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Abstract

We introduce Operational Genomic Unit (OGU), a metagenome analysis strategy that directly exploits
sequence alignment hits to individual reference genomes as the minimum unit for assessing the diversity
of microbial communities and their relevance to environmental factors. This approach is independent
from taxonomic classification, granting the possibility of maximal resolution of community
composition, and organizes features into an accurate hierarchy using a phylogenomic tree. The outputs
are suitable for contemporary analytical protocols for community ecology, differential abundance and
supervised learning while supporting phylogenetic methods, such as UniFrac and phylofactorization,
that are seldomly applied to shotgun metagenomics despite being prevalent in 16S rRNA gene amplicon
studies. As demonstrated in one synthetic and two real-world case studies, the OGU method produces
biologically meaningful patterns from microbiome datasets. Such patterns further remain detectable at
very low metagenomic sequencing depths. Compared with taxonomic unit-based analyses implemented
in currently adopted metagenomics tools, and the analysis of 16S rRNA gene amplicon sequence
variants, this method shows superiority in informing biologically relevant insights, including stronger
correlation with body environment and host sex on the Human Microbiome Project dataset, and more
accurate prediction of human age by the gut microbiomes in the Finnish population. We provide Woltka,
a bioinformatics tool to implement this method, with full integration with the QIIME 2 package and the

Qiita web platform, to facilitate OGU adoption in future metagenomics studies.
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Importance

Shotgun metagenomics is a powerful, yet computationally challenging, technique compared to 16S
rRNA gene amplicon sequencing for decoding the composition and structure of microbial communities.
However, current analyses of metagenomic data are primarily based on taxonomic classification, which
is limited in feature resolution compared to 16S rRNA amplicon sequence variant analysis. To solve
these challenges, we introduce Operational Genomic Units (OGUs), which are the individual reference
genomes derived from sequence alignment results, without further assigning them taxonomy. The OGU
method advances current read-based metagenomics in two dimensions: (i) providing maximal resolution
of community composition while (ii) permitting use of phylogeny-aware tools. Our analysis of real-
world datasets shows several advantages over currently adopted metagenomic analysis methods and the
finest-grained 16S rRNA analysis methods in predicting biological traits. We thus propose the adoption

of OGU as standard practice in metagenomic studies.
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Introduction

The rapidly developing field of shotgun metagenomics has inherited many analytical tools from the
more mature field of 16S rRNA gene amplicon studies. For example, diversity analyses provided in
platforms such as QIIME 2 (1) can be used for metagenomic analyses. To date, the typical
metagenomics workflow starts with taxonomic profiling, which estimates the taxonomic composition of
microbial communities by matching sequencing data against a reference database (2). The resulting
matches are compiled into an unstructured feature table, with values usually in the form of relative
abundances of taxonomic units at a fixed rank (e.g. genus or species level), followed by relevant

statistical analyses.

In contrast, the current standard for 16S rRNA analysis involves more advanced feature extraction,
including construction of amplicon sequence variants (ASVs), which have replaced operational
taxonomic units (OTUs) to deliver the finest-possible resolution from amplicon data (3). Phylogeny-
aware algorithms such as UniFrac (4) have been widely-adopted to model community diversity while
considering how features interrelate owing to the accessibility of reference phylogenies (5, 6), and the
availability of de novo and a priori phylogenetic inference methods (7). This wisdom should be adopted
as well to metagenomics. Thanks to the advances in efficient sequence alignment algorithms, and the
expansions of reference genome databases (8, 9) and phylogenomic trees (10, 11), it is now possible and
increasingly preferable to develop a fine-resolution, structured data analysis strategy in shotgun

metagenomics.

Therefore, we propose an alternative method for constructing metagenomic feature tables, in which
features are no longer taxonomic units, but individual reference genomes from a database, and the
feature counts are the number of sequences aligned to these genomes. We refer to such features as

Operational Genomic Units (OGUs). This term, in an echo of OTU but replacing “taxonomic” with
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“genomic”, highlights the nature of the genome-based, taxonomy-free analysis. Meanwhile,
“operational” indicates that this method does not rely on the direct observation of member genomes of
the community, but uses pre-defined reference genomes as a proxy to model the community

composition. However, like ASVs, OGUs are exact and do not rely on similarity thresholds as OTUs do.

