
1.  Introduction
Horton Index, a dimensionless ratio of catchment vaporization (total evapotranspiration) to wetting (the 
portion of precipitation that wets canopy, ground surface, and soil), has been a valuable signature to reveal 
the links between catchment water balance and vegetation dynamics (Brooks et al., 2011; Horton, 1933; 
Sivapalan et al., 2011; Tang & Wang, 2017; Troch et al., 2009; Voepel et al., 2011). Horton (1933) found the 
HI calculated over the growing period (May to October) at a pristine catchment show a remarkable constan-
cy between years despite substantial inter-annual precipitation variability. He postulated that the reason for 
this constancy might be that vegetation maximizes productivity relative to available water, echoing back to 
the concept of maximum possible actual evapotranspiration (Ol’dekop, 1911). Based on his hydrologic par-
titioning theory, L’vovich (1979) also confirmed a maximum attainable actual evapotranspiration for a given 
soil wetting magnitude, hence recognizing the role of soil-vegetation interactions in hydrologic partitioning.

It was not until decades later that Troch et al. (2009) revisited HI and its between-year constancy using 89 
catchments distributed across different ecoregions. Using this index, Troch et al. (2009) revealed a space-
time symmetry between the inter-catchment and inter-year variability of HI, which they suggested might 
be underpinned by a similarity across biomes in short- and long-term adaptation strategies of vegetation to 
climate variability.

Inspired by Troch et al. (2009), there have been many data-driven studies evaluating the impacts of climate, 
soil, and topographic conditions on HI variations over the past decade. For example, Voepel et al. (2011) 
found that climate conditions exerted a first-order control on the HI variations, for example, there was 
a power-law relationship between HI and Aridity Index; whilst topographic characteristics such as topo-
graphic slope and mean elevation only exerted a secondary control. Using 86 of the 89 catchments utilized 
by Troch et  al.  (2009), Rasmussen  (2012) related the HI to effective energy and mass transfer (EEMT). 
Here, the EEMT represents energy that can perform work on the subsurface and has two components, the 
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emergent space-time similarity patterns between HI’s spatial (inter-catchment, regional) and temporal 
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spatially and temporally, following similar trends predicted by the analytical framework. On the other 
hand, the slopes of HI ∼ EAI relationships, denoted as d (HI)/d (EAI), decreased with EAI both spatially 
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energy flux associated with effective precipitation and the energy flux from net primary production. The 
result showed a strong negative correlation between EEMT and HI, indicating that water-limited catch-
ments correspond to lower EEMT. Zapata-Rios et al. (2016) examined HI characteristics over high-elevation 
catchments. They reported that snowpack conditions explained over 95% of the HI variability and that, in 
turn, influenced annual vegetation greening. They also found that the topographic aspect did influence the 
magnitude of HI but only during wet years.

Moreover, HI has been used as a valuable diagnostic signature for catchment water balance under the influ-
ences of climate, soil, and biomes. Guardiola-Claramonte et al. (2010) used annual HI as one of the objective 
functions to calibrate and validate their catchment water balance simulations. Brooks et al. (2011) and Voe-
pel et al. (2011) showed that HI could be a good predictor of inter-annual changes in vegetation cover and 
greenness. Harman et al. (2011) derived analytical expressions that relate the flow elasticities to long-term 
mean HI. Thompson et al. (2011) showed the scale-dependence of catchment water balance partitioning on 
a hierarchical flow path network with a scale-dependent expression of HI. Wang and Tang (2014) and Tang 
and Wang (2017) parameterized their Budyko-type models directly or indirectly with HI. Arciniega-Esparza 
et al. (2017) and Troch et al. (2018) found that HI was a highly efficient predictor of the spatial variability 
of average maximum deep storage, low-flows, and groundwater recharge in ungauged catchments with 
different types of climate, soils, geology, and vegetation cover.

The aforementioned HI-related studies are nevertheless mostly data-driven, that is, without providing 
a mechanistic, generalizable understanding across space and time. The only exceptions are Sivapalan 
et al. (2011) and Schaefli et al. (2012). Sivapalan et al. (2011) derived a functional formula of HI as a func-
tion of two dimensionless similarity variables (rescaled annual precipitation and aridity index) based on the 
two-stage hydrologic partitioning theory (L’vovich, 1979; Ponce & Shetty, 1995a, 1995b). They then revealed 
a space-time symmetry of inter-catchment (regional) and inter-annual variability of HI Schaefli et al. (2012) 
derived an analytical expression for HI as a function of available storage in the atmospheric column and 
a constant k (the ratio of maximum potential evaporation to maximum runoff). They confirmed the pow-
er-law relationship between HI and AI as suggested by Voepel et al. (2011).

However, neither Sivapalan et al.  (2011) or Schaefli et al.  (2012) examined HI’s intra-annual variability. 
In fact, most of the data-driven HI-related studies have also focused on the annual scale by neglecting soil 
moisture storage change. As such, the importance of intra-annual variability of HI has nevertheless not been 
fully explored, particularly over the growing season (Horton, 1933; Troch et al., 2009). There is substantial 
seasonal variability in the dynamics of most vegetation types. For example, in the U.S., for most vegetation 
types, a calendar year can be divided into a growing season and a dormant season (Kukal & Irmak, 2018). 
Vegetation typically acquires and consumes much more water via transpiration during the growing season 
than the dormant season (Schlesinger & Jasechko, 2014; Wang et al., 2014; Zhou et al., 2016). It is thus 
necessary to incorporate intra-annual variability for improving the understanding of HI variability and 
the role of vegetation that cannot be effectively captured at the annual scale (Sivapalan et al., 2011; Troch 
et al., 2009).

The mathematical derivation of Sivapalan et  al.  (2011) was directly based on the two-stage hydrologic 
partitioning theory pioneered by L’vovich  (1979) and later on theoretically proven by Ponce and Shetty   
(1995a,  1995b). The two-stage hydrologic partitioning theory quantifies the partitioning of precipitation 
into fast flow and wetting (1st-stage) and then partitioning of wetting into baseflow and vaporization (2nd-
stage). The 2nd-stage partitioning is directly relevant to HI. Ponce and Shetty (1995a, 1995b) provided the 
theoretical foundation of this hydrologic partitioning theory by generalizing the Proportionality Hypothesis 
underpinning the Soil Conservation Service Curve Number (SCS-CN) method (SCS, 1985). Given that Z  is 
a certain amount of water that can be portioned into X  and Y  (e.g., precipitation portioned into soil reten-
tion and excess runoff, or catchment wetting partitioned into vaporization and baseflow), the Generalized 
Proportionality Hypothesis (GPH) states that




 
0

0 0p

X X Y
X X Z X� (1)
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Here pX  is the potential of X , and oX  is the initial fraction of X  (e.g., initial soil abstraction or initial 
vaporization).

