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Metal additive manufacturing (AM) provides a platform for microstructure optimization via process control, but
establishing a quantitative processing-microstructure linkage necessitates an efficient scheme for microstructure
representation and regeneration. Here, we present a deep learning framework to quantitatively analyze the
microstructural variations of metals fabricated by AM under different processing conditions. The principal
microstructural descriptors are extracted directly from the electron backscatter diffraction patterns, enabling a
quantitative measure of the microstructure differences in a reduced representation domain. We also demonstrate
the capability of predicting new microstructures within the representation domain using a regeneration neural
network, from which we are able to explore the physical insights into the implicitly expressed microstructure
descriptors by mapping the regenerated microstructures as a function of principal component values. We validate
the effectiveness of the framework using samples fabricated by a solid-state AM technology, additive friction stir
deposition, which typically results in equiaxed microstructures.

INTRODUCTION
The last decade has witnessed waves of advances in metal addi-

tive manufacturing (AM), from the popularly used beam-based

technologies, such as powder bed fusion and directed energy

deposition [1], to the more emerging solid-state technologies

such as ultrasonic AM [2] and additive frictions stir deposition

[3, 4]. Given the far-from-equilibrium processing conditions in

most metal AM, the microstructure in the as-printed material

is dictated by the processing kinetics and is sensitively depen-

dent on the processing parameters [1, 3, 5, 6]. Typically involv-

ing a significant number of tunable processing parameters and

therefore a large processing space [1, 7], metal AM does not

only unlock the freedom in 3D shaping with complex geome-

tries but also allows for microstructure design in the as-printed

components, from which the mechanical properties can be

controlled. Unfortunately, achieving the desired microstructure

by AM parameter optimization is still mostly a trial-and-error

process, which is slow and expensive.

With metal AM providing an optimal platform for micro-

structure control through processing, establishment of a quan-

titative processing-microstructure linkage is essential for

microstructure optimization per given applications. However,

such an establishment is impossible without an efficient

scheme for quantitative description of the microstructures

resulting from metal AM. The microstructure of a polycrystal-

line material is traditionally described by imaging-based

qualitative interpretation. This relies on characterization

techniques such as optical microscopy, electron microscopy,

and most representatively electron backscatter diffraction

(EBSD), which provides orientation and positional information

of individual grains [8]. Recently, simple quantitative micro-

structure descriptions based on the EBSD patterns have

become widespread in material research, wherein pre-defined

microstructure descriptors, such as average grain size, grain

size deviation, micro-texture, grain boundary misorientation

distribution, and other features, are quantitatively analyzed

[8, 9, 10]. There is no doubt that this type of description can

provide important information of the microstructure, but it is

insufficient in two critical aspects. First, the selection of the

pre-defined microstructure descriptors is arbitrary; it is not

guaranteed that they can comprehensively or efficiently repre-

sent the essence of any given microstructure. Second, the quan-

tification is based on statistical homogenization and

distribution functions, so location-dependent microstructure
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information is not effectively preserved. To address these prob-

lems, more sophisticated microstructure representation

approaches have been proposed, including Hyperspherical har-

monics [11, 12], network representation and spectral graphic

theory [13], and n-point correlation functions [14]. It has

also been proposed to register the complete geometry informa-

tion for each grain using microstructure basis functions in the

rotational grain boundary space [15, 16].

Fundamentally, the challenges in microstructure represen-

tation lie in the processing and analysis of the high-

dimensional data describing the microstructure as well as the

identification of the principal descriptors that most effectively

represent the microstructural features or variations for a

given problem. It is important to note that the principal micro-

structure descriptors may differ case by case, depending on the

goal of the target problem—e.g., whether it is to identify the

most salient feature changes by varying processing parameters,

or to recognize the most influential features that control the

yield strength or the fracture toughness. With the advance

and resurgence of artificial intelligence, new opportunities

arise in terms of resolving the microstructure representation

problem using data-driven approaches in addition to the con-

ventional physics-based approaches. This strategy is promising

as the data-driven approaches have been proven effective for

big-data analytics and feature extraction [17, 18, 19, 20]. In par-

ticular, deep learning [21] has emerged as a prominent

approach for quantitative analysis of high-dimensional data

and has demonstrated unprecedented capabilities of identifying

multiscale features from complex data patterns. Examples

abound in computer vision and data processing, such as

image classification [22, 23, 24], semantic segmentation [25],

object detection [26, 27, 28], instance segmentation [29], cluster-

ing analysis [30, 31, 32], texture synthesis, and reconstruction

[33, 34], and computer-aided material design [35, 36, 37].

Deep learning has also been actively applied in EBSD imaging

denoizing and indexing [38, 39, 40], wherein the crystal orienta-

tion information is extracted from noisy and blurring Kikuchi

patterns. Noteworthy recent advancements in deep learning-

based image analysis include StyleGan, which is a generative

adversarial network that can generate visually indistinguishable

fake images from pre-defined attributes [41], as well as

PointRend, which is an instance segmentation algorithm with

high accuracy and efficiency [42].

Encouraged by the success in feature extraction and image

reconstruction, we explore the potential of using deep learning

and deep neural networks (DNNs) for microstructure represen-

tation and regeneration in metal AM, which is based on the

analysis and feature extraction of EBSD patterns (i.e., the

inverse pole figure maps). Following Gatys’ multilayer pattern

representation scheme [34], we present a deep learning frame-

work that extracts the key microstructural features from a

pre-trained DNN. Unlike the conventional feature extraction

method that only uses the last layer, Gatys’ method uses the

Gram matrix in multiple layers to permit a multiscale micro-

structure representation. This framework allows us to examine

the microstructure formed under drastically different processing

conditions in metal AM and to identify the most distinguishable

microstructural features (i.e., microstructure descriptors) using

principal component analysis, from which a reduced representa-

tion of the microstructure is established. Within the reduced rep-

resentation domain, possible microstructures are predicted via

microstructure regeneration through convolutional neural net-

works [43].