An OGU table represents the finest-grained resolution of observed genomes in a microbial community
relative to the reference database. As such it can be used to quantify the community structure and
relationships in correlation with biological traits. It can also work well with cost-efficient “shallow”
shotgun metagenomics (12), where limited sequencing depth (even below the previously recommended
lower threshold of 500,000 sequences per sample) is adequate for assessing community structure. It
further empowers tree-based analyses, such as UniFrac and phylofactorization, which is enhanced by
using the “Web of Life” (WoL) reference phylogenetic tree that we recently developed to describe

accurate evolutionary relationships among genomes (10).

We have implemented the method for generating OGU tables in the open-source bioinformatics tool,

Woltka (https://github.com/qgiyunzhu/woltka). This program serves as a versatile interface connecting

choices of upstream sequence aligners (such as Bowtie2 and BLAST) and downstream microbiome
analysis pipelines (such as QIIME 2). In addition to the standalone program, the package ships with a
QIIME 2 (1) plugin to facilitate adoption and integration into existing protocols. We have also made this
method available through the Qiita web analysis platform (13) as part of the standard operating
procedure for shotgun metagenomic data analysis, thereby enabling massive reprocessing and
subsequent meta-analysis of metagenome datasets with OGUs. Thus far, we have applied the OGU
method to re-analyze all public and private metagenomic datasets hosted on Qiita, totaling 143 studies

and 57,063 samples, as of Mar 3, 2021.
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Our team and collaborators have applied prototypes of the OGU method in multiple microbiome and
multiomics studies and have obtained biologically relevant results (e.g., (14—16)). In this article, we
systematically introduce the principles and practices of the OGU method, demonstrate its efficacy in one
synthetic and two real-world microbiome datasets, and compare it with state-of-the-art metagenome
analysis approaches and the alternative data type (16S rRNA gene amplicons). Given our findings, we

propose the adoption of OGUs as a good practice in metagenomic analyses.

Results

OGUs maximize resolution of community structures

The rationale and benefits of the OGU method are demonstrated with a synthetic case study illustrated in
Fig. 1, with the underlying feature tables provided in Table S1. In this simple case, three metagenomes
with 12 sequences each were aligned to 10 reference genomes, which were hierarchically organized by
taxonomy (left) or by phylogeny (right) (Fig. 1A). Beta diversity was calculated on feature tables at
different levels: either on taxonomic units at the rank of genus or species, or directly on reference

genomes (i.e., OGUs) without the need for giving them taxonomic labels.

As demonstrated (Fig. 1B), the genus-level analysis, which had the lowest resolution (three genera),
yielded spurious proximity between samples B and C, as relative to sample A, largely determined by the
differential abundance of genera G1 and G2. The species-level analysis with moderately higher
resolution (five species) was able to bring A closer to B and C, mainly contributed by the identical
frequencies of species S1, which could not be revealed at the genus level. The OGU-level analysis,
having the highest resolution (10 features), revealed the separation between B and C due to distinct
OGU composition, despite similar species counts (e.g., O5 and O7 have different counts within S3), and

the proximity between A and B due to shared OGUs (06 and O9). Additional structure was revealed by
8
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using the UniFrac metric, which considers the hierarchical relationships among features, hence further
joining samples (here A and B) sharing longer branches in the phylogenetic tree (even by different
OGUs, such as Ol and O2) and separating those sharing shorter ones. Taxonomy may serve as a
replacement of phylogeny, but it has a lower resolution than phylogeny (e.g., O1 and O2 are
evolutionarily closer to each other relative to O3 but taxonomy cannot reveal this), and sometimes does
not reflect the true evolutionary relationships among organisms (e.g., O4 and OS5 are here placed in

different genera), which can impact the accurate modeling of community structures.

In summary, this example illustrates the need for increasing resolution in order to better understand the
diversity of microbial communities. This “resolution” has two dimensions of meaning: first, the quantity
of features representing individual microbiomes; second, the granularity and accuracy of the hierarchy—

if any—that defines the relationships among individual features.

OGUs accurately represent body environment and host sex associated microbiome patterns

We demonstrated the typical use of the OGU method on the classic Human Microbiome Project (HMP)
shotgun metagenomic dataset (17), which contains 210 metagenomes sampled from seven body sites of
male and female human subjects. We subsampled each metagenome to one million paired-end reads—a
sampling depth close to the recommended lower threshold (500k reads) for “shallow” shotgun
sequencing (12). The sequences were aligned to the WoL reference genome database (totaling 10,575
bacterial and archaeal genomes) and the alignments were processed using Woltka, resulting in an OGU
table with 6,220 features (reference genomes) (Fig. S1A). Beta diversity analysis using the weighted
UniFrac metric with the WoL reference phylogeny was performed on the OGU table (Fig. 2). For
comparison, we analyzed the dataset using the currently adopted method (CAM) (e.g., (17)): using Bray-

Curtis on a species-level taxonomic profile. We exemplified the CAM by using the profile inferred by
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Bracken (18) on the same WoL database (Fig. 2), but also tested and reported the results of SHOGUN

(19), Centrifuge (20), and MetaPhlAn (21) (Fig. S1).

