
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 375, Number 5, May 2022, Pages 3267–3303
https://doi.org/10.1090/tran/8579
Article electronically published on February 17, 2022

THE SIMPLICIAL COALGEBRA OF CHAINS

DETERMINES HOMOTOPY TYPES RATIONALLY AND ONE

PRIME AT A TIME

MANUEL RIVERA, FELIX WIERSTRA, AND MAHMOUD ZEINALIAN

Abstract. We prove that the simplicial cocommutative coalgebra of singular
chains on a connected topological space determines the homotopy type ratio-
nally and one prime at a time, without imposing any restriction on the funda-
mental group. In particular, the fundamental group and the homology groups
with coefficients in arbitrary local systems of vector spaces are completely
determined by the natural algebraic structure of the chains. The algebraic
structure is presented as the class of the simplicial cocommutative coalgebra
of chains under a notion of weak equivalence induced by a functor from coalge-
bras to algebras coined by Adams as the cobar construction. The fundamental
group is determined by a quadratic equation on the zeroth homology of the
cobar construction of the normalized chains which involves Steenrod’s chain
homotopies for cocommutativity of the coproduct. The homology groups with
local coefficients are modeled by an algebraic analog of the universal cover
which is invariant under our notion of weak equivalence. We conjecture that
the integral homotopy type is also determined by the simplicial coalgebra of
integral chains, which we prove when the universal cover is of finite type.

1. Introduction

One of the main goals of algebraic topology is to classify topological spaces, up
to a specified notion of equivalence, by means of algebraic invariants. In this paper,
we use the singular chains on a space together with the coproduct induced by the
diagonal map to classify homotopy types over a field. By combining Adams’ work
on the cobar construction in [A56] with Steenrod’s celebrated work on cohomology
operations introduced in [St47], we use the (homotopy) cocommutativity of the
diagonal to recover the fundamental group in its full generality. We further show
that the simplicial cocommutative coalgebra of chains determines all homology
groups with coefficients in any possible local system of vector spaces over a field.
When we assume that the universal cover is of finite type, i.e. all its homology
groups are finitely generated, then we also show that the integral homotopy type
is completely determined by the simplicial cocommutative coalgebra of chains. We
conjecture that this result holds for all connected spaces without any finite type
assumptions on the universal cover.

Steenrod operations began a revolution of progress in algebraic topology, which
became the rich and successful field of stable homotopy theory. In the unstable
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setting, the work of Sullivan and Quillen treated rational homotopy types, with
strong conditions on the fundamental group, through chain and cochain level al-
gebraic structure. Motivated by the geometric problem of understanding the dif-
feomorphism class of compact smooth manifolds, Sullivan proved that two simply
connected spaces of finite rational type are rationally homotopy equivalent if and
only if their commutative differential graded (cdg) algebras of rational polynomial
forms are quasi-isomorphic [S77]. Quillen obtained a similar statement for simply
connected spaces (without finiteness assumptions) via cocommutative dg rational
coalgebras [Q69]. Their results and machinery can be improved to include nilpo-
tent spaces, i.e. spaces with nilpotent fundamental group acting nilpotently on the
higher homotopy groups.

Since the appearance of the results of Sullivan and Quillen, there have been
different approaches to classifying spaces up to Bousfield localization or completion
with respect to fields of arbitrary characteristic [G95], [M01] and with respect to
integer coefficients [M06]. In some form or another, the cocommutative diagonal
map studied by Steenrod, either before or after chain approximation, appears again
in all of these works. The end goal of this line of research is to understand in
complete generality what a homotopy type is in terms of algebraic data.

However, all of these approaches involve notions of equivalence which are not
strong enough to capture all of the fundamental group. Consequently, many of the
statements either require strong restrictions on the fundamental group or determine
spaces up to ambiguity on the fundamental group. For example, Goerss showed in
[G95] that the simplicial cocommutative coalgebra of chains over a field determines
spaces up to Bousfield localization, a notion of localization for spaces under which
the fundamental group is not preserved. In our approach, we follow a divide and
conquer strategy by first obtaining the fundamental group from the algebraic struc-
ture of the chains, constructing the universal cover, and then applying localization
techniques to the universal cover taking advantage of its simple connectivity. The
main result of this article is the following.

Main Theorem. For any field F, two reduced Kan complexes X and Y can be
connected by a zig-zag of π1-F-equivalences if and only if their connected simplicial
cocommutative coalgebras of chains FX and FY can be connected by a zig-zag of
Ω-quasi-isomorphisms.

We briefly explain the terminology in the above statement, its significance, and
the main ingredients used in the proof. A Kan complex is reduced if it has a
single vertex. For example, any pointed topological space (Z, z) gives rise to a
reduced Kan complex Sing(Z, z) whose n-simplices consist of all continuous maps
σ : ∆n → Z such that σ(vi) = z for all vertices v0, . . . , vn ∈ ∆n.

Let R be an arbitrary commutative unital ring. A map f : X → Y between
reduced Kan complexes is a π1-R-equivalence if it induces an isomorphism of fun-
damental groups

π1(f) : π1(X)
∼=−→ π1(Y )

and an isomorphism

H∗(f̃ ; R) : H∗(X̃; R)
∼=−→ H∗(Ỹ ; R)

between the homology groups with R-coefficients of the universal covers. Equiva-
lently, a map f is a π1-R-equivalence if and only if it induces an isomorphism on
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fundamental groups and on all homology groups with values in every possible local
system of R-modules. If f : X → Y is a π1-R-equivalence then f is an R-homology
equivalence, i.e. H∗(f ; R) : H∗(X; R) → H∗(Y ; R) is an isomorphism, but not vice-
versa. Note that a map between reduced Kan complexes is a π1-Z-equivalence if
and only if it is a homotopy equivalence.

A simplicial cocommutative R-coalgebra C is a simplicial object in the category of
cocommutative counital R-coalgebras. To every simplicial set X we can associate a
simplicial cocommutative coalgebra by defining RX as the free R-module generated
by the simplices of X and with the face and degeneracy maps induced by the face
and degeneracy maps of X. The cocommutative coalgebra structure is the one
induced by the diagonal map of simplicial sets X → X × X. It further turns out
that if the simplicial set X is reduced, then RX is coaugmented and connected,
meaning that it is one dimensional in degree 0 and that there is a canonical map
from R to RX, where R is seen as the constant simplicial cocommutative coalgebra.

To each simplicial cocommutative coalgebra C, we can functorially associate a
differential graded coassociative coalgebra N∗(C) which is called the normalized
chains. When C is connected (resp. coaugmented) then N∗(C) is connected (resp.
coaugmented) as well. We say that a morphism f : C → D of connected simplicial
cocommutative coalgebras is an Ω-quasi-isomorphism if the induced morphism of
normalized chains is a quasi-isomorphism after applying the cobar construction Ω,
i.e. if the map

ΩN∗(f) : ΩN∗(C) → ΩN∗(D)

is a quasi-isomorphism. Any Ω-quasi-isomorphism is a quasi-isomorphism but not
vice-versa.

The proof of our main theorem relies on the following constructions and results,
which hold over an arbitrary integral domain R and are also of independent interest:

(1) To any connected simplicial cocommutative coalgebra we may associate func-
torially a fundamental bialgebra, a construction which is homotopical in the sense
that it is invariant under Ω-quasi-isomorphisms of simplicial cocommutative coal-
gebras.

(2) The fundamental bialgebra of the simplicial coalgebra of chains RX on any
reduced Kan complex X is naturally isomorphic to the fundamental group Hopf
algebra R[π1(X)]. In other words, the natural (co)algebraic structure of the chains
RX on a reduced Kan complex X determines the fundamental group π1(X) in com-
plete generality, through the group-like elements functor, and this data is preserved
along Ω-quasi-isomorphisms. More precisely, π1(X) is determined by the quadratic
equation

∇(α) = α⊗ α,

where

∇ : H0(ΩN∗(RX)) → H0(ΩN∗(RX)) ⊗ H0(ΩN∗(RX))

is a coproduct on the zeroth-homology of the cobar construction induced by the E2-
coalgebra structure of the normalized chains N∗(RX). The coproduct ∇ is therefore
part of the higher hierarchy of homotopies introduced by Steenrod in [St47] and
described in terms of the E∞-operadic framework in [BF04]. The extension of
Adams’ classical cobar theorem to non-simply connected spaces, proven by the first
and third authors, lies at the bottom of the fact that the fundamental group can
be determined algebraically from the chains [RZ16], [R19].
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(3) To any connected simplicial cocommutative coalgebra we may associate
functorially a universal cover, which is a new simplicial cocommutative coalgebra
equipped with an action of the fundamental bialgebra. This construction mirrors
the passage from a pointed space to its universal cover. The main idea is equipping
a simplicial version of Brown’s twisted tensor product with an appropriate non-
linear algebraic structure. These constructions, which constitute the key technical
input developed in the paper, are introduced as part of a more general theory of
simplicial twisted tensor products and simplicial twisting cochains.

(4) We apply Goerss’ results from [G95] relating simplicial cocommutative coal-
gebras over a field to Bousfield localization at the level of universal covers.

Our main result is particularly important in the cases when F = Q, the field of
rational numbers, and when F = Fp, the finite field with p-elements for a prime
p. Recall that if a map of spaces induces an isomorphism on homology with Q-
coefficients and an isomorphism on homology with Fp-coefficients for each prime p,
then it induces an isomorphism on integral homology. This observation, together
with the main result of this paper, the classical fracture theorems and arithmetic
square, and the fact that π1-Z-equivalences are exactly homotopy equivalences,
leads us to pose the following conjecture.

Conjecture. Two reduced Kan complexes X and Y are homotopy equivalent if and
only if their connected simplicial cocommutative coalgebras of chains ZX and ZY
can be connected by a zig-zag of Ω-quasi-isomorphisms.

One direction of the above conjecture already follows from [RWZ18], where we
showed that a map f : X → Y is a homotopy equivalence between reduced Kan
complexes if and only if Zf : ZX → ZY is an Ω-quasi-isomorphism, extending a
classical theorem of Whitehead.

The strongest results in the problem of finding complete algebraic models for
spaces over fields of arbitrary characteristic have appeared in the work of Mandell
[M06], [M01]. Mandell proved a classification theorem for nilpotent finite type p-
complete spaces using the framework of E∞-algebras, an up to (coherent) homotopy
version of commutative algebras [M01]. E∞-(co)algebras may be interpreted to be
more “algebraic” than simplicial (co)algebras in the sense that they are described
in terms of operations and relations on an abelian group using the framework of
operads and do not involve a “spatial parameter” directly as in the case of simplicial
coalgebras. Moreover, Mandell describes the sense in which the functor of cochains
considered as an Fp-E∞-algebra is homotopically fully faithful on nilpotent finite
type p-complete spaces. In this theory, E∞-algebras are considered under quasi-
isomorphism, a notion suitable to study nilpotent finite type spaces but not strong
enough to capture the fundamental group in complete generality.

Mandell goes further and proves an integral detection statement by means of an
arithmetic square argument [M06]. Namely, he proves that two nilpotent spaces of
finite type X and Y are weak homotopy equivalent if and only if their E∞-algebras
of integral singular cochains are quasi-isomorphic. We use this result, together with
our constructions, to prove the following special case of the above conjecture.

Theorem. Let X and Y be two reduced Kan complexes whose universal covers
are of finite type. If the integral chains ZX and ZY can be connected by a zig-zag
of Ω-quasi-isomorphisms of connected simplicial cocommutative coalgebras each of
which is projective as a Z-module, then X and Y are homotopy equivalent.
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We also conjecture that two connected Kan complexes are homotopy equivalent
if and only if their E∞-coalgebras of chains are Ω-quasi-isomorphic. This conjec-
ture could also possibly be improved to arbitrary simplicial sets by incorporating
an algebraic localization procedure into the notion of Ω-quasi-isomorphism. Fur-
thermore, there is recent evidence that one may be able to obtain a fully faithful
(integral) model for homotopy types by considering more algebraic structure. This
has been studied in a recent preprint of Yuan [Y19], where the extra structure
is encoded using spectra but not quite in terms of the philosophy and algebraic
structures considered by Mandell, who encodes spaces in terms of discrete abelian
groups equipped with a countable number of operations and relations considered
under a “good” homotopical notion of weak equivalence.

The general goal of this program is to understand in purely algebraic terms
what a homotopy type is and then use the resulting algebraic models effectively.
This general problem includes several subtleties such as making a mathematically
precise formulation of what “algebraic” means, a point we do not address in this
article. The term “algebraic” may have different interpretations such as computable
algebraic, operadic and derived algebraic, positive degree algebraic, or modeled by
an abelian category, and so on. For each interpretation of the term one may try to
explore to what extent one can model homotopy types. We also believe the results
of this general program, including the main theorem of this paper, will be useful in
the study of the topology of geometric spaces, such as compact 3-manifolds, with
arbitrary fundamental group.