As one of the first attempts to leverage DNN in microstruc-

ture representation and regeneration, here we test the frame-

work using samples fabricated by a solid-state metal AM

technology, additive friction stir deposition, which is known

to result in simple equiaxed grains rather than the complicated

dendritic microstructures commonly seen in powder bed fusion

and directed energy deposition. We confirm the effectiveness of

the resultant microstructure representation and regeneration

and discuss the physical insights into the implicitly expressed

microstructural descriptors by mapping the regenerated micro-

structures in the reduced representation domain. This explor-

atory work lays the foundation toward establishment of

quantitative processing-structure linkages in metal AM and

can be potentially employed in general materials science prob-

lems, such as heterogeneous material design and optimization.

FRAMEWORK OF QUANTITATIVE
MICROSTRUCTURE REPRESENTATION VIA
DEEP LEARNING
Quantitative microstructure analysis based on the EBSD pat-

terns or inverse pole figure maps can be viewed as a quantita-

tive image analysis problem, which has benefited significantly

from deep neural networks (DNNs), such as VGG16 [44],

Inception [24], and ResNet [23]. These networks are all trained

on ImageNet, an extremely large dataset with over 106 images

from 1000 different classes [45]. With such a large database, the

network is able to learn the representative features of the

images for successful classification. By taking advantages of

the learned representations on the convolutional and fully con-

nected layers, transfer learning can be applied to enable feature

extraction in unsupervised machine learning [46] and super-

vised learning on a small dataset [47]. The special characteristic

of EBSD patterns is that the image is "textured"—which, in

image processing terms, means that it involves repeated local

patterns that are translational invariant. This should be distin-

guished from the concept of texture in metallurgy, which

corresponds to preferred crystallographic orientations in a

polycrystal. In the realm of image analysis, the texture
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representation scheme developed by Gatys has seen great suc-

cess in texture synthesis [34] and image style transfer [41]

and has been proven to be capable of generating images with

astonishingly high similarity [43]. The presented deep learning

framework follows the same philosophy of this scheme to

analyze the EBSD patterns for microstructure representation

and regeneration in metal AM, and in addition uses principal

component analysis to extract the microstructural descriptors

that represent the differences between the measured

microstructures.

Figure 1 shows the overall flowchart of the presented deep

learning framework for microstructure representation and

regeneration in metal AM, including three major steps. First,

an EBSD measurement is implemented on samples processed

with drastically different additive friction stir deposition condi-

tions. The measured EBSD patterns are augmented to generate

a large dataset for multiscale feature extraction through a pre-

trained DNN in Step 2. The Gram matrix is calculated for the

last layer on each of the five different scales, yielding a multi-

scale feature vector. Based on this multiscale feature extraction,

a reduced representation is generated via principal component

analysis (PCA), which maximizes the microstructure differ-

ences among samples made by various additive friction stir

deposition conditions. Supervised classification is then per-

formed on the reduced representation, which only requires

the use of a few principal components. Finally, in Step 3, a

regeneration network is established to retrieve the microstruc-

tures at given locations within the reduced representation

domain. This framework is implemented using Python with

Tesonflow [48], Keras [49] and Scikit-Learn [50].

Preprocessing of EBSD data

The dataset of training comes from commercially pure copper

fabricated by additive friction stir deposition under different

manufacturing conditions [51], which are mainly defined by

the tool head rotation rate Ω and in-plane motion velocity V.

There are three different sets of processing conditions includ-

ing Ω = 300 RPM and V = 9 in/min, Ω = 600 RPM and V =

3 in/min, and Ω = 600 RPM and V = 9 in/min. The obtained

EBSD patterns (inverse pole figures) are shown in Figs. 2(a)–

2(c) with the same field of view and labeled as M1, M2, and

M3, respectively [51].

To generate the training data from such a small dataset

(only three EBSD orientation maps), we implement a data aug-

mentation procedure. The large microstructure images are

cropped into a set of smaller pieces with a scanning window.

The size of the cropping window is chosen to be slightly

above the scale, where microstructure characteristics can be

considered to be uniform. Random horizontal and vertical

flip are implemented to further increase the size of training

datasets. All cropped images are generated with the same

scale and the aspect ratio to maintain the grain size and

shape characteristics. The dataset is then randomly split into

training and testing sets by the ratio of 8:2.

Multilayer feature extraction from VGG16

The generated training data is then fed into a DNN. In this

work, we use a convolutional neural network (VGG16),

which was trained on ImageNet to classify natural images

[44]. VGG16 is a very deep DNN developed for large-scale

Figure 1: Experimental flowchart. Step 1: Microstructures of the processed samples are measured via EBSD. Step 2: Reduced representation is established through
PCA analysis using multilayer feature extraction. Step 3: Predictions of microstructures are generated through the restoration of the Gram matrix from designated
principal component values.
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image recognition tasks and has demonstrated capability of

processing and extracting spatial features with very high

dimensions. The DNN contains five convolutional blocks

that perform convolutional calculations on five different

length scales. At the end of each block, a max-pooling layer

downsamples the extracted feature map. Normally, activation

of the final convolutional layer is used as the extracted feature

to identify the object in the image. In our application, how-

ever, more emphasis is needed for the statistical correlation

of patterns across multiple scales. We apply Gatys’s scheme

[34] to extract image texture features based on the Gram

matrix, where we focus on the pair-wise correlation between

feature maps generated on multiple layers of the network. By

explicitly including correlation features on each of the five

scales of the blocks, the texture feature extraction is proven

to be more sensitive to the multiscale patterns. Features are

extracted based on the Gram matrix calculated for multiple

layers with the following equation:

Gl
ij =

∑
k

Fl
ikF

l
jk,

where l denotes the index of the layer, Fl is the matrix that

stores the activation of the feature map and filters, i and j

are the indices for one pair of feature, Fl
ik corresponds to

the activation of the ith filter in layer l at position k. Five

Gram matrices are calculated from the activation of the last

layers from each convolutional block of VGG16. The feature

map size generated by the VGG16 for the five blocks are 64,

128, 256, 512, and 512, respectively. After the correlation cal-

culation, the Gram matrices of all five layer contains 64 × 64

+ 128 × 128+ 256 × 256 + 512 × 512+ 512 × 512 = 610,304

elements. This Gram matrix is flattened as a feature vector

and is used in the following analysis.