Ponce and Shetty  (1995a,  1995b) showed that GPH could be used to theoretically derive the functional 
formulas for both stages of the two-stage hydrologic partitioning. For the 2nd-stage partitioning, applying 
GPH leads to




 
0

0 0

b

p

E E Q
E E W E� (2)

where E is total vaporization. 0E  is initial vaporization. pE  is potential vaporization. bQ  is baseflow. W  is total 
wetting. Note that Equation 2 is for long-term catchment water balance, hence storage change is neglected 
(Sivapalan et al., 2011; Tang & Wang, 2017; Wang et al., 2015).

Interestingly, Wang and Tang (2014) showed that GPH could also be used to theoretically derive the Budyko-
type formula. A Budyko-type formula is essentially quantifying a one-stage hydrologic partitioning, that is, 
total precipitation partitioned into total runoff (include fast flow and baseflow) and vaporization. By apply-
ing GPH to this one-stage partitioning, Wang and Tang (2014) derived a generic, one-parameter expression 
of the Budyko model for long-term catchment water balance and suggested that the original determinis-
tic Budyko curve (Budyko, 1974) and Fu’s equation (Fu, 1981) are just two specific forms of this generic 
expression.

More importantly, Wang et al. (2015) later proved that GPH could be theoretically derived from the ther-
modynamic principle, that is, Maximum Entropy Production. In particular, they showed that the 2nd-stage 
partitioning at the long-term scale could directly result from the Maximum Entropy Production principle. 
Wang  (2018) was then able to theoretically derive the proportionality relationship used in the SCS-CN 
method following a different route than the Maximum Entropy Production principle, that is, by proposing 
a new probability density function for the spatial distribution of soil water storage capacity. Hooshyar and 
Wang (2016) also demonstrated the physical basis of the SCS-CN proportionality hypothesis by deriving it 
from Richard’s equation but for relatively specific conditions, that is, coarse-textured soil, shallow water 
table, and an early stage of ponded infiltration.

So far, GPH has been validated empirically (SCS, 1985), indirectly by Ponce and Shetty (1995a, 1995b) and 
Wang and Tang (2014), and theoretically by Wang et al. (2015), Hooshyar and Wang (2016) and Wang (2018). 
It appears to be a very powerful theoretical framework not only underpinning now well accepted two-
stage hydrologic partitioning theory and Budyko hypothesis, but also facilitating new hydrologic theoretical 
explorations.

Our objectives are therefore three-fold: (a) Developing a new analytical framework of HI applicable at mul-
ti-temporal scales based on the Generalized Proportionality Hypothesis; (b) Validating the analytical frame-
work over a large number of catchments with various climate, vegetation, soil and topographic conditions 
with a main focus on the monthly scale; and (c) Using the new analytical framework to help understand the 
mechanisms underpinning the emergent patterns of HI’s inter- and intra-annual variability. The rest of this 
paper is organized as follows: Section 2 introduces the analytical framework. Section 3 describes the vali-
dation of it at both annual and monthly scales. Section 4 presents the emergent patterns in the HI's spatial 
(inter-catchment) variability and temporal (inter- and intra-annual) variability, and interprets them using 
the analytical framework. Section 5 closes with a summary and further discussion.

2.  Analytical Framework of Horton Index
2.1.  General Horton Index Definition

So far, at annual and long-term scales, HI has been mostly defined and used as the ratio of catchment va-
porization to catchment wetting (Horton, 1933; Troch et al., 2009), without accounting for effects of storage 
carryover between-years. Troch et al. (2009) suggested accounting for storage carryover from winter into 
spring for using HI. For multi-scale applicability, we thus adopt a general definition of HI as following:
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
 Δ
EHI

W S
� (3)

where E is catchment vaporization (or actual evapotranspiration),  ΔW S is catchment wetting accounting 
for the storage change. We hereafter consider (  ΔW S) as effective catchment wetting, which is the amount 
of water available for vaporization and baseflow at any time scales. Effective catchment wetting can also be 
viewed as the maximum water supply for vegetation use. The definition in Equation 3 can thus be applied at 
any time scales. In this study, we define and examine HI at the long-term, annual, and monthly scales. For 
the long-term scale, HI is defined as the ratio of long-term average evapotranspiration to long-term average 
catchment wetting and denoted as long-term HI hereinafter. For the annual scale, HI is defined as the ratio 
of annual total evapotranspiration to annual effective catchment wetting for any specific calendar year and 
denoted as annual HI. For the monthly scale, HI is defined as the ratio of monthly total evapotranspiration 
over monthly effective catchment wetting for any month and denoted as monthly HI.

2.2.  Mathematical Derivations

At the catchment scale, total liquid precipitation (rainfall + snowmelt), P, can be partitioned into total sur-
face runoff ( sQ ) and catchment wetting (W), which includes total infiltration and interception by vegetation 
canopy and surface depressions (see Figure 1a):

 sP Q W� (4)

Catchment wetting occurs in two phases: Initial wetting ( oW ) due to interception by vegetation and ground 
surface depressions, and continuing wetting ( cW ) due to soil infiltration. Catchment wetting can then be 
further partitioned into catchment vaporization (E), base flow ( bQ ), and soil water storage change (ΔS) (see 
Figure 1b):

  ΔSbW E Q� (5)

We now apply GPH to the 2nd-stage partitioning at the monthly scale:




  Δ
o b

p o o

E E Q
E E W S E� (6)

0E  is the portion of vaporization that occurs at the initial stage, that is, evaporation from canopy interception 
and surface depression ponding and transpiration from shallow water storage (mostly in the unsaturated 
zone). Note that with Equation 6 here we are only assuming that GPH is valid for the 2nd-stage partitioning 
at the monthly scale. Whether it is valid at finer time scales is beyond the scope of this study.

Rearranging (6) for bQ , we obtain

  
       




 

1
Δ Δ Δ

Δ
Δ Δ

o o

b

p o

E E E
W S W S W SQ

EW S E
W S W S

� (7)

Similar to the SCS-CN method (SCS, 1985), Ponce and Shetty (1995a, 1995b) and Wang and Tang (2014), 
we consider the whole vaporization process occurs at two stages: An initial stage followed by a continuing 
stage.