The organization of this article is as follows. In section 2 we discuss algebraic
preliminaries and discuss the notion of Ω-quasi-isomorphism. In section 3 we recall
those parts of [G95] that are relevant for this article and discuss the notion of π1-
R-equivalence. In section 4 and section 5 the main technical tools are developed,
these include a theory of simplicial twisted tensor products for simplicial coalgebras
and simplicial algebras through which we obtain the notion of the universal cover
of a connected simplicial cocommutative coalgebra as a special case. In section 6
we prove our main theorem by applying the machinery developed in the previous
sections. Finally in section 7 we prove a special case of our conjecture in the integral
case.

2. Algebraic preliminaries

In this section we introduce notation, recall several algebraic definitions and
constructions, and discuss the notion of Ω-quasi-isomorphism between simplicial
coalgebras. This notion was originally proposed in Lefevre-Hasegawa’s thesis and
it is essential in Koszul duality theory of algebraic structures; see [LH03], [LV12].
In the Lie context, a similar notion was used in [HS97].

2.1. Algebras and coalgebras. Let R be a commutative ring with unit. All
tensor products will be over R unless stated otherwise. In some of the statements
in this paper, we will assume that R is a field; when this is the case we will denote
this field by F. Later on, in section 6, we will denote an arbitrary algebraically
closed field by E.

We will consider R-algebras and R-coalgebras in two different settings: the dif-
ferential graded (dg) setting and the simplicial setting. For the definitions of dg
algebras and dg coalgebras we refer the reader to [LV12]. All differentials will have
degree −1.
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Denote by AlgR and CoalgR the categories of associative unital augmented R-
algebras and coassociative counital coaugmented R-coalgebras, respectively. De-
note by dgAlgR the category of differential graded augmented associative R-
algebras and by dgCoalgR the category of dg coaugmented conilpotent coasso-
ciative R-coalgebras. In this paper, all (co)algebras will be (co)associative and
(co)unital. We say a (co)algebra is R-flat if it is flat as an R-module.

We say that C ∈ dgCoalgR is connected if it is non-negatively graded and the
coaugmentation c : R → C induces an isomorphism R ∼= C0. Let dgCoalg0

R be the
full subcategory of connected dg coalgebras in dgCoalgR.

Let ∆ be the simplex category. A simplicial algebra is a functor A : ∆op → AlgR

and a simplicial coalgebra is a functor C : ∆op → CoalgR. Denote by sAlgR and
sCoalgR the categories of simplicial algebras and simplicial coalgebras, respectively,
with natural transformations of functors as morphisms. If C is a simplicial coalgebra
we write C([n]) = Cn, so each Cn is equipped with a coassociative coproduct usually
denoted by

∆n : Cn → Cn ⊗ Cn.

Equivalently, a simplicial (co)algebra is a set of (co)algebras {V0, V1, V2, . . . }
equipped with face maps dn

i : Vn → Vn−1, n > 0, 0 ≤ i ≥ n and degeneracy
maps sn

j : Vn → Vn+1, n ≤ 0, 0 ≤ i ≤ n, which are all (co)algebra maps and satisfy
the simplicial identities.

We say that C is a simplicial cocommutative coalgebra if each (Cn,∆n) is co-
commutative for all n ≥ 0. A simplicial coalgebra C is connected if there is an
isomorphism of coalgebras (C0,∆0) ∼= R, where R is given the coproduct deter-
mined by 1 *→ 1 ⊗ 1. We denote by scCoalgR ⊂ sCoalgR the full subcategory of
simplicial cocommutative coalgebras and by scCoalg0

R ⊂ sCoalgR the full subcat-
egory of connected simplicial cocommutative coalgebras.

The tensor product of simplicial (co)algebras V ⊗ W is defined degree-wise by
setting (V ⊗ W )n = Vn ⊗ Wn with face and degeneracy maps obtained by tensor
product, i.e. dV ⊗W

i = dV
i ⊗ dW

i and sV ⊗W
i = sV

i ⊗ sW
i .

Any simplicial coassociative coalgebra gives rise to a dg coassociative coalgebra
through the normalized chains functor

N∗ : sCoalgR → dgCoalgR

defined as follows. Given a simplicial coassociative coalgebra C with coproducts
∆n : Cn → Cn ⊗ Cn, let (N∗(C), ∂) be the dg R-module obtained as the quotient
N ′

∗(C)/D∗(C) where N ′
n(C) = Cn equipped with differential

∂ =
∑

i

(−1)idi : N ′
∗(C) → N ′

∗−1(C)

given by the alternating sum of the face maps of C, and D∗(C) ⊂ N ′
∗(C) is the sub-

complex generated by degenerate elements. The chain complex (N∗(C), ∂) becomes
a dg coassociative coalgebra when equipped with the coproduct

δ : N∗(C)
N∗(∆)−−−−→ N∗(C ⊗ C)

AW−−→ N∗(C) ⊗ N∗(C).

In the above composition, AW is the Alexander-Whitney map, which is given on
any x ⊗ y ∈ (C ⊗ C)n = Cn ⊗ Cn by

AW (x ⊗ y) =
∑

p+q=n

fp(x) ⊗ lq(y),
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where fp denotes the front p-face induced by the map [p] → [p+q] in ∆ determined
by i *→ i and lp is the last q-face induced by the map [q] → [p+ q] in ∆ determined
by i *→ i + p. The construction (C,∆) *→ (N∗(C), ∂, δ) is natural with respect to
maps of simplicial coalgebras and consequently defines a functor.

Finally, we briefly recall the notions of bialgebras and Hopf algebras. An R-
bialgebra B = (B, µ,∇, u, ε) consists of an R-module B equipped with a unital
algebra structure (µ : B ⊗ B → B, u : R → B) together with a counital coalgebra
structure (∇ : B → B ⊗ B, ε : B → R) which are compatible in the sense that the
coproduct ∇ and the counit ε are algebra maps. As a consequence of this definition,
we have that the product µ and the unit u are coalgebra maps. A map of bialgebras
is a linear map which is simultaneously an algebra and a coalgebra map. We also
have dg and simplicial versions of bialgebras defined analogously to algebras and
coalgebras. We will use the notation scBialgR to denote the category of simplicial
cocommutative bialgebras. Note that the simplicial bialgebras in scBialgR are not
required to be commutative.

A bialgebra B = (B, µ,∇, u, ε) is a Hopf algebra if there is a map s : B → B,
satisfying

µ ◦ (s ⊗ id) ◦ ∇ = u ◦ ε = µ ◦ (id ⊗ s) ◦ ∇.

The map s : B → B is called the antipode. If a bialgebra has an antipode then it
is unique. A map of Hopf algebras is a map of underlying bialgebras. Any map of
Hopf algebras preserves the antipodes.

2.2. Bar and cobar constructions. We now recall the bar and cobar functors.
We refer to [EM53], [A56] and [HMS74] for further details.

Let (A, dA) ∈ dgAlgR and suppose (M, dM ) and (N, dN ) are right and left dg
A-modules, respectively. We denote both the A-action and the product in A by a·b.
Recall that the two sided bar construction is the chain complex (B∗(N, A, M), ∂)
whose underlying graded R-module is given by

Bp(N, A, M) := (N ⊗ TsA ⊗ M)p,

where A = ker(a) denotes the kernel of the augmentation a : A → R, s is the shift
by +1 functor, and

TsA = R ⊕ sA ⊕ (sA)⊗2 ⊕ (sA)⊗3 ⊕ . . . .

The subscript on (N ⊗TsA⊗M)p means total degree p elements in N ⊗TsA⊗M .
In what follows we will drop the s for notational simplicity. We write tensors in
Bn(N, A, M) as n[a1| . . . |ak]m, where n ∈ N, m ∈ M and ai ∈ A for i = 1, . . . , k.
Hence, n[a1| . . . |ak]m ∈ Bp(N, A, M) means that |n|+ |a1|+ · · ·+ |ak|+k+ |m| = p.
The differential dbar : Bp(N, A, M) → Bp−1(N, A, M) is defined by

dbar(n[a1| . . . |ak]m) = dN (n)[a1| . . . |ak]m +
k∑

i=1

(−1)εin[a1| . . . |dAai| . . . |ak]m

+(−1)|n|+|a1|+...|ak|+kn[a1| . . . |ak]dM (m)

+(−1)|n|(n · a1)[a2| . . . |ak]m +
k∑

i=2

(−1)εi−1n[a1| . . . .|(ai−1 · ai)| . . . |ak]m

+(−1)|n|+|a1|+...|ak|+k−1n[a1| . . . |ak−1](ak · m),
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where εi = |n| + |a1 + · · · + |ai| + i. It is straightforward to check that d2
bar = 0. In

this article, we will only consider the two sided bar construction B(R, A, M) where
M is a left dg A-module and R is considered as a right dg A-module concentrated
in degree 0 and with right A-action induced by the augmentation a : A → R.

We now define the version of the cobar construction which is relevant for this
article. The cobar construction is a functor

Ω : dgCoalg0
R → dgAlgR

defined as follows. For any C = (C, ∂C ,∆) ∈ dgCoalg0
R, the underlying graded

algebra of Ω(C) is the tensor algebra

Ts−1C = R ⊕ s−1C ⊕ (s−1C)⊗2 ⊕ (s−1C)⊗3 ⊕ . . . ,

where C := C/C0, and s−1 is the shift by −1 functor. We denote monomials in
Ts−1C by {x1| . . . |xk} where xi ∈ C, dropping the s−1 for notational simplicity.
Hence, the degree of {x1| . . . |xk} ∈ Ts−1C is |x1|+ · · ·+ |xk|−k. The augmentation
is given by the canonical projection a : Ts−1C → R. The differential is defined by
extending the linear map

−s−1 ◦ ∂ ◦ s+1 + (s−1 ⊗ s−1) ◦∆ ◦ s+1 : s−1C̄ → T (s−1C̄)

as a derivation to obtain a map D : T (s−1C̄) → T (s−1C̄). The coassociativity of
∆, the compatibility of ∂ and ∆, and the fact that ∂2 = 0 together imply that
D2 = 0.

2.3. Weak equivalences of coalgebras. One of the goals of this paper is to un-
derstand the homotopical meaning of the following two notions of weak equivalences
between (simplicial and dg) coalgebras.

Definition 1.
(a) A map f : C → C ′ in dgCoalgR is a quasi-isomorphism of dg coalgebras if

the induced map on homology H∗(f) : H∗(C) → H∗(C ′) is an isomorphism.
(b) A map f : C → C ′ in sCoalgR is a quasi-isomorphism of simplicial coalgebras

if the induced map of dg coalgebras N∗(f) : N∗(C) → N∗(C ′) after applying the
normalized chains functor is a quasi-isomorphism of dg coalgebras.

Recall that a map f : C → C ′ in sCoalgR is a quasi-isomorphism if and only if
f is a weak homotopy equivalence between the underlying simplicial sets of C and
C ′.

We also have the following notions, which are stronger than the ones defined
above.

Definition 2.
(a) A map f : C → C ′ in dgCoalg0

R is an Ω-quasi-isomorphism of connected dg
coalgebras if the induced map after applying the cobar functor Ω(f) : Ω(C) → Ω(C ′)
is a quasi-isomorphism of dg algebras.

(b) A map f : C → C ′ in sCoalg0
R is an Ω-quasi-isomorphism of connected sim-

plicial coalgebras if the induced map of dg coalgebras N∗(f) : N∗(C) → N∗(C ′) after
applying the normalized chains functor is an Ω-quasi-isomorphism of connected dg
coalgebras.

Proposition 3. Any Ω-quasi-isomorphism between connected dg R-flat coalgebras
is a quasi-isomorphism, but not vice versa.
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Proof. This follows from exactly by the same arguments given in Propositions 2.4.2
and 2.4.3 of [LV12], where this is shown when R is a field. We assume flatness
since, for general rings R, the bar construction of dg R-algebras will not preserve
quasi-isomorphisms, but it does when restricted to dg R-flat algebras, such as the
cobar construction of a connected dg R-flat coalgebra. !

The two notions of Ω-quasi-isomorphism and quasi-isomorphism agree on simply
connected dg R-flat coalgebras, namely, dg R-flat coalgebras C such that C1 = 0
and C0

∼= R.

Proposition 4. Let C and C ′ be simply connected dg R-flat coalgebras. Then
f : C → C ′ is a quasi-isomorphism if and only if f is an Ω-quasi-isomorphism.

Proof. This follows from a standard spectral sequence argument; see Proposition
2.2.7 of [LV12] (in their terminology 2-connected means simply connected). !

We say that two (connected) simplicial cocommutative coalgebras C and C ′ are
(Ω-)quasi-isomorphic if there is a zig-zag of (Ω-)quasi-isomorphisms of (connected)
simplicial cocommutative coalgebras between C and C ′.

