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Abstract

For all positive integers r =2 3 and n such thatr 2 - r divides n and
an affine plane of order r exists, we construct an r-edge colored graph on n
vertices with minimum degree (1 —rrz'fr )n—2 such that the largest monochro-
matic component has order less than 5-. This generalizes an example of
Guggiari and Scott and, independently, Rahimi for r = 3 and thus disproves
a conjecture of Gyarfas and S’ark”ozy for all integers r = 3 such that an affine

plane of order r exists.
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1. Introduction

An affine plane of order q is a g-uniform hypergraph on%vertices (called points),
with g(q + 1) edges (called lines) such that each pair of vertices is contained in
exactly one edge.lt is well known that an affine plane of order q exists whenever
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g is a prime power (and it is unknown whether there exists an affine plane of non-

prime power order). Given an affine plane G of order q, there exists a q+1-coloring
of the edges of G such that every color class (called a parallel class) consists of a

collection of g vertex disjoint edges of order q, every vertex is contained in exactly
one edge of each color, and the union of the q + 1 edges incident to a given vertex
is all of V (G).

LetH=({x +1,...,H%, E)be ahypergraph which has a proper edge col-
oring with r colors (that is, evgry color class induces a matching). Leta =
(a1,...,@ R ! be such that it=1 ai =1anda ; >0forall ie[t]. Fora
positive integer n, let G be a graph on n vertices obtained by replacing each
Xj € V (H) withaset X ; oforder fajnlor ainy; forallue X i, ve X, letuv
be an edge of G if and only if there exists e € E such that {x;, x;} € e, and color
uv using the color which appears on e (if there are multiple such edges, choose
a color arbitrarily from one such edge). We call G an a-weighted blow-up of H,
andifa; = % for all i € [t], we call G a uniform blow-up of H.

Given a graph G and a positive integer r, let mg (G) be the largest integer m
such that in every r-edge-coloring of G, there exists a monochromatic component
(i.e., a maximal connected subgraph) of order at least m. For the rest of the
paper, when we speak of an r-coloring of G, we mean an r-coloring of the edges
of G.

Gy arfis [6] proved

mc: (Kn) 2

r—1
and this is best possible when (r — 1) 2 divides n and an affine plane of order
r — 1 exists. To see this, let K, be a uniform blow-up of the affine plane of order
r—1. Since every pair of distinct points from the affine plane is contained in
exactly one edge the r-coloring of K , is well defined, and since each line of the
affine plane has order r — 1 and there are (r - 1) 2 points, the size of the largest
monochromatic component in K, is (r — 1) ﬁz = I

Gy aris and S’ark“ozy [7] raised the following interesting questidar a graph
G on n vertices, how large does the minimum degree of G, denoted &(G), need to
be so that mc, (G) =2 57 As noted in [8], the answer is n — 1 for r = 2 because
there is a 2-coloring of any non-complete graph on n vertices such that the largest
monochromatic component has order at most n - 1.So it was perhaps surprising
thatforall r=3, they showed there exists & > 0 such that if G is a graph on
n vertices with n sufficiently large and 8(G) 2 (1 -¢  )n, thenmc,(G) 2 .
The bounds on €, given in [7] were later improved in [3] as follows: forr =3,

5(G) = 7n/8 suffices and forr =24, 5(G) =2 1 - m n suffices.
Gy aris and S’ark“ozy [7] also gave the following natural construction whenever

an affine plane of order r exists and r? divides n. Repeat the construction given
above, but instead of an affine plane of orderr -1, take a uniform blow-up
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of an affine plane of order r with one parallel class removed. This gives an r-
colored graph on n vertices with minimum degree1- %} n-1 where the largest
monochromatic component has order* < -fi-. They conjectured that the bound

r-1 -
arising from this construction is tight.

Conjecture 1 (Gy" arfas, S'ark”ozy [7]Let n and r = 3 be positive integers. If G
is a graph on n vertices such that 3(G) 21 - %} n, then mc,(G) =2 .

