satisfies (7), then  we say that  (z, z ) is valid.

Proof of Lemma 3.2.Let 2 ≤ r < k ≤ 2r − 1 and  let  β and σ be constants  such that

1
n

 β  σ γ ≤
1
r

. (9)

Let G be an n-vertex  k-partite  graph  with  ordered  partition  P = ( V1, . . . , Vk) of V = V (G) such that

γ n ≤ | Vk| ≤ |Vk− 1| ≤ · · · ≤ |V1| ≤
n

r
, (10)

and

δP (G) ≥ 1 −
1
r

+ γ . (11)

If  |V1| ≥ n
r − 2σn, we define  1 ≤ s ≤ k to  be the  largest integer  such that  |Vs| ≥ n

r − 2σn;  otherwise,  we set s = 0.
We start  by greedily  building  a path  P

0 such that  when  V = V \ V (P
0
) and V i = V i \ V ( P

0
) for  every  i  ∈ [k], the  

following  holds:

(T1) |V | is divisible  by r;
(T2) |V i | = | V |/ r for  every  i  ∈ [s];
(T3) |V i | ≥ σn for  every  i  ∈ {s + 1, . . . , k};
(T4) |V i | ≤ | V |/ r − σn for  every  i  ∈ {s + 1, . . . , k};
(T5) |V | ≥ (1 − 3r 2σ)n;  and
(T6) P

0 is properly  ordered  and properly  terminated.

13
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Let z(0) be the  (0, 1)-vector  in  Z k in  which  the  first  (r + 1) entries  are one and the  remaining  k − r − 1 entries  are zero. 
For j  ∈ [r + 1], let  z( j ) be z(0) minus  the  j -th  standard  basis vector, i.e., all  of the  last k − r − 1 entries  of z( j ) are zero and 
all  of the  first  (r + 1) entries  of z( j ) are one except for  the  j -th  entry,  which  is zero. Using (7) and  (8) it  is not  hard  to  verify  
that  the  following  holds  for  every  j , j ∈ [r + 1]:

(V1) (z(0) , z( j )) is valid;
(V2) (z( j ) , z( j )) is valid  when  j  ≤ j + 1;  and
(V3) (z( j ) , z( j )) is not  valid  when  j  ≥ j + 2.

Let 0 ≤ c0 < r be such that  n − c0 is divisible  by r and for  i  ∈ [s], let

ci =
n − c0

r
− | V i |. (12)

Note, by (10) and  the  definition  of s, we have that  n
r − 2σn ≤ | Vs| ≤ · · · ≤ |V1| ≤ n

r , so

2σn ≥ cs ≥ cs− 1 ≥ · · · ≥c1 ≥ 0. (13)

The sequences of vectors

c0z(0), z(r+ 1), z(r ) , z(r− 1), . . . ,z(s+ 1), csz(s) , cs− 1z(s− 1), . . . ,c1z(1), z(r+ 1) ,

will  serve as our  template  for  P
0 .

That is, we greedily  build  P
0 so that

• the  first  c0 subsequences are of type  z(0) (these are the  only  subsequences that  have (r + 1) instead  of r vertices);
• the  next  (r − s + 1) subsequences have types  z(r+ 1) , z(r ) , z(r− 1) , . . . , z(s+ 1) , respectively;
• the  next  cs subsequences are of type  z(s) , followed  by cs− 1 subsequences of type  z(s− 1) , . . . , followed  by c1 subsequences 

of type  z(1) ; and
• the  last subsequence is of type  z(r+ 1) .

Note that  it  is possible to  build  P
0 in  this  way  by (11), (13), (V1) and (V2)  (To see that  (13) is  critical  here, note  that,  by 

(V3), we need that  if  t ∈ [s] is such that  ct = 0, then  ct − 1 = ct− 2 = · · · = c1 = 0.) Define

q = c0 + ( r − s+ 1) +
s

j= 1

c j + 1 (14)

and note that  q is  the  number  of subsequences in  P
0 .

Claim 9.2. The P0
constructed as described above satisfies conditions (T1)–(T6).

Proof of Claim 9.2.
(T6): The construction  of P

0 requires  P
0 to  be properly  ordered  and properly  terminated  (even when  c0 = 0).