 0E EcE� (8a)

0 EE� (8b)
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cE  is the portion of vaporization that occurs after the initial stage, mostly transpiration from deeper soil 
water storage that is very close to or below the groundwater table.  is a dimensionless fraction parameter. 
We provide a more detailed discussion on 0E  and  later in Section 3.

From Equations 7 and 8, we get

     



 
      




 

2
21

Δ Δ
Δ

Δ Δ

b

p

E E
W S W SQ

EW S E
W S W S

� (9)

From Equations 5 and 9, we get
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Figure 1.  Conceptual-level two-stage hydrologic partitioning scheme, (a) First-Stage Partitioning for effective 
precipitation partitioning and (b) Second-Stage Partitioning for effective catchment wetness partitioning.
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  
    

                

2
22 1 0

Δ Δ Δ Δ
p pE EE E

W S W S W S W S
� (10)

When   0, Equation 10 gives







Δ
Δ 1

Δ

p

p

E
E W S

EW S
W S

� (11)

When   0, Equation 10 is a typical quadratic equation for   / ΔE W S , solving it yields

 
 

 

 

   
               

 

2
2

2

1 1 4 2
Δ Δ Δ

Δ 2 2

p p pE E E
W S W S W SE

W S
� (12)

If taking the plus sign in Equation 12, one will always obtain 


1.0
Δ

E
W S

, while 
 Δ
E

W S
 should always 

be no larger than 1.0 (Equation 5). So in Equation 12 we take the minus sign and obtain the following 
equation:

    
 

                                

0.52
2

2

1 1 1 2 8 4
Δ Δ Δ Δ2 2

p p pE E EEHI
W S W S W S W S

� (13)

Equation  13 is thus an analytic expression of HI, which applies to the long-term, annual, and monthly 
scales.

Hereafter we refer to the ratio of potential evapotranspiration to effective catchment wetness as ecological 
aridity index (EAI), which quantifies the interaction between energy supply and water supply for plant wa-
ter use at the catchment scale. Note for convenience, we define EAI at the long-term, annual, and monthly 
time scales similarly to HI, and hereinafter denote them as long-term, annual, and monthly EAI, respective-
ly. Compared to the well-known aridity index (AI), defined as the ratio of potential evapotranspiration to 
total precipitation, EAI is overall larger since it excludes surface runoff from water supply for vaporization. 
Intuitively it is more physically meaningful from the plant water use point of view since surface runoff will 
rarely be available for vaporization in the real world. Figure 2a provides a conceptual diagram of Equa-
tion  13, which includes a theoretical upper-bound of HI when   1.0 (solid blue line), and theoretical 
lower-bound when   0 (dashed blue line). When  1.0EAI , the water supply for vaporization is larger 
than the evaporative energy demand, and the catchment is in an energy-limited or ecologically wet state. 
When  1.0EAI , the water supply for vaporization is less than the energy supply, and the catchment is in a 
water-limited or ecologically dry state.

One can also see that the changing rate of HI is gradually decreasing with EAI, suggesting that HI variability 
might be decreasing when a catchment is moving from an ecologically wetter state to an ecologically drier 
state. To quantify the changing rate of HI with EAI, we take the derivative of Equation 13, and obtain

 
        

 

                                

0.52
2 2

2

1 1 1 4 2 1 2 8 4
Δ Δ Δ2 2
p p pd HI E E E

W S W S W Sd EAI
� (14)
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This    /d HI d EAI  is thus capturing the gradually decreasing slope of the HI ∼  EAI curve, as shown 
in Figure  2b.    /d HI d EAI  is overall more than 0.3 when a catchment is ecologically humid, that is, 

 1.0EAI , suggesting relatively large variability of HI  between humid catchments (spatial variability) or 
humid years (temporal variability). When a catchment is ecologically dry, that is,  1.0EAI ,    /d HI d EAI  
drops quickly and is mostly below 0.1 when  2.0EAI , suggesting that HI remains constant among dry 
catchments (spatial variability) or dry years (temporal variability). This small spatiotemporal variability of 
HI is consistent with the previous empirical findings that HI is relatively constant in dry years or arid catch-
ments (Horton, 1933; Troch et al., 2009).

3.  Validation of the Analytical Framework
3.1.  CAMELS Data Set

The data used in this study are mainly from the Catchment Attributes and MEteorology for Large-sample 
Studies (CAMELS) data set (Addor et al., 2017; Newman et al., 2015). CAMELS includes 671 small to medi-
um-sized nearly pristine catchments distributed across biomes, climatic, and topographic gradients of the 
contiguous United States. CAMELS provides observed daily precipitation, streamflow, and maximum and 

ABESHU AND LI

10.1029/2020WR029343

7 of 24

Figure 2.  a) Theoretical bounds of the new Horton Index functional framework (Equation 13). The model parameter, 
λ, which is defined as the ratio of initial vaporization to total vaporization, varies between 0 and 1. The function 
produces the upper bound (energy and water limit lines) at λ = 1 and the lower bound at λ = 0. Like the traditional 
Budyko curve, based on the potential energy and water available for vaporization, the function space can also be 
classified into two as energy limited  ( Δ )pE W S  and water limited  ( Δ )pE W S . b) Theoretical bounds of the 
changing rate of HI with EAI (Equation 14).



Water Resources Research

minimum temperature data for each catchment in 1980–2014. It also offers topographic, soil, and vegeta-
tion attributes such as elevation, mean topographic slope, soil hydraulic conductivity, soil depth, porosity, 
dominant vegetation cover, monthly leaf area index (LAI), root depth, etc., Besides the observed data, CAM-
ELS also provides model simulated hydrologic variables such as actual and potential evapotranspiration, a 
by-product of streamflow simulation using the coupled Snow-17 and SAC-SMA models, which have been 
validated against the observed streamflow data (Addor et al., 2017).

For analysis purposes, we perform the following filtering and post-processing steps of CAMELS data.