Reduced microstructure representation

The Gram matrix-based feature vector, while extracting com-

prehensive correlation information, is cumbersome. Direct

classification and visualization analysis based on such high-

dimensional data is infeasible. We, thus, perform a principal

component analysis (PCA) on the flattened Gram matrix to

generate a reduced representation from the training data of

the EBSD measurements. The analysis identifies the principal

components that maximally preserve the variance between

the input microstructures. In this way, PCA can significantly

reduce the dimensions of representation by removing the

correlated features.

The established principal components (PC) from the train-

ing data can be used as basis features to span a reduced repre-

sentation domain for microstructures. Arbitrary microstructure

can be projected into the reduced representation domain by

evaluating its Gram matrices from the pre-trained DNN and

applying the PCA transform. As a result, the microstructure

differences can be quantitatively measured in terms of distances

in the PC representation domain.

Note that the reduced PC domain is established to best rep-

resent the differences between the microstructures in the

Figure 2: Microstructure measurements from EBSD for three different processing conditions, labeled as (a) M1, (b) M2, and (c) M3, from Ref. [51]. (d–f ) show a
small subset of randomly augmented patches cropped with a scanning window size of 179 × 179 μm2 for each microstructure, respectively. Random horizontal and
vertical flip are applied to increase the number of data patches.
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training datasets. It is possible that new microstructure data

may contain differences that are not captured by the PCs gen-

erated from the training dataset. The effectiveness of the repre-

sentation can be evaluated by restoring the Gram matrix feature

vector from the reduced representation using the PCA inverse

transformation process, followed by calculating the fidelity η

through the complement of normalized mean square error

(NMSE) between the restoration and the ground truth via

h = 1−
∑

i (Gi − Ĝi)
2

∑
i G

2
i

, (1)

where the largest possible value of 1 means full restoration and

lower value means worse restoration. If the differences of the

new microstructure are well captured by the established PC,

we know that the new microstructure is well represented in

the reduced domain. On the other hand, a poor NMSE value

indicates that the new microstructure involves feature variance

on a different dimension and that the established representa-

tion needs to be extended.

Classification of microstructures

The established reduced representation is then used to classify

microstructure patches for each measurement. Support vector

machine (SVM) is proven to be reliable for binary classifica-

tion, by which a hyperplane is formed to separate the datasets

while maximizing the margin of separation [52, 53]. For multi-

class classification, one-to-rest strategy can be used to train one

binary SVM classifier for each class. In our framework, linear

SVM classifiers are trained and validated on the principal fea-

tures to classify the microstructures from the three processing

conditions. The classification accuracy of the SVM has been

used as a metric for finding the best number of dimensions

to keep. The accuracy is evaluated from 2 to 10 principal com-

ponents. The number of principal components is chosen at the

point where accuracy converges.

Microstructure regeneration based on the reduced
representation

While we have demonstrated the approach that reduces the

number of microstructural descriptors through PCA, a success-

ful reduced representation also requires that high-dimensional

microstructure data be restored from the few-PC based repre-

sentation. The restoration of the microstructure from the

reduced representation is achieved by feature-based image

regeneration. We first restore the feature vector from PC by

the inverse transform process of PCA. As illustrated in the pre-

vious section, the quality of the restoration can be evaluated by

the NMSE. Next, the restored Gram matrix feature vector G is

used as the target feature map. Following Gatys’ style

transformation work, an initial random noise image with fea-

ture vector Ĝ is repeatedly updated and optimized to match

the restored Gram matrix G. The loss between the Gram matri-

ces is evaluated for each layerlvia

El = 1

4|Fl|2
∑
i

(Gl
i − Ĝl

i)
2, (2)

where |Fl| denotes the size of Fl. The total loss is summed up

for all five layers. A total variation loss [54] is added to the

loss function as a regularization term to increase the smooth-

ness of the generated image and suppress noise. Optimization

is achieved via L-BFGS-B algorithm [55] and back propagation.

After a number of iterations, or after the loss converges, the

algorithm stops and the output of the updated image resembles

the predicted microstructure for the given data point in the PC

domain. This method allows us not only to regenerate micro-

structures similar to the input EBSD measurements but also

to generate “in-between” microstructures with a set of

in-between PC values. In this way, we can predict new micro-

structures at arbitrary locations within the PC domain. Note

that in Gatys’ original work, one can generate an image with

a similar Gram matrix from an image. In our case, the Gram

matrix is extracted directly from the image or restored from

the PC representation.

RESULTS AND DISCUSSION
Microstructure characterization via EBSD

The obtained EBSD patterns from the three samples for data

training are shown in Figs. 2(a)–2(c). All three microstructures

demonstrate clear equiaxed grain shapes that typically result

from thermomechanical processing, while exhibiting multiple

scale features. On a small length scale, it is evident that there

are many grains of various sizes, orientations, and lattice dis-

tortion, the latter of which is noted by color gradients within

a single grain. At a large length scale, these patterns repeat

themselves to some extent. To compare, conditions M1 and

M3 have produced relatively large grains with minimal stored

internal energy. M1 is notable for having prominent twin

boundaries, and low lattice distortion within individual color-

gradient grains. Condition M2 results in much smaller grains

than the majority of those produced by M1 and M3.

These EBSD images are cropped and flipped to generate a

large dataset for each of the microstructure. Four random

patches from the generated dataset [Figs. 2(d)–2(f)] are

shown for each of the microstructures, respectively. The crop-

ping window size of 179 μm× 179 μm is chosen to avoid

local fluctuations and incomplete grain sampling. The symmet-

ric characteristics of the microstructures allows us to flip the

patches to increase the size of the training data. According to
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the original sizes of the EBSD images, a total number of 315,

448, and 1038 patches are generated for M1, M2, and M3,

respectively. 80% of the generated patches are used as training

data to extract the multiscale features, while 20% of the patch

data are used for testing.