2.4. Brown’s twisted tensor product. We recall Brown’s definition of twisting
cochains and twisted tensor products. Given any C = (C, ∂C ,∆C) ∈ dgCoalg0

R

and (A, dA, µA) ∈ dgAlgR, the graded R-module HomR(C, A) becomes a graded
associative algebra with convolution product

' : HomR(C, A) ⊗ HomR(C, A) → HomR(C, A)

given by the formula
f ' g = µA ◦ (f ⊗ g) ◦∆C .

A twisting cochain is defined to be a linear map τ : C → A of degree −1 satisfying

∂Homτ + τ ' τ = 0.

We also require that the compositions C
τ−→ A

a−→ R and R
c−→ C

τ−→ A are both
zero, where a is the augmentation of A and c the coaugmentation of C. Given any
left dg A-module (M, dM ) define ∂τ : C ⊗ M → C ⊗ M by

(2.1) ∂τ (x ⊗ m) = ∂C(x) ⊗ m + (−1)|x|x ⊗ dM (m) +
∑

(x)

(−1)|x′|x′ ⊗ (τ (x′′) · m),

where we have written ∆C(x) =
∑

(x) x′ ⊗ x′′ using Sweedler notation. It follows
that ∂τ ◦ ∂τ = 0, so (C ⊗ M, ∂τ ) is a chain complex called Brown’s twisted tensor
product of C and M , which we denote simply by C ⊗τ M .

The twisted tensor product construction was originally introduced in [B59] to
model the singular chain complex of the total space of a fibration in terms of the
chains in the base and the chains in the fiber; see the main statement of [B59].

For any C ∈ dgCoalg0
R the natural map ι : C " C ∼= s−1C ↪→ ΩC is an

example of a twisting cochain called the universal twisting cochain of C. We now
prove the invariance of Brown’s twisted tensor product with respect to Ω-quasi-
isomorphisms of connected dg coalgebras in the following sense.

Theorem 5. Let C and C ′ be two connected dg R-flat coalgebras and let M be
a left dg Ω(C ′)-module. Any Ω-quasi-isomorphism g : C → C ′ induces a quasi-
isomorphism of chain complexes

g ⊗ id : C ⊗ι Ω(g)∗M → C ′ ⊗ι M,
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where Ω(g)∗M denotes the dg R-module M equipped with the left dg Ω(C)-module
structure obtained by pulling back the left Ω(C ′)-module structure on M via Ω(g) :
Ω(C) → Ω(C ′).

Theorem 5 will follow from Propositions 6 and 7 below, which use techniques
and constructions similar to those appearing in [HMS74], [LH03], and [P11].

Proposition 6. Let C be a connected dg coalgebra and denote by ι : C → Ω(C)
the universal twisting cochain. If M is any left dg Ω(C)-module, then there is a
natural quasi-isomorphism of chain complexes

(2.2) φ : B(R,Ω(C), M) → C ⊗ι M.

Proof. Define φ : B(R,Ω(C), M) → C ⊗ι M by setting φ([a1| . . . |an] ⊗ m) = 0 if
n > 1, φ = id if n = 0, and if n = 1 with a1 = {c1| . . . |ck} let

φ([{c1| . . . |ck}] ⊗ m) =

{
c1 ⊗ m, k = 1,
c1 ⊗ {c2| . . . |ck} · m, k > 1.

It is straightforward to check φ is a chain map. Moreover, φ is surjective with right
inverse given by the chain map

ρC ⊗ idM : C ⊗ι M → B(R,Ω(C), M),

where ρC : C → BΩ(C) = B(R,Ω(C), R) is the dg coalgebra map defined by

(2.3) ρC(c) = [{c}] +
∑

(c)

[{c′}|{c′′}] +
∑

(c)

[{c′}|{c′′}|{c′′′}] + . . . ,

and the number of prime subscripts denotes the number of iterated applications of
∆ : C → C ⊗ C; this notation is unambiguous since C is coassociative. Note that
ρC is well defined since C is connected and thus conilpotent.

We argue that (ker φ, dbar) is an acyclic sub-complex in order to conclude that φ
is a quasi-isomorphism. In fact, define h : ker φ → ker φ on any [a1| . . . |an] ⊗ m ∈
ker φ with an = {c1| . . . |ck} ∈ Ω(C) by

h([a1|a2| . . . |an−1|{c1| . . . |ck}] ⊗ m)

=

{
0, k = 1,
[a1|a2| . . . |an−1|{c1}|{c2| . . . |ck}] ⊗ m, k > 1.

A computation yields that, since C is conilpotent, for any x ∈ ker φ there exists a
non-negative integer nx such that (dbar ◦h+h◦dbar− id)nx = 0. This last equation
implies that if x ∈ ker φ is a cycle then there exists some y such that x = dbar(y),
as desired. !

We adapt the argument from Proposition 2.2.4 of [LV12] to prove the bar con-
struction is invariant under quasi-isomorphisms in the following sense.

Proposition 7. If f : A → A′ is a quasi-isomorphism of dg augmented R-flat
algebras and M is a dg A′-module then

B(idR, f, idM ) : B(R, A, f∗M) → B(R, A′, M)

is a quasi-isomorphism of chain complexes.
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Proof. Consider the filtration defined by

Fp(B(R, A, f∗M)) = {[a1| . . . |an] ⊗ m : n ≤ p}

and define Fp(B(R, A′, M)) similarly. These are increasing, bounded below, and ex-
haustive filtrations of chain complexes so they yield convergent spectral sequences.
The desired result follows by noting that B(idR, f, idM ) induces a chain map on
the associated quotients

Fp(B(R, A, f∗M))/Fp−1(B(R, A, f∗M)) → Fp(B(R, A′, M))/Fp−1(B(R, A′, M)),

which is a quasi-isomorphism by Künneth’s theorem, since we assumed that A and
A′ are R-flat. !

Proof of Theorem 5. Let g : C → C ′ be an Ω-quasi-isomorphism between connected
dg coassociative R-flat coalgebras. Then Ω(g) : ΩC → ΩC ′ is a quasi-isomorphism
of dg associative R-flat algebras. Consider the following commutative square

B(R,Ω(C),Ω(g)∗M)
φ⊗id !!

B(idR,Ω(g),idM )

""

C ⊗ι Ω(g)∗M

g⊗id

""
B(R,Ω(C ′), M)

φ⊗id !! C ′ ⊗ι M.

The horizontal maps are quasi-isomorphisms by Proposition 6. The left vertical
map is a quasi-isomorphism by Proposition 7. Hence, it follows that the right
vertical map is a quasi-isomorphism as well by the 2 out of 3 property. !

3. Simplicial coalgebras and localization

In this section we recall some results from [G95] relating simplicial coalgebras and
Bousfield localization and then discuss the notion of a π1-R-equivalence between
reduced Kan complexes.

Let sSet denote the category of simplicial sets. We say S ∈ sSet is a 0-reduced
simplicial set if S has a single vertex, i.e. if the set S0 is a singleton. Denote by
sSet0 ⊂ sSet the full sub-category consisting of reduced simplicial sets.

Definition 8. Let X, Y ∈ sSet. A map f : X → Y is an R-equivalence if H∗(f ; R) :
H∗(X; R) → H∗(Y ; R) is an isomorphism. We say that X and Y are R-equivalent
if there is a zig-zag of R-equivalences in sSet connecting X and Y .

Any (Kan) weak homotopy equivalence of simplicial sets is an R-equivalence,
but not vice-versa. Bousfield constructed in [B75] a model category structure on
sSet whose weak equivalences are the R-equivalences and cofibrations are the same
as those in Quillen’s model structure on sSet (the level-wise injections). A fibrant
replacement X → LRX in Bousfield’s model structure on sSet yields a model for
the R-localization of X ∈ sSet.

For any X ∈ sSet denote by RX ∈ scCoalgR the simplicial cocommutative
R-coalgebra of chains in X, namely, each (RX)n := R[Xn] is the free R-module
generated by Xn, the face and degeneracy maps are induced by those in X, and
each coproduct

∆n : (RX)n → (RX)n ⊗ (RX)n

Licensed to Purdue Univ. Prepared on Tue Jun 28 11:25:18 EDT 2022 for download from IP 128.210.107.131.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3278 MANUEL RIVERA, FELIX WIERSTRA, AND MAHMOUD ZEINALIAN

is defined on basis elements x ∈ Xn by

∆n(x) = x ⊗ x.

Note that the coproduct is induced by the diagonal map X → X × X. The counit
is induced by the map X → ∆0. This construction defines a functor

R : sSet → scCoalgR.

The functor R has a right adjoint

P : scCoalgR → sSet,

called the functor of points, whose n-simplices are given by

(P(C))n = HomCoalgR
(R, Cn).

When R is a field, which we denote by F, Goerss constructed in [G95] a cofibrantly
generated model category structure on scCoalgF with weak equivalences given by
quasi-isomorphisms of simplicial cocommutative F-coalgebras (as defined in Section
2.3) and cofibrations given by level-wise inclusions. Raptis extended this model cat-
egory structure to simplicial cocommutative R-coalgebras over an arbitrary unital
commutative ring R [R13].

The adjunction (F, P) becomes a Quillen adjunction when sSet is equipped
with the model category structure constructed by Bousfield in [B75]. For any
X ∈ sSet, the derived unit η : X → RP(FX), where RP denotes the total derived
functor of P, gives a canonical map from X to a fibrant object in Bousfield’s model
category (i.e. an “F-local space”). Furthermore, using that the category of sets is
an idempotent retract of the category of coalgebras over a fixed algebraically closed
field, Goerss proves the following theorem.

Theorem 9 (Theorem C in [G95]). If E is an algebraically closed field, then for
any X ∈ sSet, the derived unit

η : X → RP(EX)

is the Bousfield localization of X.

Using that any field extension F ⊆ E induces a weak homotopy equivalence

LFX
'−→ LEX

between Bousfield localizations, Goerss obtained, as a consequence of the previ-
ous theorem, that the simplicial cocommutative coalgebra of chains over any field
classifies spaces up to Bousfield localization in the following sense.

Theorem 10 (Theorem D in [G95]). Let F be any field and X, Y ∈ sSet. The
simplicial cocommutative coalgebras of chains FX and FY are quasi-isomorphic if
and only if X and Y are F-equivalent.

One of the main goals of this article is to relate the notion of Ω-quasi-isomorphism
between simplicial cocommutative coalgebras to the following notion.

Definition 11. Let X, Y ∈ sSet0 be two reduced Kan complexes. A map f : X →
Y is a π1-R-equivalence if it induces an isomorphism

π1(f) : π1(X)
∼=−→ π1(Y )
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between fundamental groups and the induced map at the level of universal covers

f̃ : X̃ → Ỹ

is an R-equivalence. We say X and Y are π1-R-equivalent if there is a zig-zag of
π1-R-equivalences of reduced Kan complexes connecting X and Y .

The following is analogous to Proposition 3.

Proposition 12. Any π1-R-equivalence between reduced Kan complexes is an R-
equivalence but not vice-versa.

Proof. Suppose f : X → Y is a π1-R-equivalence between Kan complexes, so that
π1(f) : π1(X) ∼= π1(Y ) := π1 is an isomorphism and

C∗(f̃ ; R) : C∗(X̃; R) → C∗(Ỹ ; R)

is a quasi-isomorphism of chain complexes, where, for any simplicial set S, we denote
by C∗(S; R) = N∗(RS), the normalized simplicial chains on S with coefficients in
R. Let R[π1] be the group algebra on π1 and consider R as a left R[π1]-module
through the natural augmentation R[π1] → R. We have a natural isomorphism of
chain complexes

C∗(X; R) ∼= C∗(X̃; R) ⊗R[π1] R

and similarly for Y . But C∗(X̃; R) is a free R[π1]-module, which implies
C∗(X̃; R) ⊗R[π1] R is a model for the derived tensor product of R[π1]-modules,

so C∗(f ; R) = C∗(f̃ ; R) ⊗R[π1] idR is a quasi-isomorphism. Clearly, the converse
is not true since an R-equivalence does not necessarily induce an isomorphism on
fundamental groups. !

Let E be an algebraically closed field and let R : scCoalgE → scCoalgE be a
fibrant replacement functor in Goerss’ model category structure on scCoalgE so
that

X → (P ◦ R)(EX)

is a functorial model for the Bousfield E-localization of X.
For any Kan complex X ∈ sSet0 with universal cover X̃, we have a natural

fibration

(3.1) (P ◦ R)(EX̃) → Eπ1(X) ×π1(X) (P ◦ R)(EX̃) → Bπ1(X),

where Eπ1(X) → Bπ1(X) is a functorial model for the universal bundle of the
group π1(X). In other words, (3.1) is the Borel fibration associated to the π1(X)
action on (P ◦ R)(EX̃). The fibration (3.1) is the fiberwise E-localization of the
fibration

(3.2) X̃ → Eπ1(X) ×π1(X) X̃ → Bπ1(X),

whose homotopy class classifies the π1(X)-space X̃. For simplicity, we denote (3.1)
by

(3.3) LEX̃ → EE(X̃) → Bπ1(X).