�(1)	� In some CAMELS catchments, there are missing records in the observed streamflow data. We exclude 
those catchments without complete daily streamflow records in 1982–2012

�(2)	� Model simulated evapotranspiration data from CAMELS is an essential part of our analysis, but there has 
been uncertainty (Newman et al., 2015). To minimize the impacts of modeling uncertainty, we adapt a cri-
terion expressed as   10%obs sim obsE E E . Here simE  is the long-term average of simulated evapotran-
spiration in 1982–2012. obsE  is calculated as the long-term average of observed precipitation subtract the 
long-term average of observed streamflow. We exclude those catchments that do not satisfy this criterion

�(3)	� Within the CAMELS vegetation attributes, each catchment’s dominant vegetation type is available 
along with the percentage of catchment area it covers. For the entire data set, the dominant cover frac-
tion percentage ranges from 31.45% to 100%. Here, we consider a specific vegetation cover as the dom-
inant vegetation cover if it takes more than 50% of the total catchment area. Thus, we further exclude 
those catchments without any vegetation cover taking more than 50% of the catchment areas, that is, 
no dominant vegetation cover

�(4)	� We select 343 CAMELS catchments after Steps 1∼3. The CAMELS catchments belong to 11 differ-
ent dominant vegetation cover types, as shown in Figure 3a. For convenience, we further group them 
into six vegetation cover types: Croplands and Croplands/Natural vegetation mosaic (denoted as CL/
NVM, 99 catchments), Deciduous Broadleaf (denoted as DBF, 82 catchments), Evergreen Needleleaf 
and Broadleaf Forest (denoted as EF, 22 catchments), Mixed Forests (denoted as MF, 50 catchments), 
Grasslands (denoted as GL, 40 catchments) and Savannas, Woody Savannas and Open/Closed Shrub-
lands (denoted as WS + SL, 50 catchments). Figure 3b shows that most forested catchments (DBF, EF 
and MF) are located in the humid or semi-humid climate regions, as indicated by the aridity index (AI, 
here defined as the ratio of long-term average potential evapotranspiration over precipitation) values 
less than 1.0. Those non-forested catchments (CL/NVM, GL and WS + SL) are located in the arid or 
semi-arid climate regions

�(5)	� Note that in this study, the final precipitation data employed are essentially daily rainfall + snowmelt 
time series, which are directly taken from the CAMELS data set

�(6)	� At each selected catchment, the observed daily streamflow time series is separated into daily surface 
runoff and daily baseflow time series using the one-parameter recursive digital filtering method (Na-
than & McMahon, 1990)

3.2.  Validating the Analytical Framework Over the CAMELS Catchments

To evaluate the analytical framework, we first estimate the monthly HI time series at each catchment di-
rectly using the CAMELS data. E is taken from the CAMELS simulated daily evapotranspiration time series. 

 ΔW S is calculated indirectly as  bE Q , according to Equation 5. We hereafter denote those HI values 
calculated using the CAMELS data set as “estimated” for easy reading, and those derived using the analyt-
ical framework as “analytical.” For evaluating the closeness between the “estimated” and “analytical” HI 
series, we use the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) and Normalized Root Mean Square 
Error (NRMSE). Overall, the higher the KGE value, the closer the “estimated” and “analytical” HI series, 
and KGE = 1.0 means a perfect match. Similarly, the smaller the NRMSE, the closer the “estimated” and 
“analytical” HI series and NRMSE = 0.0 means a perfect match. At each catchment, we calibrate the  value 
at the monthly scale in the calibration period 1982–2001 to reach the best match between the “estimated” 
and “analytical” monthly HI time series, as indicated by the optimal KGE value. The optimal KGE values 
are no less than 0.5 and 0.8 for over 95% and 87% of the 343 catchments, respectively (as shown in Figures 4a 
and 4b), suggesting the promising predicting power of the analytical framework. The resulted  values from 
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this calibration process are hereinafter denoted as the “calibrated.” We then apply the calibrated  value 
corresponding to each catchment in the validation period 2002–2012, 90% and 82% of the catchments have 
the KGE values no less than 0.5 and 0.8, respectively, indicating the representativeness of the calibrated  
values over the whole study period 1982–2012. The NRMSE values between the “estimated” and “analyti-
cal” HI monthly time series are mostly less than 0.1 in both the calibration and validation periods (as shown 
in Figures 4c and 4d), again indicating good prediction power of the analytical framework. Note that since 
the normalizing factor (i.e., long-term HI) is always ≤1, NRMSE ≥ RMSE.
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Figure 3.  Selected 343 CAMELS catchments: (a) Dominant biomes, (b) Aridity Index (Ep/P).
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Regarding specific vegetation types, the analytical framework performs very well at the CL/NVM, MF, 
DBF, and WS + SL dominated catchments, but only reasonably well at the GL (according to KGE) and EF 
(according to NRMSE) dominated catchments. By looking into the details of those individual catchments 
where the analytical framework does not perform well, we find that poor KGE results are partially related 
to the weak seasonal variability of estimated HI. We use the coefficient of variation (CV, the ratio of the 
standard deviation to mean) to compute the variability of the estimated HI. In total, only 39 catchments 
have KGE values less than 0.75, of which 34 have the CV values less than 10%. Visual inspection of these 
catchments shows that the low KGE values do not necessarily imply model incapability. Instead, since the 
estimated HI index is slightly invariable, the framework’s small overestimation/underestimation is some-
how exaggerated by the KGE metric, which is evident by the NRMSE box-plots in Figures 4c and ​4d, that is, 
the NRMSE values are mostly less than 0.1, except for the EF dominant catchments.

To illustrate more detailed HI variations at individual catchments, we select two representative catchments 
out of each of the six biome regimes, that is, CL/NVM, DBF, EF, MF, GL, and WS + SL, based on Figure 4. 
Within each biome regime, there are a number of catchments under various climate conditions, that is, a 
range of AI values. For each biome regime, we select one catchment with relatively higher AI value, and 
another with relatively lower AI values. Figure 5 shows the “estimated” (blue lines) and “analytical” (red 
lines) monthly HI time series at the representative catchments. Each row is for one biome. The left column 
is for the catchments with relatively higher AI values. Overall, the analytical framework reproduces the 
monthly HI time series quite well in most catchments.

There are nevertheless noticeable biases in the peak HI values, for example, at the EF and GL catchments, 
as indicated by the relatively low KGE values (for the GL dominant catchments) and high NRMSE val-
ues (for the EF dominant catchments). There are several possible reasons for the biases: (a) The NRMSE 
values for the EF dominant catchments are slightly higher than others’ primarily because of the model’s 
slight overestimation of seasonal peak values for this type of catchments. During most of the year, these 
catchments are in an energy-limited state. However, most of them become water-limited during a couple 
of growing-season months with peak HI values. The slight overestimation of the peak value possibly arises 