Reduced representation of microstructure

The patch data shown in Figs. 2(d)–2(f) is then processed

through the pre-trained DNN network. A multiscale feature

vector is generated via calculating the correlation Gram matrix

on each of the five layers. In this way, we capture the statistical

features of the microstructure pattern across various different

length scales. As discussed earlier, this Gram matrix-based fea-

ture vector contains 610,304 components. Most of these com-

ponents represent the common features shared by all EBSD

orientation maps, which are not of interest for the analysis of

microstructure variations in material processing. Instead, the

feature components that represent the differences between

the measured microstructures are of interest. Such a reduced

representation is generated through the PCA analysis illustrated

in Sec. II.D, which identifies the principal components (i.e.,

microstructural descriptors) that are responsible for the vari-

ances among the input data patches from the three different

microstructures (M1, M2, and M3). Efficiency of the represen-

tation is evaluated by the capability of classifying different

microstructures from the testing data patches. As shown in

Fig. 3(a), the classification achieves near 100% accuracy with

merely five principal components, indicating that the differ-

ences in the detected microstructures can be represented with

a dramatically reduced number of microstructural descriptors.

Figure 3(c) shows a visualization of clustering for the sample

data points in the 3D space spanned by the first three PCs in

the 5PC domain, where training data and testing data are rep-

resented by bright and dark colors, respectively. Clear cluster-

ing is observed for the three microstructures. In addition, all

of the test data are correctly categorized into the corresponding

cluster, as shown in the confusion matrix in Fig. 3(b). The PC

values at the centroid location for the M1, M2, and M3 clusters

are summarized in Table I.

The generated principal components span a continuous 5D

space that can be used to represent microstructures beyond the

training datasets. In particular, this representation can be used

to characterize “in-between” microstructures and quantify the

differences with the input microstructures. This capability is

especially important for future works on processing-structure

modeling. To demonstrate this point, we introduce two new

microstructures and characterize them with the established

5PC representation. One EBSD microstructure is obtained

from a Cu sample fabricated using additive friction stir deposi-

tion, but with a different processing condition (Ω = 300 RPM

and V = 3 in/min). This new microstructure is labeled as M4

and its EBSD measurement is shown in Fig. 4(a). A similar

cropping process is implemented to generate a series of

EBSD data patches with the same size as the training data.

By processing the patches from M4 through the established

neural network and calculating the Gram matrix and its prin-

cipal components, we are able to locate the new microstructure

in the established 5PC space. It is found that the Gram matrix

for M4 is well represented by the five principal components,

with an NMSE score η = 0.9909. As shown in the projection

3D plot in Fig. 4(b), the new microstructure is clustered

between M1 and M3 and is relatively far from M2. This quan-

titative analysis result is consistent with the qualitative observa-

tion; M4 is visually more similar to M1 and M3. The centroid

location for M4 patches in the 5PC domain is calculated with

the PC values shown in Table II.

On the other hand, dramatically different microstructures

can be identified as outliers. We characterize another EBSD

microstructure pattern obtained from Al samples fabricated

using additive friction stir deposition (Ω = 200 RPM and V =

3 in/min). The elongated grain shapes in the Al data, shown

in Fig. 4(c), are significantly different from the equiaxed Cu

data. Such microstructure differences originate from different

levels of stacking fault energy and dynamic recovery capability,

which is elaborated in a separate work [51]. In consistency with

the observation, the Al cluster is located far away from all Cu

microstructure clusters [Fig. 4(d)]. The NMSE score for the

Al data also decreases drastically, yielding η = 0.9572. In

other words, 1− η increases from 0.0091 for Cu to 0.428 for

Al. This indicates that the current training data from Cu may

not be sufficient to represent the outlier of Al. Re-training

should be considered when the fidelity drops significantly

with the inclusion of new data, indicating a poor representation

of the new microstructure. In our case, re-training is needed for

the added Al data. Al and Cu have different microstructure

evolution mechanisms during solid-state AM, so the micro-

structures are characterized by different microstructural

descriptors.

Regeneration of microstructures

In the previous section, we demonstrate the reduced represen-

tation of the EBSD microstructure patterns in the five-

dimensional PC representation domain. Here, we demonstrate

the reverse process of generating new microstructure patterns

from the 5PC representation. The regeneration is demonstrated

for both the measured microstructures as well as the new

“in-between” microstructures.

We first regenerate microstructures for the measured

microstructures M1, M2, and M3. These regenerations are

implemented by matching the generated Gram matrix Gl to
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the measured Gram matrix G via Eq. 2. Figure 5 shows the

regenerated microstructures for M1, M2, and M3, respectively.

We can visually observe the similarities of grain size and orien-

tation (color) distribution between the original measurements

and the regeneration results. Note that the regeneration

described in Sec. II.E is a stochastic process that aims to

match the statistical multiscale correlation features. As a result,

the regeneration procedure will produce microstructures with

random variations for each generated image. These random

variation details, however, are not considered to influence the

key characteristics of the microstructure. As shown in Fig. 5,

the regenerated microstructures R1, R2, and R3 have generally

reserved the features of the experimental measurements M1,

M2, and M3. In particular, the grain sizes are observed to be

similarly distributed, and the color tones which represent the

grain orientations have also resembled their origins. Figure 6

shows the predicted microstructures at arbitrary locations in

the representation 5PC domain. Three nonexistent microstruc-

tures (R4, R5, and R6) are predicted at the centroid location of

M4, between M1 and M3, and between M2 and M3,

Figure 3: PCA and classification results. (a) Classification accuracy as a function of the number of principal components kept. Near 100% of accuracy is achieved
with five principal components, demonstrating the efficiency of the deep learning-based EBSD microstructure representation. (b) Confusion matrix shows the per-
fect classification results with 5PC. (c) Scattering plot of patch data projected in the reduced domain of the first three principal components. Clear clustering can be
observed for patches cropped from different microstructure measurements.
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respectively. While R4, R5, and R6 are regenerated virtual

microstructures, they resemble the experimentally processed

microstructures obtained in AFSD. In particular, R4 can be

compared with M4, with the similar grain sizes and color dis-

tributions, despite the fact that M4 is not included in the train-

ing data, and thus cannot influence the regeneration of R4.