Principal Coordinates Analysis (PCoA) of OGUs (Figs. 2A and S2A), with the first three axes
explaining 71.01% of community structure variance (Figs. 2C and S1B), revealed that microbiomes
were clustered mainly by the body site from which they were sampled, which overshadowed clustering
by host sex, if any. This pattern is largely consistent with the previous report (17). The PCoA plot by
CAM (Figs. 2B and S2B, also see S3), although with less explained variance (46.30%) (Figs. 2C and
S1B), also displayed a clustering-by-site pattern. However, it is notable from the plot that sample
clusters are aligned diagonally—a typical pattern indicating the saturation of distances caused by the
inadequacy of shared features (species) among body sites (22) (Figs. 2B and S2B). This characteristic

limits the power of resolving community diversity.

Permutational multivariate analysis of variance (PERMANOVA) of the beta diversity distance matrices
suggested that all methods were able to clearly differentiate samples by body site (p=0.001), with OGU
generating the strongest statistic (Figs. 2E and S1C) (OGU: F=77.82; CAM: F=42.36). The distinction
by host sex was less obvious. Only OGU was able to distinguish microbiome by sex (F=3.011,
p=0.013), whereas CAM failed to distinguish sex with statistical significance (#=1.692, p=0.086) (Figs.
2F and S1E-F). This demonstrated the power of the OGU method in capturing subtle but relevant trends,
even when another primary factor (body site) is driving most of the community diversity. Three of the
seven body sites are located in the oral environment: tongue, teeth and buccal mucosa (Fig. 1A, B).
They together indicate weaker differentiation by sex (OGU: F=1.905, p=0.099; CAM: F=1.610,
p=0.130) (Figs. 2F and S1G-H). In parallel, we reason that sites sharing the same environment likely
have higher microbial connections. To test this effect, we calculated the relative distance between the

three oral sites versus oral sites to non-oral sites. This distance is significantly smaller with OGU (0.699

10
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190  +0.098, mean and std. dev., same below) than with CAM (0.808 + 0.051) (two-tailed paired t=-14.398,
191  p=2.57e-26) (Figs. 2D and S1D), suggesting that OGU is more effective at relating subgroups of

192  samples with shared properties.

193  The OGU table plus the WoL tree further enabled differential abundance analysis using the phylogenetic
194  factorization method (23) (Figs. S4-5). The result was visualized and analyzed using the recently

195  released massive tree visualizer EMPress (24) (Fig. 2G). It revealed that the phylogenetic clade

196  separated by Factor 1 represents the genus Lactobacillus, contained in predominantly posterior fornix
197  samples from female hosts, which is expected (25). Meanwhile, Factor 2 (genus Neisseria), Factor 3

198  (genus Capnocytophaga) and Factor 4 (species Leptotrichia buccalis) are more frequently observed in
199  the oral sites of male hosts. For comparison, we applied the tree-free method ANCOM (26) on the

200  taxonomic profiles generated by alternative methods (Table S2). At genus level, all four methods were
201  able to capture only Lactobacillus, consistent with our Factor 1. However, at species and OGU levels,
202  results were discordant between methods and no method reported any Lactobacillus sp., again showing

203  the limitations of confining analyses to taxonomic ranks without phylogenetic information.

204  Finally, we assessed the efficacy of OGUs along a gradient of decreasing sampling depths. The

205  correlation between the original OGU table (from one million paired-end reads) and each of the

206  subsampled OGU tables was consistently high. A Pearson’s » of 0.961 + 0.0726 (mean and std. dev.,
207  same below) was retained even at the sampling depth of 200 (Fig. S6A). The PCoA clustering pattern
208  largely remained the same at all sampling depths (Fig. S7). The oral-vs-other relative distance (see
209  above) retained a Pearson’s  of 0.971 £ 0.00613 when sampling depth was 200 (Fig. S6B). The

210  PERMANOVA F-statistics calculated based on 10 replicates of random subsampling were close to the
211  original statistic and largely stable down to very low sampling depths. The mean difference from the

212 original statistic was still within 5% at the sampling depth of 1,000 for body site (3.349 £+ 1.361, unit:

11
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percentage of the original statistic, same below), or 500 for host sex (2.680 £+ 5.473) (Fig. S6C-D).
These findings suggest that the OGU method remains valid even on very shallow metagenomic samples,

including those that would otherwise be considered unusable for typical metagenomic analyses.