The following proposition is now straightforward.
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Proposition 13. Let F be a field with algebraic closure E. A map f : X → Y

between reduced Kan complexes is a π1-F-equivalence if and only if π1(f) : π1(X)
∼=−→

π1(Y ) is an isomorphism and f induces a commutative diagram

LEX̃ !!

'
""

EE(X̃)

'
""

!! Bπ1(X)

∼=
""

LEỸ !! EE(Ỹ ) !! Bπ1(Y ),

where the first two vertical arrows are weak homotopy equivalences.

Remark 14. The above notion of π1-R-equivalence between spaces can also be
described by applying the fiberwise R-completion construction, as introduced in
[BK71] and [BK72], to the fibration X̃ → X → Bπ1(X) for any reduced Kan
complex X. This follows since a map of spaces is an R-equivalence if and only
if it is a weak homotopy equivalence between R-localizations if and only if it is
a weak homotopy equivalence between R-completions [BK72]. In fact, something
stronger is true for simply connected spaces Z: the R-completion Z → R∞Z is
equivalent to the R-localization of Z, for a subring R of Q, or the field of p elements
R = Zp, as discussed in [B75]. Hence, for fibrations with simply connected fiber,

e.g. X̃ → X → Bπ1(X), the fiberwise R-completions and fiberwise R-localizations
agree.

In the proof of our main theorem in section 6, we use the fact that the Bousfield
R-localization of a space can be assumed to be given by a functorial construction
at the level of simplicial sets before passing to the homotopy category. This follows
since fibrant replacements may be taken to be functorial in Bousfield’s model cat-
egory structure as a consequence of the small object argument used in [B75]. The
completion and its fiberwise version are also functorial constructions as described
in [BK71].

4. The simplicial twisted tensor product

In this section we introduce the notion of simplicial twisted tensor product be-
tween a simplicial cocommutative coalgebra and a simplicial associative algebra.
More precisely, given a simplicial cocommutative coalgebra C, a simplicial associa-
tive algebra A, and a simplicial twisting cochain τ : C → A, we construct a sim-
plicial R-module C ⊗τ A, which is compatible with the classical twisted Cartesian
product construction. If we further assume that A has the structure of a simpli-
cial cocommutative bialgebra compatible with the simplicial twisting cochain, then
C ⊗τ A inherits a simplicial cocommutative coalgebra structure. This construction
will be used to define the universal cover of a simplicial cocommutative coalgebra
in section 5.

4.1. Notation. Throughout sections 4, 5, and 6 we assume that R is an integral
domain, whenever we say “coalgebra” and “algebra” we mean “coassociative couni-
tal R-coalgebra” and “associative unital R-algebra”, respectively.
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In order to distinguish certain factors in the coproduct of a simplicial cocom-
mutative coalgebra, we introduce a Sweedler style notation to distinguish certain
factors in the coproduct: if C is a simplicial cocommutative coalgebra we denote
each coproduct ∆n : Cn → Cn ⊗ Cn by

∆n(x) =
∑

(x)

x̃ ⊗ x̄

for any x ∈ Cn. We will sometimes omit the subscript when the context is clear and
write ∆n(x) =

∑
x̃⊗ x̄ and if there are several coproducts involved in a calculation

we write ∆n(x) =
∑

∆ x̃ ⊗ x̄.
Using this notation the identity ∆n−1(di(x)) = (di ⊗ di)∆n(x) may be written

as ∑
dix̃ ⊗ dix̄ =

∑
d̃ix ⊗ dix.

The equation for coassociativity may be written as

(id ⊗∆)∆(x) =
∑∑

x̃ ⊗ x̃ ⊗ x =
∑∑˜̃x ⊗ x̃ ⊗ x = (∆⊗ id)∆(x).

4.2. Simplicial twisting cochains and simplicial twisted tensor product.

Definition 15. For any two simplicial R-modules G and H, the simplicial tensor
product of G ⊗ H is defined as

(G ⊗ H)n := Gn ⊗ Hn,

with face and degeneracy maps given by

dG⊗H
i = dG

i ⊗ dH
i

and

sG⊗H
i = sG

i ⊗ sH
i .

For notational simplicity we will from now on drop the superscripts G, H and
G ⊗ H from the face and degeneracy maps.

Definition 16. Let (C,∆) be simplicial connected cocommutative coalgebra and
(A, µ) a simplicial associative algebra. A simplicial twisting cochain is a degree −1
map of graded R-modules τ : C → A, i.e. a collection of linear maps {τn : Cn →
An−1}n≥1, satisfying the following identities:

(1) dj−1τ = τdj , for j ≥ 2
(2) τd1 = µ ◦ (d0τ ⊗ τd0) ◦∆
(3) sj−1τ = τsj , for j ≥ 1
(4) (idC ⊗ µ) ◦ (idC ⊗ τs0 ⊗ idA) ◦ (∆⊗ idA) = idC⊗A

We now define the simplicial twisted tensor product.

Theorem-Definition 17. Let (C,∆) be simplicial cocommutative coalgebra, (A, µ)
a simplicial associative algebra, and τ : C → A a simplicial twisting cochain. For
any x ⊗ g ∈ Cn ⊗ An define

• dτ0(x ⊗ g) :=
∑

(x) d0(x̃) ⊗ d0(g) · τ (x),
• dτi (x ⊗ g) := di(x) ⊗ di(g) for i ≥ 1,
• sτj (x ⊗ g) := sj(x) ⊗ sj(g) for j ≥ 0.
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The maps dτi and sτj satisfy the simplicial identities and, consequently, define a
simplicial R-module denoted by C⊗τ A with (C⊗τ A)n = Cn⊗An. We call C⊗τ A
the simplicial twisted tensor product of C and A with respect to τ : C → A, and dτi
and sτj the twisted face and degeneracy maps.

Proof. To show that dτi and sτj define a simplicial R-module structure on C ⊗τ A
we need to check the simplicial identities. Since the simplicial twisting cochain only
affects d0, we only need to check the following identities:

(1) dτ0dj = dj−1dτ0 ,
(2) dτ0sj = sj−1dτ0 ,
(3) dτ0s0 = id.

The first identity splits into two cases: j = 1 and j ≥ 2. We first show the j = 1
case, i.e. dτ0d1 = dτ0dτ0 . Let x ⊗ g ∈ Cn ⊗ An for some n, then we get the following
sequence of identities for dτ0d1:

dτ0d1(x ⊗ g) = dτ0(d1(x) ⊗ d1(g))(4.1)

=
∑

d0(d̃1(x)) ⊗ d0(d1(g)) · τ (d1(x))(4.2)

=
∑

d0(d1(x̃)) ⊗ d0(d1(g)) · τ (d1(x))(4.3)

=
∑

d0(d0(x̃)) ⊗ d0(d0(g)) · τ (d1(x)).(4.4)

In the second line above we have used that d1 is a coalgebra map and in the third
line that d0d1 = d0d0. On the other hand, we also have:

dτ0dτ0(x ⊗ g) =
∑

dτ0(d0(x̃) ⊗ d0(g) · τ (x))(4.5)

=
∑∑

d0(d̃0(x̃)) ⊗ d0(d0(g) · τ (x)) · τ (d0(x̃))(4.6)

=
∑∑

d0(d0(˜̃x)) ⊗ d0(d0(g)) · d0(τ (x)) · τ (d0(x̃))(4.7)

=
∑∑

d0(d0(x̃)) ⊗ d0(d0(g)) · d0(τ (x̃)) · τ (d0(x))(4.8)

=
∑

d0(d0(x̃)) ⊗ d0(d0(g)) ·
(∑

d0τ ((x̃)) · τ (d0(x))
)

.(4.9)

In the second line we used the fact that d0 is a coalgebra map and an algebra map
and in the third line we used the coassociativity of the coproduct. The equality of
(4.4) and (4.9) follows from the definition of a simplicial twisting cochain.

We now verify that dτ0dj = dj−1dτ0 for j ≥ 2 by using the fact that d0 and dj−1 are
algebra and coalgebra morphisms and the identities dj−1d0 = d0dj , dj−1τ = τdj .

dj−1d
τ
0(x ⊗ g) = dj−1(

∑
d0(x̃) ⊗ d0(g) · τ (x))(4.10)

=
∑

dj−1(d0(x̃)) ⊗ dj−1(d0(g)) · dj−1(τ (x))(4.11)

=
∑

d0(dj(x̃)) ⊗ d0(dj(g)) · τ (dj(x))(4.12)

=
∑

d0(d̃j(x)) ⊗ d0(dj(g)) · τ (dj(x))(4.13)

= dτ0(dj(x ⊗ g)).(4.14)
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We continue by checking the identity dτ0sj = sj−1dτ0 as follows:

dτ0sj(x ⊗ g) = dτ0(sj(x) ⊗ sj(g))(4.15)

=
∑

d0(s̃j(x)) ⊗ d0(sj(g)) · τ (sj(x))(4.16)

=
∑

d0(sj (̃x)) ⊗ d0(sj(g)) · τ (sj(x))(4.17)

=
∑

sj−1(d0(x̃)) ⊗ sj−1(d0(g)) · sj−1τ (x)(4.18)

= sj−1d
τ
0(x ⊗ g).(4.19)

In the second line, we wrote down the definition of the twisted face map. In the
third line we used sj is a coalgebra map and in the fourth line we used d0sj = sj−1d0

and τsj = sj−1τ .
To show the last identity dτ0s0 = id, we note

dτ0s0(x ⊗ g) = dτ0(s0(x) ⊗ s0(g))(4.20)

=
∑

d0(s̃0(x)) ⊗ d0(s0(g)) · τ (s0(x))(4.21)

=
∑

d0(s0(x̃)) ⊗ d0(s0(g)) · τ (s0(x))(4.22)

= x̃ ⊗ g · τ (s0(x))(4.23)

= x ⊗ g.(4.24)

In the second line, we used the definition of the twisted face map and in the third
line, we used the fact that s0 is a coalgebra map. In the fourth line, we used
d0s0 = id and in the fifth line, we used equation (4) of Definition 16.

From these calculations it follows that the twisted face and degeneracy maps
define a simplicial R-module C ⊗τ A. !
4.3. The simplicial coalgebra structure on the simplicial twisted tensor
product. Suppose A is a simplicial algebra equipped with a simplicial cocommu-
tative coalgebra structure making it into a simplicial bialgebra. We will show that
if τ : C → A is a simplicial twisting cochain which is compatible with the cocom-
mutative coalgebra structure, then the coproducts of C and A induce a simplicial
cocommutative coalgebra structure on the simplicial twisted tensor product C⊗τ A.

Definition 18. Let C be a connected simplicial cocommutative coalgebra and A
a simplicial cocommutative bialgebra. A simplicial twisting cochain τ : C → A is
called a simplicial coalgebra twisting cochain if τ is a coalgebra map, i.e.

∆′
n−1τ = (τ ⊗ τ )∆n,

where ∆n : Cn → Cn ⊗Cn is the coproduct of C and ∆′
n−1 : An−1 → An−1⊗An−1

is the coproduct of A.

Proposition 19. Let C be a connected simplicial cocommutative coalgebra, A a
simplicial cocommutative bialgebra, and τ : C → A a simplicial coalgebra twisting
cochain. Then the twisted tensor product C⊗τA becomes a simplicial cocommutative
coalgebra with coproduct given by

∆C⊗A : C ⊗ A → C ⊗ A
⊗

C ⊗ A

∆C⊗A := (id ⊗ T ⊗ id)(∆C ⊗∆A),

where T : C ⊗ A → A ⊗ C is the flip map.
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Proof. From Theorem-Definition 17 it follows that C⊗τ A is a simplicial R-module,
so we must show that ∆C⊗A defines a simplicial cocommutative coalgebra structure,
i.e.

∆C⊗A(dτ0) = (dτ0 ⊗ dτ0)∆C⊗A.