This proves the accuracy and uniqueness of the established

5PC representation.

Physics interpretation of the representation results

The 5PC representation is highly efficient and accurate to char-

acterize and simulate microstructures for the chosen metal AM

of additive friction stir deposition. However, using the

presented deep learning framework, the principal microstruc-

tural descriptors, i.e., the principal components, are implicitly

expressed. To explore the physics insights into the principal

components for microstructure representation, we study the

trend of the regenerated microstructures with varying PC val-

ues (Table III). As shown in Fig. 7, microstructures are regen-

erated by sequentially stepping along the PC1, PC2, and PC3

axes, respectively. Each row consists of five microstructures.

The center one is regenerated at the centroid location of M3,

while others are regenerated by decreasing or increasing the

PC value with one unit step (the 2nd and 4th in the row) or

two unit steps (the 1st and 5th in the row).

As shown in the 1st row, it appears that PC1, the most

important feature component, is mostly associated with the

grain size. The larger PC1 values correspond to smaller grain

sizes. PC2 appears to be associated with the color distribution

of the EBSD pattern, which corresponds to the crystallographic

orientation distribution of the microstructure. The increase of

PC2 changes the microstructure orientation from purple and

red to bright green. On the other hand, PC3 gradually changes

from light green to dark blue. PC2 and PC3 are, thus, likely to

TABLE I. The PC values for the centroid of M1, M2, and M3.

Indexing PC1 (1011) PC2 (1011) PC3 (1011) PC4 (1011) PC5 (1011)

M1 centroid −8.021 4.245 4.083 0.6232 2.448
M2 centroid 17.790 0.418 0.105 0.135 0.328
M3 centroid −5.352 −1.418 −1.174 −0.242 −0.814

Figure 4: Projection of new microstructures into the 5PC representation domain. (a) EBSD measurement of a Cu sample processed at a new processing condition
(M4), from Ref. [51]. (b) The projected dots for cropped patches from M4 and their averaged centroid location. (c) EBSD measurement of an Al sample (MAl), from
Ref. [51]. (d) The projected dots for cropped patches from MAl. The result indicates that M4 is similar to M2 and M3, while MAl is not close to any of the input
microstructures.
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be two orthogonal orientation descriptors, representing a set of

orthogonal angles or their linear combinations from the 3D

Euler angles for crystal orientation. Furthermore, the increase

of PC2 and PC3 introduces more straight grain boundary seg-

ments. Therefore, PC2 and PC3 should correspond to the crys-

tallographic orientation and grain boundary morphology of the

microstructure.

Limitations of microstructure regeneration in this
work

The regenerated and newly created EBSD maps (R1–R6)

appear fairly realistic and in line with typical maps collected

from real samples. Grains appear roughly rounded and vary

in size according to their parent condition. Even the color gra-

dient visualization of lattice distortion has been preserved in

the regenerations, with R4 showing it clearly in a number of

its grains. The deep learning network can identify features

from EBSD images regardless of their underlying physical ori-

gins. Possible regeneration artifacts, however, may stir from the

encoding scheme based on the Gram matrix. Such a pixel–pixel

correlation scheme has been demonstrated to represent the tex-

ture pattern with high fidelity, but it is less sensitive to nonsta-

tistical features, such as large-scale shapes. In our attempt, it

does appear to perform less ideal for M1 with larger grain

sizes, and it also misses the occasional twinning.

To improve microstructure regeneration in future works,

most notably, quantitative measures on regeneration qualities

must be implemented. While the regeneration approach pro-

duces realistic orientation maps, the accuracy of these maps

is not yet quantified, and important information such as mis-

orientation across a grain boundary remains to be extracted

from the newly generated images. These challenges originate

from the color coding of inverse pole figure maps (i.e., the col-

ored EBSD patterns), which is based on the function of rotation

referenced to a user assigned direction. While it is straightfor-

ward to convert the grain orientation into the referenced rota-

tion, it requires at least two sets of rotational angles from

orthogonal reference directions to fully retrieve the grain orien-

tation based on color patterns. In other words, the 3D orienta-

tion information (i.e., Euler angles) is not fully preserved in the

two-dimensional color-coded maps. An alternative EBSD plot-

ting scheme known as Quaternions can potentially solve the

problem by displaying all of the Euler angle orientation infor-

mation with a complex dual color-contrast color scheme [56].

The complex color-coding scheme has been difficult for human

visualization due to the involvement of less saturated colors

and, thus, has received less popularity than the inverse- pole

TABLE II. The PC values for the centroid of M4.

Indexing PC1 (1011) PC2 (1011) PC3 (1011) PC4 (1011) PC5 (1011)

M4/R4 9.086 7.893 −5.691 2.793 0.962

Figure 5: Regenerated microstructures (R1, R2, and R3) based on the Gram matrices from M1, M2, and M3, respectively. (a) Original EBSD measurements and (b)
regenerated microstructures. We see that the grain orientation distribution and grain size distribution are preserved for each regenerated microstructure category.
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figure. However, this will not be an issue for machine learning

and computer vision. Another notable feature lost in the regen-

erated microstructures is twinning, which is a characteristic fea-

ture in M1. This problem may be addressed by increasing the

depth of the DNN to improve the emphasis on the small-scale

features. In addition, removing flipped samples from the train-

ing data can also be helpful to preserve the twin features in

microstructure regeneration, because twin features are not sym-

metric upon image flipping.

CONCLUSIONS
In conclusion, we have presented a deep learning-enabled

framework for microstructure representation and regeneration

and have demonstrated its effectiveness by examining the

microstructures of samples fabricated by a solid-state AM tech-

nology: additive friction stir deposition. The most important

conclusions from this exploratory study include:

• By analyzing the EBSD patterns through a DNN, we

successfully identify and extract a set of principal

microstructural descriptors to reveal the most salient changes

between the input microstructures. In the example of copper

samples processed under different conditions, the difference

of microstructures in the processing domain is captured by

merely five principal components. The efficiency and

Figure 6: Prediction of microstructures from arbitrary PC values via regeneration. (a) Predicted microstructure R4 with PC values set at the centroid location of M4
in Table II, R5 from the middle point between M1 and M3, and R6 from the middle point between M2 and M3. (b) Locations of the predicted microstructure in the
reduced domain of the first three PCs. (c) Patch data from the measurement of M4. The similarity between M4 and R4 demonstrates the accuracy of the repre-
sentation framework.