ABESHU AND LI

10.1029/2020WR029343

10 of 24

Figure 4.  Performance of the analytical formula. Box-plots of; (a). KGE values for different vegetation types in 
the calibration period (1982–2001); (b). KGE values in the validation period (2002–2012); (c). NRMSE values in the 
calibration period; (d). NRMSE values in the validation period. CV/NVM: Croplands and Croplands/Natural vegetation 
mosaic; DBF: Deciduous Broadleaf; EF: Evergreen Needleleaf and Broadleaf Forest; MF: Mixed Forests; GL: Grasslands; 
WS + SL: Savannas, Woody Savannas and Open/Closed Shrublands.
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from a failure to capture transition into and out of this short period since the calibration is dominated by 
those months in an energy-limited state with relatively lower HI values. (b) Temperature and precipitation 
(magnitude, frequency, and timing) exert strong controls on grassland ecosystems' productivity and wa-
ter-use (Hufkens et al., 2016). Hence, growth and productivity are highly dynamic even at a sub-monthly 
temporal scale, that is, weekly or daily, and this sub-monthly variation may have led to strong inter-annual 
variability of growth and productivity (Hufkens et al., 2016). Therefore, the biases of monthly HI estimation 
in the GL dominant catchments are likely because that the analytical framework is not well capturing the 
sub-monthly timescale characteristics, which is an important factor in the strong inter-year variability of 
grassland dormant-season water-use.
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Figure 5.  Horton Index monthly time series over the analytical framework validation period (2002–2012) for selected 
catchments. The blue and red lines are for the estimated and analytical HI time series, respectively. The corresponding 
USGS gage ID for the catchments are, (a) 5123400, (b) 3241500, (c) 6447000, (d) 6917000, (e) 9505350, (f) 2481000, (g) 
3173000, (h) 1413500, (i) 2212600, (j) 1162500, (k) 11162500, and (l) 14325000.
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Despite the biases, Figure 5 shows that the analytical framework is reproducing the HI seasonal variations 
quite well across biomes. In each catchment, the drier months can be further grouped into a growing season 
(on average May to October for the contiguous United States) when plan transpiration is high. The wetter 
months can be grouped into a dormant season (November to April) when plant transpiration is much less. 
HI’s seasonal variation is stronger at those catchments under more humid climates, that is, lower AI values. 
Particularly, during the dormant season (including late fall, winter and early spring), the monthly HI values 
in the relatively humid catchments are significantly lower than those relatively arid catchments. This differ-
ence can be attributed to the different climatic conditions (see Figure 3). Most forested catchments are locat-
ed in the relatively humid climate regions, where the water supply for vaporization (precipitation) is overall 
no less than the evaporative energy demand (potential evapotranspiration). In fact, in these forested catch-
ments, the monthly total vaporization (E) is mostly less than the monthly catchment wetness (  W S).  
In the dormant season, at the forested catchments, the total vaporization is small owing to minimum evap-
orative energy demand, and the catchment wetness remains a fair amount; while at the non-forested catch-
ments, the total vaporization is at the similar level as those forested catchments, but the catchment wetness 
is small since it has been depleted by relatively larger vaporization in the growing season.

The difference in the monthly HI values among the catchments can also be attributed to different vegetation 
phenology among various biomes. In most forested catchments, usually, there is a dense understory and a litter 
layer, which help reduce soil evaporation during the dormant season by blocking soil moisture from the atmos-
phere, hence not only reducing vaporization and surface runoff but also increasing catchment wetness (Gomyo 
& Kuraji, 2016; Sakaguchi & Zeng, 2009; Song et al., 1997). In the broadleaf forests, most leaves fall off in the 
dormant season leading to not only a thicker litter layer but also significantly reduced transpiration from leaves. 
In the evergreen forests, the leaves largely remain on the trees even during the dormant season, but the trees 
lower their carbon utilization rate (i.e., downregulation of photosynthetic capacity) in response to the low-tem-
perature conditions (Adams et al., 2004; Öquist & Huner, 2003). A reduced photosynthetic activity means much 
of the radiation absorbed by leaves cannot be utilized for the photosynthetic fixation of CO2. Hence, the likeli-
hood of water escaping through the stomatal opening (i.e., transpiration) during the carbon uptake process is 
significantly reduced. In non-forested areas such as grasslands, such a litter layer is usually not developed. In 
the U.S. croplands, residues are often left on the field after harvesting and can be as effective as forest litter layer. 
However, the removal of crops after harvesting increases wind speed by reducing ground surface roughness, and 
thus increases the effective evaporation rate. Another possible reason for the different HI values between the 
forested and non-forested catchments is the hydraulic redistribution mechanism. With deeper root systems, in 
the dormant season, trees are able to transport excess water from topsoil down to deeper soil, particularly during 
nights, hence increasing catchment wetness (Amenu & Kumar, 2008; Brooks et al., 2002; Prieto et al., 2012).

3.3.  Further Discussion on the Analytical Framework

 is the only parameter in our analytical framework, which is closely related to the partitioning of total vapori-
zation (E) into initial ( 0E ) and continuing vaporization ( cE ). In this study, the lambda values are obtained from 
the monthly HI time series calibration and applied to the multi-scale analysis. Recall that 0E  corresponds to 
three primary sources where water is easily available for vaporization: Direct evaporation from interception 
(canopy and litter interception), direct evaporation from the soil surface and temporally stored water in surface 
depressions, and transpiration from the shallow root zone. The contribution from interception loss accounts for 
10%–50% of gross precipitation depending on vegetation types, canopy density, and meteorological conditions 
(Levia et al., 2011; Miralles et al., 2010; Miralles et al., 2016; Roth et al., 2007; Wang et al., 2007). Thus, it is not 
unreasonable to infer that direct evaporation from interception contributes to more than 10%–50% of total vapor-
ization. Direct evaporation from surface depressions is a spatiotemporally heterogeneous process mainly driven 
by surface microtopography (Kamphorst et al., 2000). Surface depressions here mainly refer to those small, un-
managed water bodies embedded either within uplands or river floodplains. They are small yet abundant at the 
catchment or larger scales (Wu et al., 2019). The temporally stored water in these surface depressions thus plays 
an important role in catchment hydrological processes, including evaporation (Alexander et al., 2018; Cohen 
et al., 2016; Golden et al., 2017; Lane et al., 2018; Rajib et al., 2020; Yu & Harbor, 2019). The transpiration com-
ponent of initial vaporization corresponds to the fast transpiration, which only draws on the upper 50cm of the 
soil layer where most root biomass is located, and most transpiration occurs (Savenije, 2004). In the U.S., Addor 

ABESHU AND LI

10.1029/2020WR029343

12 of 24



Water Resources Research

et al. (2017) derived catchment-average root-depth data for 671 catchments 
based on a global vegetation root distribution model by Zeng  (2001), and 
suggested that, for all catchments (excluding the missing values 24 of 671 
catchments), 50% of root biomass is located within the top 25cm soil layer. 
Globally, Schenk and Jackson (2002b) analyzed 475 profiles for 209 sites in 
15 biomes, and showed ∼90% of the root system to be in the upper 30cm soil 
layer across all sites. Initial transpiration from this upper soil layer is thus not 
trivial and at least comparable to direct evaporation from interception. Over-
all, each of these three sources of 0E  is nontrivial. 0E  is therefore expected to 
be a significant, even dominant portion of total vaporization. The value of ,  
although it may vary from one catchment to another, should be nontrivial 
in most catchments. Figure 6 shows the box-plot of calibrated  values for 
different biome regimes. The calibrated  values are more than 0.5 for most 
catchments, consistent with the above discussion.