Since the degeneracy and face maps di for i ≥ 1 commute with the coproduct, these
maps satisfy the simplicial identities. We check the compatibility of the coproduct
with dτ0 . For any x ⊗ g ∈ C ⊗τ A we have

∆C⊗A(dτ0)(x ⊗ g) =
∑

∆C

∆C⊗A (d0(x̃) ⊗ d0(g) · τ (x))

(4.25)

= (id ⊗ T ⊗ id)

(
∑

∆A

∆C(d0(x̃)) ⊗∆A(d0(g) · τ (x))

)
(4.26)

=
∑

∆C

∑

∆C

∑

∆A

d̃0(x̃) ⊗ ˜d0(g) · τ (x)
⊗

d0(x̃) ⊗ d0(g) · τ (x)(4.27)

=
∑

∆C

∑

∆C

∑

∆C

∑

∆A

d̃0(x̃) ⊗ d̃0(g) · τ̃ (x)
⊗

d0(x̃) ⊗ d0(g) · τ (x)(4.28)

=
∑

∆C

∑

∆C

∑

∆C

∑

∆A

d̃0(x̃) ⊗ d̃0(g) · τ (x̃)
⊗

d0(x̃) ⊗ d0(g) · τ (x)(4.29)

=
∑

∆C

∑

∆C

∑

∆C

∑

∆A

d0(˜̃x) ⊗ d̃0(g) · τ (x̃)
⊗

d0(x̃) ⊗ d0(g)τ (x)(4.30)

=
∑

∆C

∑

∆C

∑

∆C

∑

∆A

d0(
˜̃̃
x) ⊗ d̃0(g) · τ (x̃)

⊗
d0(˜̃x) ⊗ d0(g) · τ (x)(4.31)

=
∑

∆C

∑

∆C

∑

∆C

∑

∆A

d0(˜̃x) ⊗ d̃0(g) · τ (x̃)
⊗

d0(x̃) ⊗ d0(g) · τ (x)(4.32)

=
∑

∆C

∑

∆C

∑

∆C

∑

∆A

d0(˜̃x) ⊗ d̃0(g) · τ (x̃)
⊗

d0(x̃) ⊗ d0(g) · τ (x)(4.33)

=
∑

∆C

∑

∆C

∑

∆C

∑

∆A

d0(˜̃x) ⊗ d0(g̃) · τ (x̃)
⊗

d0(x̃) ⊗ d0(g) · τ (x)(4.34)

=
∑

∆C⊗A

dτ0(x̃ ⊗ g̃) ⊗ dτ0(x ⊗ g)(4.35)

= (dτ0 ⊗ dτ0)∆C⊗A(x ⊗ g).(4.36)

We now explain the above calculation. In the third line, we used τ is a coalgebra
map. In the fourth line, we used the bialgebra compatibility. In the fifth line, we
used τ : C → A is a coalgebra map and the compatibility of dC

0 with ∆C . In
the sixth line, we used the coproduct ∆C is coassociative. In the seventh line, we
used that dC

0 is a coalgebra map and, once more, the coassociativity of ∆C . In the
eighth line, we used the coassociativity of ∆C again. In the ninth line, we used the
cocommutativity of ∆C . In the tenth line, we used the compatibility of dA

0 with
∆A. In the eleventh line, we used the definition of dτ0 .

The tensor product of the counits of C and A defines a counit on C ⊗τ A. !
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4.4. The twisted Cartesian product and its relation to the simplicial
twisted tensor product. We recall the notion of twisted Cartesian product of
simplicial sets and discuss the universal cover of a reduced Kan complex as an
example following [C71]. Then we explain the relationship between the twisted
Cartesian product and the simplicial twisted tensor product constructions.

Definition 20. Let X be a reduced simplicial set and G be a simplicial group. A
twisting morphism is a degree −1 map t : X → G of graded sets, i.e. a sequence of
maps {tn : Xn → Gn−1}n≥1, satisfying the following identities for any x ∈ Xn

(1) di(t(x)) = t(di+1(x)) for i ≥ 1,
(2) d0(t(x)) = t(d1(x)) · t(d0(x))−1,
(3) si(t(x)) = t(si+1(x)) for i ≥ 1,
(4) e = t(s0(x)),

where e denotes the identity element of Gn. The twisted Cartesian product of X
and G with respect to t : X → G is the simplicial set defined by

(X ×t G)n := Xn × Gn,

together with face and degeneracy maps given by

d0(x, g) := (d0(x), d0(g) · t(x)),(4.37)

si(x, g) := (si(x), si(g)),(4.38)

di(x, g) := (di(x), di(g)) for i ≥ 1,(4.39)

for (x, g) ∈ (X ×t G)n.

The twisted Cartesian product construction yields a simplicial model for the uni-
versal cover of a reduced Kan complex X as follows. Denote by G the fundamental
group of X considered as a discrete simplicial set, i.e. Gn := π1(X) for all n ≥ 0
and with the identity as face and degeneracy maps. Define a twisting morphism

t : Xn → Gn−1,

by
t(x) := [d2 . . . dn(x)],

where [d2 . . . dn(x)] denotes the homotopy class of the 1-simplex d2 . . . dn(x) con-
sidered as an element of the fundamental group.

Proposition 21 ([C71, Example 6.9]). Let X be a reduced Kan complex and G the
fundamental group of X considered as a discrete simplicial group. Then the twisted
Cartesian product X̃ := X ×t G is equal to the universal cover of X. The right
action of G on X̃ is given by multiplication on the second component of the twisted
Cartesian product.

We proceed to show that if X is a reduced Kan complex and G is the fundamental
group of X seen as a discrete simplicial group, then the twisting morphism t : X →
G from section 4.4 induces a simplicial coalgebra twisting cochain τ = Rt : RX →
RG and that we have a natural isomorphism of simplicial cocommutative coalgebras
R(X ×t G) ∼= RX ⊗τ RG.

Lemma 22. If t : X → G is a twisting morphism from a reduced simplicial set X
to a simplicial group G, then τ = Rt : RX → RG is a simplicial coalgebra twisting
cochain.
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Proof. We show that τ satisfies the equations of Definition 16 and that τ is a
coalgebra map.

Equations (1) and (3) from Definition 16 follow immediately from equations (1)
and (3) of Definition 20, respectively. We show equation (2) of Definition 20 implies
equation (2) of Definition 16, i.e. τ satisfies the identity

(4.40) τd1 = µ ◦ (d0τ ⊗ τd0) ◦∆.

Since RX and RG are free as R-modules generated by the sets X and G they have
a basis. It is therefore enough to check that for any basis element x ∈ Xn ⊂ (RX)n,
we have

µ ◦ (d0τ ⊗ τd0) ◦∆(x) =(4.41)

d0τ (x) · τd0(x) =(4.42)

Rt(d1(x)) · Rt(d0(x))−1 · Rt(d0(x)) =(4.43)

Rt(d1(x)) =(4.44)

τ (d1(x)),(4.45)

where we used that x is group-like in the second line and equation (2) of Definition
20 in the third line.

We now show that equation (4) of Definition 16,

(4.46) (idRX ⊗ µ) ◦ (idRX ⊗ τs0 ⊗ idRG) ◦ (∆⊗ idRG) = idRX⊗RG,

is also satisfied. This follows since

(idRX ⊗ µRG) ◦ (idRX ⊗ τs0 ⊗ idRG) ◦ (∆RX ⊗ idRG)(x ⊗ g) =(4.47)

(idRX ⊗ µRG) ◦ (idRX ⊗ τs0 ⊗ idRG)(x ⊗ x ⊗ g) =(4.48)

x ⊗ τs0x · g =(4.49)

x ⊗ e · g =(4.50)

x ⊗ g.(4.51)

In the first line, we used x is group-like and in the third line we used equation (4)
of Definition 20.

The fact that τ is a coalgebra map follows from the fact that both RX and
RG have a basis of group-like elements and that τ preserves these basis elements.
Namely, for x ∈ X a basis element of RX, we have

∆RG(τ (x)) =(4.52)

τ (x) ⊗ τ (x) =(4.53)

(τ ⊗ τ )∆RX(x).(4.54)

!
The twisted Cartesian product is compatible with the simplicial twisted tensor

product in the following sense.

Proposition 23. Let X ×t G be the twisted Cartesian product of a simplicial set
X and a simplicial group G with respect to a twisting morphism t : Xn → Gn−1.
There is an isomorphism of simplicial cocommutative coalgebras

R(X ×t G) ∼= RX ⊗τ RG,

where τ = Rt.
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Proof. Each R-module Rn(X ×t G) has a basis of the form (x, g) with x ∈ Xn and
g ∈ Gn. Similarly (RX ⊗τ RG)n has a basis of the form x ⊗ g, again with x ∈ Xn

and g ∈ Gn. Using these bases we define a map

ϕ : R(X ×t G) → RX ⊗τ RG,

by setting

ϕ(x, g) := x ⊗ g.

We claim the map ϕ induces an isomorphism of graded R-modules, commutes with
face and degeneracy maps, and commutes with the coalgebra structures.

The fact that ϕ induces an isomorphism of graded R-modules is clear because
both R(X ×t G) and RX ⊗τ RG are free as R-modules and ϕ induces a bijection
on the bases.

Note that it is straightforward to show that ϕ commutes with the degeneracy
maps and the face maps di for i ≥ 1, so we show that ϕ(d0(x, g)) = d0(ϕ(x, g)) by
noting that

ϕ(d0(x, g)) = ϕ(d0(x), d0(g) · t(x))(4.55)

= d0(x) ⊗ d0(g) · t(x)(4.56)

= d0(x) ⊗ d0(g) · τ (x)(4.57)

= d0(ϕ(x ⊗ g)),(4.58)

where we used in the second line that on basis elements τ (x) is defined as t(x) and
in the third line that x is group-like.

Finally, the fact that ϕ is a coalgebra map follows since all basis elements are
group-like, namely

∆(ϕ(x, g)) = ∆(x ⊗ g)(4.59)

= x ⊗ g
⊗

x ⊗ g(4.60)

= ϕ(x, g)
⊗

ϕ(x, g)(4.61)

= (ϕ⊗ ϕ)∆(x, g).(4.62)

!

As an immediate consequence we have the following corollary.

Corollary 24. Let X be a reduced Kan complex and G be the fundamental group
of X seen as a discrete simplicial group. Let t : X → G be the twisting morphism
of simplicial sets from Proposition 21 and denote τ = Rt. Then RX ⊗τ RG is
isomorphic to the simplicial cocommutative coalgebra of chains on the universal
cover of X.

5. The universal cover of a simplicial coalgebra

Let C be a connected simplicial coassociative R-coalgebra. The chain complex of
normalized chains N∗(C) becomes a differential graded (dg) connected coassociative
coalgebra when equipped with the coproduct given by

δ : N∗(C)
N∗(∆)−−−−→ N∗(C ⊗ C)

AW−−→ N∗(C) ⊗ N∗(C),
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where ∆ denotes the coproduct of C and AW the Alexander-Whitney map, as
previously recalled in section 2. For any such C, the cobar construction ΩN∗(C) =
Ω(N∗(C), δ) yields a dg associative algebra defining a functor

ΩN∗ : sCoalg0
R → dgAlgR,

where sCoalg0
R is the category of connected simplicial coalgebras and dgAlgR the

category of dg algebras.
The backbone for this section comes from the following result, which shows

that the dg bialgebra of normalized chains on the based loop space is completely
determined by the simplicial cocommutative coalgebra of chains on the underlying
Kan complex.

Theorem 25. Let X be a reduced Kan complex with X0 = {b} and denote by
C∗(X; R) = N∗(RX) the dg coassociative coalgebra of normalized chains on X with
R-coefficients. Then
(1) there exists a natural quasi-isomorphism of dg algebras

ϕ : ΩC∗(X; R) / C∗(Ωb|X|),
where Ωb|X| denotes the topological monoid of Moore loops based at b on the geo-
metric realization |X|, and
(2) there exists a natural coproduct

∇ : ΩC∗(X; R) → ΩC∗(X; R) ⊗ ΩC∗(X; R)

making ΩC∗(X; R) a dg bialgebra such that ϕ becomes a quasi-isomorphism of dg
bialgebras and for any α ∈ (ΩC∗(X; R))0

∇0(α) = α⊗ α + 1R ⊗ α + α⊗ 1R.

Proof. Part (1) is an extension of a classical theorem of Adams proven in [RZ16]
and [R19] by relating the cobar construction to a cubical version of the left adjoint
of the homotopy coherent nerve functor. Part (2) is shown in [RZ19]. !

A direct consequence of the above result is that H0(ΩC∗(X; R)) is naturally
isomorphic to the fundamental group ring. However, we have decided to include
a direct, self contained, and elementary proof for this particular result since it
showcases an idea that will be generalized in section 5.1 for the construction of the
fundamental bialgebra of an arbitrary simplicial cocommutative coalgebra.

Theorem 26. Let X be a reduced Kan complex and denote by C = RX the con-
nected simplicial cocommutative coalgebra of chains. Then there is a natural iso-
morphism of R-algebras

H0(ΩN∗(C)) ∼= R[π1(X)]

between the 0-th homology of the cobar construction of the connected dg coassociative
coalgebra (N∗(C), δ) and the fundamental group algebra of X. Consequently, the
R-algebra H0(ΩN∗(C)) extends to a cocommutative Hopf algebra whose group-like
elements form a group isomorphic to π1(X).

Proof. We have

H0(ΩN∗(C)) =
(ΩN∗(C))0

DΩN∗(C)((ΩN∗(C))1)
.