(T1): Recall that  each subsequence has r vertices  except the  first  c0 , which  have r + 1. By (14), the  number  of vertices  in  P
0

is

p = c0(r + 1) + (r − s+ 1)r +
s

j= 1

c j r + r = c0 + qr . (15)

So, since n − c0 is divisible  by r , we have that  |V | = n − p is  divisible  by r .
(T5): By (13), (14), (15) and  the  fact that  s ≤ r and  c0 < r , we have that

p = c0 + qr = c0(r + 1) + (r − s+ 2)r + r
s

j= 1

c j ≤ 3σr2n. (16)

(T3): By (10), for  all  i  ∈ {s + 1, . . . , k},

|V i | = | V i \ V (P0)| ≥ γ n − 3σr 2n ≥ σn.

(T2): By (12) and  (15), for  all  i  ∈ [s],

|V i | = | V i | − q + ci = | V i | − q +
n − c0

r
− | V i | =

n − c0
r

−
p − c0

r
=

n − p

r
=

|V |
r

.

14
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(T4): Consider two  cases: If s + 1 ≤ i  ≤ r , then,  because every  subsequence of P0 except exactly  one intersects  V i , we have

|V i | = | V i | − q + 1 = | V i | −
p − c0

r
+ 1 <

n

r
− 2σn −

p

r
+ 2 =

|V |
r

− 2σn + 2 < |V |
r

− σn.

If r + 1 ≤ i  ≤ k, (10) implies  that  |V i | ≤ n/ i  ≤ n/( r + 1), so with  (16),

|V i | ≤ |V i | ≤
n

r + 1
=

n

r
−

n

r (r + 1) ≤
n

r
− 3σrn − σn ≤

n

r
−

p

r
− σn =

|V |
r

− σn.

This concludes the  proof  of Claim 9.2.

Now  we consider  (A1). We stress that  the  issue here is largely  numerical,  which  explains  the  general nature  of the  next  
two  claims. Claim 9.3 provides  the  template  and Claim 9.4 shows  that  V can be partitioned  according  to the  template  so 
that  (A1) holds. The purpose  of partitioning  according  to  this  specific  template  is to  set things  up so that  (A3) and (A4) will  
be able to  be satisfied  in  the  end.

Let Z be the  set of (0, 1)-vectors  in  Z k such that  the  first  s entries  are one and exactly  r − s of  the  remaining  k − s

entries  are one (so, for  every  z ∈ Z exactly  r of  the  k entries  of z are  one and the  remaining  k − r entries  are zero). Note 
that   = k− s

r− s is the  order  of Z .

Claim 9.3. There exists a k ×  ( 0, 1)-matrix  A = [ ai , j ] such that  the columns of A are the vectors in Z where the columns of A are 
ordered so that

• the first  column is (1, . . . ,1

r times

, 0, . . . ,0

k − r times

)T ;

• the last column is (1, . . . ,1

s times

, 0, . . . ,0

k − r times

, 1, . . . ,1

r − s times

)T ; and

• for every j  ∈ [  − 1] and i  ∈ [k] ,

if ai , j = ai , j+ 1 = 1, then

i

v= 1

av, j ≤
i

v= 1

av , j+ 1 (cf. (8)). (17)

Proof of Claim 9.3.The proof  is by induction  on k − s. Note that  if  either  k = r or  r = s, then  the  claim  is trivially  true.  In  
particular,  this  establishes the  base case since k − s = 0 implies  k = r = s. Now  suppose that  k > r > s. Let Z be the  vectors  
in  Z in  which  the  (s + 1)-th  entry  is one and let  Z = Z \ Z . Let = | Z | = k− s− 1

r− s− 1 and = | Z | = k− s− 1
r− s . By the  induc-

tion  hypothesis  (with  k, r , and s + 1 playing  the  roles of k, r , and s, respectively),  we can populate  the  first  columns  of A

with  the  vectors  in  Z so that  the  first  column  is (1, . . . ,1

r times

, 0, . . . ,0

k − r times

)T , the  -th  column  is ( 1, . . . ,1

s+ 1 times

, 0, . . . ,0

k − r times

, 1, . . . ,1

r − s − 1 times

)T , 

and (17) holds  for  j  ∈ [ − 1]. Similarly,  by the  induction  hypothesis  (with  k − s − 1, r − s, and 0 playing  the  roles 
of k, r , and s, respectively),  we can populate  the  remaining  columns  of A with  Z so that  the  ( + 1)-th  column  is 
(1, . . . ,1

s times

, 0, 1, . . . ,1

r − s times

, 0, . . . ,0

k − r − 1 times

)T , the  last column  is (1, . . . ,1

s times

, 0, . . . ,0

k − r times

, 1, . . . ,1

r − s times

)T , and (17) holds  for  + 1 ≤ j  ≤  − 1. 