What’s more interesting from Figure 6 is that the calibrated  values are rel-
atively lower in the forested catchments, particularly in those EF dominant 
catchments. The average of calibrated  values within each biome regime 
is 0.876, 0.875, 0.886, 0.799, 0.807, and 0.686 for CL/NVM, GL, WS + SL, 
DBF, MF and EF respectively. The lower  values in the forested catch-
ments are very likely due to the deeper root systems, which facilitate access 
to deeper soil water for continuing vaporization. Although overall forest 

biomes have more interception owing to higher LAI values and understory vegetations, the denser canopy 
often reduces evaporation from the soil surface by blocking more incoming evaporative (solar) energy and 
increasing the aerodynamic resistance or vaporization. On the other hand, non-forest biome regimes usually 
have shallower root systems, which allow for quicker responses to incoming rainfall but less access to deeper 
soil water for continuing vaporization (Fan et al., 2017; Rore & Stern, 1967). For example, typical root length 
densities for crop plants are about 6 cm/cm3 and 1 cm/cm3 in the surface soil layer and a 50–100 cm deep soil 
layer, respectively (Glinski & Lipiec, 2018). The GL catchments in this study are mostly located in the Great 
Plains of North America (Figure 3) and generally fall under water-limited ecosystems (AI > 1.0 for 49 out of 
50 GL catchments). In a water-limited biome, root systems are shallower and wider in dry climates and deeper 
and narrower in cold and wet climates (Schenk & Jackson, 2002a). Hence, GL catchments in this study can 
be characterized with a shallow and wide root system type. Schenk and Jackson (2002b) data for CONUS 
grasslands (34 root profiles) show that 90% of the sites have 50% of the root distribution within the top 20cm. 
A more recent isotopic evapotranspiration partitioning experiment on tallgrass prairie in the Great Plains of 
North America by Sun et al. (2021) found that the top 10cm soil layer is a major source of the total evapotran-
spiration during the initial drying periods. Like croplands, high water volume is extracted for transpiration 
from the topsoil layer; thus, the initial vaporization is a dominant component.

The between-catchment variability of calibrated  values within each biome regime appears to be higher 
in the forested catchments, that is, the coefficients of variance are 10.0%, 9.44%, 7.5%, 12.93%, 16.64% and 
33.08% for CL/NVM, GL, WS + SL, DBF, MF and EF dominant catchments respectively. This between-catch-
ment variability within each biome regime may be caused by several reasons. First, the difference in the 
non-dominant proportion of the catchment land cover may be a contributing factor. In each of the 343 
selected catchments, we define the dominant cover as the biome type covering >50% of the catchment. For 
instance, a catchment with 100% DBF cover will behave differently from another with only 60% DBF cov-
er, although both are classified into the same biome regime in this study. Second, the between-catchment 
variability difference between the forested and non-forested catchments is likely because non-forest biome 
regimes are often intensive water users featured by high water use efficiency. As such, their behavior (e.g., 
partitioning of E into 0E  and cE ) is more alike and converging toward optimal rain use efficiency despite 
the different climate, soil and topographic conditions (Huxman et al., 2004; Troch et al., 2009). Third, the 
different root systems between the forested and non-forested regimes. In the forested catchments, cE  is 
usually larger than the non-forested due to deeper roots and easier access to deeper soil water, and thus 
more sensitive to climate variations because deeper roots allow trees to better cope with climate variations. 
Last but not least, the variability in type and density of the understory vegetation in the forested catchments 
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Figure 6.  Bot-plot of λ values calibrated at the monthly scale. CL/NVM: 
Croplands and Croplands/Natural vegetation mosaic; DBF: Deciduous 
Broadleaf; EF: Evergreen Needleleaf and Broadleaf Forest; MF: Mixed 
Forests; GL: Grasslands; WS + SL: Savannas, Woody Savannas and Open/
Closed Shrublands.
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may also contribute to this between-catchment variability. The types of understory can be trees, shrubs, or 
herbaceous vegetation. For instance, if trees dominate the understory, more water is likely to be extracted 
from deeper soil (especially during the summer season) than an understory dominated by nonperennial 
herbaceous vegetation with shallow roots. Moreover, the understory also affects soil evaporation since a 
denser understory will more likely block solar radiation from reaching the soil surface.

4.  Emergent Patterns and Theoretical Insights
Upon successful validation, we further investigate the analytical framework’s capacity to help detect and ex-
plain emergent patterns in HI’s spatiotemporal variations at different temporal scales. Note here we define 
space-time similarity as the similarity between a spatial (between-catchment) variability and a temporal 
(within-catchment but between different years or months) trend.

4.1.  Space-Time Similarity in the Between- and Within-Catchment Trends of HI

Figure 7a shows that the analytical framework can well capture HI’s inter-catchment variability, that is, 
the increasing trend of HI from wetter to drier catchments. Here each dot in Figure 7a represents a pair of 
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Figure 7.  Space-time similarity of HI ∼ EAI relationships at the annual scale across different climatic, topographic, and vegetation regimes. (a) Inter-
catchment (spatial) variability of HI. Each dot represents one catchment, and HI and EAI are based on the long-term averages in 1982–2012. (b) Inter-annual 
variability of HI. Each dot represents one year at one catchment (each catchment has 31 dots). The magenta, solid blue, and dashed blue lines correspond to the 
best-fitted, upper-bound, and lower bound curves using Equation 13, respectively.
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estimated long-term HI and EAI values for one of the 343 catchments. The magenta line is the “analytical” 
curve fitted using Equation 13, with a calibrated  value of 0.774 and an NRMSE value of 0.075. Moreover, 
the analytical framework also captures the between-year variability of HI very well, i.e., increasing trend of 
HI from wetter to drier years, as shown in Figure 7b. Here each dot represents a pair of “estimated” annual 
HI and EAI values for one catchment and one year in 1982–2012. The analytical curve is fitted again using 
Equation 13, achieving a calibrated  value of 0.783, and the NRMSE value is 0.08. The calibrated  value at 
the long-term scale, 0.774, is quite close to that at the annual scale, 0.783, suggesting a space-time similarity 
of HI increasing trend from wetter catchments (years) to drier catchments (years).

