

Journal of Molecular Modeling
Computational Studies on Binding, Solvent, and pH Effects on S-propranolol and
Methacrylic Acid Complex.
 --Manuscript Draft--

Manuscript Number:	JMMO-D-20-00861R1	
Full Title:	Computational Studies on Binding, Solvent, and pH Effects on S-propranolol and Methacrylic Acid Complex.	
Article Type:	Original paper	
Keywords:	S-propranolol; MAA; Molecularly Imprinted Polymers; pH; IR spectra; solvent study	
Corresponding Author:	Julia Saloni, Ph.D. Jackson State University Jackson, MS UNITED STATES	
Corresponding Author Secondary Information:		
Corresponding Author's Institution:	Jackson State University	
Corresponding Author's Secondary Institution:		
First Author:	Julia Saloni, PH.D.	
First Author Secondary Information:		
Order of Authors:	Julia Saloni, PH.D. Shaurya Swami, Bachelor's degree in Chemistry Karina Kapusta, Ph.D. Glake A Hill, Ph.D.	
Order of Authors Secondary Information:		
Funding Information:	National Science Foundation (EPSCoR (grant # OIA – 1757220))	Dr. Julia Saloni
Abstract:	Density functional theory methods have been applied to understand binding of s-propranolol, a template, to a methacrylic acid molecule acting as a functional monomer using basic 1:1 model. The model has been expanded to study an effect various pH by adding hydronium and hydroxide ions to the template-monomer system, to mimic acidic and basic environments, respectively. This could be considered as a model study towards a potential use of molecular imprinting method for the design of a transdermal patch for a topical and direct delivery of s-propranolol to hemangiomas. In addition, this study provides detailed binding sites analysis of the template and functional monomer verified by the theoretical IR spectra analysis, as well as solvent and pH effects on template-monomer binding energy.	
Response to Reviewers:	<p>February 26, 2021 Manuscript ID: JMMO-D-20-00861</p> <p>To the Editor of the Journal of Molecular Modeling</p> <p>Dear Professor Clark,</p> <p>Please find attached revision of the manuscript entitled "Computational Studies on Binding, Solvent, and pH Effects on (S)-propranolol and Methacrylic Acid Complex" by Shaurya Swami, Karina Kapusta, Glake A. Hill, and Julia Saloni resubmitted to the Journal of Molecular Modeling.</p> <p>Authors would like to thank the reviewers for their insightful comments and note that the manuscript have been revised according to reviewers' suggestions. Please see below for the answers to the reviewers' comments:</p>	

Reviewer 1:

Comment 1: Consider changing "...however, no theoretical study..." to "...however, to the best of our knowledge, no theoretical study..."

Response 1: Suggested change has been made. Please see line 62.

Comment 2: Authors should use better functions such as M06-2X or wb97-xd that incorporate dispersion energy instead of using B3LYP.

Response 2: Systems have been reoptimized using M06-2X functional. Please see lines 93-96.

Comment 3: How is the Binding energy calculated?

Response 3: As shown in lines 111-112, binding energy, BE, has been calculated by utilizing a formula: $[\text{BE} = \Delta E] - \text{Complex} - \Delta E_{\text{Template}} - \Delta E_{\text{Monomer}}$

Comment 4: Is the BSSE taken into account?

Response 4: Yes, BSSE has been considered in the BE evaluation. Please see Table 2.

Comment 5: Provide more details about designed complexes.

Response 5: As requested authors expanded description of the designed complexes. Please see lines: 107-112 and 131-146.

Reviewer 2:

Comment 1: Calculations have been performed with the B3LYP functional. The inability of B3LYP and other GGA functionals to properly describe dispersive interactions is well-known. For this reason, the state-of -the-art when computing interactions as such described in the paper entail the use of dispersion-corrected functionals or adding empirical corrections (as Grimme done) to the common GGA functionals (B3LYP-D3). Calculations must be redone (including optimization) with a functional including dispersion effects.

Response 1: As requested by the Reviewer, presented systems have been reoptimized using M06-2X functional that includes dispersive interactions. Please see lines 93-96.

Comment 2: The influence of the pH has been modeled adding a hydronium (low pH) or a hydroxide ion (high pH). It is not clear from the text if the solvent (water, I guess) has been included or not in the optimization of these system (it must). In any case, this is a crude model that overestimate the effect of these ions in the MAA-propanol complexes. The hydronium and hydroxide ions should be solvated by some water molecules. Indeed, the authors have already found the presence of solvent molecules in these complexes (see, for instance, Figure 14).

Response 2: The hydronium and hydroxide ions have been solvated by five water molecules, as requested by the Reviewer. Please see lines: 171-174; 178-179; and 212-213.

Comment 3: References 18, 19 and 20 are not quoted in the text.

Response 4: References have been quoted within the text. Please see line: 94.

Comment 4: The number of solvents considered is five, not four (page 6).

Response 4: There are four solvents considered in the study DMSO is an acronym for dimethyl sulfoxide. Please see lines: 118-119.

We hope that provided changes fully satisfied your concerns and queries. We are thankful for the valuable comments which we hope made our research article more valuable and understandable for the readers.

Thank you for your time and consideration.

Sincerely,

Dr. Julia Saloni on behalf of the other authors.

Jackson State University, MS, USA

Phone: +1 (601) 979-7137; Fax: +1 (601) 979-3674

E-mail: julia.m.saloni@jsums.edu

Homepage: <https://www.jsums.edu/chemistry/dr-saloni/>

February 26, 2021

Manuscript ID: JMMO-D-20-00861

To the Editor of the Journal of Molecular Modeling

Dear Professor Clark,

Please find attached revision of the manuscript entitled "Computational Studies on Binding, Solvent, and pH Effects on (S)-propranolol and Methacrylic Acid Complex" by Shaurya Swami, Karina Kapusta, Glake A. Hill, and Julia Saloni resubmitted to the Journal of Molecular Modeling.

Authors would like to thank the reviewers for their insightful comments and note that the manuscript have been revised according to reviewers' suggestions. Please see below for the answers to the reviewers' comments:

Reviewer 1:

Comment 1: Consider changing "...however, no theoretical study..." to "...however, to the best of our knowledge, no theoretical study..."

Response1: Suggested change has been made. Please see line 62.

Comment 2: Authors should use better functions such as M06-2X or wb97-xd that incorporate dispersion energy instead of using B3LYP.

Response 2: Systems have been reoptimized using M06-2X functional. Please see lines 93-96.

Comment 3: How is the Binding energy calculated?

Response 3: As shown in lines 111-112, binding energy, BE, has been calculated by utilizing a formula: $BE = \Delta E_{Complex} - \Delta E_{Template} - \Delta E_{Monomer}$

Comment 4: Is the BSSE taken into account?

Response 4: Yes, BSSE has been considered in the BE evaluation. Please see Table 2.

Comment 5: Provide more details about designed complexes.

Response 5: As requested authors expanded description of the designed complexes.

Please see lines: 107-112 and 131-146.

Reviewer 2:

Comment 1: Calculations have been performed with the B3LYP functional. The inability of B3LYP and other GGA functionals to properly describe dispersive interactions is well-known. For this reason, the state-of -the-art when computing interactions as such described in the paper entail the use of dispersion-corrected functionals or adding empirical corrections (as Grimme done) to the common GGA functionals (B3LYP-D3). Calculations must be redone (including optimization) with a functional including dispersion effects.

Response 1: As requested by the Reviewer, presented systems have been reoptimized using M06-2X functional that includes dispersive interactions. Please see lines 93-96.

Comment 2: The influence of the pH has been modeled adding a hydronium (low pH) or a hydroxide ion (high pH). It is not clear from the text if the solvent (water, I guess) has been included or not in the optimization of these system (it must). In any case, this is a crude model that overestimate the effect of these ions in the MAA-propanolol complexes.

The hydronium and hydroxide ions should be solvated by some water molecules. Indeed, the authors have already found the presence of solvent molecules in these complexes (see, for instance, Figure 14).

Response 2: The hydronium and hydroxide ions have been solvated by five water molecules, as requested by the Reviewer. Please see lines: 171-174; 178-179; and 212-213.

Comment 3: References 18, 19 and 20 are not quoted in the text.

Response 4: References have been quoted within the text. Please see line: 94.

Comment 4: The number of solvents considered is five, not four (page 6).

Response 4: There are four solvents considered in the study DMSO is an acronym for dimethyl sulfoxide. Please see lines: 118-119.

We hope that provided changes fully satisfied your concerns and queries. We are thankful for the valuable comments which we hope made our research article more valuable and understandable for the readers.

Thank you for your time and consideration.

Sincerely,

Dr. Julia Saloni on behalf of the other authors.

Jackson State University, MS, USA

Phone: +1 (601) 979-7137; Fax: +1 (601) 979-3674

E-mail: julia.m.salon@jsums.edu

Homepage: <https://www.jsums.edu/chemistry/dr-salon/>

[Click here to view linked References](#)

1 Computational Studies on Binding, Solvent, and pH Effects on (S)-propranolol and Methacrylic

2 Acid Complex.

3

4 Julia Saloni*, Shaurya Swami†, Karina Kapusta, and Glake A. Hill

5

6

7 [†]undergraduate student

8 *corresponding author email: julia.m.saloni@jsums.edu, ORCID ID 0000-0003-3995-2909

9

10 Department of Chemistry, Physics and Atmospheric Sciences

11 Jackson State University, Jackson MS, USA

12

13 **Declarations:**

14 **Funding:** The NSF EPSCoR (grant # OIA – 1757220) and an HBCU-SAFRA title III grant
15 project 2018-2019.

16 **Conflicts of Interest/Competing Interests:** The authors confirm that there are no known
17 conflicts of interest associated with this publication.