TABLE III. The PC values for regenerated microstructure in Fig. 7.

Indexing PC1 (1011) PC2 (1011) PC3 (1011) PC4 (1011) PC5 (1011)

Row 1A −15.295 −1.418 −1.174 −0.242 −0.814
Row 1B −10.033 −1.418 −1.174 −0.242 −0.814
Row 1C −5.352 −1.418 −1.174 −0.242 −0.814
Row 1D −0.404 −1.418 −1.174 −0.242 −0.814
Row 1E 4.560 −1.418 −1.174 −0.242 −0.814
Row 2A −5.352 −29.385 −1.174 −0.242 −0.814
Row 2B −5.352 −15.401 −1.174 −0.242 −0.814
Row 2C −5.352 −1.418 −1.174 −0.242 −0.814
Row 2D −5.352 12.565 −1.174 −0.242 −0.814
Row 2E −5.352 26.549 −1.174 −0.242 −0.814
Row 3A −5.352 −1.418 −12.107 −0.242 −0.814
Row 3B −5.352 −1.418 −6.641 −0.242 −0.814
Row 3C −5.352 −1.418 −1.174 −0.242 −0.814
Row 3D −5.352 −1.418 4.292 −0.242 −0.814
Row 3E −5.352 −1.418 9.758 −0.242 −0.814
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accuracy of the established representation are validated

by the nearly perfect classification and visually similar

regeneration.

• Microstructure regeneration is successfully implemented

within the 5D reduced representation domain. This includes

both repetition of known microstructures and prediction of

“in-between” microstructures at arbitrary locations in the 5D

domain.

• The physical meaning of the microstructure descriptors is

explored by mapping the regenerated microstructures in the

representation domain, wherein the most important

descriptors are suggested to correspond to the grain size,

grain orientation, and grain boundary morphology.

Quantitative grain orientation analysis can be implemented

in the regenerated microstructure by employing more complex

color-coding schemes in future works. The presented frame-

work will then enable quantitative trend analysis and micro-

structure prediction, thereby paving the road toward

resolving several core materials science problems, such as

microstructural evolution prediction, processing-structure link-

age modeling, and heterogeneous material design and

optimization.

EXPERIMENTAL PROCEDURES
EBSD data were obtained from Cu-110 and Al 6061 samples

fabricated by additive friction stir deposition using an

MELD R2 machine (MELD Manufacturing Corporation,

Christiansburg, Virginia, USA). Deposition conditions were

changed by adjusting the tool rotational velocity and tool

travel velocity during deposition. The deposited materials

were cut and sectioned in order to examine the cross section

in line with the longitudinal direction of the tool during dep-

osition. The imaging was implemented on approximately the

same position for each sample, which was in the top layer

close to the centerline of the deposit. The samples were

electro-polished in preparation for EBSD, which was per-

formed using an FEI Helios 600 NanoLab DualBeam

Microscope, Hillsboro, Oregon, USA. The inverse pole figure

maps were generated from the EBSD data using the open-

source software ATEX [57].

Acknowledgment
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Figure 7: Microstructure evolution with varying principal component values. Starting from the centroid location of M3, microstructures are generated by sequen-
tially stepping along the PC1, PC2, and PC3 axes by –2, –1, 0, 1, and 2 units, respectively. Representative grain boundary morphology in 2A, 2E and 3A, 3E is
highlighted. The PC values used to generate these microstructures are summarized in Table III.

Article

▪
Jo
ur
na
lo

f
M
at
er
ia
ls
Re
se
ar
ch
▪

20
20
▪

w
w
w
.m
rs
.o
rg
/jm

r

© Materials Research Society 2020 cambridge.org/JMR 11

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
8.

24
4.

10
1.

18
7,

 o
n 

25
 Ju

n 
20

20
 a

t 1
7:

20
:0

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
15

57
/jm

r.
20

20
.1

20

http://www.mrs.org/jmr
http://www.cambridge.org/JMR
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1557/jmr.2020.120


References
1. I. Gibson, D.W. Rosen, and B. Stucker: Additive Manufacturing

Technologies : 3D Printing, Rapid Prototyping and Direct Digital

Manufacturing, 2nd ed. (Springer, New York; London, 2015).

2. A. Hehr and M. Norfolk: A comprehensive review of ultrasonic

additive manufacturing. Rapid Protyp. J. 26(3), 445–458 (2019).

3. R.J. Griffiths, M.E. Perry, J.M. Sietins, Y. Zhu, N. Hardwick,

C.D. Cox, H.A. Rauch, and Z.Y. Hang: A perspective on solid-

state additive manufacturing of aluminum matrix composites

using MELD. J. Mater. Eng. Perform. 28, 648–656 (2019).

4. H.Z. Yu, M.E. Jones, G.W. Brady, R.J. Griffiths, D. Garcia,

H.A. Rauch, C.D. Cox, and N. Hardwick: Non-beam-based metal

additive manufacturing enabled by additive friction stir deposition.

Scr. Mater. 153, 122–130 (2018).

5. A. Yadollahi and N. Shamsaei: Additive manufacturing of fatigue

resistant materials: Challenges and opportunities. Int. J. Fatigue 98,

14–31 (2017).

6. Z. Wang, T.A. Palmer, and A.M. Beese: Effect of processing

parameters on microstructure and tensile properties of austenitic

stainless steel 304L made by directed energy deposition additive

manufacturing. Acta Mater. 110, 226–235 (2016).

7. W.E. Frazier: Metal additive manufacturing: A review. J. Mater.

Eng. Perform. 23, 1917–1928 (2014).