The free associative algebra (ΩN∗(C))0 has an R-linear basis given by monomials
{σ̄1| . . . |σ̄n} where each σi is a non-degenerate 1-simplex in X and σ̄i denotes its
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class in N1(C) = N1(RX). The free multiplication of (ΩN∗(C))0 is then given by
concatenation of monomials. The quotient relation on (ΩN∗(C))0 that yields the
0-th homology R-algebra is generated by declaring DΩN∗(C){x̄} to be zero for any
non-degenerate x ∈ X2, or equivalently, by the equivalence relation

{d2(x)|d0(x)} ∼ −{d0(x)} + {d1(x)} − {d2(x)},

where di : X2 → X1 is the i-th face map for i = 0, 1, 2.
On the other hand, R[π1(X)] is freely generated as an R-module by the elements

of π1(X). The group π1(X) may be identified with the groupoid with a single object
τ1(X), where τ1 : sSet → Cat is the left adjoint of the nerve functor. Recall that
τ1(X) is given by imposing an equivalence relation on the monoid freely generated
by X1. The equivalence relation is generated by declaring

σ2 · σ0 ∼′ σ1

for σi ∈ X1, i = 0, 1, 2, if and only if there exists some x ∈ X2 with di(x) = σi for
i = 0, 1, 2. For any σ ∈ X1 we denote by [σ] the ∼′-equivalence class of σ in π1(X).
The unit of the group algebra R[π1(X)] corresponds to 1R[s0(∗)], where ∗ denotes
the single vertex of X and s0 : X0 → X1 the degeneracy map.

Define a map of R-algebras

φ : (ΩN∗(C))0 → R[π1(X)]

by setting
φ : 1R *→ 1R[s0(∗)]

and
φ : {σ̄} *→ [σ] − 1R[s0(∗)]

for any non-degenerate 1-simplex σ ∈ X1 and then extending φ as an algebra map
to monomials of arbitrary length in (ΩN∗(C))0. We check φ preserves equivalence
relations so it induces a well defined map on homology, which we also denote by

φ : H0(ΩN∗(C)) → R[π1(X)].

This follows from the computation

φ({d2(x)|d0(x)} + {d0(x)} − {d1(x)} + {d2(x)}) =

([d2(x)] − 1R[s0(∗)]) · ([d0(x)] − 1R[s0(∗)]) + [d0(x)]−
1R[s0(∗)] − [d1(x)] + 1R[s0(∗)] + [d2(x)] − 1R[s0(∗)] =

[d2(x)] · [d0(x)] − [d1(x)].

The map φ : H0(ΩN∗(C)) → R[π1(X)] is clearly an isomorphism of algebras. In
fact, the inverse

φ−1 : R[π1(X)] → H0(ΩN∗(C))

is determined by
φ−1 : 1R[s0(∗)] *→ 1R

and
φ−1 : [σ] *→ {σ̄} + 1R

for any non-degenerate σ ∈ X1. Recall that the group algebra R[π1(X)] has a
cocommutative coproduct

∇ : R[π1(X)] → R[π1(X)] ⊗ R[π1(X)]
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determined by setting

∇(g) := g ⊗ g

for any g ∈ π1(X). The counit ε : R[π1(X)] → R is determined by setting ε(g) := 1R

for any g ∈ π1(X). Moreover, the algebra R[π1(X)] together with the coproduct
∇ is a cocommutative Hopf algebra with antipode induced by the inverse map
g *→ g−1. Thus H0(ΩN∗(C)) inherits a cocommutative Hopf algebra structure with
coproduct

∇0 : H0(ΩN∗(C)) → H0(ΩN∗(C)) ⊗ H0(ΩN∗(C))

given by

∇0 := (φ−1 ⊗ φ−1) ◦ ∇ ◦ φ.

In fact, the coproduct ∇0 : H0(ΩN∗(C)) → H0(ΩN∗(C))⊗H0(ΩN∗(C)) is induced
from a coproduct

∇0 : (ΩN∗(C))0 → (ΩN∗(C))0 ⊗ (ΩN∗(C))0

before passing to homology, which is determined by the formula

∇0(α) = α⊗ α + 1R ⊗ α + α⊗ 1R

for any generator α ∈ (ΩN∗(C))0, i.e. any α = {σ̄1| . . . |σ̄n}, where each σi ∈ X1 is
a non-degenerate 1-simplex. !

Remark 27. If X is an arbitrary reduced simplicial set (not necessarily a Kan
complex) and C = RX, we may recover the fundamental group ring of X from C by
incorporating the derived localization of [CHL18] as follows. The same formula for
∇0 given in the previous proof induces a natural bialgebra structure on H0(ΩN∗(C))
(this construction did not use the Kan property of X). In this case, H0(ΩN∗(C))
may not be isomorphic as an algebra to the fundamental group algebra R[π1(|X|)] of
the geometric realization of X. However, we may consider the derived localization
of the dg algebra ΩN∗(C) at the set of cycles S ⊂ (ΩN∗(C))0 given by the group
like elements of

∇0 : (ΩN∗(C))0 → (ΩN∗(C))0 ⊗ (ΩN∗(C))0.

This yields a new dg algebra ΩN∗(C)[S−1] which is quasi-isomorphic to the chains
on the based loop space of |X|. Hence H0(ΩN∗(C)[S−1]) is isomorphic to the
fundamental group algebra of |X|. When X is a reduced Kan complex, there is no
need to perform this derived localization to obtain the fundamental group algebra.
The idea of localizing the cobar construction at a basis of degree 0-elements, to
address the non-simply connected case, was originally treated in [HT10] and briefly
described in [Ko09]. Furthermore, the relationship between the localized cobar
construction and the chains on Kan’s “loop group” construction is explained in
[HT10]. We expect these constructions to be useful when describing small algebraic
models for non-simply connected homotopy types.

5.1. The fundamental bialgebra. We now describe how to associate a cocom-
mutative bialgebra to any abstract connected simplicial commutative coalgebra C
in such a way that we recover the discussion above when C = RX for some reduced
Kan complex X.
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Let C be a connected simplicial cocommutative coalgebra C. Recall that we
denote the coproduct ∆1 : C1 → C1 ⊗ C1 by

(5.1) x *→
∑

(x)

x̃ ⊗ x.

Since the degeneracy map s0 : C0 → C1 is a coalgebra map, ∆1 : C1 → C1 ⊗ C1

induces a well defined coproduct

∆1 : N1(C) → N1(C) ⊗ N1(C)

for which we use exactly the same Sweedler type notation as in 5.1 above.
Define a coproduct

∇C
0 : (ΩN∗(C))0 → (ΩN∗(C))0 ⊗ (ΩN∗(C))0

on the degree zero elements of the cobar construction of N∗(C) as follows. On the
unit 1 ∈ (ΩN∗(C))0 we let

∇C
0 (1) := 1R ⊗ 1R

and on any {x} ∈ (ΩN∗(C))0, where x ∈ N1(C), we define

∇C
0 ({x}) :=

∑

(x)

{x̃} ⊗ {x} + 1R ⊗ {x} + {x} ⊗ 1R.

Then extend ∇C
0 as an algebra map to monomials in (ΩN∗(C))0 of arbitrary length.

It is clear that ∇C
0 is natural, coassociative, cocommutative, and counital with

counit given by the map

(ΩN∗(C))0 = R ⊕ T>0s−1(N1(C)) → R

which is the identity on the first summand and zero everywhere else. When C is
clear from the context we write ∇C

0 = ∇0.
We now prove that the algebraic structure used to determine the fundamental

group in Theorem 26 is completely determined by the Ω-quasi-isomorphism type of
the simplicial cocommutative coalgebra of chains.

Proposition 28. Let C be a connected simplicial cocommutative coalgebra. The
coproduct ∇0 defined above induces a coalgebra structure on H0(ΩN∗(C)) making
it into a cocommutative bialgebra. Furthermore, if C = RX for a reduced Kan
complex X, there is an isomorphism of bialgebras H0(ΩN∗(C)) ∼= R[π1(X)].

Proof. We prove that ∇0 induces a coproduct on homology H0(ΩN∗(C)). Define a
map

∇1 : (ΩN∗(C))1 → (ΩN∗(C))0 ⊗ (ΩN∗(C))1
⊕

(ΩN∗(C))1 ⊗ (ΩN∗(C))0

as follows. On any {y} ∈ (ΩN∗(C))1, where y ∈ N2(C), define

∇1({y}) :=
∑

(ỹ)

∑

(y)

{d2(˜̃y)|d0(ỹ)} ⊗ {y}

+ {d2(ỹ)} ⊗ {y} + {d0(ỹ)} ⊗ {y} + {ỹ} ⊗ {d1(y)}
+ {y} ⊗ 1R + 1R ⊗ {y}.

Above we have denoted the coproduct N2(C) → N2(C) ⊗ N2(C) (induced by ∆2 :
C2 → C2 ⊗ C2) by y *→

∑
(y) ỹ ⊗ y.
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For any {y1| . . . |yn} ∈ (ΩN∗(C))1, where each yi belongs to either N1(C) or
N(C2), ∇1 is defined by extending multiplicatively, i.e. by letting

∇1({y1| . . . |yn}) := ∇|y1|−1(y1) · ∇|y2|−1(y2) · · · · · ∇|yn|−1(yn),

where |yi| denotes the degree of yi and we have denoted by · the product on the
tensor product of algebras ΩN∗(C)⊗ΩN∗(C). Then a straightforward computation
yields that

(DΩN∗(C) ⊗ id + id ⊗ DΩN∗(C)) ◦ ∇1 = ∇0 ◦ DΩN∗(C),

where DΩN∗(C) is the cobar construction differential. This implies that ∇0 induces
a well defined map on homology, which we denote by the same symbol

∇0 : H0(ΩN∗(C)) → H0(ΩN∗(C)) ⊗ H0(ΩN∗(C)).

By construction, this coproduct is a map of algebras. Hence, it defines an R-
bialgebra structure on H0(ΩN∗(C)). In the case when C = FX for a reduced Kan
complex X each ∆n : Cn → Cn ⊗ Cn is group-like on the basis elements given by
the simplices in Xn. Thus the coproduct ∇0 coincides with the corresponding one
constructed in the proof of Theorem 26. !

Remark 29. The above coproduct ∇0 extends a construction of Baues described
in the simply connected setting [B98]. It may be also be interpreted as an explicit
description of the coproduct on degree 0 of the cobar construction of differential
graded coalgebra over the surjection operad (a particular model for the E∞-operad).

Definition 30. For any connected simplicial cocommutative coalgebra C we call
H0(ΩN∗(C)), equipped with the cocommutative bialgebra structure constructed
above, the fundamental bialgebra of C.

Remark 31. Theorem 26 says that for X a reduced Kan complex, H0(ΩN∗(C))
is isomorphic to R[π1(X)] as a Hopf algebra, so that by applying the group-like
elements functor

G : HalgR → Grp

from the category of Hopf algebras to the category of groups, we obtain a natural
isomorphism of groups

G(H0(ΩN∗(C))) ∼= π1(X).

In the above isomorphism we use the fact that for any integral domain R and
group G the set of group-like elements in R[G] forms a group naturally isomorphic
to G. Conceptually, Proposition 28 is saying that the fundamental group of a Kan
complex is completely determined from the natural algebraic structure (simplicial
cocommutative coalgebra) of the chains C = RX and that if C ′ is any other con-
nected simplicial cocommutative coalgebra which is Ω-quasi-isomorphic to C then
there is an isomorphism G(H0(ΩN∗(C ′))) ∼= π1(X). Hence, the fundamental group
is determined by the quadratic equation

∇(α) = α⊗ α,

for α ∈ H0(ΩN∗(C)).
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5.2. The fundamental simplicial twisting cochain. We can consider the co-
commutative bialgebra H0(ΩN∗(C)) described above as a simplicial cocommutative
bialgebra by placing H0(ΩN∗(C)) in each degree and defining the face and degener-
acy maps to be the identity maps. For notational simplicity we denote this simplicial
cocommutative bialgebra by π(C). The construction of π(C) is natural with re-
spect to maps of connected simplicial cocommutative coalgebras and consequently
induces a functor

π : scCoalg0
R → scBialgR,

where scCoalg0
R denotes the category of connected simplicial cocommutative R-

coalgebras and scBialgR the category of simplicial cocommutative (possibly non-
commutative) R-bialgebras. We define a simplicial coalgebra twisting cochain from
C to π(C) as follows.

Proposition 32. For any connected simplicial cocommutative coalgebra C there is
a simplicial coalgebra twisting cochain

τ : Cn → π(C)n−1

for n ≥ 1, defined by

τ (x) := [{d2 . . . dn(x)}] + ε(x)e,

where [{d2 . . . dn(x)}] ∈ H0(ΩN∗(C)) denotes the homology class of {d2 . . . dn(x)} ∈
(ΩN∗(C))0, ε(x) denotes the counit applied to x, and e is the unit element of π(C).

Proof. We show that τ satisfies the equations of Definition 16 and that it is a map
of coalgebras.

It is clear that equations (1) and (3) of Definition 16 are satisfied, so we check
equations (2) and (4). For equation (2) we need to check that

τd1(x) = µ(d0τ ⊗ τd0)∆C(x),

where ∆C is the coproduct of C. Using the simplicial identities we can write the
left hand side as

τd1(x) = [{d1d3 . . . .dn(x)}] + ε(x)e.