18 **Ethics approval:** Not applicable.

19 **Consent to participate:** Not applicable.

20 **Consent for publication:** All the co-authors are aware of and approve of the submission of the
21 article to the Journal of Molecular Modeling.

22 **Availability of Data and Material:** The authors confirm that data and materials associated with
23 his publication is available upon request.

24 **Code Availability:** Not applicable.

25 **Author's Contributions.**

26 S. Swami: calculations and literature study.

27 K. Kapusta: MEP calculations and visualization and IR spectra analysis.

28 G. A. Hill: editorial and language corrections.

29 J. Saloni: calculations, data analysis, manuscript preparation.

30 **Abstract**

31 Density functional theory methods have been applied to understand binding of (s)-propranolol, a
32 template, to a methacrylic acid molecule acting as a functional monomer using basic 1:1 model.

33 The model has been expanded to study an effect various pH by adding hydronium and
34 hydroxide ions solvated by water molecules to the template-monomer system, to mimic acidic
35 and basic environments, respectively. This could be considered as a model study towards a
36 potential use of molecular imprinting method for the design of a transdermal patch for a topical
37 and direct delivery of (s)-propranolol to hemangiomas.

38 In addition, this study provides detailed binding sites analysis of the template and functional
39 monomer verified by the theoretical IR spectra analysis, as well as solvent and pH effects on
40 template-monomer binding energy.

41

42 Key words: S-propranolol, MAA, Molecularly Imprinted Polymers, pH, IR spectra, solvent study

43

44

45 **Introduction**

46 Propranolol [1] is a commonly used substance to treat high blood pressure. It has also been
47 found to significantly reduce the size of infantile hemangiomas, commonly known as birth marks
48 or strawberries [2]. Hemangiomas in infants possess certain dangers to the child due to their
49 rapid growth and unfavorable locations such as on the eyelid or nose where they can limit vision
50 or obstruct the airways. Typical propranolol treatment requires oral administration of the drug.

51 However, there are several serious side effects present with this type of drug delivery such as
52 low blood pressure, slow heart rate, over reactivity of the airways and low blood sugar levels [3].

53 Since hemangiomas are local grows of blood vessels it would be preferred to administer
54 medication locally, to prevent mentioned above side effects. Topical ointments may not be the
55 best option for the young patients, since they need to be frequently reapplied to ensure delivery
56 of the required dosage of the medication. Additionally, ointments can be easily wiped off or
57 spread to another, undesired, areas of the body, such as the eyes. Because of that, we propose
58 another way for the topical delivery of propranolol-via a transdermal patch. A transdermal patch
59 is, in essence, a sophisticated band-aid saturated with desired medication that is slowly
60 released to the body. Several experimental studies have been conducted to synthesize the
61 transdermal patch [4-7]; however, to the best of our knowledge, no theoretical study has been
62 performed on that subject. We propose that (s)-propranolol would first be encapsulated within a
63 polymeric matrix, then, after application on the changed tissue, it will slowly be released directly
64 to the hemangioma.

65 Polymeric matrix that encapsulates (s)-propranolol can be synthesized by application of
66 molecular imprinting method. Molecularly imprinted polymers, MIP, are designer polymers that
67 allows preparation of polymer matrix containing very specific, target oriented cavities [8]. Target,
68 a molecule of interest, is non-covalently bonded to the cavity made of functional monomers and
69 crosslinking agents. MIPs are used for a variety of applications that include selective extraction
70 [9], detection of dangerous substances or analytical separation, just to name a few [10].
71 In recent years molecularly imprinted polymers are used for selective drug delivery [11].
72 Alizadeh et al. [12] published a combined experimental and theoretical work on a new chiral
73 functional monomer for the synthesis of MIP for racemic propranolol. Haginaka and Sakai [13]
74 reported very detailed experimental study on molecularly imprinted material for (s)-propranolol.
75 In their work, methacrylic acid and ethylene glycol dimethacrylate, MAA-EDMA, based material
76 was reported as the best for molecular imprinting (s)-propranolol due to its enantioselective
77 recognition properties.

78 In our research, we propose the use of material based on molecularly imprinted (s)-propranolol
79 in transdermal patch that could deliver (s)-propranolol directly to the changed skin tissues
80 caused by hemangiomas, the delivery method that could significantly reducing existing side
81 effects on human organism [14]
82 Presented work, utilizes basic computational model of MAA-(s)-binding scheme to the (s)-
83 propranolol that includes recognition of the binding sites as well as the solvent effect on
84 template-MAA interactions [15]. This computational approach can not only be used to study
85 monomer template systems but also can be applied for basic analysis of variety organic-solvent
86 systems, such as dye-solvent complexes.
87 Additionally, to the basic study we have extended our simple model to study interactions
88 between template and monomer caused by acidic and basic environment by introducing
89 hydronium and hydroxide ions to the interacting system.
90

91 **Methodology**

92 **Methods and Basis Sets.** This study has been performed using Density Functional Theory
93 Methods [16-19] with the application of B3LYP hybrid functional [20] and M06-2X hybrid meta
94 exchange-correlation functional [21] combined with standard gaussian basis set that includes
95 polarization functions. Combination of B3LYP functional with 6-31G (d,p) basis set [22] has
96 been proven to be sufficient for basic MIP calculations, and provides satisfactory results with the
97 minimum computational cost [23, 24]. Additionally, all optimizations have been recalculated with
98 M06-2X functional to incorporate dispersion effects on studied systems. Counterpoise
99 corrections [25] has been applied to binding energy between monomer and template calculated
100 utilizing both B3LYP and M06-2X functionals. Solvent study calculations have been conducted
101 with the conductor-like polarizable continuum model, CPCM [26]. Charge distribution has been
102 performed by using NBO analysis [27]. All the calculations have been performed utilizing
103 Gaussian 09 suite of programs [28].

104 **Basic Model.** Basic model consists of one methacrylic acid monomer interacting with one (s)-
105 propranolol template molecule. This model has been developed and validated in our previous
106 studies on DNT and TNT imprinting [15, 23]. Four different binding sites on (s)-propranolol have
107 been evaluated in order to find the complex with the largest binding energy. Out of the four
108 possible binding positions, that have been analyzed, the energetically preferred one is located
109 near secondary amine and hydroxyl groups of (s)-propranolol, as shown in Figure 3. There is no
110 observed binding activity between monomer and template on naphthalene ring of (s)-
111 propranolol.

112 Binding energy, BE, has been calculated by utilizing a formula:

113
$$BE = \Delta E_{Complex} - \Delta E_{Template} - \Delta E_{Monomer}$$

114 Basis set superposition error, BSSE, has been included into the binding energy value for the
115 gas phase calculations and presented in Table 2.

116 Proposed model provides detailed structural, and binding characteristics in a gas phase as well
117 as includes solvent studies completed for the following solvents: chloroform, dimethyl sulfoxide
118 (DMSO), ethyl alcohol, and water. Theoretical IR spectra analysis of the MAA, the template and
119 template-MAA system has been completed.

120 Additionally, to mimic skin surface environment, moist and acidic, and to study influence of the
121 low pH on template-monomer binding, hydronium ion, solvated with five water molecules, has
122 been introduced to the basic model.

123 To provide the complete picture of pH effects on (s)-propranolol-MAA binding scheme, studies
124 have been extended by analysis of the impact of the high pH on the template-monomer binding
125 by introducing hydroxide ion, solvated with five water molecules, to the basic model. All
126 structural changes caused by the change of the pH, have been observed, described, and
127 verified by calculated IR spectra.

128 All calculations have been performed with no symmetry constraints.

129

130 **Results and Discussion**

131 **Binding of MAA to (S)-propranolol.**

132 Four possible binding sites for MAA monomer on (s)-propranolol template have been evaluated
133 to find the lowest energy system. Investigation shows that MAA prefers to bind to the aliphatic
134 chain of the template and it omits aromatic naphthalene ring. Studied complex, optimized at
135 both B3LYP and M06-2X levels of theory (where an Asterix * indicates M06-2X method) is
136 formed through two hydrogen bonds. First hydrogen bond is connecting amino group of (s)-
137 propranolol with carbonyl group of MAA, while second links hydroxyl group of (s)-propranolol
138 with hydroxyl group of methacrylic acid.

139 As shown in Table 1 and Figure 1, the bonding distances are reported as 2.21 Å (2.25 Å*) and
140 1.71 Å (1.66 Å*) for corresponding N-H...O=C and O-H...O-H hydrogen bonds. M06-2X
141 calculations shows N-H...O=C to be slightly elongated by 0.04 Å, while O-H...O-H is shortened
142 by 0.05 Å, when compared to B3LYP results. The pure hydrogen bonding interactions between
143 (s)-propranolol and MAA, without presence of solvent, amounts 16.03* kcal/mol and 13.77
144 kcal/mol for M06-2X and B3LYP, respectively. Total binding energy between monomer and
145 template has been corrected by applying basis set superposition error, BSSE, calculated in the
146 gas phase. BSEE lowers the binding energy to 14.06* kcal/mol and 11.67 kcal/mol for M06-2X
147 and B3LYP calculations, respectively.

148 Addition of the solvent to the interacting system lowers the binding energy between (s)-
149 propranolol and MAA. Binding energies listed in Table 2 shows the decreasing trend of the
150 binding energy value calculated with the presence of solvent. Additional computations revealed
151 that, interestingly, both water and ethanol position themselves in between methacrylic acid and
152 the (s)-propranolol forming a direct hydrogen bonding to both. As a result, no direct hydrogen
153 bonding between MAA and (s)-propranolol can be observed (see supporting materials Figure 14
154 and 15).