The claim  then  follows  because (17) holds  when  j  = .

Let A be  the  matrix  guaranteed  by Claim 9.3.

Claim 9.4. Let b = (| V1|, |V2|,  . . . , |Vk |)T . There exists x ∈ Z such that  x j ≥ β n for every j  ∈ [] and such that  Ax = b.

Proof of Claim 9.4.We will  iteratively  construct  a sequence of vectors  x(0) , x(1) , . . . , x(T) ∈ Z such that  x = x(T) meets the  
conditions  of the  claim.  For t ≥ 0, define  b(t ) = b − Ax(t ) ; n(t ) = k

i= 1 b(t )
i ; and the  following  properties:

(P1) n(t ) ≥ 0 is  divisible  by r;
(P2) b(t )

i = n(t ) / r for  every 1 ≤ i  ≤ s;
(P3) 0 ≤ b(t )

i ≤ n(t ) / r for  every  s + 1 ≤ i  ≤ k;  and
(P4) x(t )

j ≥ β n for  every j  ∈ [] .

To begin  the  construction,  we let  m = βn and x
(0)
j = m for  every  j  ∈ [] . Clearly, we have that  (P4) holds  for  t = 0. First 

note  that  n(0) = | V | − r m so, by (T1), we have that  (P1) holds  for  t = 0. By (T2), we also have that

15



L. DeBiasio, R.R. Martin and T. Molla Discrete Mathematics 345 (2022) 112747

b(0)
i = | V |/ r − m = n(0) / r for every i ∈ [s],

so (P2) holds  for  t = 0. By (T3), we have b
(0)
i ≥ bi − m ≥ σn − m > 0 for  every  s + 1 ≤ i  ≤ k, and with  (T4) we have that

b(0)
i ≤ | V |/ r − σn ≤ | V |/ r − m = n(0) / r for every s + 1 ≤ i ≤ k.

Therefore, (P3) also holds  for  t = 0.
Now  assume (P1), (P2), (P3), and (P4) hold  for  some t ≥ 0. If b

(t )
i = 0 for  every i  ∈ [k], then  Ax(t ) = b, so with  (P4), we 

can let  t = T and end the  construction,  because x = x(t ) = x(T) meets the  conditions  of the  claim.  Otherwise,  let  I = { i  ∈ [k] :
b(t )

i = n(t ) / r }. Note that  (P2) implies  that  [s] ⊆ I and by (P3) we have that  b
(t )
i ≤ n(t ) / r − 1 for  every  i  ∈ [k] \ I . We clearly  

have that  | I | ≤ r and, by (P1), (P2) and (P3), there  exists I ⊆ I ⊆ [k] such that  | I | = r and b
(t )
i

> 0 for  every i  ∈ I . Now  let  
j (t ) be the  column  of A such that  ai , j (t ) = 1 if  and only  if  i  ∈ I . If we then  let

x(t+ 1)
j =

x(t )
j + 1 if j = j (t )

x(t )
j otherwise

it  is clear that  (P1), (P2), (P3), and (P4) all  hold  with  t set to  t + 1.

Now  we use the  preceding  claims  to  show  that  (A1) and (A2)  hold.  Let i  ∈ [k] and recall  that,  since Ax = b, we have 
j= 1 ai , j · x j = bi = | V i |. Therefore, for  every  i  ∈ [k], we can uniformly  at random  select a partition  of V i into  parts  

V (i , 1), . . . , V (i , ) so that  for  every j  ∈ [] , we have |V (i , j)| = ai , j · x j . (Note that  we are allowing  parts  to  be empty  in  
these partitions).