On the other hand, the right hand side is equal to

µ(d0τ ⊗ τd0)∆C(x)

=
∑

(x)

[{d2 . . . dn(x̃)|d0d3 . . . dn(x)}]+[{d0d3 . . . dn(x)}]+[{d2 . . . dn(x)}]+ε(x)e.

To show that these two are equal in homology we find an α ∈ (ΩN∗(C))1 bounding
(5.2)∑

(x)

{d2 . . . dn(x̃)|d0d3 . . . dn(x)}

+ {d0d3 . . . dn(x)} + {d2 . . . dn(x)} + ε(x)e − ({d1d3 . . . .dn(x)} + ε(x)e).

One explicit choice of such a boundary is given by α = {d3 . . . dn(x)}; a straight-
forward computation shows that DΩN∗(C){d3 . . . dn(x)} is exactly equation (5.2),
proving that τ satisfies equation (2) of Definition 16.

We now show that τ satisfies equation (4) of Definition 16, i.e.

(idC ⊗ µ) ◦ (idC ⊗ τs0 ⊗ idπ(C)) ◦ (∆C ⊗ idπ(C))(x ⊗ g) = x ⊗ g,
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for any x ⊗ g ∈ C ⊗ π(C). Note that

(idC ⊗ µ) ◦ (idC ⊗ τs0 ⊗ idπ(C)) ◦ (∆C ⊗ idπ(C))(x ⊗ g) =(5.3)
∑

(x)

x̃ ⊗ τs0(x)g =(5.4)

∑

(x)

x̃ ⊗ [{d2 . . . dn+1s0(x)|g}] +
∑

(x)

x̃ε(x) ⊗ g.(5.5)

Using the simplicial identities we see that d2 . . . dn+1s0(x̄) = s0d1 . . . dn(x̄), which
is degenerate and therefore zero in the normalized chain complex N∗(C). We are
left with

∑
(x) x̃ε(x̄) ⊗ g, but since ε is the counit and e is the unit, this is exactly

x ⊗ g.
We now prove that τ : C1 → π(C)0 is a coalgebra map. First note τ : C1 →

π(C)0 = H0(ΩN∗(C)) is the sum of the projection map and the counit times the
unit element. The projection map from C1 to H0(ΩN∗(C)) is given by sending an
element x ∈ C1 to the homology class [{x}] ∈ H0(ΩN∗(C)).

We verify

∇0(τ (x)) = (τ ⊗ τ )∆1(x),

where ∆1 : C1 → C1 ⊗ C1 is the coproduct of C1 and ∇0 : π(C) → π(C)⊗ π(C) is
the coproduct from section 5.1. The right hand side is equal to

∑

(x)

τ (x̃) ⊗ τ (x) =
∑

(x)

[{x̃}] ⊗ [{x}] + [{x̃}] ⊗ ε(x)e + ε(x̃)e ⊗ [{x}] + ε(x̃)e ⊗ ε(x)e

(5.6)

=
∑

(x)

[{x̃}] ⊗ [{x}] + [{x}] ⊗ e + e ⊗ [{x}] + ε(x)e ⊗ e,(5.7)

where in the second line we used that ε is a counit. This is exactly the left hand
side, since by the definition of ∇0 we have

∇0(τ (x)) = ∇0([x]) + ∇0(ε(x)e)(5.8)

=
∑

(x)

[{x̃}] ⊗ [{x}] + [{x}] ⊗ e + e ⊗ [{x}] + ε(x)e ⊗ e.(5.9)

It now follows immediately that for each n > 1 the map τ : Cn → π(C)n−1 is a
coalgebra map. !

Definition 33. We call the map τ : C → π(C), defined in the above proposition,
the fundamental simplicial twisting cochain of C.

5.3. The universal cover. We now assemble a new simplicial cocommutative
coalgebra from a connected simplicial cocommutative coalgebra C together with
π(C) and τ : C → π(C).

Definition 34. Let C be a connected simplicial cocommutative coalgebra and
τ : C → π(C) the fundamental simplicial twisting cochain described in the previous
section. The universal cover of C is the simplicial cocommutative coalgebra defined
as the simplicial twisted tensor product C ⊗τ π(C) with respect to τ : C → π(C)
equipped with the coproduct described in Proposition 19. Denote the universal
cover of C by C̃ = C⊗τπ(C). The universal cover is clearly a functorial construction
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with respect to maps of connected simplicial cocommutative coalgebras and so it
defines a functor

˜: scCoalg0
R → scCoalgR.

Note that C̃ has a natural right π(C)-module structure.

When C = RX for a reduced Kan complex X, then C̃ is exactly the simplicial
cocommutative coalgebra of chains on the universal cover X̃. This is stated in the
following proposition, which is a straightforward consequence of Corollary 24.

Proposition 35. If X is a reduced Kan complex, then there is an isomorphism of
simplicial cocommutative coalgebras between RX̃ and R̃X.

The following lemma relates the simplicial twisted tensor product C ⊗τ π(C) to
Brown’s twisted tensor product in the dg setting.

Lemma 36. Let C, π(C), and τ : C → π(C) be as above. Then the dg R-module
of normalized chains N∗(C ⊗τ π(C)) is naturally isomorphic to the twisted tensor
product N∗(C) ⊗N(τ) N∗(π(C)) in the sense of Brown.

Proof. The normalized chain complex N∗(π(C)) is a dg algebra concentrated in
degree 0. In fact, by definition N0(π(C)) = H0(ΩN∗(C)). Also note that, for any
n ≥ 0, we have Nn(C ⊗ π(C)) ∼= Nn(C) ⊗ H0(ΩN∗(C)). Hence, we have a natural
isomorphism of graded R-modules N∗(C ⊗τ π(C)) ∼= N∗(C) ⊗N(τ) N∗(π(C)). To
see that the differentials are the same, first observe that Brown’s twisting cochain
N(τ ) : Nn(C) → Nn−1(π(C)) is only non-zero for n = 1 where it is given by the
projection map

N(τ )(y) = [{y}] ∈ H0(ΩN∗(C)),

for any y ∈ N1(C). Then the twisting term in the differential of Brown’s twisted ten-
sor product is a map dN(τ) : N∗(C)⊗N(τ)H0(ΩN∗(C)) → N∗(C)⊗N(τ)H0(ΩN∗(C))
given by

dN(τ)(x ⊗ g) =
∑

(x)

d0(x̃) ⊗ g · [{d2 . . . dn(x)}] .

Thus, for any x ⊗ g ∈ Nn(C) ⊗N(τ) H0(ΩN∗(C)), the differential of the Brown
twisted tensor product is given by

(dC ⊗ id + dN(τ))(x ⊗ g) =
n∑

i=0

(−1)idi(x) ⊗ g +
∑

(x)

d0(x̃) ⊗ g · [{d2 . . . dn(x)}],

which is precisely
∑n

i=0(−1)idτi (x ⊗ g), the differential of N∗(C ⊗τ π(C)). !

Remark 37. The above lemma does not hold in general if we replace π(C) with an
arbitrary simplicial algebra. If the non-degenerate simplices of A are not concen-
trated in degree 0, there is no isomorphism N∗(C ⊗A) ∼= N∗(C)⊗N∗(A); this can
be solved using a cubical version of the twisted product, as described in [KS05].
See [S61] for a more general statement regarding relation between the chains on a
twisted Cartesian product and Brown’s twisted tensor products.

Any Ω-quasi-isomorphism of connected simplicial cocommutative coalgebras in-
duces a weak equivalence between universal covers as we now show.
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Theorem 38. The universal cover functor

˜: scCoalg0
R → scCoalgR

sends Ω-quasi-isomorphisms between simplicial cocommutative R-flat coalgebras to
quasi-isomorphisms.

Proof. Let f : C → C ′ be an Ω-quasi-isomorphism between two connected simplicial
cocommutative R-flat coalgebras. Then ΩN∗(f) : ΩN∗(C) → ΩN∗(C ′) is a quasi-
isomorphism of dg R-flat algebras. In particular, H0(ΩN∗(f)) : H0(ΩN∗(C)) →
H0(ΩN∗(C ′)) is an isomorphism of algebras (in fact, of bialgebras). By Theorem
5, f induces a quasi-isomorphism of chain complexes

N∗(f) ⊗ H0(ΩN∗(f)) : N∗(C) ⊗N(τ) H0(ΩN∗(C)) → N∗(C
′) ⊗N(τ) H0(ΩN∗(C

′))

between Brown twisted tensor products. Lemma 36 then implies

N∗(f ⊗ π(f)) : N∗(C ⊗τ π(C)) → N∗(C
′ ⊗τ π(C ′))

is a quasi-isomorphism. !

6. Main theorem

Using the machinery developed in the previous sections, together with Theorem
C of [G95], we prove the following.

Proposition 39. Let E be an algebraically closed field and X and Y two reduced
Kan complexes. If the connected simplicial cocommutative coalgebras of chains EX
and EY are Ω-quasi-isomorphic then X and Y are π1-E-equivalent.

Remark 40. In the proofs of Proposition 39 and Theorem 41, we will need to use
the naturality of the universal cover construction, it is therefore important that
we use explicit zig-zags of equivalences and not just morphisms in the homotopy
category.

Proof of Proposition 39. Suppose that EX and EY are Ω-quasi-isomorphic, so there
is a zig-zag of connected simplicial cocommutative coalgebras

(6.1) EX
'Ω−−→ C1

'Ω←−− · · · 'Ω−−→ Cn
'Ω←−− EY,

where each map is an Ω-quasi-isomorphism. In particular, there are isomorphisms

(6.2) H0(ΩN∗(EX)) ∼= H0(ΩN∗(C1)) ∼= · · · ∼= H0(ΩN∗(Cn)) ∼= H0(ΩN∗(EY ))

of fundamental bialgebras. Since X and Y are Kan complexes, Theorem 26 implies
that by applying the functor of group-like elements we obtain an isomorphism

π1(X) ∼= π1(Y ) := π1

of fundamental groups. Apply the universal cover functor ˜: scCoalg0
E→scCoalgE

to the zig-zag in (6.1) and obtain a zig-zag of simplicial cocommutative coalgebras

(6.3) ẼX
'−→ C̃1

'←− · · · '−→ C̃n
'←− ẼY .

Each object in the zig-zag (6.3) has a π1-action, each map is π1-equivariant, and
by Theorem 38, each map is a quasi-isomorphism of simplicial cocommutative
coalgebras. By Proposition 35, the endpoints in zig-zag (6.3) are naturally π1-
equivariantly isomorphic to EX̃ and EỸ , respectively. Thus, we get a zig-zag of
π1-equivariant quasi-isomorphisms of simplicial cocommutative π1-coalgebras

(6.4) EX̃
'−→ C̃1

'←− · · · '−→ C̃n
'←− EỸ .
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Apply to the above zig-zag of quasi-isomorphisms the composition of functors
(P ◦ R) where R : sCoalgE → sCoalgE is a fibrant replacement functor for Go-
erss’ model category structure on simplicial cocommutative coalgebras and P :
sCoalgE → sSet is the functor of points. We obtain a zig-zag of E-local spaces
with π1-actions

(6.5) (P ◦ R)EX̃
'−→ (P ◦ R)C̃1

'←− · · · '−→ (P ◦ R)C̃n
'←− (P ◦ R)EỸ ,

where each map is a π1-equivariant weak homotopy equivalence. By Theorem C of
[G95] the endpoints of (6.5) are the E-localizations of the universal covers X̃ and
Ỹ , respectively.

By adding the derived unit of adjunction (E, P) to each end of the above zig-zag,
we obtain

(6.6) X̃
ηX̃−−→ (P ◦R)EX̃

'−→ (P ◦R)C̃1
'←− · · · '−→ (P ◦R)C̃n

'←− (P ◦R)EỸ
ηỸ←−− Ỹ .

To turn this zig-zag of F-equivalences between the π1-equivariant Kan complexes
X̃ and Ỹ into a zig-zag of π1-F-equivalences of Kan complexes between X and Y ,
we would like to take the quotient by π1 on every space in the zig-zag. We cannot
do this directly, because the derived functor of points does not necessarily produce
simplicial sets with a free π1-action. We therefore first need to apply the Borel
construction to make sure that all the π1 actions are free. After applying the Borel
construction we get

(6.7) Eπ1 ×π1 X̃
ψX−−→ Eπ1 ×π1 (P ◦ R)EX̃

'−→ Eπ1 ×π1 (P ◦ R)C̃1
'←− · · ·

· · · '−→ Eπ1 ×π1 (P ◦ R)C̃n
'←− Eπ1 ×π1 (P ◦ R)EỸ

ψY←−− Eπ1 ×π1 Ỹ .