OGUs improve prediction of host age from the gut microbiome

We next analyzed 6,430 stool samples collected through a random sampling of the Finnish population
using both 16S rRNA gene amplicon sequencing and shallow shotgun metagenomic sequencing. This
“FINRISK” study (27) provides an opportunity to explore the dependency of feature sets (e.g.
taxonomic levels and data source: 16S rRNA amplicon vs. shotgun metagenomic data) on the prediction
accuracy of a machine learning model on the targeted phenotype (e.g., age). We quantitatively examined
the impact of taxonomic level of microbiome features on the empirical error (mean absolute error, or
MAE) in predicting human chronological age using a Random Forests regressor (28), constructed using

5-fold cross-validation.

Our results (Fig. 3A) showed the prediction accuracy continued to improve, resulting in lower absolute
errors with finer microbial feature classification levels. Shotgun data outperformed 16S data at all levels,
and was able to reduce MAE to less than 10 years at the genus level or below. At the lower limit of both
16S and shotgun data, we achieved an MAE of 9.581 + 0.116 years (mean and std. dev., same below)
with OGUs (Fig. 3B), whereas ASVs, the highest possible resolution allowed by 16S data, resulted in a
higher MAE of 10.110 + 0.103 years (two-tailed =-7.25, p=8.81e-5). Meanwhile, using the species-
level profile inferred by Bracken, we also obtained a higher MAE of 10.273 £+ 0.089 years (vs. OGU:
two-tailed =-10.59, p=5.53e-6) (Fig. S8). Decreasing sequencing depth did not reduce the age
prediction accuracy for individual samples (Fig. S9). For example, samples with 320-366k metagenomic
sequences (2nd bin from low end in the figure) had an MAE of 9.290 + 6.378 years, whereas samples

with 1,386-1,931k sequences (2nd bin from high end) had an MAE of 10.118 + 6.086 years, which were
12
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not significantly different (two-tailed /=-1.37, p=0.170). We then explored which OGUs contributed to
the superior performance in age prediction as compared to 16S rRNA ASVs. Therefore, we identified a
reduced set (n=128) of the most important OGUs that can maximize the prediction accuracy via a
recursive feature elimination approach (Fig. S10). Among these important features, a few gut microbial
strains increased in abundance with aging, such as multiple strains from Streptococcus mutans,
Eubacterium sp. (Figs. 3C, S11-12). Remarkably, those Streptococcus spp. are typically located in the
oral cavity yet can be over-represented in the gut of elderly individuals, suggesting potential microbial
transmissions between oral and gut microbiomes related to typical aging in a large population (29, 30).
Next, we also identified a few microbial OGUs that were under-represented in the elderly, such as
Anaerostipes hadrus DSM 3319 and members of Bifidobacterium, including B. longum NCC2705 and
B. saguini DSM 23967 Bifsag. Many of these important taxonomic features were not identified in the
16S data, putatively because the partial sequences of a 16S rRNA gene cannot provide sufficient
resolution to distinguish species or strains. For example, a few 16S rRNA ASVs annotated with
Lachnospiraceae have been associated with aging and were identified in either this or past studies (31),
whereas our method identified several OGUs (Anaerostipes hadrus DSM 3319) within the family of

Lachnospiraceae that exhibited strong predictive powers for discriminating aging.

Discussion

The OGU method introduced in this article provides a way to maximize the resolution of feature tables
by directly considering reference genomes without the reliance on taxonomic classification in shotgun
metagenomics studies. Although the strategy of taxonomy-free community structure analysis has been
widely adopted in 16S data analysis (e.g., ASV or de novo OTU clustering), it remains underexplored in

metagenomics, largely due to the difficulties in defining and quantifying “features” without using an a

13
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priori classification system. Our study shows that sequence alignment hits to individual reference

genomes can be used as the minimum unit for features, referred to as OGUs.