Let j  ∈ [] , and note that  since exactly  r entries  in  the  j-th  column  of A are  1, there  exists a unique  sequence 1 ≤ i j ,1 <
· · · <i j ,r ≤ k such  that  |V (i j ,1, j)| = · · · = |V (i j ,r , j )| = x j ≥ β n, so (A1)  holds.

Let P j = ( V (i j ,1, j ), . . . , V (i j ,r , j )) and G j = G[V (i j ,1, j) ∪ · · · ∪ V (i j ,r , j )] . Therefore, (11), (T5), and the  Chernoff  and 
union  bounds  imply  that,  with  high  probability,  there  exists an outcome  where  for  every j  ∈ [] , h ∈ [r ] , and v ∈ V \ V ih, j

we have that

deg(v , V (i j ,h, j)) ≥ 1 −
1
r

+
γ

2
|V (i j ,h, j)|. (18)

Fix such an outcome.  Note that  V ( P
0
),  V (G1), . . . , V (G ) is a partition  of V (G), and for  every  j  ∈ [] , G j is a balanced 

r-partite  graph  with  ordered  partition  P j such that  each part  has order  at least βn and,  with  (18) we  have

δP j
(G j ) ≥ 1 −

1
r

+
γ

2
, (19)

i.e., (P2) holds.
To see that  (A4) holds, note  that,  by the  ordering  of the  columns  of A (cf. (17))  and (18), we can greedily  construct   − 1

vertex  disjoint  (r − 1)-paths  P1, . . . , P− 1 each on exactly  2r vertices  so that,  for  every  j  ∈ [  − 1], the  initial  r vertices  of 
P j respect the  sequence P j and the  final  r vertices  of P j respect the  sequence P j+ 1 .

Finally, we now  show  that  (A3) holds. To see this,  first  note  that,  by Claim 9.3,  if  we let  z be  the  last column  of A and  
z be the  first  column  of A, then  by (8), we have that  (z, z ) is valid.  Therefore, since (T6) implies  that  the  (r − 1)-path  P

0
is properly  terminated,  we can use (18) to  greedily  prepend  r vertices  to  P

0 to create an (r − 1)-path  in  which  the  initial  r
vertices  respect the  sequence P while  avoiding  the  path  P− 1 . Again because P

0 is properly  terminated,  (18) implies  that  
we can greedily  append r vertices  to this  path  to  create an (r − 1)-path  P0 so that  the  final  r vertices  of P0 respect the  
sequence P1 and so that  P0 avoids P1 . This completes  the  proof.

10. Conclusion

10.1. Exact version

The main  open problem  which  remains  is to  prove an exact version  of Theorem 1.1. Note that  it  is possible that  in  the  
unbalanced  case, there  are extra  variants  of Catlin’s example.

10.2. Total degree version

Another  direction  is to  consider  minimum  total  degree conditions  for  perfect  Kr -tilings  and Hamiltonian  (r − 1)-paths.  
In this  direction,  Johansson, Johansson, and Markström  [9] proved  that  if  G is a balanced 3-partite  graph  on n vertices  with  
δ(G) ≥ n/ 2, then  G has  a perfect  K3-tiling.  Later, Lo and Sanhueza-Matamala  [16] proved  that  if  G is  a balanced r-partite  

graph  on n vertices  with  δ(G) ≥ 1 − 3
2r + o(1) n, then  G has a perfect  Kr -tiling,  which  is asymptotically  best possible.
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It  would  be interesting  to study  the  unbalanced  version  of this  result  and extend  it  to Hamiltonian  (r − 1)-cycles. This was 
done for  r = 2 in  [2],  but  the  degree condition  is quite  complicated  (in  some sense necessarily so, since it  is asymptotically  
tight  in  all  cases) and thus  determining  an asymptotically  tight  minimum  degree condition  for  perfect  Kr -tilings  in  all  valid  
k-partite  graphs seems challenging.

As a start,  we conjecture  the  following  sufficient  condition  for  perfect  Kr -tilings  (which  will  be asymptotically  necessary 
in  certain  cases).

Conjecture 10.1. Let k ≥ r ≥ 2 and γ > 0. If G is a k-partite  graph with  all parts at most n/ r and  δ(V i ) ≥ 1 − 1
2r + γ n − | V i | for 

all i  ∈ [k], then G has a perfect Kr -tiling.
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