155 Theoretical IR spectra for studied systems in gas phase have been calculated with both M06-2X
156 and B3LYP functionals. Spectra obtained with the use of both methods are similar in trends, the
157 differences are seen with a slight shift of the peaks but not with their intensities. As shown in
158 Figure 6, calculated IR spectrum confirms binding between MAA and (s)-propranolol. Figures 4
159 and 5 present calculated spectra of isolated MAA and (s)-propranolol molecules, respectively.
160 Comparison of the calculated spectra of monomer, template and complex, leads to the following
161 observations: there is a slightly increased intensity of the $\nu\text{C=O}$ (MAA), νNH ((s)-propranolol),
162 and νOH ((s)-propranolol) peaks, and a significant increase with intensity of the νOH (MAA) in
163 the spectrum of the complex. Mentioned above peaks represent $\text{C=O}\dots\text{N-H}$ and $\text{O-H}\dots\text{OCH}$
164 hydrogen bonding within the complex. It can also be observed that those characteristic peaks
165 are shifted towards lower frequency when compared to the spectra of pure MAA and (s)-
166 propranolol.

167 **Effect of the pH.**

168 **Low pH.** The (s)-propranolol-MAA complex has been introduced to the acidic environment, by
169 addition of the hydronium ion, H_3O^+ , initially located above the hydrogen bonds formed by (s)-
170 propranolol and MAA molecules. After the full optimization of the system, at B3LYP and M06-2X
171 levels, performed with the presence of five water molecules, hydronium ion relocates to the
172 position in between the (s)-propranolol and MAA molecules, additionally a single proton transfer
173 is observed, as shown in Figure 7. The transfer occurs between hydrogen from the H_3O^+ ion
174 and nitrogen of the N-H group of (s)-propranolol. A proton from the hydronium ion is attracted by
175 the lone electron pair located on nitrogen on (s)-propranolol molecule. Newly formed H_2O
176 molecule becomes a part of a hydrogen bonding network within (s)-propranolol and MAA
177 system. Calculation shows that the five waters of solvation do not participate in the proton
178 transfer. As shown in Figure 7, there are four hydrogen bonds in the product of the (s)-
179 propranolol-MAA + H_3O^+ reaction: two direct hydrogen bonds between (s)-propranolol and MAA
180 ($\text{N-H}\dots\text{O=C}$ and $\text{CHO}\dots\text{HO}$ with the distances of 2.20\AA and 1.77\AA respectively), and two

181 hydrogen bonding to newly formed H₂O molecule, each from (s)-propranolol and MAA (NH...OH
182 (water) and (water) OH...O=C with the distances of 1.68Å and 1.78Å respectively). Average
183 binding energy within product of the (s)-propranolol-MAA + H₃O⁺ reaction amounts 12.25
184 kcal/mol (9.39 kcal mol BSSE corrected) and 15.03kcal/mol (12.45 kcal/mol BSSE corrected) for
185 B3LYP and M06-2X respectively, per h-bonding. There are no observed structural changes
186 within MAA molecule.

187 Introduction of an acidic environment causes (s)-propranolol to change into cationic form, while
188 hydronium ion due to observed proton transfer converts into the neutral water molecule.

189 Comparison of the map of the electrostatic potential, MEP, between neutral (s)-propranolol-MAA
190 system and the product of the (s)-propranolol-MAA + H₃O⁺ reaction, presented in Figures 9 and
191 10, shows observable change within the electron distribution caused by the addition of the
192 hydronium ion followed by a single proton transfer. In the neutral (s)-propranolol-MAA system,
193 three nucleophilic centers can be observed (see Figure 9, marked in red). Two of them, on the
194 oxygens from the hydroxyl groups on both (s)-propranolol and MAA, and the third on the
195 carbonyl oxygen located on MAA molecule. Addition of the hydronium ion followed by the proton
196 transfer that caused hydronium ion to convert into a water molecule, and (s)-propranolol to
197 become positively charged, can easily be visible on the MEP of the product of the (s)-
198 propranolol-MAA + H₃O⁺ reaction. As presented on Figure 10 (marked blue), positive charge is
199 shown to be located on the hydrogen atom of hydroxyl group and the nitrogen (where proton
200 transfer occurred) both being a part of the (s)-propranolol molecule.

201 Figure 12 shows calculated IR spectra for the product of the (s)-propranolol-MAA + H₃O⁺
202 reaction at B3LYP level. Water formed in the reaction, proton transfer to the secondary amine
203 group on the template, and the hydrogen bonding between water and (s)-propranolol are
204 indicated by the following peaks: vH-O-H (3874 cm⁻¹), vNH (3412 cm⁻¹) and vNH...OH (2906
205 cm⁻¹), respectively.

206 Additionally, νOH (MAA) and $\nu\text{OH}((\text{s})\text{-propranolol})$ vibrations of the product of the (s)-
207 propranolol-MAA + H_3O^+ reaction are shown to be right shifted when compared to (s)-
208 propranolol-MAA complex reported on Figure 6.

209 **High pH.** To mimic basic pH and study its influence on the template-monomer system a
210 hydroxide ion, OH^- , has been added to the (s)-propranolol-MAA complex above the two
211 hydrogen bonds binding template with monomer. After conducting full optimization at both
212 B3LYP and M06-2X levels of theory, with the presence of five waters of solvation, it has been
213 observed that an introduction of the OH^- ion causes the simultaneous double proton transfer
214 from (s)-propranolol to the hydroxide ion, and from MAA to the (s)-propranolol molecule, as
215 presented in Figure 8. Hydrogen from the (s)-propranolol hydroxyl group is attracted by
216 nucleophilic oxygen of hydroxide ion, causes a proton transfer and a formation of water
217 molecule. As a result, (s)-propranolol becomes temporarily negative, with the extra electron
218 localized on the oxygen atom (formally hydroxyl group) that causes second proton transfer from
219 MAA hydroxyl group to the nucleophilic oxygen of (s)-propranolol. Consequently, MAA lacks a
220 proton on the (former) hydroxyl group, and the two oxygens are connected via double bonds to
221 the carbon (former carboxylic group). MAA system becomes negatively charged with extra
222 electron localized on the outer oxygen atom of the former carboxylic group. The product of the
223 (s)-propranolol-MAA + OH^- reaction is a system connected via four hydrogen bonds with
224 average binding energy of 15.73 kcal/mol (13.11 kcal/mol BSSE corrected) and 15.94 kcal/mol
225 (13.47 kcal/mol BSSE corrected) for B3LYP and M06-2X methods respectively, per each h-
226 bonding. The first two h-bonds located between MAA and water ($\text{C}=\text{O}\dots\text{H}-\text{O}$), and MAA and (s)-
227 propranolol ($\text{C}=\text{O}\dots\text{HO}$) have interacting distance of 1.95 \AA and 1.65 \AA , respectively. Remaining
228 two interactions are formed between MAA's outer oxygen and (s)-propranolol ($\text{C}=\text{O}\dots\text{H}-\text{C}$), and
229 water and (s)-propranolol ($\text{H}-\text{O}\dots\text{OHC}$). Their bond distances amount 2.24 \AA and 2.08 \AA ,
230 respectively.

231 Comparison of MEP, between neutral (s)-propranolol-MAA system and the product of the (s)-
232 propranolol-MAA + OH⁻ reaction, presented in Figures 9 and 11, shows a change of electron
233 distribution surrounding oxygen in COO⁻ group of MAA, in the product of the (s)-propranolol-
234 MAA + OH⁻ reaction, when compared to neutral (s)-propranolol MAA MEP. In Figure 11, red
235 area around the oxygen on MAA represents the accumulation of the extra negative charge that
236 occurred after the proton transfer from the hydroxyl group of MAA to hydroxide ion.

237 Figure 13 shows B3LYP calculated IR spectra for the product of the (s)-propranolol-MAA + OH⁻
238 reaction. There are few interesting picks reported in this spectrum: β H-O-H, at frequency of
239 3670 cm⁻¹, that corresponds to the vibrations of the water molecule formed during the reaction
240 of the monomer-template system with hydroxide ion. During that reaction, a proton has been
241 transferred from MAA hydroxyl group to the attacking nucleophilic hydroxide group, and as a
242 result, the COOH group of MAA has been converted to the O=C=O group, β O=C=O at 1979 cm⁻¹.
243 There is no vOH (MAA) vibration represented in the spectrum (Figure 13) due to mentioned
244 above proton transfer from MAA to the hydroxide ion.

245 It can be observed high intensity peak of vOH ((s)-propranolol) that corresponds to the
246 hydrogen bonding between COO⁻ group of MAA with hydroxyl group of (s)-propranolol, see
247 Figures 8 and 13. Additionally, there is low intensity peak between secondary amine group of
248 the template and hydroxide group from water at 3451 cm⁻¹ that indicates weak hydrogen
249 bonding between the two species with bond distance of 3.26 Å (as shown in Figure 8).

250 Frequencies of vOH (MAA) and vNH ((s)-propranolol) are shifted to the left by around 120 cm⁻¹
251 when compared to the spectrum of (s)-propranolol-MAA complex presented in Figure 6.

252 Figures 12 and 13 show calculated IR spectra for products of reactions with hydroxide and
253 hydronium ions that has been obtained using B3LYP method only. As presented in Figures 4-6
254 M06-2X does not alters the intensities of the important peaks, just causes their slight shift to the
255 left.

256 Based on the performed analysis change of the pH significantly alters the monomer template
257 system, not only by changing structure, electron distribution but also the binding scheme.