Recently, Guggiari and Scott, and independently Rahimi, disproved this con-
jecture forr = 3. The combination of their results gives the best possible mini-
mum degree condition.

Theorem 2 (Guggiari, Scott [5], Rahimi [11]). Let G be a graph on n vertices.
If 5(G) 2 gn - 1,then mc3(G) =2 5. Moreover, for every n, there exists a graph
G on n vertices with 8(G) = %n — 2 such that mc3(G) < 3.

Note that the 3-colorings of graphs with 8(G) = %n - 2 given by Guggiari
and Scott and Rahimi have largest monochromatic components of order just
under 3. This is in contrast to the example of Gy aréis and S’arkozy above, where
the largest monochromatic components have order;.

The purpose of this note is to generalize the lower bound construction of
Guggiari and Scott and Rahimi which disproves Conjecture 1 whenever an affine
plane of order r exists. (We note that Guggiari and Scott independently gener-

alized this construction in a later version of [5].)

Theorem 3. Let n and r be integers such thatr=3 and n = r(r— 1)((r — 1)(r -
2) +1). If(r 2-r) | n and an affine plane of order r exists, then there exists a
graph G on n vertices with

r-2 r-1 1

@)= 1-fpop 2= 1Tt gy N2

such that mg (G) < .

r-1
The construction is based on a blow-up of the following hypergraph Hwhich
is derived from an affine plane of orderr.

Definiton4 H . Letr = 3 such that an affine plane of  orderr exists. Let

G =(V, L) be an affine plane of orderr. Let{L 1, ..., k1 } be the partition
of L into parallel classes.Label the vertices of G; as vi; withi,je[r] so that
Ly={vit,....,m}r:iePandL 1 ={{v 1, ..., M}: i€[r]}(in Figure

1, L1 is represented by the rows and L+1 by the columns). LetS={v ; :ie
= ABU{Y s )

Let H; be the hypergraph obtained from G by deleting the lines from L 1
and the vertices of S from each of the remaining edges; i.e., letH; = (V\ S, E)
where E={e\S:eecl}.
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V1,1 V1,2 e Vi, r-1 Vir
Vr-3,1 Vr-3,2 e Vr-3,r-1 Vr=3,r
Vr-2,1 Vr-2,2 e Vr-2,r-1 V-2

Figure 1. The hypergraph H ..

Given a hypergraph H = (V, E), the rank of H, denoted r(H), is max{|e|:
e € E} and the proportional rank of H is r(C) . The edge chromatic number of H
is the minimum number of colors needed to color the edges of H so that each color
class forms a matchingGiven avertexveV ,letN[v]={u:JeeE, {u, v} € e};
in other words, N [v] is the set of all vertices (including v) which are contained in
an edge withv. Letd*(H) =min{IN [v]| :ve V }.
Note the following properties of H, = (V, E).

(P1) the edge chromatic number of H, isr,
(P2) the proportional rank of H  is »— = ﬁ
(P3)3"(H)=VI-(r-2)=1- 5% |V|

Roughly speaking, we prove Theorem 3 by taking a uniform blow-up of H
(which has monochromatic components of ordeg"-) and then slightly “perturb-
ing” the sizes of the blown-up sets so that all the monochromatic components
have order less than . This raises the more general question of when such a
perturbation is possible, which we address in Section 2.

As is elaborated in Section 3.1, the choice of vertices S to delete in the
definition of H, is to ensure that a uniform blow-up of  H; is “perturbable.”
As an example of a hypergraph which is not “perturbable,” letH 5 = (V, E)
be obtained from an affine plane of order 3, by deleting one parallel class and
deleting the vertices from one of the remaining edges (say v3 .1, V32, V33 as in
Figure 1). The edge chromatic number of H; is 3, the proportional rank is 1/2,
and & (H3)=5=1- [ |V|. By taking a uniform blow-up of H 3 we obtain a
3-colored graph G with 8(G) = %” -1, and every monochromatic component has
order at most n/2. However, no matter how we change the sizes of the blown-up
sets, one of the monochromatic components will have order at least n/2.
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2. Perturbable Hypergraphs