We claim that every map in the sequence of spaces (6.7) is a π1-E-equivalence. Note
that because the two ends are weakly homotopy equivalent to X and Y , respectively,
this would establish a zig-zag of π1-E-equivalences between X and Y .

All of the following maps are weak homotopy equivalences and therefore π1-E-
equivalences

(6.8) Eπ1 ×π1 (P ◦ R)EX̃
'−→ Eπ1 ×π1 (P ◦ R)C̃1

'←− · · ·

· · · '−→ Eπ1 ×π1 (P ◦ R)C̃n
'←− Eπ1 ×π1 (P ◦ R)EỸ .

Therefore, we just need to argue that ψX : Eπ1 ×π1 X̃ → Eπ1 ×π1 (P ◦ R)EX̃ is a
π1-E-equivalence (the argument for ψY will be exactly the same). The map ψX is
the induced map on the coinvariants, forming the following commutative diagram

π1
!!

=

""

Eπ1 × X̃ !!

id×ηX̃

""

Eπ1 ×π1 X̃

ψX

""

π1
!! Eπ1 × (P ◦ R)EX̃ !! Eπ1 ×π1 (P ◦ R)EX̃.

The two spaces in the middle column of the above diagram are simply connected
and the horizontal maps in the right hand side square are universal covers. It
follows that ψX induces an isomorphism on fundamental groups. The middle map
is an E-equivalence since

ηX̃ : X̃ → (P ◦ R)EX̃,

the derived unit of the adjunction (E, P), is the Bousfield E-localization of X̃.
Hence, ψX is a π1-E-equivalence. !
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Recall that if X is a simplicial set and F is any field with algebraic closure E then
the field extension F ↪→ E induces a weak homotopy equivalence between localiza-
tions LFX

'−→ LEX [G95]. Furthermore, for any field F, the simplicial cocommu-
tative F-coalgebra of chains on a space, under quasi-isomorphisms, determines the
space up to Bousfield F-localization (Theorem D in [G95]). Using Proposition 39,
we show that, for any field F, the F-chains in X, regarded as a connected simplicial
cocommutative F-coalgebra up to Ω-quasi-isomorphism, determines reduced Kan
complexes up to π1-F-equivalence. This is our main theorem.

Theorem 41. For any field F, two reduced Kan complexes X and Y are π1-F-
equivalent if and only if the connected simplicial cocommutative coalgebras of chains
FX and FY are Ω-quasi-isomorphic.

Proof. We first show that if X and Y are π1-F-equivalent then FX and FY are
Ω-quasi-isomorphic. It suffices to prove that any map f : X → Y between reduced
Kan complexes which induces an isomorphism on fundamental groups

π1(f) : π1(X) ∼= π1(Y ) := π1

and an F-equivalence between universal covers

f̃ : X̃ → Ỹ

induces an Ω-quasi-isomorphism

N∗(f) : N∗(FX) → N∗(FY )

of connected dg coalgebras.
Since X and Y are reduced, X̃ and Ỹ have induced base points. Let Sing1|X̃|

be the singular Kan complex consisting of all singular simplices σ : |∆n| → |X̃|, for
any n ≥ 0, that collapse the 1-skeleton of |∆n| to the basepoint of |X̃| and define
Sing1|Ỹ | similarly. Since X̃ and Ỹ are both simply connected, the inclusions of
Kan complexes

Sing1|X̃| ↪→ Sing|X̃|
and

Sing1|Ỹ | ↪→ Sing|Ỹ |
are natural homotopy equivalences. We claim that the map

Sing1|f̃ | : Sing1|X̃| → Sing1|Ỹ |
is an F-equivalence, or equivalently, that it induces a quasi-isomorphism

N∗(|f̃ |) : N∗(FSing1|X̃|) → N∗(FSing1|Ỹ |)
between the simply connected dg coalgebras of normalized chains. This follows from
the 2-out-of-3 axiom for F-equivalences by considering the commutative diagram

Sing1|X̃|
Sing1|f̃ |!!

'
""

Sing1|Ỹ |

'
""

Sing|X̃|
Sing|f̃ | !! Sing|X̃|

X̃

'

##

f̃

!! Ỹ

'

##
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where the vertical maps are all homotopy equivalences, and consequently F-equiva-
lences, and the bottom horizontal map f̃ is an F-equivalence by assumption.

By Proposition 4, quasi-isomorphisms of simply connected dg coalgebras are
Ω-quasi-isomorphisms, hence we get an induced quasi-isomorphism

ΩN∗(|f̃ |) : ΩN∗(FSing1|X̃|) → ΩN∗(FSing1|Ỹ |)

of dg algebras. By Adams’ classical cobar theorem, it follows that f̃ : X̃ → Ỹ
induces a quasi-isomorphism

C∗(Ω|f̃ |) : C∗(Ω|X̃|; F) → C∗(Ω|Ỹ |; F)

between the dg algebras of normalized singular chains on the based loop spaces of
X̃ and Ỹ , respectively. It now follows that the dg algebra map

C∗(Ω|f |) : C∗(Ω|X|; F) → C∗(Ω|Y |; F)

is a quasi-isomorphism since we have a commutative square

H∗(Ω|X̃|; F) ⊗ F[π1]

H∗(Ω|f̃ |)⊗id
""

!! H∗(Ω|X|; F)

H∗(Ω|f |)
""

H∗(Ω|Ỹ |; F) ⊗ F[π1] !! H∗(Ω|Y |; F)

where the left vertical map and the horizontal maps, which are induced by pro-
jecting from the universal cover to the base and then multiplying of loops, are
isomorphisms of graded vector spaces. By the extension of Adams’ cobar theorem
to reduced Kan complexes, recalled in Theorem 25, it follows that N∗(f) is an
Ω-quasi-isomorphism.

To prove the converse suppose the connected simplicial cocommutative coalge-
bras of chains FX and FY are Ω-quasi-isomorphic through a zig-zag

(6.9) FX
'Ω−−→ C1

'Ω←−− · · · 'Ω−−→ Cn
'Ω←−− FY.

Let E be the algebraic closure of F and tensor zig-zag (6.9) with E to obtain a
zig-zag of simplicial E-coalgebras

(6.10) EX ∼= FX ⊗F E Ω−→ C1 ⊗F E Ω←− · · · Ω−→ Cn ⊗F E Ω←− FX ⊗F E ∼= EY.

All the maps above are Ω-quasi-isomorphisms because for any dg F-coalgebra C,
Ω(C ⊗F E) ∼= Ω(C) ⊗F E and tensoring over a field preserves quasi-isomorphisms.
It follows from Proposition 39 that X and Y are π1-E-equivalent, which implies X
and Y are π1-F-equivalent. !

We now consider a reformulation of Theorem 41 in the case F = Q. A map
f : X → Y between reduced Kan complexes is called a π1-rational homotopy
equivalence if it induces an isomorphism on fundamental groups

π1(f) : π1(X)
∼=−→ π1(Y )

and an isomorphism between rationalized higher homotopy groups

πn(f) ⊗ Q : πn(X) ⊗ Q
∼=−→ πn(Y ) ⊗ Q

for n ≥ 2 [RWZ19]. The following corollary extends the classification theorem
of rational homotopy theory to path-connected spaces with arbitrary fundamental
group.
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Corollary 42. Two reduced Kan complexes X and Y are π1-rationally homotopy
equivalent if and only if the connected simplicial cocommutative coalgebras of chains
QX and QY are Ω-quasi-isomorphic.

Proof. This follows directly from Theorem 41 because the notion of π1-Q-equiva-
lence is equivalent to that of π1-rational equivalence, since Q-equivalences between
simply connected spaces (such as the universal covers) are exactly maps that induce
isomorphisms on rationalized homotopy groups. !

We would like to point out that in this corollary we do not need any finiteness
assumptions on our spaces and that the simplicial cocommutative coalgebra of
chains is therefore a complete invariant of the π1-rational homotopy type of reduced
Kan complexes. The π1-rational homotopy type was also studied in [GHT00],
where they constructed a version of the minimal models for certain finite type
spaces. Their results unfortunately had rather strong finiteness assumptions that
for example excluded simple spaces like S1 ∨ S3.

7. The integral case for spaces with universal cover of finite type

In this section we apply the algebraic machinery developed in sections 4 and 5 to
prove a partial case of the conjecture posed in section 1. First, one of the directions
of the conjecture holds in complete generality.

Theorem 43. If X and Y are homotopy equivalent reduced Kan complexes then
the connected simplicial cocommutative coalgebras of integral chains ZX and ZY
are Ω-quasi-isomorphic.

Proof. The proof for this fact follows by exactly the same argument as in the
proof of the forward direction of Theorem 41, which holds for any integral domain
R. Note that a map is a π1-Z-equivalence if and only if it is a weak homotopy
equivalence. !

A simplicial R-coalgebra C is said to be R-projective if each Cn is a projective
R-module. Note that when R = Z this is equivalent to a simplicial coalgebra C
such that each Cn is free as an abelian group. We further say that the simplicial
R-coalgebra C is of finite type if H∗(C) is finitely generated as an R-module in each
degree. The combination of projective and finite type implies that we can dualize
and use cochains instead of chains without losing any homotopical information.
We prove a special case of the converse direction of our conjecture by applying our
algebraic methods together with the main theorem of [M06], which says that the
integral E∞-algebra of singular cochains determines finite type nilpotent homotopy
types, at the level of universal covers.

Theorem 44. Let X and Y be two reduced Kan complexes whose universal cov-
ers are of finite type. If ZX and ZY can be connected by a zig-zag of Ω-quasi-
isomorphisms of connected simplicial cocommutative Z-projective coalgebras, then
X and Y are homotopy equivalent.

Proof. Suppose that ZX and ZY can be connected by a zig-zag of Ω-quasi-isomorph-
isms of connected simplicial cocommutative Z-projective coalgebras

ZX
'Ω−−→ C1

'Ω←−− · · · 'Ω−−→ Cn
'Ω←−− ZY.
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By Theorem 26, π1(X) ∼= π1(Y ) := π1. By Theorems 26 and 38 we obtain a zig-zag
of simplicial cocommutative coalgebras

ZX̃
'−→ C̃1

'←− · · · '−→ C̃n
'←− ZỸ ,

where each object is a simplicial cocommutative Z-projective coalgebra equipped
with a natural π1-action and each map is a π1-equivariant quasi-isomorphism.

If C is any simplicial cocommutative coalgebra, then the dg coassociative coalge-
bra of normalized chains N∗(C) has a natural E∞-coalgebra structure through the
construction described in [BF04]. We remark here that strictly speaking Mandell’s
results require a cofibrant E∞-operad, while the Barratt-Eccles operad which Berger
and Fresse use is just a Σ-cofibrant operad, this can be fixed by taking a cofibrant
replacement. If C = ZS for some simplicial set S, this recovers the E∞-coalgebra
of normalized chains on the simplicial set S. Moreover, if C is Z-projective, so is
N∗(C). Applying the normalized chains functor to the above zig-zag we obtain a
zig-zag of π1-equivariant quasi-isomorphisms between Z-projective E∞-coalgebras

N∗(ZX̃)
'−→ N∗(C̃1)

'←− · · · '−→ N∗(C̃n)
'←− N∗(ZỸ ).

Since each object above is Z-projective, if we take linear duals (i.e. apply HomZ( , Z))
we obtain a zig-zag of π1-equivariant quasi-isomorphisms of E∞-algebras

N∗(ZX̃)
'←− N∗(C̃1)

'−→ · · · '←− N∗(C̃n)
'−→ N∗(ZỸ ).

Since X̃ and Ỹ are of finite type by assumption, the main theorem in [M06] implies
that X̃ and Ỹ are homotopy equivalent. Furthermore, we may conclude X̃ and
Ỹ are π1-equivariantly homotopy equivalent. In fact, Mandell proves the main
theorem in [M06] by constructing a map

ε : [N∗(ZỸ ), N∗(ZX̃)]E∞ → [X̃, Ỹ ]

which is natural at the level of homotopy categories, where [ , ]E∞ and [ , ] denote
the Hom sets in the homotopy category of E∞-algebras and spaces, respectively;
see Theorem 0.1 of [M06]. By fixing functorial fibrant and cofibrant replacements, ε
may be constructed so that it associates functorially a zig-zag of maps of spaces to
any zig-zag of maps between E∞-algebras before passing to the homotopy category.
Hence, this model for ε sends a zig-zag of π1-equivariant maps of E∞-algebras to a
zig-zag of π1-equivariant maps between spaces. The desired conclusion now follows
by taking Borel constructions as in the proof of Proposition 39.

!
Remark 45. It seems plausible that if E∞-algebras are replaced by flat E∞-coalge-
bras the finite type assumption in Mandell’s theorem might be dropped. Such a
version of Mandell’s theorem could be used to prove the conjecture from section 1.
Another approach could be to prove an integral version of Theorem 10 (Theorem
D in [G95]). Proving such a theorem is beyond the scope of this paper and will be
the topic of future work.
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