258

259 **Conclusions**

260 Presented in this manuscript detailed analysis of binding energy scheme of monomer to the
261 template provides a base line, introductory study for the solvent selection in the molecular
262 imprinting process of (s)-propranolol in methacrylic acid towards its potential use as transdermal
263 patch to treat hemangiomas. Included studies, can provide better understanding on binding and
264 release processes of MIP-trapped (s)-propranolol as well as application of two DFT functionals
265 B3LYP an M06-2X without and with dispersive interactions, respectively. For example, BE
266 calculated in M06-2X functional is 2.26 kcal/mol higher than one calculated using B3LYP
267 functional. Counterpoise correction lowers binding energy, calculated in the gas phase, by 1.97
268 kcal/mol form M06-2X and 2.1 kcal/mol for B3LYP method. Additionally, performed calculations
269 demonstrated the trend of the solvent effect on the (s)-propranolol's binding to the functional
270 monomer. Presented calculations shows that protic solvents (methanol and water) have much
271 stronger effect on the binding that aprotic ones (chloroform and DMSO), they lower BE by 3.31
272 kcal/mol on average, while aprotic solvents lower BE by only 1.61 kcal/mol. Solvent effect is
273 considered to be one of the crucial information for the future synthesis of the transdermal patch.
274 Additionally, since a transdermal patch is to be working on the surface of the skin, and skin's
275 typical pH is slightly acidic, the study of the pH effect on the MAA-(s)-propranolol's binding
276 stability has been conducted as well. As presented in manuscript, the introduction of hydronium
277 or hydroxide ions to the MIP interacting with (s)-propranolol causes the proton transfer within
278 the system and reduced direct binding between monomer (a part of MIP drug delivery
279 system/transdermal patch) and the (s)-propranolol (a medicine that would be delivered).
280 Since computational research become a part of the initial stages of drug design this study of the

281 solvent selection, binding characteristic of the monomer and template system as well as pH
282 effect on binding are necessary for the initial stages of basic research for the development of
283 the transdermal patch for the delivery of (s)-propranolol via MIP to hemangiomas

284

285 **Acknowledgements**

286 Mississippi Center for Supercomputing Research at the University of Mississippi in Oxford, MS.
287 This research is supported by Institute for Undergraduate Research (I UR). An HBCU-SAFRA
288 title III grant project 2018-2019. Julia Saloni thanks the NSF EPSCoR (grant # OIA – 1757220)
289 for providing start-up funds that facilitate completion of this project.

290

291 **References**

292 [1] Srinivasan AV (2019) Propranolol: A 50-Year Historical Perspective. Annals of Indian
293 Academy of Neurology 22: 21–26. https://doi.org/10.4103/aian.AIAN_201_18

294 [2] Zimmermann AP, Wiegand S, Werner JA, Eivazi B (2010) Propranolol therapy for infantile
295 haemangiomas: Review of the literature. International Journal of Pediatric Otorhinolaryngology
296 ISSN: 0165-5876, Vol: 74: 338-342

297 [3] Léaute-Labrèze C, Boccaro O, Degruillier-Chopinet C, et al (2016) Safety of Oral
298 Propranolol for the Treatment of Infantile Hemangioma: A Systematic Review. Pediatrics 138:4
299 pii: e20160353.

300 [4] Akhtar N, Singh V, Yusuf M, & Khan R A (2020). Non-invasive drug delivery technology:
301 development and current status of transdermal drug delivery devices, techniques and
302 biomedical applications. Biomedical Engineering / Biomedizinische Technik 65 243-272.
303 doi: <https://doi.org/10.1515/bmt-2019-0019>

304 [5] Krishna R, Pandit JK (1994) Transdermal Delivery of Propranolol, Drug Development and
305 Industrial Pharmacy, 20:2459-2465, DOI: [10.3109/03639049409042650](https://doi.org/10.3109/03639049409042650)

306 [6] Al-Kassas R, Wen J, Cheng AE, Kim AM, Liu SSM, Yu J. (2016) Transdermal delivery of
307 propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel.
308 Carbohydr Polym. 153:176-186. doi: 10.1016/j.carbpol.2016.06.096.

309 [7] Cilurzo F, Minghetti P, Gennari CG, Casiraghi A, Selmin F, Montanari L (2014) Formulation
310 study of a patch containing propranolol by design of experiments. Drug Dev Ind Pharm. 40:17-
311 22. doi: 10.3109/03639045.2012.743559

312 [8] BelBruno JJ (2019) Molecularly Imprinted Polymers. Chemical Reviews 119: 94-119 DOI:
313 10.1021/acs.chemrev.8b00171

314 [9] Cáceres C, Bravo C, Rivas B, et al. (2018) Molecularly Imprinted Polymers for the Selective
315 Extraction of Bisphenol A and Progesterone from Aqueous Media. Polymers (Basel)10:679.
316 doi:10.3390/polym10060679

317 [10] Schirhagl R (2014), Bioapplications for Molecularly Imprinted Polymers.
318 Analytical Chemistry86:250-261 DOI: 10.1021/ac401251j

319 [11] Luliński P (2017). Molecularly imprinted polymers based drug delivery devices: A way to
320 application in modern pharmacotherapy. A review. Materials Science and Engineering: C. 76:
321 10.

322 [12] Alizadeh T, Bagherzadeh A, Shamkhali A M (2016) Synthesis of nano-sized stereoselective
323 imprinted polymer by copolymerization of (S)-2-(acrylamido) propanoic acid and ethylene glycol
324 dimethacrylate in the presence of racemic propranolol and copper ion. Materials Science and
325 Engineering: C 63:247-255

326 [13] Haginaka J, Sakai Y (2000) Uniform-sized molecularly imprinted polymer material for (S)-
327 propranolol. J Pharm Biomed Anal.;22(6):899-907. doi: 10.1016/s0731-7085(00)00293-4.

328 [14] Livani F, Layegh P, Alizadeh B, Tashnizi, M, Amin Moghaddam M, Taherian A (2016).
329 Propranolol for infantile hemangioma: An evaluation of its efficacy and safety in Iranian
330 infants. Iranian Journal of Neonatology IJN, 7(3):17-20. doi: 10.22038/ijn.2016.7648

331 [15] Saloni J, Lipkowski P, Dasary SSR, Anjaneyulu Y, Yu H, Hill Jr. G (2011) Theoretical study
332 of molecular interactions of TNT, acrylic acid, and ethylene glycol dimethacrylate—elements of
333 molecularly imprinted polymer modeling process. *Polymer* 52:126-1216

334 [16] Parr R G, Yang W (1989) Density-Functional Theory of Atoms and Molecules. New York:
335 Oxford University Press. ISBN 978-0-19-504279-5.

336 [17] Vosko SH, Wilk, Nusair M (1980) Accurate spin-dependent electron liquid correlation
337 energies for local spin density calculations: a critical analysis. *Can. J. Phys.* 58:1200-1211C.

338 [18] Lee, R, Yang W, Parr RG, (1988) Development of the Colle-Salvetti correlation-energy
339 formula into a functional of the electron density. *Phys. Rev. B* 37:785-789

340 [19] Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of
341 vibrational absorption and circular dichroism spectra using density functional force fields.
342 *J.Phys.Chem.* 98:11623-11627

343 [20] Becke AD (1993) *J.Chem.Phys.* Density-functional thermochemistry. III. The role of exact
344 exchange 98: 5648-5652

345 [21] Zhao, Y., Truhlar, D.G. The M06 suite of density functionals for main group
346 thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and
347 transition elements: two new functionals and systematic testing of four M06-class functionals
348 and 12 other functionals. *Theor Chem Account* **120**, 215–241 (2008).
349 <https://doi.org/10.1007/s00214-007-0310-x>

350 [22] Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001), 6-31G*
351 basis set for third-row atoms. *J. Comput. Chem.*, 22: 976-984.
352 doi:[10.1002/jcc.1058](https://doi.org/10.1002/jcc.1058)

353 [23] Saloni J, Dasary SSR, Anjaneyulu Y, Yu H, Hill G (2010) Molecularly imprinted polymers for
354 detection of explosives: computational study on molecular interactions of 2, 6-dinitrotoluene and
355 methacrylic acid complex. *Structural Chemistry* 21: 1171-1184

356 [24] Saloni J, Walker K, Hill Jr G (2013) Theoretical investigation on monomer and solvent
357 selection for molecular imprinting of nitrocompounds The Journal of Physical Chemistry A
358 117:1531-1534

359 [25] J.B. Foresman, AEleen Frish, "Exploring Chemistry with Electronic Structure Methods" 3rd
360 ed. (Gaussian Inc, Wallingford, CT 2015), ISBN: 978-1-935522-03-4

361 [26] Miertuš S, Scrocco E, Tomasi J, (1981) Electrostatic Interaction of a Solute with a
362 Continuum. A Direct Utilization of ab initio Molecular Potentials for the Revision of Solvent
363 Effects. *Chem. Phys.* 55:117-29.

364 [27] J. P. Foster and F. Weinhold "Natural Hybrid Orbitals," *J. AM. Chem. Soc.*, 102 (1980) 7211-
365 7218

366 [28] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et.al. Gaussian 09,
367 Revision A.02.