Figure 8 further explores this space-time similarity but for different biome regimes. Again, the closeness 
between the long-term and annual calibrated  values across different vegetation types confirms the space-
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Figure 8.  Space-time similarity of HI ∼ EAI relationships at the annual scale for different vegetation regimes. On the 
left-hand side (a, c, e, g, i, j), inter-catchment (spatial) variability of long-term HI. Each dot represents one catchment, 
and HI and EAI were based on the long-term averages in 1982–2012. On the right-hand side (b, d, f, h, j, l), annual 
HI’s inter-annual variability. Each dot represents one year at one catchment (each catchment has 31 dots). The 
magenta, solid blue, and dashed blue lines correspond to the best-fitted, upper-bound, and lower bound curves using 
Equation 13, respectively.
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time similarity both empirically and theoretically. It appears that most non-forest catchments are in an 
ecologically dry state, that is, EAI > 1.0 for both between-catchment and between-year cases. Under such 
a dry state, these non-forest biome regimes tend to operate toward the optimal water use efficiency, leading 
to the convergence of HI values toward 1.0. The variability of HI in these non-forested catchments is thus 
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Figure 9.  Inter-annual variability of (a) annual HI values, (b) monthly HI values but for the driest month only from 
each year, and (c) monthly HI values but for the wettest month only from each year. Each dot here represents one 
catchment.
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small. The forested catchments nonetheless do not have such a preference. The DBF catchments have the 
narrowest range of EAI values, followed by the MF and then EF dominant catchments. Overall, the varia-
bility of annual HI decreases from wetter to drier states, as shown in Figure 9a.

More interestingly, the above space-time similarity exists not only at the annual scale but also at the month-
ly scale, as shown in Figures 10 and 11. Figure 10 shows that the monthly HI values increase from the wetter 
to drier months as captured by both the empirical data points and theoretical curves at each representative 
catchment. Overall, the evapotranspiration in the growing season is higher than the dormant season and 
dominated by plant transpiration over evaporation from soil and interception. Correspondingly, the month-
ly HI values in the growing season are generally higher than those in the dormant season.
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Figure 10.  Intra-annual variability of monthly HI within individual catchments in 1982–2012. The black, solid 
blue, and dashed blue lines correspond to the best-fitted, upper-bound, and lower bound curves using Equation 13 
respectively. The corresponding USGS gage ID for the catchments are, (a) 5123400, (b) 3241500, (c) 6447000, (d) 
6917000, (e) 9505350, (f) 2481000, (g) 3173000, (h) 1413500, (i) 2212600, (j) 1162500, (k) 11162500, and l) 14325000.
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Figure 11 confirms this trend of intra-annual variability across all 343 catchments. The 12 subplots in 
Figure 11 are corresponding to the 12 months in a calendar year. Each dot represents one catchment, 
for example, in Figure 10a, the January HI value for a catchment is calculated as a ratio of the average 
of January precipitation in 1982–2012 over the average of January catchment wetting. This way, HI’s 
intra-annual variability manifests as the difference between the subpanels in Figure 11. Overall, in the 
growing season, particularly July-September, the HI values are preferentially distributed in the ecolog-
ically dry state, that is, EAI > 1, hence the variability of monthly HI values is relatively small, as more 
clearly shown in Figure 9b. In the dormant season, particularly December–February, the HI values are 
more distributed in the ecologically wet state, and the variability of monthly HI values is relatively larger, 
as also shown in Figure 9c.

Within each panel in Figure  11, the between-catchment variability is well captured by the theoretical 
curves. For example, in the subpanel corresponding to May, the HI values increase from those catchments 
with a drier May to those with a wetter May in an average sense. Within each subpanel, a calibrated  value 
is chosen to best capture the inter-catchment variability. The calibrated  values are quite similar among the 
subpanels, that is, varying in a very narrow range 0.81–0.86, suggesting similar inter-catchment variability 
across different seasons.
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Figure 11.  Intra-annual variability of mean-monthly HI between catchments. The magenta, solid blue, and dashed blue lines correspond to the best-fitted, 
upper-bound, and lower bound curves using Equation 13, respectively.
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4.2.  Space-Time Similarity in the Increasing Rate of HI With EAI

So far, we have verified the increase of HI  with EAI  both theoretically (based on Equation 13) and empiri-
cally (using the “estimated” HI  and EAI  values) with a space-time similarity. Next, we examine the spatio-
temporal variability of the changing rates of HI , or the slopes in the HI∼EAI  relationships, quantified using 
   /d HI d EAI  as in Equation 14.

Figure 12 shows the    /d HI d EAI  at the long-term and annual scales corresponding to Figure 7. We first 
divide all the “estimated” HI∼EAI  values in Figure 7 into several bins, each bin containing 10 pairs of 
“estimated” HI∼EAI  values. We then perform a linear regression within each bin, and the resulting slope 
is used as the estimated    /d HI d EAI  value, shown as one dot in Figure 12. Note that we test the bin size 
from 5 to 10 for different data sizes, and the patterns remain similar. We, therefore, use a bin size of 10 in 
the rest of the Figures. The theoretical curves in Figure 12 are derived based on Equation 14 using the same 
 values as in Figure 7.

Figure 12 suggests that    /d HI d EAI  decreases with increase in EAI  in a space-time similar way, that is, 
it decreases both from wetter to drier catchments and from wetter to drier years, but following the same 
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Figure 12.  Space-time similarity of d (HI)/d (EAI)∼EAI relationships at the annual scale across different climatic, 
topographic, and vegetation regimes. (a) Between-catchment (spatial) variability. Each dot represents one catchment, 
and HI and EAI are based on the long-term averages in 1982–2012. (b) Between-year (inter-annual) variability. Each dot 
represents one year at one catchment (each catchment has 31 dots). A bin size of ten (10 dots per bin) is used for both 
(a) and (b). The magenta, solid blue, and dashed blue lines correspond to the best-fitted, upper-bound, and lower bound 
curves using Equation 14, respectively.
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decreasing pattern. This    /d HI d EAI  decreasing pattern can be roughly characterized as an S-shape and 
divided into three stages: (a)    /d HI d EAI  decreases slowly and remains relatively high for   10 EAI ;  
(b)    /d HI d EAI  decreases quickly for   1 2EAI ; and (c)    /d HI d EAI  decreases slowly but re-
mains relatively low for  2EAI . 1 and 2 are divisions between the three stages and cannot be accurately 
defined since the transitions from Stage (a) to (b) and from State (b) to (c) are both gradual instead of 
abrupt. There are some dots in Figure  12 beyond the theoretical upper (     / 1d HI d EAI ) or lower  
(     / 0d HI d EAI ) limits, and we attribute these to the uncertainties embedded in the CAMELS data. We 
do not produce a    /d HI d EAI  plot corresponding to Figure 8 using the same binning method because of 
the number of HI∼EAI  pairs is too small.