Through comparative analysis of OGU and alternative methods using a synthetic case study and two
real-world microbiome studies, we demonstrated that classical high-dimensional statistics and machine
learning methods developed and matured in the field of 16S rRNA gene amplicon analysis can be
directly applied to OGUs to provide biologically relevant insights. The OGU results often are superior to
currently adopted metagenomic classification methods and ASV analysis of the 16S rRNA data.
Meanwhile, we showed that the use of taxonomic units as features, as many researchers have been
practicing to date, has conceptual and performance limitations compared with the OGU method,

particularly at higher taxonomic ranks due to the loss of resolution.

The independence from taxonomy further enables the utilization of explicit phylogenetic trees. A
researcher can choose from pre-computed reference phylogenies, such as the one we introduced in the
“Web of Life” (WoL) project (10), or custom phylogenomic trees computed from de novo construction
or placement, through tools such as PhyloPhlAn3 (32) and DEPP (33), which are scalable to large
numbers of genomes. This connects evolutionary biologists’ efforts in updating the tree of life (e.g., (10,
11, 34)), computational biologists’ efforts in forging phylogeny-aware methods (e.g., UniFrac and
PhyloFactor), and microbiome scientists’ pursuits of relating high-dimensional microbiome data with

biology.

Taxonomy, despite being relatively coarse-grained and error-prone as a classification system, may serve
as an implicit replacement of phylogeny if the latter is not available. We tested this idea by applying
UniFrac to an artificial taxonomic tree with constant branch lengths between ranks (analogous to (35)).
Although this treatment is controversial, because taxonomic ranks do not directly indicate evolutionary

distances, we did observe improvement compared to not using a tree (Fig. S13). Although there have
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been remarkable efforts for curating taxonomy using phylogenetics, however, the number of taxonomic
ranks is limited (typically 7 to 8), and can constrain the topology for an ever-growing number of
sequenced genomes. For example, the current release (R95) of GTDB (36) has 31,910 species clusters,
constituting a taxonomy tree of 45,502 vertices, whereas NCBI RefSeq and GenBank host 977,729
unique genomes as of March 30, 2021, and a fully resolved phylogenetic tree of them can theoretically
have 1,955,456 vertices. The history of 16S rRNA studies (7) is repeating itself in whole-genome
studies, such that building a phylogeny is not only advantageous but often more feasible than defining
taxonomy, and the OGU method powerfully provides an analogous extension to shotgun sequencing
studies. As a new notion to microbiome research, OGU’s properties in statistical analyses has yet to be
characterized in a large number of studies, as was done for 16S rRNA ASVs. Unique challenges in
shotgun metagenomics may impact analyses that were designed for 16S rRNA data. For example, very-
low-abundance false positive assignments, which are prevalent from typical metagenomic classifiers,
may impair the accuracy of the recovered community composition (37). A typical treatment is to only
consider features with relative abundance above a given threshold in each sample (37). While we
provide this function in Woltka to facilitate user’s preferences, our tests suggested that the result of an
OGU analysis is highly stable against a wide range of filtering thresholds when using abundance-based
metrics (weighted UniFrac and Bray-Curtis), as compared with presence/absence-based metrics
(unweighted UniFrac and Jaccard) (Fig. S14). This observation implies the OGU method is robust to

noise commonly introduced into metagenomic datasets from many low abundance observations.

The robustness of an OGU analysis is only limited by the comprehensiveness of the reference. Despite
that available genomic data have grown to an enormous volume, the size of a reference genome database
that can be realistically used in a metagenomic analysis with typical computing facilities is
circumscribed, limiting the increase of resolution beyond sub-species levels. Balancing alignment

accuracy and database content is therefore an important consideration in designing the analytical
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strategy. The algorithm we previously designed and used in the WoL database to maximize the covered
biodiversity given a fixed number of genomes (10) may be beneficial in this situation, but its efficacy
needs to be further tested in the background of various biospecimens and biological questions.
Leaderboard sequencing may also be a useful strategy for iteratively augmenting the reference database
with the common genomes in each sample (38). In the long run, efforts to improve algorithms, increase
database coverage, and improve computing efficiency are all needed to facilitate effective advances in

the field of metagenomics, and the OGU method provides an important step forward in that direction.
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Materials and Methods

Protocol details

The OGU method is flexible to the type of sequence alignment. The recommended protocol, which is
also the protocol demonstrated and benchmarked in this article, is as follows: Shotgun metagenomic
sequencing data were aligned against the WoL reference genome database using SHOGUN v1.0.8 (19),
with Bowtie2 v2.4.1 (39) as the backend. This process is equivalent to a Bowtie2 run with the following

parameters:

--very-sensitive -k 16 --np 1 --mp "1,1" --rdg "0,1" --rfg "0,1" --score-min "L,0,-0.05"

The sequence alignment is treated as a mapping from queries (sequencing data) to subjects (reference
genomes). It is possible that one sequence is mapped to multiple genomes (up to 16 using the
aforementioned Bowtie2 command). In this scenario, each genome is counted 1/ & times (k is the
number of genomes to which this sequence is mapped. The frequencies of individual genomes were
summed after the entire alignment was processed, and rounded to the nearest even integer. Therefore,
the sum of OGU frequencies per sample is nearly (considering rounding) equal to the number of aligned
sequences in the dataset. The output feature table has columns as sample IDs, rows as feature IDs
(OGUgs), and cell values as the frequency of each OGU in each sample. This table is ready to be

analyzed using software packages such as QIIME 2 (1).

Implementation

The OGU method is implemented in the bioinformatics tool Woltka (Web of Life Toolkit App), under
the BSD-3-Clause open-source license. The program is written in Python 3, following high-quality

software engineering standards. Its unit test coverage is 100%. The source code is hosted in the GitHub
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repository: https://github.com/qiyunzhu/woltka, together with instructions, tutorials, command-line

references, and test datasets. The program has been included in the Python Package Index (PyPI). In

addition to the standalone Woltka program, a QIIME 2 (1) plugin is included in the software package.

Woltka automatically recognizes and parses multiplexed or per-sample sequence alignment files, either
original or compressed using Gzip, Bzip2 or LZMA algorithms. It supports three alignment file formats:
1) SAM (Sequence Alignment Map) (40), which is supported by multiple short read alignment
programs, such as Bowtie2 (39), BWA (41) and Minimap2 (42); 2) the standard BLAST (43) tabular
output format (“-outfmt 6”), which is supported by multiple sequence alignment programs, such as
BLAST, VSEARCH (44) and DIAMOND (45); 3) A plain mapping of query sequences to subject

genomes, which is customizable to adopt other tools and pipelines.

In addition to OGU table generation, Woltka supports summarizing features into higher-level groups.
This enables taxonomic classification, for comparison purposes. The output of Woltka’s classification
function and that of SHOGUN’s “assign_taxonomy” function are identical. Woltka supports three
formats of classification systems: 1) the Greengenes-style lineage strings (supported by programs such
as QIIME 2 (1), MetaPhlAn (21) and GTDB-tk (46)); 2) The NCBI-style taxonomy database (47) (a.k.a.
“taxdump”, supported by programs such as Kraken 2 (48), Centrifuge (20) and DIAMOND (45)); 3)

One or multiple plain mappings of child-to-parent classification units.

Deployment

The Woltka program has been incorporated in the Qiita web analysis platform (https:/qgiita.ucsd.edu/)
(13), as part of the standard operating procedure for analyzing shotgun metagenomic data (qp-woltka,

code hosted at: https://github.com/qiita-spots/gp-woltka). It can be directly launched from the graphic

user interface. A job array system is used to parallelize analyses on a per-sample base to maximize
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processing speed. Each process uses eight cores of an Intel E5-2640 v3 CPU and 90 GB DDR4 memory.
Two reference genome databases are available for user choice: 1) The “Web of Life” (WoL) database
(10), with 10,575 bacterial and archaeal genomes that were evenly sampled through an algorithm. 2) The
reference and representative genomes of microbes defined in NCBI RefSeq release 200 (8). The
subsequent community ecology analyses based on the OGU table are also available from Qiita. The

WoL reference phylogeny is available for choice for phylogenetic analyses (such as UniFrac (4)).

This system allowed us to re-analyze all metagenomic datasets hosted on Qiita (totaling 143 studies and
57,063 samples, as of Mar 3, 2021) to generate OGU tables as well as tables at multiple taxonomic
ranks, which are ready for subsequent meta-analysis by Qiita users. Although runtime varies by sample
size, the average wall clock time for analyzing one metagenomic sample (including sequence alignment
against WoL using Bowtie2 and feature table generation using Woltka) was 13.8 minutes in this large

effort.