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382 **Tables**

383 Table 1. Selected bond distances in MAA, s-propranolol and (s)-propranolol-MAA complex.

Bond in Molecule	Distance, Å		Bond in Complex	Distance, Å	
	M06-2X	B3LYP		M06-2X	B3LYP
MAA					
C=O	1.21	1.21	C=O	1.22	1.22
O-H	0.97	0.97	O-H	1.00	1.00
C-OH	1.35	1.36	C-OH	1.33	1.34
S-propranolol					
O-H	0.97	0.97	O-H	0.98	0.99
C-OH	1.41	1.41	C-OH	1.42	1.43
N-H	1.02	1.02	N-H	1.02	1.02
C-NH	1.46	1.47	C-NH	1.46	1.47

384

385

386 Table 2. Binding energies for (s)-propranolol-MAA complex in solvent.

Solvent	BE in kcal/mol (M06-2X)	BE in kcal/mol (B3LYP)
no solvent	-16.03	-13.77
no solvent (BSSE corrected)	-14.06	-11.67
ethanol	-12.08	-10.03
water	-11.96	-10.62
DMSO	-12.00	-12.72
chloroform	-12.85	-11.60

387

388

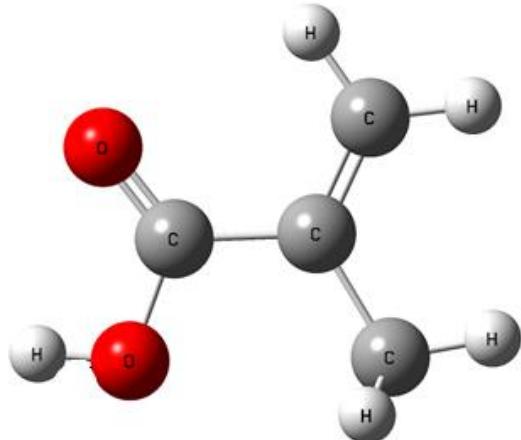
389

390

391

392

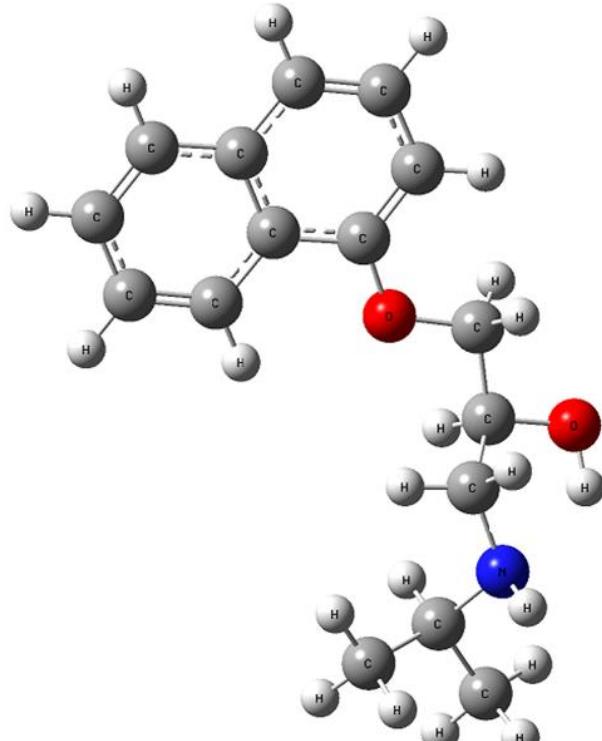
393


394

395

396

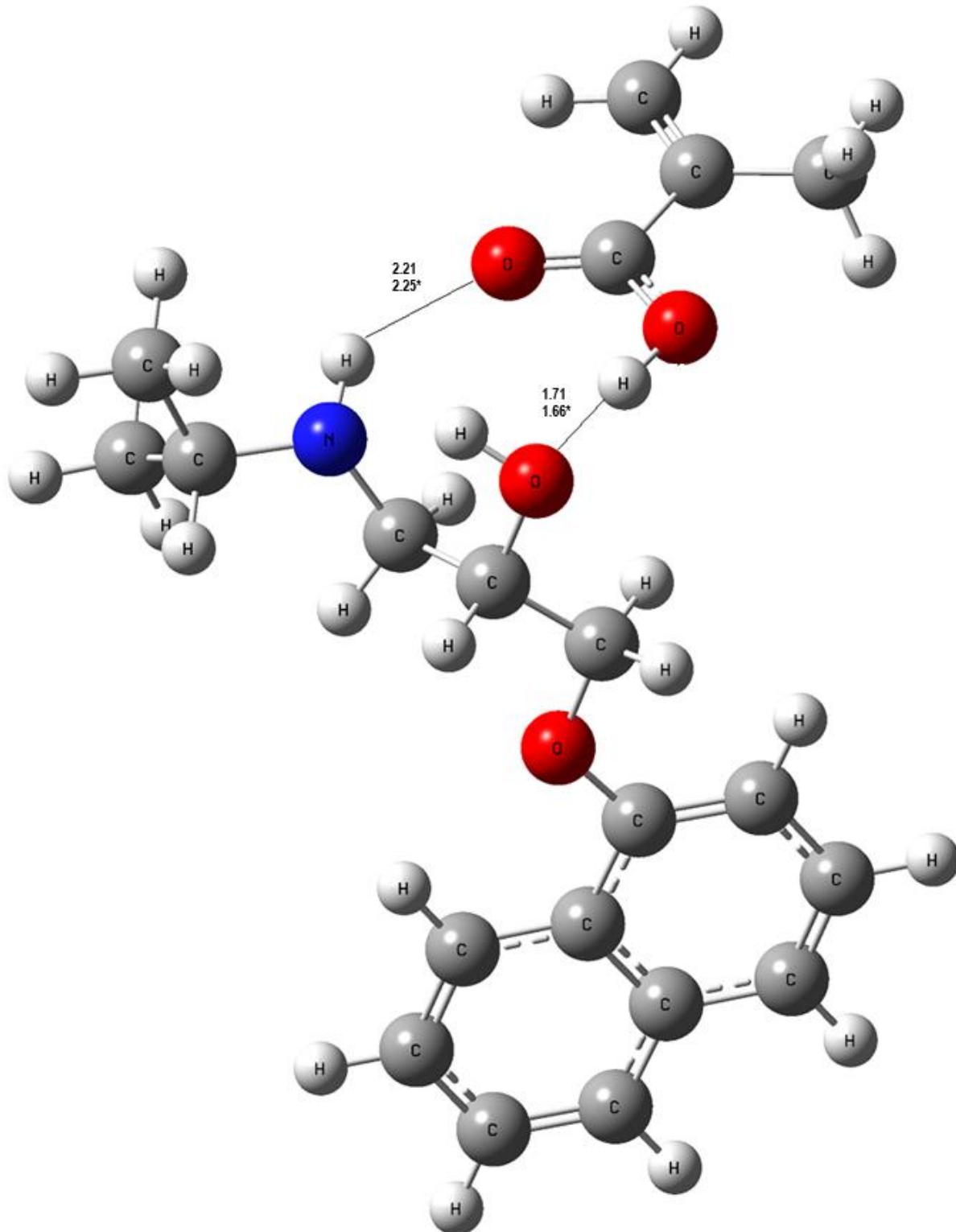
397 **Figures**


398 Figure1: Geometry of a methacrylic acid, MAA, the monomer.

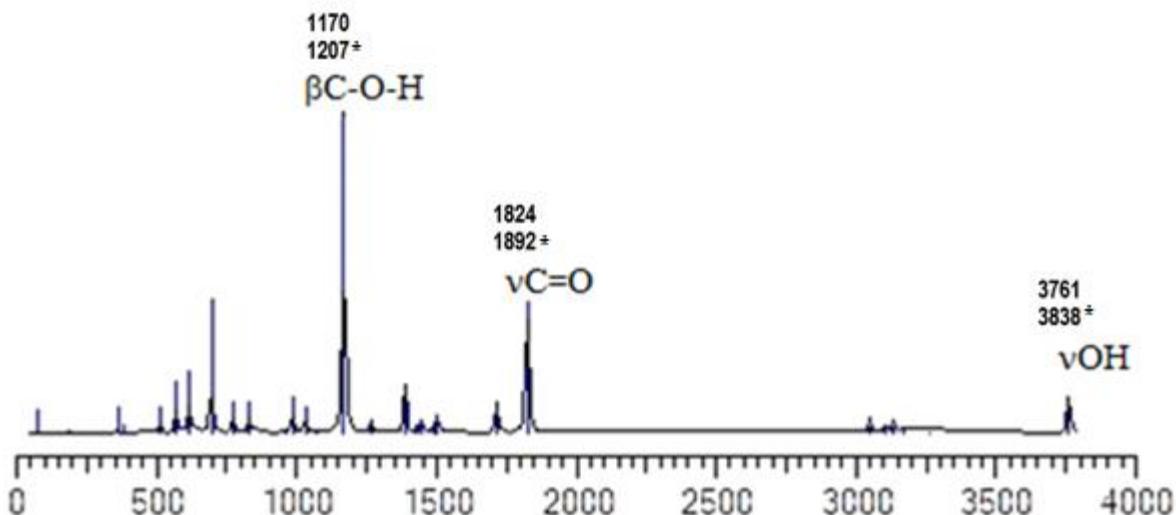