Figures  13 and  14 examine the    /d HI d EAI , or slope values of the HI∼EAI  relationships at the 
monthly scale corresponding to Figures 10 and 11, respectively. Similar to Figure 12, the    /d HI d EAI  
values decrease with increase in EAI  following an S-shape pattern across both time (Figure 13) and space  
(Figure 14), hence suggesting a space-time similarity at the monthly scale.

5.  Summary and Conclusions
In this study, we present an analytical framework of HI as a single function of ecological aridity index (EAI) 
(see Figures 1 and 2) based on the Generalized Proportionality Hypothesis. We successfully validate it over 
the long-term, annual, and monthly scales across various regimes of climate, vegetation, soil, and topogra-
phy (see Figures 3–6). , as a direct indicator of catchment wetting (or effective water storage) partitioning, 
is no less than 0.5 over most of the 343 catchments over the contiguous United States, indicating the im-
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Figure 13.  d (HI)/d (EAI)∼EAI relationships at the monthly scale for individual catchments (1982–2012). A bin size 
of 10 is used to compute the empirical d (HI)/d (EAI). The magenta, solid blue, and dashed blue lines correspond to the 
best-fitted, upper-bound, and lower bound curves using Equation 14, respectively.
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portance of catchments' initial responses to storm events in the form of direct evaporation from vegetation 
interception and ground surface and transpiration from the shallow root zone. We suggest that different 
biome regimes exert different levels of control on not only partitioning of catchment wetting (or total water 
storage) into vertical vaporization and lateral baseflow but also partitioning of vaporization into initial and 
continuing components.

Facilitated with this analytical framework, we find that there is an emergent space-time similarity between 
the regional (inter-catchment) and intra-annual variability of HI, expressed in terms of the HI EAI  
relationships. The space-time similarity of HI’s intra-annual variability appears to resemble that of HI’s 
inter-annual variability (see Figures 7–10), suggesting that HI increases from wetter to drier places, years, 
or months in a similar fashion. The analytical framework can explain these space-time similarity patterns 
in a unified way, i.e., HI increases with EAI following a similar curve provided by Equation 13. More in-
terestingly, we find that this space-time similarity also exists in the slopes of the HI EAI  relationships, 
quantified by an S-shaped curve of     /d HI d EAI EAI  relationship given by Equation 14. Under very 
dry conditions, HI approaches its theoretical maximum, 1.0, but with decreasing regional or temporal (in-
ter- and intra-annual) variability in a space-time symmetric fashion. Equation 14 thus shed some light on 
the previous finding of HI’s inter-catchment and inter-year constancy (Horton, 1933; Troch et al., 2009) 
under dry conditions, and further extend it to HI’s intra-annual variability for different biome regimes.
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Figure 14.  Space-time similarity: d (HI)/d (EAI)∼EAI of Monthly means of the Horton Index across spaces. A bin size of 10 is used to compute the empirical 
d (HI)/d (EAI). The magenta, solid blue, and dashed blue lines correspond to the best-fitted, upper-bound, and lower bound curves using Equation 14, 
respectively.
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This analytical framework opens the door and/or paves the way to many exciting opportunities to advance 
our understanding of water-plant-soil-climate interactions, including but not limited to:

•	 �HI is a better indicator than AI for vegetation water use. HI captures the partitioning of soil moisture 
storage, which is directly available to vegetation. AI (in the framework of the Budyko formula) captures 
the partitioning of precipitation into runoff and E, and the runoff part includes surface runoff which is 
not available to vegetation. The analytical framework of HI can thus be a useful tool to explore quanti-
tative connections between ecohydrology and hydrology at the catchment scale (e.g., over a few catch-
ments) or regional scale (e.g., over a large number of catchments in a region)

•	 �In this study, we assume that GPH is valid at the monthly scale for the partitioning of catchment wetting 
into vaporization and baseflow. We validate this assumption by showing empirical evidence that our 
analytical framework has successfully reproduced intra-annual variability of HI across over 340 catch-
ments. It is nevertheless worthy to further explore to what extent GPH can be applied. Given the fact that 
the SCS-CN method is essentially applicable at the event scale, it is feasible to explore whether and how 
GPH can be applied to the 2nd-stage of hydrologic partitioning at the event scale and how vegetation 
may play a role in it

•	 �This analytical framework can be used as a first-order constraint to the simulated ecological and hydro-
logical responses from hydrological, land surface, and earth system models, helping prompt a balanced, 
effective representation of hydrological and ecological processes and their interactions and hence reduc-
ing the simulation uncertainties

•	 �Our analytical framework may be used to improve the parameterization of hydrologic models due to its 
common theoretical basis with the SCS-CN method, that is, GPH. Furthermore, the SCS-CN method is 
suggested to have a similar physical basis with the abcd model (Wang & Tang, 2014) and Variability Infil-
tration Model (Wang, 2018). There is thus a promising potential to help better estimate the runoff param-
eters, for instance, according to dominant vegetation cover in each of the spatial units in these models

•	 �The emergent space-time similarity patterns may be used as empirical evidence to advancing our under-
standing of Horton’s hypothesis that vegetation practices maximization of productivity relative to avail-
able water (Horton, 1933). Despite the highly nonlinear vegetation dynamics and spatiotemporal heter-
ogeneity in climate, soil, and topographic conditions, it appears that vegetation maximum productivity 
may function as an organizing principle and lead to a convergence of plant-soil-atmosphere interactions, 
which manifests in the form of emergent patterns presented here

We suggest that the analytical framework and emergent patterns have important implications to improving 
understanding and modeling of ecological and hydrological processes and their interactions at the catch-
ment and larger scales. More broadly, the findings from this study suggest the promising potential of Horton 
Index as a conceptual yet quantitative framework for exploring the links between catchment water balance 
and vegetation dynamics across multiple scales in space (catchment to regional scales) and time (event to 
long-term scales).

Data Availability Statement
All the data used in this study are from the Catchment Attributes and MEteorology for Large-sample Stud-
ies (CAMELS) data set, which can be accessed at https://ral.ucar.edu/solutions/products/camels.
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