It is possible to skip directly to Section 3.2 to see the proof of Theorem 3; however,

to understand where the construction comes from we need to take a slight detour.
The standardFsimpIex of R is the set of vectors (w, .. ., w) such thatw; 20

forallie[nJand L, w; =1. A weight assignment on a hypergraph H = (V, E)

where V={v 1,...,¥y}isafunction w:V > Rsuch that (w(v 1), ...,w(K))is

in tp,e standard simplex of R". For all S €V let the weight of S, denoted w(S),

be g W(v). Wesay thatw:V - R given by w(v) = ﬁ forallv e Vis the

uniform weight assignment.

Definition 5 (Perturbation, perturbable). APperturbation on a hypergraph H =
(V, E) i‘ga functionp: V - Rsuch that L, p(vi)=0andforall ecE,
p(e) = e P(v) <0. We say H is perturbable if a perturbation on H exists.

Observe that if w is a positive weight assignment on H (meaning w(v) > 0 for
allveV)and p is a perturbation on H, then w % ep is also a weight asgignment

on H for sufficiently small € > 0 (say € < min ";E\‘g :veV,p(v)6=0). Since
p(e) <0 for every e € E, the weight assignment w + ¢p is strictly smaller than
w on every edge of H. Thus, if a perturbation on H exists, then we can alter
any weight assignment by at most € at each vertex (for € sufficiently small) and
strictly decrease the weights on the edges.
Theorem 6 gives an equivalent condition for the existence of a perturbation,

but first we must recall the following definitions. Given a hypergraph H = (V, E),

fractional matching is a functionm: E -[0,1] suchthatforall veV,

ooy M(e) =1, anga fractional vertex coveris a functiont: V - [0, 1] such
that for all e € E, vee I(v) 2 1. Afractional matching is called perfect if we
have equality forallve V. We let

(

)

X
v*(H) = max m(e) : mis a fractional matching on H
ecE
and
(s )
1" (H) = min t(v) : tis a fractional vertex cover on H
veV

It is well known consequence of the duality theorem in linear programming that
T°(H) =v "(H) for all hypergraphs. When it is clear from context we just write
1" and v for 1" (H) and v " (H) respectively. Note that if H is k-uniform and has
a perfect fractional matching, then v*(H) = ¢.

Theorem 6. LetH = (V, E) be a hypergraph. H is perturbable if and only if H
does not have a perfect fractionalmatching.
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Proof. Letn:=|V|and e := |E| and let A be the n-by-e incidence matrix of H
(with rows indexed by vertices and columns by edged)et 1 be the n-dimensional
vector of all 1’s. Note that in this language, a perfect fractional matching mis a
solution to the system Am =1, m = 0, and a perturbation p is a solution to the
system ATp<0,1Tp=0.

Recall Farkas’ Lemma (see [9]), which states for an n-by-e matrix A and
n-dimensional vector b, there is no m = 0 such that Am = b if and only if there
exists w such that ATw<0and bTw > 0.

We claim that for the given A,  the solvability of ATw<0, 1Tw>0is
equivalent to the solvability of ATp<0, 1Tp=0. So by Farkas’ lemma, the
result will follow by establishing this claim.

First suppose there exists w suchthat A Tw<0and1 Tw>0. Letting
p=w- 1TTW1, we have Tp=0and p <w. Since A has only nonnegative entries,
and it has at least one positive entry in each column, we have ATp <A Tw <0,
so p is a perturbation for H.

For the other direction, suppose there exists p such that Ap<0and 17p =
0. Leta> 0 be the absolute value of  the largest entry of ATp (smallest in
absolute value), and letw = p + 31. Then 1Tw = a > 0 and the largest entry of
ATw=ATp+ 2AT1is —a+ 2n <0, since the largest entry of A T1 is the rank
of H which is at most n. ]

3. When an Affine Plane of Order r Exists

Given a hypergraph H = (V, E) and a weight assignment w, the top-level of
H, denoted H, is the hypergraph (V, E ) where E " € E is the setof edges of
maximum weight.