399

400 Figure 2: Geometry of a (s)-propranolol, the template.

401



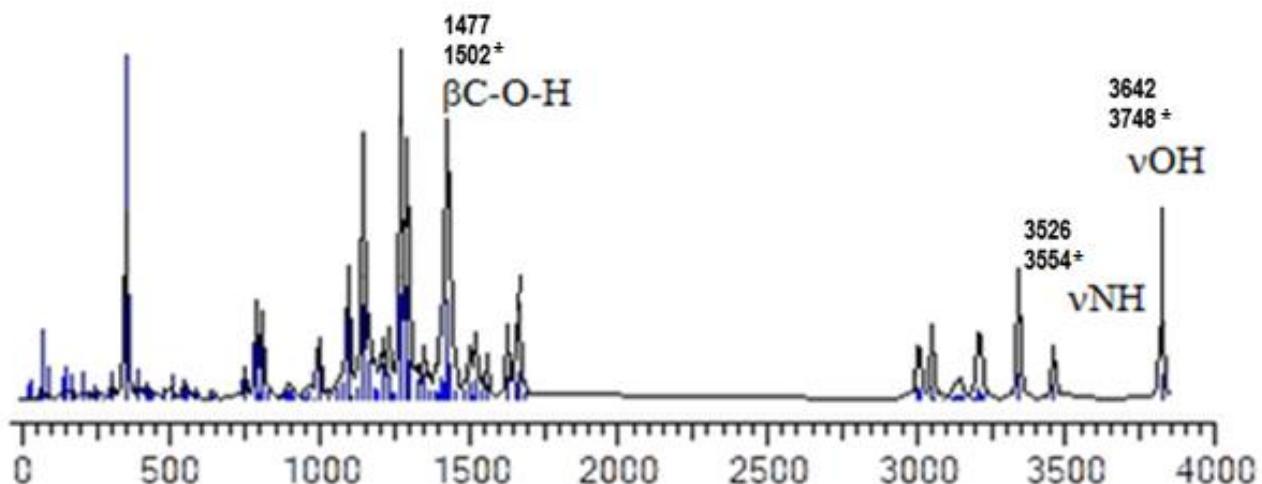
402


403

404

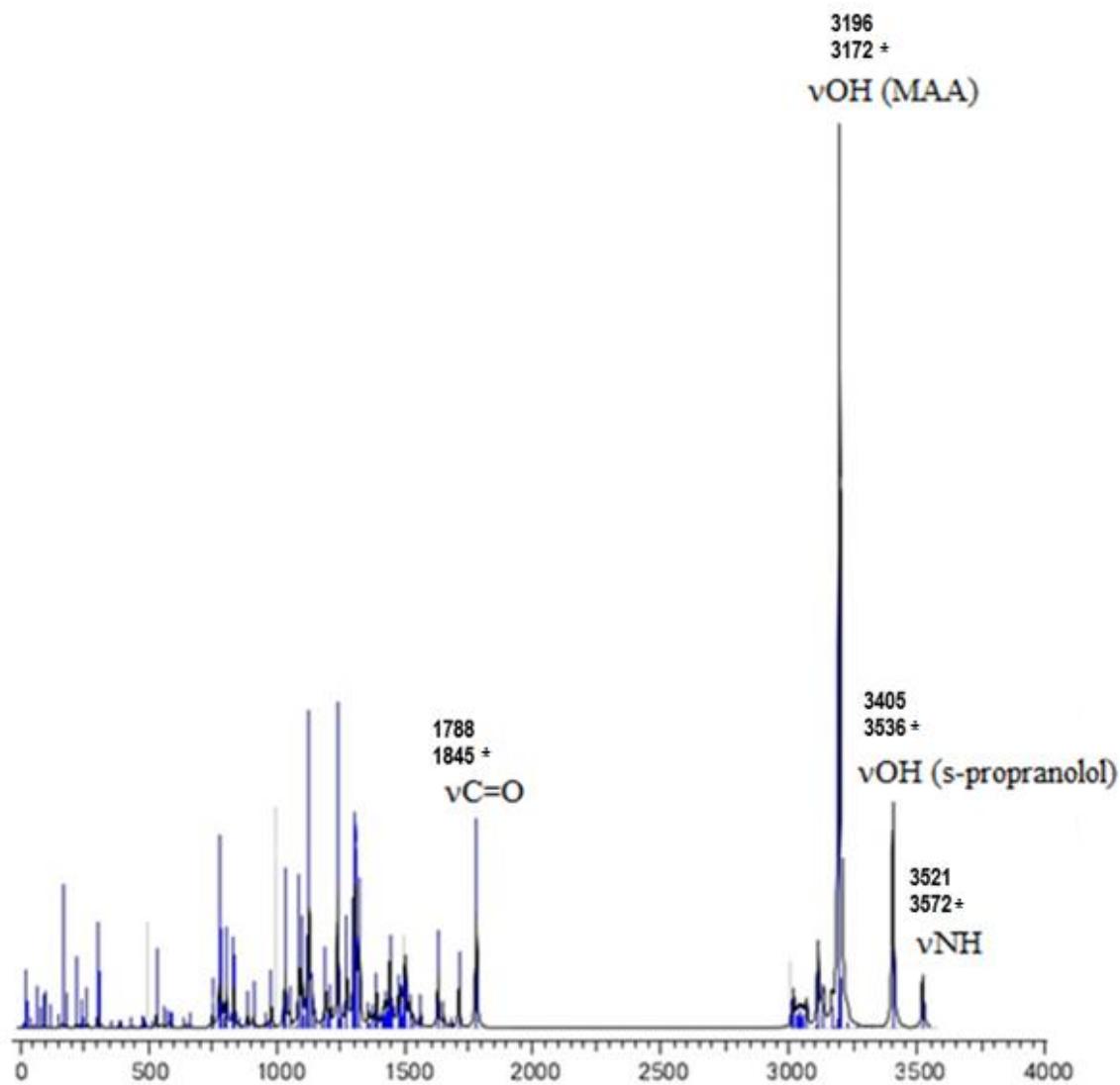
405 Figure 3: Geometry of (s)-propranolol-MAA complex at B3LYP and * at M06-2X level.

407 Figure 4. Calculated IR spectra for methacrylic acid, MAA, the monomer, on x axis: frequency in
408 cm^{-1} at B3LYP and * at M06-2X level.

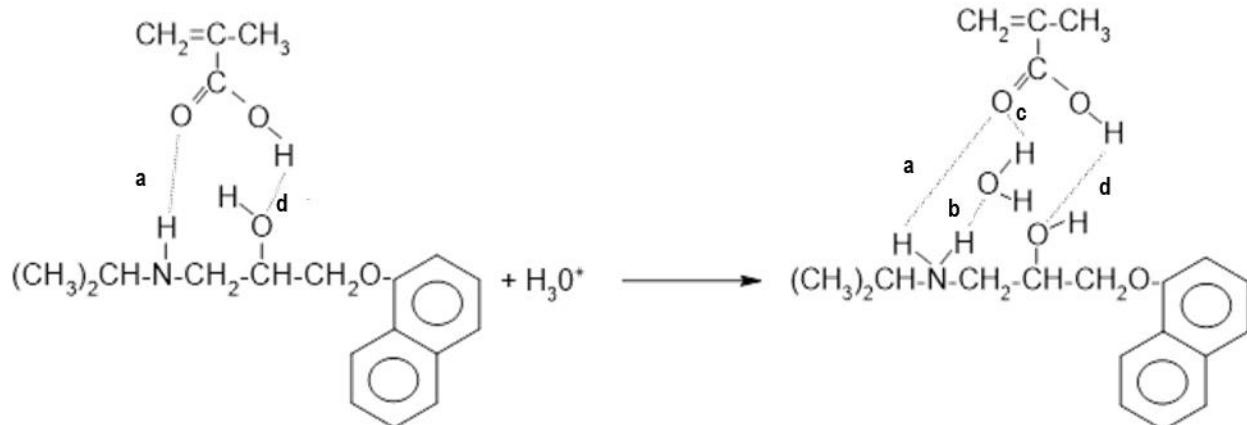


409

410

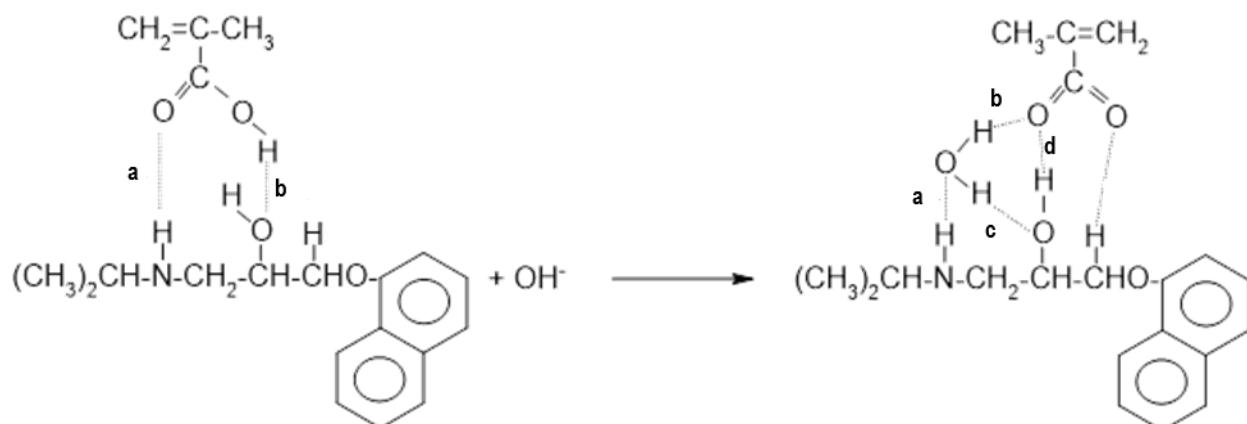

411

412 Figure 5. Calculated IR spectra for (s)-propranolol, the template, on x axis: frequency in cm^{-1} at
413 B3LYP and * at M06-2X level.


414

415 Figure 6. Calculated IR spectra for (s)-propranolol-MAA complex, on x axis: frequency in cm^{-1} at
416 B3LYP and * at M06-2X level.

417
418
419
420
421
422
423


424 Figure 7. Schematic representation of the influence of hydronium ion, H_3O^+ , on the (s)-
425 propranolol-MAA complex.

426

427 Figure 8. Schematic representation of the influence of hydroxide, OH^- , group on the (s)-
428 propranolol-MAA complex.