The HMP dataset

The Human Microbiome Project (HMP) (17) dataset was downloaded from the official website

(https://www.hmpdacc.org/hmp/). It contains 241 samples of 100 bp paired-end whole genome

sequencing (WGS) reads. The sequencing data were already processed to remove human contamination
and low-quality regions. We dropped samples with less than 1M paired-end reads, leaving 210 samples.
They were randomly subsampled to 1M paired-end reads per sample. These samples represent both male
(n=138) and female (»=72) human subjects. They represent seven body sites: stool (#=78), tongue
dorsum (n=42), supragingival plaque (n=33), buccal mucosa (n=28), retroauricular crease (n=13),

posterior fornix (»=10), and anterior nares (n=6).
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Taxonomic profiling

In comparison with the OGU method, we performed taxonomic profiling on the shotgun metagenomic
data using four existing methods, specified as below. The default parameters were used for all programs.
To maximize comparability, we used the WoL reference genome database (10) for all methods, except

for MetaPhlAn (because it uses a special marker gene database which is difficult to customize).

1. SHOGUN: SHOGUN v1.0.8 (19), which calls Bowtie2 v2.4.1 to perform sequence alignment.
2. Bracken: Bracken v2.5 (18) on the results of Kraken v2.0.8 (48).

3. Centrifuge: Centrifuge v1.0.3 (20).

4. MetaPhlAn: MetaPhlAn v2.6.0 (21) with its database (mpa_v20_m200). Results (relative

abundances) were normalized to counts per million sequences.

Beta diversity analysis

Beta diversity analysis of the HMP dataset was performed using QIIME 2 (1), following recommended
protocols (49). Specifically, beta diversity distance matrices were constructed using the “qiime
diversity beta” command with Jaccard and Bray-Curtis metrics, and using the “qiime diversity
beta-phylogenetic” command (50) with unweighted UniFrac and weighted UniFrac metrics, based on
the WoL reference phylogeny. Principal coordinates analysis (PCoA) was performed using the “qiime
diversity pcoa” command. The correlation between biological factors (body site and host sex) and beta
diversity was assessed using the PERMANOVA test, through the command “qiime diversity adonis”,

with 999 permutations (the default setting).

Site clustering by environment

In the HMP study, we quantified the proximity of the three oral sites (tongue dorsum, supragingival

plaque, and buccal mucosa) as compared with the four non-oral sites (stool, retroauricular crease,
20
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posterior fornix, and anterior nares) as follows: For each sample in the three oral sites, we calculated the
beta diversity distance to all samples in all but the current site. We then separated these distances into
oral (i.e., the two oral sites other than the current one) and non-oral (i.e., the four non-oral sites). We
calculated the ratio of the mean distance of the former versus the latter. Finally we reported the

distribution of the mean ratios of all oral samples.

Phylogenetic factorization

We performed phylogenetic factorization as implemented in Phylofactor v0.0.1 to infer phylogenetic
clades (“factors”) that are differentially abundant between male and female subjects. Two samples with
less than 100,000 OGU counts were excluded from the analysis. OGUs with relative abundance below
0.01% were dropped from each sample, and OGUs present in fewer than two samples were also
excluded. We built an explained variance-maximizing (the choice parameter was set to “var”
Phylofactor model using the OGU table and the WoL phylogeny. We specified the model to return 20
factors. They were labeled by the taxonomic annotation of the corresponding phylogenetic clades as
provided in the WoL database. The results were visualized with EMPress. In each factor, we tested the
differences in male vs female subjects by comparing the ILR-transformed vectors corresponding to each

sample group using a two-tailed independent samples 7-test.

Subsampling of OGU tables

To assess the impact of sampling depth on analysis results, we randomly subsampled the OGU tables to
lower depths (sum of OGU frequencies per sample). This process mimicked lower sequencing depths in
the original data, because the sum of OGU frequencies is nearly equal to the number of aligned
sequences (see above). This process further considered the unaligned part of the sequencing data. For

example, if m out of n sequences in a sample were aligned to at least one reference genome (therefore
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the sum of OGU frequencies was m), we added an extra “unaligned” feature of frequency of n - m to the

OGU table, prior to random subsampling, and removed this feature after sampling.

The FINRISK 2002 datasets

The FINRISK 2002 is a large, well-phenotyped, and representative cohort based on a stratified random
sample of the population aged 25 to 74 years from specific geographical areas of Finland (27). All
volunteer participants took a self-administered questionnaire, physical measurements and collection of
blood and stool samples. The microbiome data and metadata that support the findings of this study are
available from the THL Biobank based on a written application and following relevant Finnish
legislation. Details of the application process are described in the website of the Biobank:

https://thl.fi/en/web/thl-biobank/for-researchers.