3.1.  Rough construction

Let H, = (V, E) be the hypergraph from Definition 4. We first show that under
the uniform weight assignment, the top-level of H; = (V, E) is perturbable. This
together with properties (P1), (P2), and (P3), imply that for all sufficiently large
n we can use H to define a graph G on n vertices with §(G) = 1- rij_% n-0(1)

and mc: (G) < L.

Observation 7.  Let r =2 3 be an integer such that an affine plane of orderr
exists. Under the uniform weight assignment, the top-level of H, = (V, E) is
perturbable.

Proof. Given the uniform weight assignmenton H ., letH, =(V, E ) be the
top-level of H, (which is just the edges of order r in this case). Lett:V ->R
givenbyt(v)= - ifve{v ;}u{vi ie[r-2]je[r-1]}andt(v)=0
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otherwise (see Figure 2). We first claim that t is a fractional vertex cover of H ;.
Indeed, every edge of E either comes from L4 or contains v, , and consequently

intersects {vi-1; :ie[r—1}u{v i, :rie[r—-2]}in at most one vertex. So we
have

X
vi=ET" < tv) =(r=1)(r-2) 7r—11 + r—11 =r-2+ r—11 <r-1= M

veV

and thus H, does not have a perfect fractional matching. By Theorem 6, H; is
perturbable. |

1 1 1
= = = 0

g
-
g
i~
o

1
r-1
1
r-1

g
i~
g
L
o

0

Figure 2. The fractional vertex cover of H ..

One may wonder if other choices of S in the definition of H  would yield a
perturbable hypergraph satisfying properties (P1), (P2), and (P3).An exhaustive
search shows that there are no other choices of S (up to isomorphism) forr =3
and r = 4, but there are other choices for say r = 5. While it would be interesting
to characterize the possible choices of S,doing so would not improve the given
construction.

3.2. Fine tuning

Theorem 8. Let n,r, cbeintegers suchthatr=3, c=1, andnzr(r—-1)
((r=1(r-=2)+1c. If(r 2-r)|nand an affine plane of order r exists, then
there exists a graph G on n vertices with 6(G) =1 - r%‘_% n - ¢ — 1 such that
mc (G) < L -c.

Note that the main case of interest is when c =1, but phrasing the result
in general as we do shows that by lowering the minimum degree further, one can
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further decrease the size of the largest monochromatic component. Also note
that our construction only addresses the case (r 2 -r)| n for simplicity. Itis
possible that in the case when # - r does not divide n, by slightly modifying this
construction (as was done in [5] for the case r = 3), one can construct a graph G
with 8(G)= 1- 52 n -2suchthatmc,(G)< I -1.

Proof. LetH , =(V, E) be the hypergraph from Definition 4 and let G be a
uniform blow-up of H  where v e V becomes X, in G (with [X | = ).
LetA={v —1; :ie[r=1}u{v -2 }. We now adjust the size of each X,

as follows

Xy|= PO ifveV(H)\A,
T+ (r-2)c,  ifveA
-C -C -C -C
-C —-C —C -C

Figure 3. The adjustment of the sizes of the sets in a uniform blow-up of H,. Each
number corresponds to a vertex of H with the rows corresponding to Ly and the columns

corresponding to L+1 . The number at a vertex v is the amount in which we adjusted

the size of Xy, i.e., [Xy| - =%

First note that P vev IXv| =n (since each column sums to O in Figure 3).