8. A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field: Electron

Backscatter Diffraction in Materials Science (Springer, Boston, MA,

2000).

9. F. Humphreys: Characterisation of fine-scale microstructures by

electron backscatter diffraction (EBSD). Scr. Mater. 51, 771–776

(2004).

10. T. Maitland and S. Sitzman: Electron Backscatter Diffraction

(EBSD) Technique and Materials Characterization Examples

(Springer, Berlin, 2007).

11. J. Mason and C. Schuh: The generalized Mackenzie distribution:

Disorientation angle distributions for arbitrary textures. Acta

Mater. 57, 4186–4197 (2009).

12. J. Mason and C. Schuh: Hyperspherical harmonics for the rep-

resentation of crystallographic texture. Acta Mater. 56, 6141–6155

(2008).

13. O.K. Johnson, J.M. Lund, and T.R. Critchfield: Spectral graph

theory for characterization and homogenization of grain boundary

networks. Acta Mater. 146, 42–54 (2018).

14. D.T. Fullwood, S.R. Niezgoda, B.L. Adams, and S.R. Kalidindi:

Microstructure sensitive design for performance optimization.

Prog. Mater. Sci. 55, 477–562 (2010).

15. S. Patala: Understanding grain boundaries – The role of crystal-

lography, structural descriptors and machine learning. Comput.

Mater. Sci. 162, 281–294 (2019).

16. J.K. Mason and S. Patala: Basis functions on the grain boundary

space: Theory. arXiv preprint arXiv:1909.11838 (2019).

17. T. Guo, D.J. Lohan, R. Cang, M.Y. Ren, and J.T. Allison: An

indirect design representation for topology optimization using

variational autoencoder and style transfer. In AIAA/ASCE/AHS/

ASC Structures, Structural Dynamics, and Materials. 210049 edn,

American Institute of Aeronautics and Astronautics Inc, AIAA,

AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and

Materials Conference, 2018, Kissimmee, United States, 1/8/18.

18. Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi: Deep feature

extraction and classification of hyperspectral images based on

convolutional neural networks. IEEE Trans. Geosci. Remote Sens.

54, 6232–6251 (2016).

19. Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang: Traffic flow

prediction with big data: A deep learning approach. IEEE Trans.

Intell. Transp. Syst. 16, 865–873 (2014).

20. X.-W. Chen and X. Lin: Big data deep learning: Challenges and

perspectives. IEEE Access 2, 514–525 (2014).

21. Y. LeCun, Y. Bengio, and G. Hinton: Deep learning. Nature 521,

436 (2015).

22. A. Krizhevsky, I. Sutskever, and G.E. Hinton: Imagenet classifi-

cation with deep convolutional neural networks. Adv. Neural

Inform. Process. Syst. 1, 1097–1105 (2012).

23. K. He, X. Zhang, S. Ren, and J. Sun: Deep residual learning for

image recognition. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), (Las Vegas, NV, 2016);

pp. 770–778.

24. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich: Going deeper with

convolutions. In 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), (Boston, MA, 2015); pp. 1–9.

25. J. Long, E. Shelhamer, and T. Darrell: Fully convolutional

networks for semantic segmentation. In 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), (Boston, MA,

2015); pp. 3431–3440.

26. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,

and A.C. Berg: SSD: Single Shot Multibox Detector. In

Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in

Computer Science, vol 9905, B. Leibe, J. Matas, N. Sebe, and

M. Welling, eds. (Springer, Cham, 2016); pp. 21–37.

27. S. Ren, K. He, R. Girshick, and J. Sun: Faster R-CNN: Towards

real-time object detection with region proposal networks. In IEEE

Transactions on Pattern Analysis and Machine Intelligence,

(vol. 39, no. 6, 2017) pp. 1137–1149.

28. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi: You only

look once: Unified, real-time object detection. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),

(Las Vegas, NV, 2016); pp. 779–788.

29. K. He, G. Gkioxari, P. Dollár, and R. Girshick: Mask R-CNN. In

2017 IEEE International Conference on Computer Vision (ICCV),

(Venice, 2017); pp. 2980–2988.

Article

▪
Jo
ur
na
lo

f
M
at
er
ia
ls
Re
se
ar
ch
▪

20
20
▪

w
w
w
.m
rs
.o
rg
/jm

r

© Materials Research Society 2020 cambridge.org/JMR 12

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
8.

24
4.

10
1.

18
7,

 o
n 

25
 Ju

n 
20

20
 a

t 1
7:

20
:0

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
15

57
/jm

r.
20

20
.1

20

http://www.mrs.org/jmr
http://www.cambridge.org/JMR
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1557/jmr.2020.120


30. S.M. Azimi, D. Britz, M. Engstler, M. Fritz, and F. Mücklich:

Advanced steel microstructural classification by deep learning

methods. Sci. Rep. 8, 2128 (2018).

31. A. Chowdhury, E. Kautz, B. Yener, and D. Lewis: Image driven

machine learning methods for microstructure recognition.

Comput. Mat. Sci. 123, 176–187 (2016).

32. A.R. Kitahara and E.A. Holm: Microstructure cluster analysis

with transfer learning and unsupervised learning. Integr. Mater.

Manuf. Innov. 7, 148–156 (2018).

33. Q. Gao and S. Roth: Texture synthesis: From convolutional RBMs

to efficient deterministic algorithms. In Structural, Syntactic, and

Statistical Pattern Recognition. S+SSPR 2014. Lecture Notes in

Computer Science, vol 8621, P. Fränti, G. Brown, M. Loog,

F. Escolano, and M. Pelillo, eds. (Springer, Berlin, Heidelberg,

2014); pp. 434–443.

34. L. Gatys, A.S. Ecker, and M. Bethge: Texture synthesis using

convolutional neural networks. Adv. Neural Inf. Process. Syst. 1,

262–270 (2015).

35. R. Cang, Y. Xu, S. Chen, Y. Liu, Y. Jiao, and M. Yi Ren:

Microstructure representation and reconstruction of heteroge-

neous materials via deep belief network for computational material

design. J. Mech. Des. 139(7), 071404 (2017).