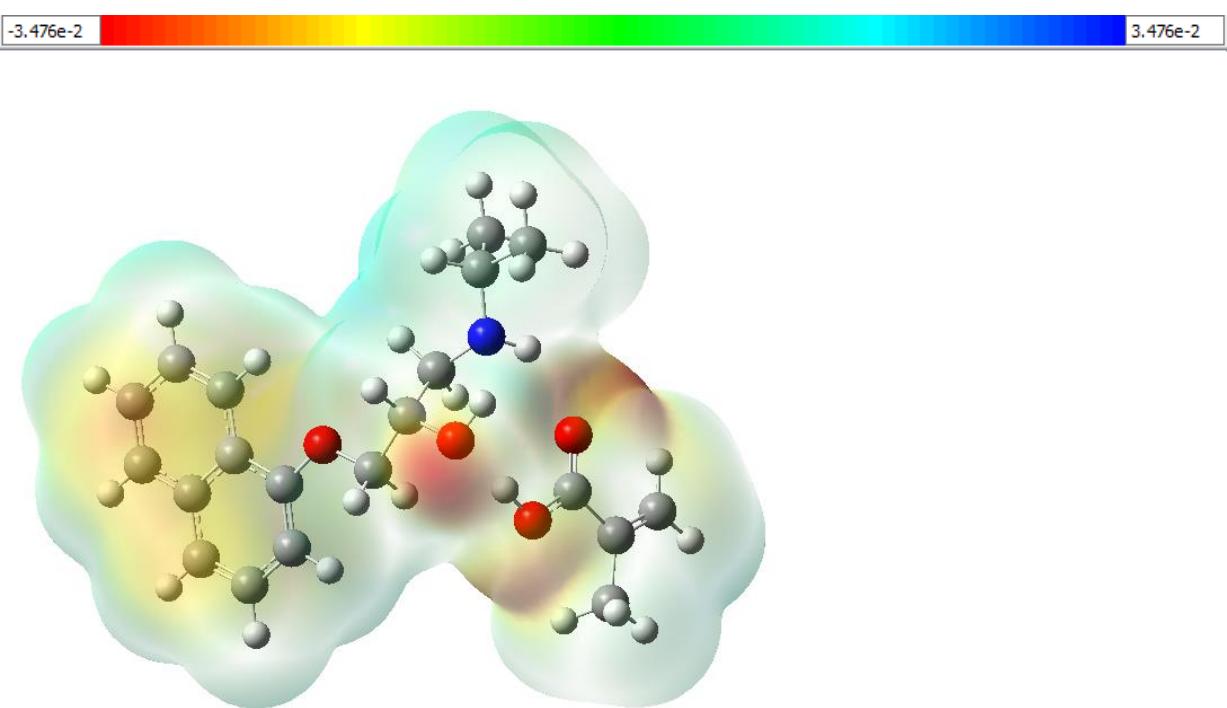
429

430

431

432

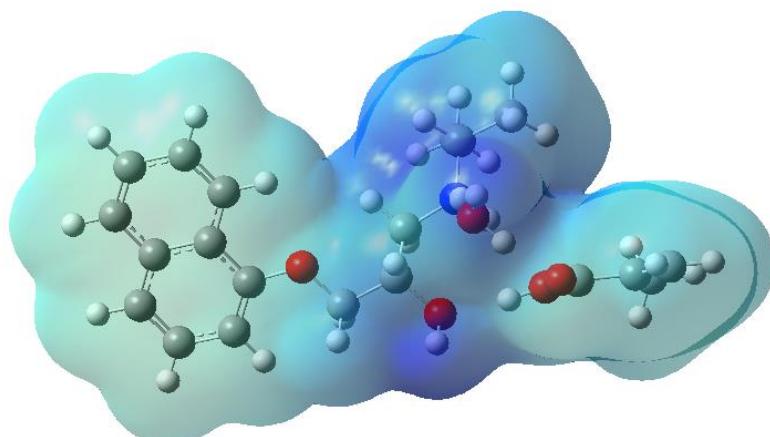
433


434

435

436

437 Figure 9. MEP of the (s)-propranolol-MAA system


438

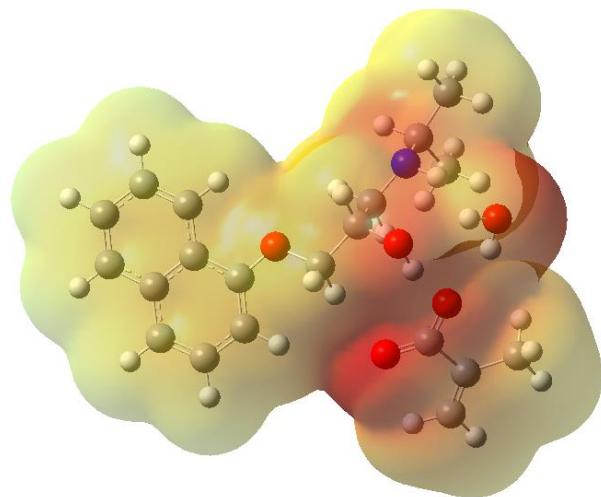
439

440 Figure 10. MEP of the product of the (s)-propranolol-MAA + H₃O⁺ reaction.

441

442

443


444

445

446

447 Figure 11. MEP of the product of the (s)-propranolol-MAA +OH⁻ reaction.

448

449

450

451

452

453

454

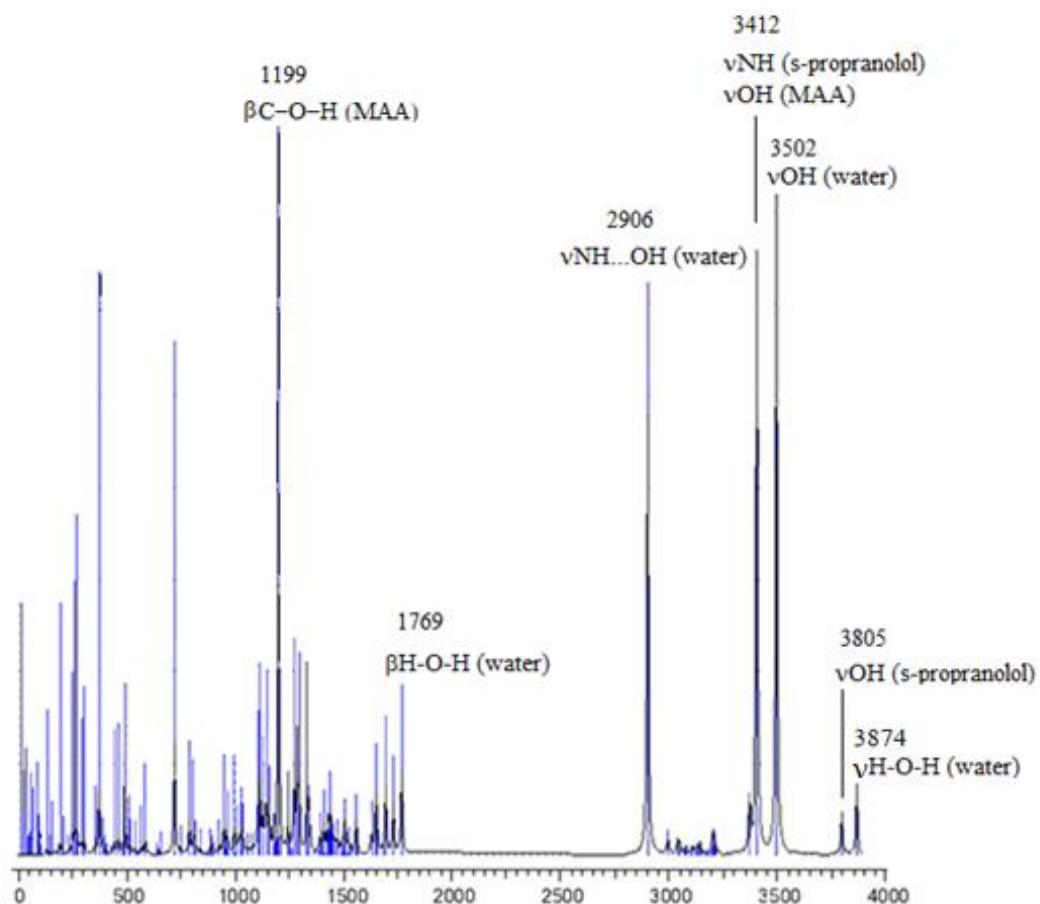
455

456

457

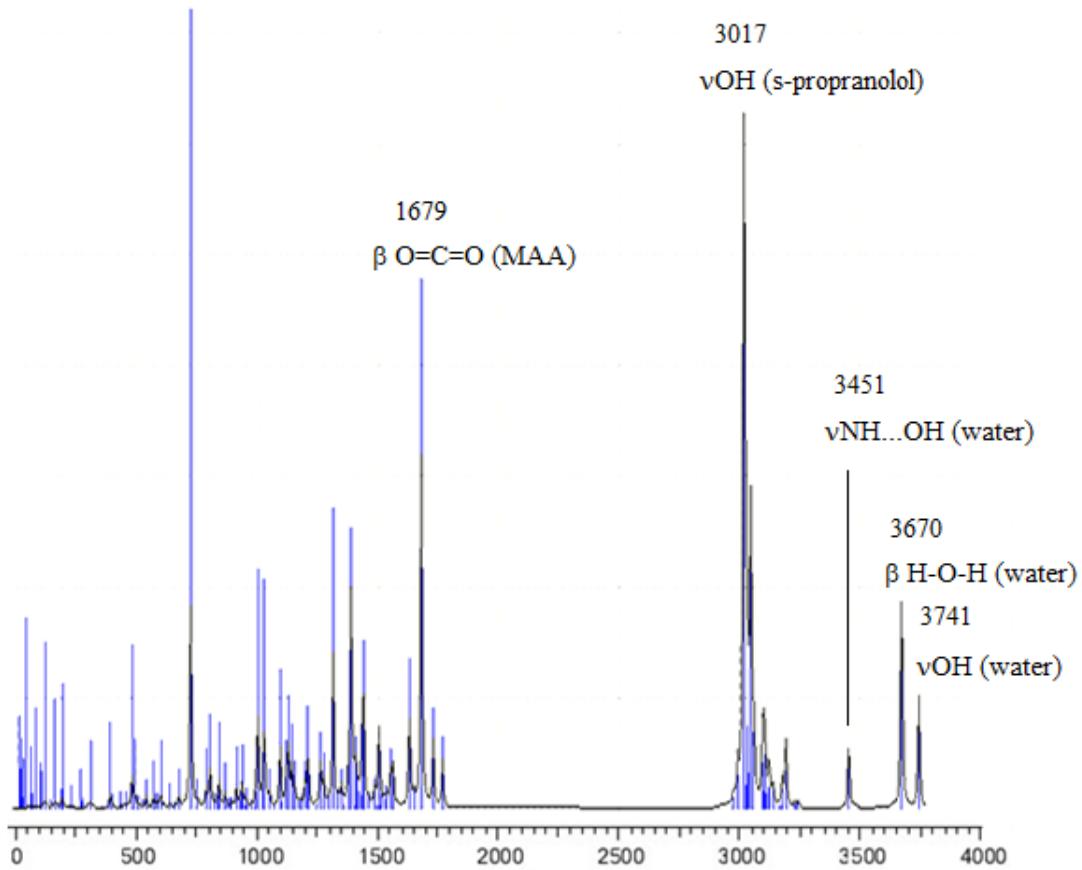
458

459


460

461

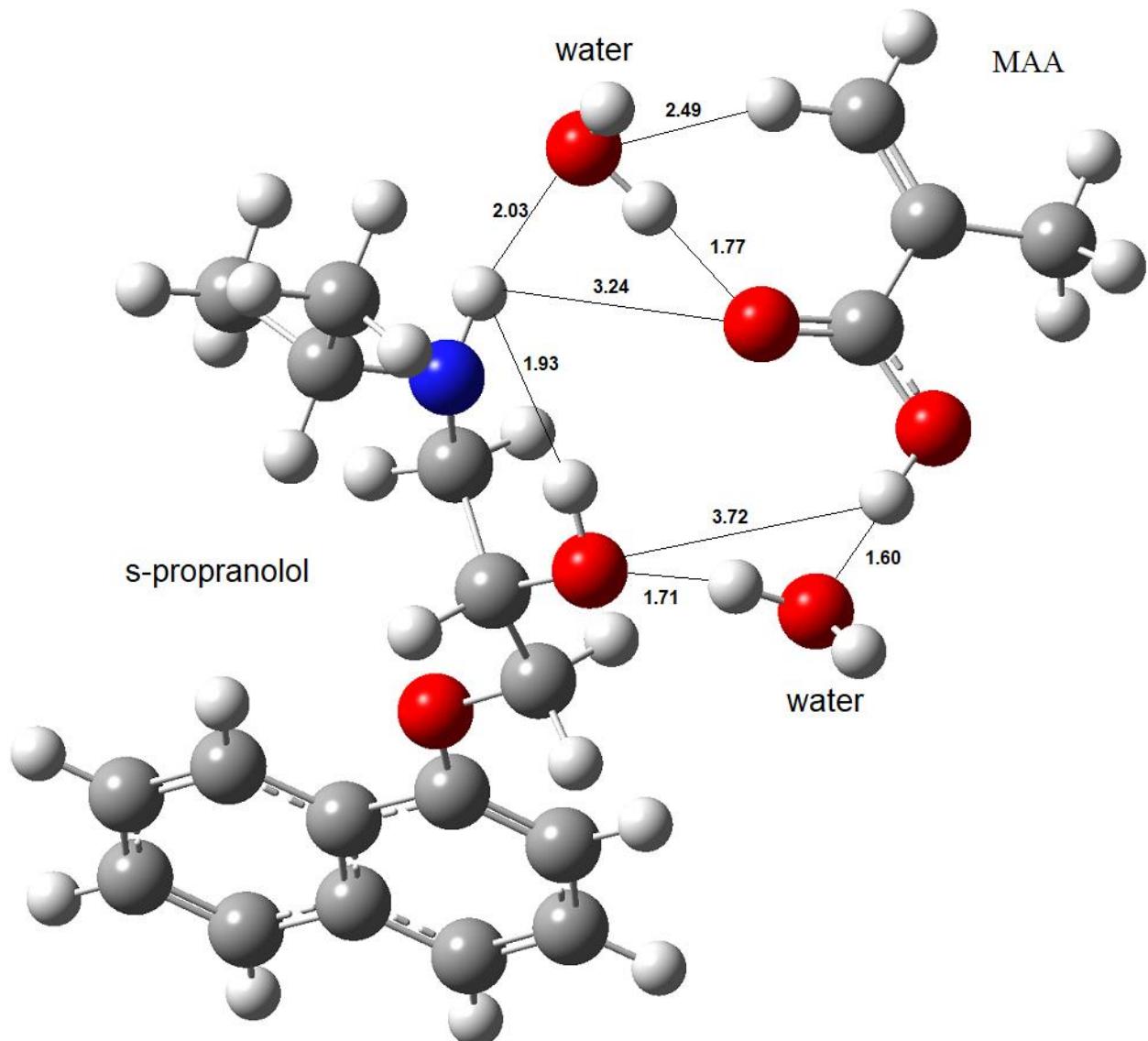
462


463

464 Figure 12. Calculated IR spectra for the product of the (s)-propranolol-MAA + H₃O⁺ reaction, on