Now we check the minimum degree condition.Letve V (H ), let¢ , € L 141
such thatve¢,,andletue X ,. We have (see Figure 3 in which each vertex is
adjacent to everything except the distinct members of its own column)

X
duy=(n-1)- IXwl
( wel v \{v}
(N-1-(r-3) A-c - L+(r-2c , ifveV(H)\A
(n-1)-(r-2 A -c, ifveA,

andthus 8(G)=(n-1)-(r-2) S--c=1- 52 n-c-1.
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Finally we check that every monochromatic component of G, each of which
correspondsto an edge ¢ fromH , has order at most -5~ —c. Sincec <
r(r—1)((r—1)(r;—2)+1) , wehave (r-1) -+(r-2)c < I -candthuswe
need only consider the edges ¢ of H; of orderr; thatis, when¢n S =. Since
every edge from H; of order r intersects A in at most one vertex, the order of

the largest monochromatic component in G will be at most

n n n
- —_ + —+(r— = -
(r=1) v c vy (r-2) p— C. .

4. When an Affine Plane of Order r Does Not Exist

It is known that there is no affine plane of order 6, sor =6 is the first case for
which the construction of the previous section does not apply. An example of a
graph G with 8(G) = 2 - 1 such that mcg(G) < 2 (in fact, mcg(G) < 5 < 1) is
a uniform blow-up of an affine plane of order 7 with two parallel classes removed.

Problem 9. Construct an example of a graph G with large minimum degree
such that mgg(G) < 3. In particular, for some a > 0 and all n, construct a graph
G on n vertices with 8(G) = % +a nsuch that mcg(G) < %.

In light of Section 2, it would suffice to construct a hypergraph H = (V, E)
with edge chromatic number 6, proportional rank at most % 0" (H) > §|V | such
that if the proportional rank of His equal to % then the top-level of H with
respect to the uniform weight assignment (the edges of maximum rank) has no
perfect fractional matching.

In general, when an affine plane of order r does not exist, trying to produce an
example of an r-colored graph G with large minimum degree for which mgG) <
L leads us back to the original problem for complete graphs. The purpose
of this section is mostly to collect what is known in one place and make a few
observations. These observations have consequences for the original problem for
complete graphs and may be useful for extending our construction in the case
when an affine plane of order r does not exist.

Recall that Gy arfas [6] proved mc;(K,) = I and this is best possible
when (r - 1) 2 divides n and an affine plane of orderr - 1 exists. Forall r
such that affine plane of order r — 1 does not exist, the problem of determining
mc: (K ) (even asymptotically) is still  open. A hypergraph H is r-partite if
V (H) can be partitioned into r parts so that every edge intersects every part in
at most one vertex; H is intersecting if every pair of edges in E(H) has non-
empty intersection; and we letv [ be the largest fractional matching over all
r-partite intersecting hypergraphs. A result of F"uredi [4, Theorem 3.3] implies



10 L. DeBiasio and R.A. Krueger

that Ime(Kn) - % asn-»; thus determining mc, (K ) asymptotically is
equivalent to determining the value of 7. As for the value of ¥, Furedi proved [4,
Theorem 2.1] that y <r-1- % unless a truncated projective plane of order r—1
exists (equivalently, an affine plane of order r — 1 exists), in which casé v r —1.
Combining these two results shows that one can improve Gy arf’adower bound
on ma (K ) whenever there is no affine plane of order r — 1(Note that the upper
bound comes from the construction mentioned in the introduction.)

Theorem 10 (F" uredi [4]). Letr = 3 be an integer, let q be the largest integer
at most r — 1 such that there exists an affine plane of orderq, andletn>q 2

be an integer. If an affine plane of order r - 1 does not exist, then H%ﬁ <
r-1

mc: (K) < % .

Since an affine plane is a hypergraph in which every pair of distinct vertices is
contained in exactly one edge and the edges of the hypergraph can be decomposed
into perfect matchings (and thus has the smallest possible edge chromatic num-
ber), a natural place to look for examples which improve the upper bound (when
an affine plane of order r — 1 does not exist) are resolvable balanced incomplete
block designs.