36. R. Liu, A. Kumar, Z. Chen, A. Agrawal, V. Sundararaghavan,

and A. Choudhary: A predictive machine learning approach for

microstructure optimization and materials design. Sci. Rep. 5,

11551 (2015).

37. X. Li, Y. Zhang, H. Zhao, C. Burkhart, L.C. Brinson, and

W. Chen: A transfer learning approach for microstructure recon-

struction and structure-property predictions. Sci. Rep. 8, 13461

(2018).

38. R. Liu, A. Agrawal, W.-K. Liao, A. Choudhary, and M. De Graef:

Materials discovery: Understanding polycrystals from large-scale

electron patterns. In 2016 IEEE International Conference on Big

Data (Big Data), (Washington, DC, 2016); pp. 2261–2269.

39. K. Kaufmann, C. Zhu, A.S. Rosengarten, D. Maryanovsky,

T.J. Harrington, E. Marin, and K.S. Vecchio: Paradigm shift in

electron-based crystallography via machine learning. arXiv pre-

print arXiv:1902.03682 (2019).

40. D. Jha, S. Singh, R. Al-Bahrani, W.-K. Liao, A. Choudhary,

M. De Graef, and A. Agrawal: Extracting grain orientations from

EBSD patterns of polycrystalline materials using convolutional

neural networks. Microsc. Microanal. 24, 497–502 (2018).

41. T. Karras, S. Laine, and T. Aila: A style-based generator archi-

tecture for generative adversarial networks. In 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR),

(Long Beach, CA, USA, 2019); pp. 4396–4405.

42. A. Kirillov, Y. Wu, K. He, and R. Girshick: PointRend: Image

segmentation as rendering. arXiv preprint arXiv:1912.08193

(2019).

43. N. Lubbers, T. Lookman, and K. Barros: Inferring low-

dimensional microstructure representations using convolutional

neural networks. Phys. Rev. E 96, 052111 (2017).

44. K. Simonyan and A. Zisserman: Very deep convolutional net-

works for large-scale image recognition. arXiv preprint

arXiv:1409.1556 (2014).

45. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei:

Imagenet: A large-scale hierarchical image database. In 2009 IEEE

Conference on Computer Vision and Pattern Recognition, (Miami,

FL, 2009); pp. 248–255.

46. G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio,

I. Goodfellow, E. Lavoie, X. Muller, G. Desjardins, and

D. Warde-Farley: Using Recurrent Neural Networks for Slot

Filling in Spoken Language Understanding. In IEEE/ACM

Transactions on Audio, Speech, and Language Processing, (vol. 23,

no. 3, 2015) pp. 530–539.

47. J. Chi, E. Walia, P. Babyn, J. Wang, G. Groot, and M. Eramian:

Thyroid nodule classification in ultrasound images by fine-tuning deep

convolutional neural network. J. Digit. Imaging 30, 477–486 (2017).

48. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, and M. Isard: Tensorflow:

A system for large-scale machine learning. In 12th {USENIX}

Symposium on Operating Systems Design and Implementation

({OSDI} 16), (Savannah, GA, USA, 2016); pp. 265–283.

49. F. Chollet, Keras: https://github.com/fchollet/keras, 2015.

50. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and

V. Dubourg: Scikit-learn: Machine learning in Python. J. Mach.

Learn. Res. 12, 2825–2830 (2011).

51. R.J. Griffiths, D. Garcia, J. Song, V.K. Vasudevan, M.A. Steiner,

W. Cai, and H.Z. Yu: Solid-state additive manufacturing of

aluminum and copper via additive friction stir deposition: Process-

microstructure linkages. (Materialia, 2020). (under review).

52. C. Cortes and V. Vapnik: Support-vector networks. Mach. Learn.

20, 273–297 (1995).

53. J.A. Suykens and J. Vandewalle: Least squares support vector

machine classifiers. Neural Process. Lett. 9, 293–300 (1999).

54. A. Chambolle: An algorithm for total variation minimization and

applications. J. Math. Imaging Vis. 20, 89–97 (2004).

55. R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu: A limited memory

algorithm for bound constrained optimization. SIAM J. Sci.

Comput. 16, 1190–1208 (1995).

56. A. Melcher, A. Unser, M. Reichhardt, B. Nestler, M. Pötschke,

and M. Selzer: Conversion of EBSD data by a quaternion based

algorithm to be used for grain structure simulations. Tech. Mech.

30, 401–413 (2010).

57. B. Beausir and J. Fundenberger: Analysis tools for electron and

X-ray diffraction. ATEX software (2017). Available at: www.atex-

software.eu (accessed May 22–June 12, 2019).

Article

▪
Jo
ur
na
lo

f
M
at
er
ia
ls
Re
se
ar
ch
▪

20
20
▪

w
w
w
.m
rs
.o
rg
/jm

r

© Materials Research Society 2020 cambridge.org/JMR 13

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
8.

24
4.

10
1.

18
7,

 o
n 

25
 Ju

n 
20

20
 a

t 1
7:

20
:0

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
15

57
/jm

r.
20

20
.1

20

View publication statsView publication stats

https://github.com/fchollet/keras
http://www.mrs.org/jmr
http://www.cambridge.org/JMR
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1557/jmr.2020.120
https://www.researchgate.net/publication/342422205

	Quantitative microstructure analysis for solid-state metal additive manufacturing via deep learning
	INTRODUCTION
	FRAMEWORK OF QUANTITATIVE MICROSTRUCTURE REPRESENTATION VIA DEEP LEARNING
	Preprocessing of EBSD data
	Multilayer feature extraction from VGG16
	Reduced microstructure representation
	Classification of microstructures
	Microstructure regeneration based on the reduced representation

	RESULTS AND DISCUSSION
	Microstructure characterization via EBSD
	Reduced representation of microstructure
	Regeneration of microstructures
	Physics interpretation of the representation results
	Limitations of microstructure regeneration in this work

	CONCLUSIONS
	EXPERIMENTAL PROCEDURES
	Acknowledgment
	References