465 x axis: frequency in cm⁻¹.

466
467
468
469
470
471
472
473
474

475 Figure 13. Calculated IR spectra the product of the (s)-propranolol-MAA + OH⁻ reaction, on x
476 axis: frequency in cm⁻¹.



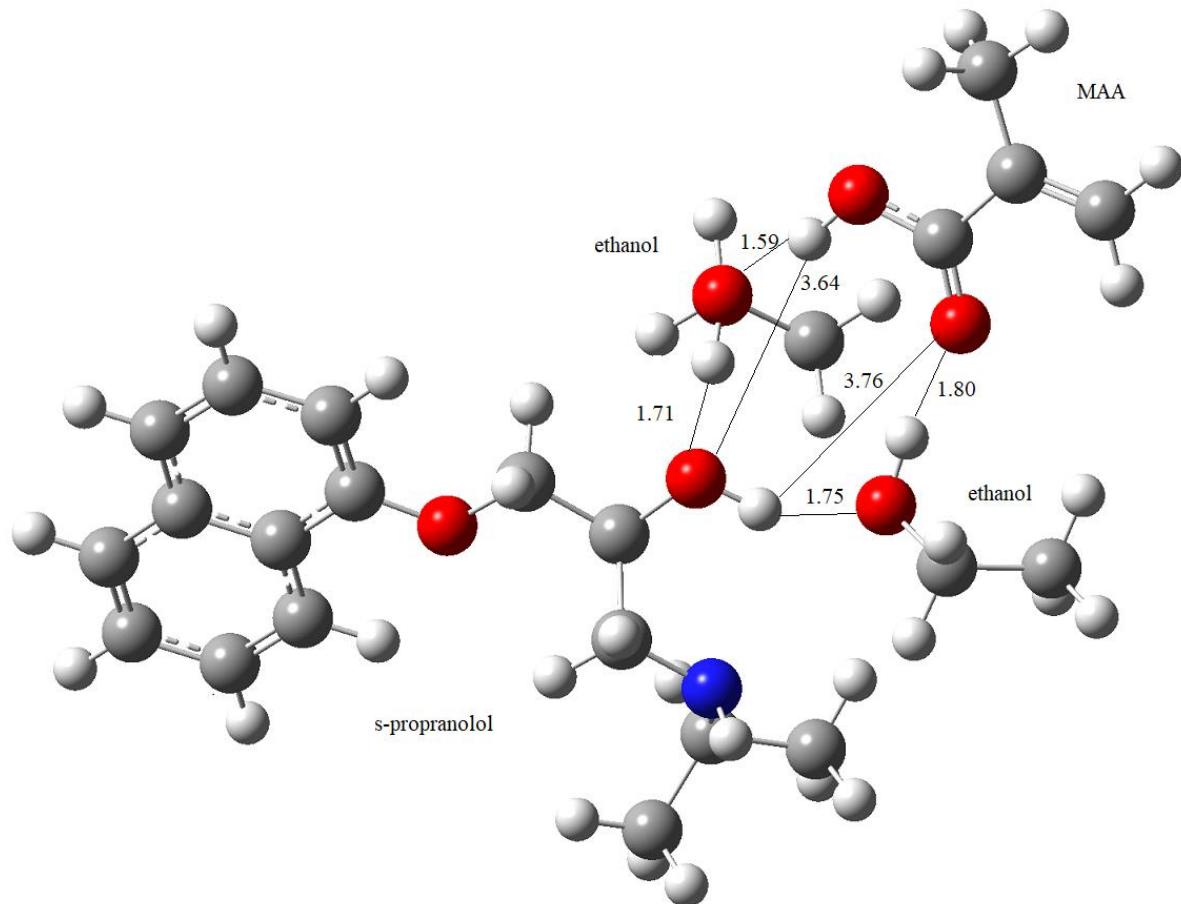
477
478
479
480
481
482
483
484
485
486
487

488 **Supporting Materials:**

489 Figure 14: Geometry of (s)-propranolol-MAA complex with two water molecules. B3LYP/6-

490 31G(d,p) level of theory. Distances in angstroms, Å.

491


492

493

494

495

496 Figure 15: Geometry of (s)-propranolol-MAA complex with two ethanol molecules. B3LYP/6-
497 31G(d,p) level of theory. Distances in ang

498