A (v, k, 1)-resolvable balanced incomplete block design, a (v, k, 1)-RBIBD for
short, is a k-uniform hypergraph H on v vertices such that each pair of vertices
is contained in exactly one edge and the edges of H can be decomposed into

G)G) -

TR = H perfect matchings. A necessary condition for the existence of a
(v, k, 1)-RBIBD is that v = k mod k(k - 1). Ray-Chaudhuri and Wilson [12]
proved that for all k = 3 there exists a constant C(k) such that if v = C(k) and
v =k mod k(k - 1), then a (v, k, 1)-RBIBD exists. Later Chang [2] proved that
C(Kk) = exp(exp(k 12k2)) suffices. There are some other sporadic results for small
k (see [1]), but in general, the existence of (v, k, 1)-RBIBDs is open.

Note that an affine plane of order k is a (k k, 1)-RBIBD and by the necessary
condition above, K is the smallest v for which a non-trivial (v, k, 1)-RBIBD exists.
Because ofthis, we parameterize v in terms of k and a non-negative integer t,
and speak of (k? + tk(k — 1), k, 1)-RBIBDs.

Given a hypergraph H, let v(H) be the number of vertices in H and recall
that r(H) is the rank of H.

Fact11. Letk=2, t =0, andn=k 2+tk(k—-1) be integers such that
k?+ tk(k — 1) divides n. If there exists a (k? + tk(k — 1), k, 1)-RBIBD, then there
is a ((t + 1)k + 1)-coloring of K , such that every monochromatic component has
order at most W

In particular, when t = 0 this means thatif there exists an affine plane of
order k, then there exists (k + 1)-coloring of K , such that every monochromatic
component has order at mostg.
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Proof. This follows from the fact that the proportional rank of a (k 2+ tk(k — 1),
k, 1)-RBIBD is
k 1

K2+tk(k=1)  (t+ k-t
and a (k2 + tk(k - 1), k, 1)-RBIBD has

D K K tk(k= 1) - 1
(k2 + tk(k - 1))k k-1

= (t+ 1)k + 1

parallel classes.Taking a uniform blow-up gives the desired conclusion. |

The point of Fact 11 is that, forinstance when r = 23, Theorem 10 implies
that 55775 <mc23(Kn) < {j (if no affine plane of order 20, 21, or 22 exists).
But by Fact 11, ifa (231, 11, 1)-RBIBD exists (k =11, t=1), then
mcaa(Kn) < 5.

Also note that for r = 7, Theorem 10 implies that g—g <mcy(Kp) < g—g = %
Itis well known that a (15, 3, 1)-RBIBD exists; this is the original Kirkman
schoolgirls problem (in fact, four out of the 80 Steiner triple systems on 15 ver-
tices are resolvable — see [10]). So Fact 11 implies that there are at least four
other examples which show that m¢;(K ) < 7. Note that in light of the discus-
sion before Theorem 10, improving the upper bound on mc 7(K ) is equivalent
to finding a 7-partite intersecting hypergraph with fractional matching number
greater than 5.

__n__ <
22-1/22 —

5. Conclusion

The main open problem is to prove an analogue of Theorem 2 for r = 4 colors
(the lack of additional evidence prevents us from calling it a conjecture). Note
that the following is true forr = 2, 3.

Problem 12. Letn and r 2 2 be positive integers. Prove that if G is a graph
on n vertices with 86(G) =2 1 - Fr;_% n — 1 and an affine plane of order r exists,
then mc; (G) 2 5.

Whenr =7, Theorem 3 says that when 42|n, there exists a graph G on n

vertices with 8(G) =1 - % n - 2, such that mc7(G) < §. However, Theorem
10 says mg(K ) = g—g > & (and itis even conceivable that mc;(K ) = 3).

So we can ask a modified version of the original question of Gyarf'as and
S ark”ozy which is different whenever an affine plane of order r — 1 does not exist.

Problem 13. If G is a graph on n vertices, how large does the minimum degree
of G need to be so that mc¢; (G) =mc (K y)?
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