Paired 16S rRNA gene amplicon sequencing data and shotgun metagenomic sequencing data are
available for 6,430 stool samples. The 16S rRNA data were demultiplexed, quality filtered, and denoised
with deblur v1.1.0 (51), resulting in an average ASV frequency of 8,787 per sample, followed by
normalization to 10,000 per sample. Taxonomic classification was performed using a pre-trained Naive
Bayes classifier against the Greengenes 13_8 database at an OTU clustering level of 99%. Feature tables
were rarefied to a sampling depth of 10,000. The shotgun metagenomic data were trimmed and quality
filtered using Atropos v1.1.25 (52), resulting in an average of 1.07 million paired-end sequences per
sample. They were aligned to the WoL database using SHOGUN v1.0.8. An OGU table was generated
using the current approach. As a comparison, Bracken v2.5 with Kraken v2.0.8 were used to infer
taxonomic profiles using the same WoL database. These analyses were the same as the corresponding

analyses of the HMP shotgun metagenomic dataset, as described above.
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Supervised regression for age prediction

We performed machine learning analysis of microbial profiles derived from both 16S amplicon
sequencing and shotgun metagenomics sequencing, at distinct levels of resolution. These included
taxonomic ranks (phylum, class, order, family, genus and species) for both 16S rRNA and shotgun
metagenomic data (the latter of which were inferred by either SHOGUN or Bracken), ASV for 16S
rRNA data, and OGU for shotgun metagenomic data (inferred by SHOGUN with Woltka). In each
profile, features with a study-wide prevalence less than 0.001 were excluded. Random Forest regressors
for predicting chronological age were trained based on each profile with tuned hyperparameters with a
stratified 5-fold cross-validation approach using R package ranger v0.12.1 (53). Each dataset was split
into five groups with similar age distributions, and we trained the classifier on 80% of the data, and
made predictions on the remaining 20% of the data in each fold iteration. We next evaluated the

Ny
performance of age prediction using mean absolute error (MAE), which calculated as MAE=W,

where y denotes the predicted age, x denotes the chronological age, and # is the total number of samples.
Based on the MAE evaluation, we next determined the most predictive taxonomic levels derived from

both 16S and shotgun metagenomics.

To identify the most important taxonomic features that contributed to the age prediction, we visualized
the top-128 ranked important features by built-in Random Forest importance scores and their
phylogenetic relationships using EMPress (54). We next performed the feature selection analysis to
identify a set of important microbial features that can maximize the model performance. We built age
regressors using a series of reduced sets (n =2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, and the number of
all features) of the most predictive taxonomic features (namely, OGU) and compared their performance.
The rationale is to observe the trough in MAE when additional features are added into the regression

model.
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Statistics statement

All data analysis was performed using QIIME 2 release 2020.6. PERMANOVA was performed using
the “adonis” command (which wraps the “adonis” function in vegan v2.5-6). Paired t-test was performed

using the “ttest_rel” function in SciPy v1.4.1.
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Figure Legends

Figure 1. Feature resolution impacts community structure analysis even in small conceptual
examples. A. A synthetic dataset involving three microbial communities, each of which having 12
unique read hits, as represented by black circles in the frequency table, to a total of 10 reference
genomes (OGUs), classified under five species, three genera and one family, as noted to the left. A
phylogenetic tree of the 10 genomes is shown on the right. In this simplified case, the phylogeny is not
much more complex than the taxonomy (with three more edges); however, the taxonomic assignment
and the phylogenetic placement of genome OS5 are not consistent. B. Beta diversity of the dataset. The
three samples (circles) are connected by edges representing the pairwise distances calculated by Bray-
Curtis (BC) or weighted UniFrac (WU) on the frequency table. For the latter measure, either the
taxonomy or the phylogeny was used to quantify the hierarchical relationships among OGUSs, as noted in
the parentheses. The edge lengths were normalized so that their sum is equal in each graph. This
synthetic case study demonstrates that different resolutions of features and feature structures can lead to

very different conclusions regarding sample relationships.

Figure 2. Analysis of the HMP metagenomes reveals clustering by body environment and
differentiation by host sex. Beta diversity analysis was performed on 210 samples subsampled to one
million paired-end shotgun reads each. A. PCoA by the method proposed in this study (OGU): weighted
UniFrac metric calculated with the WoL reference phylogeny based on the OGU table. Samples (dots)
are colored by body site and shaped by host sex. B. PCoA using the current adopted method (CAM):
Bray-Curtis calculated on species-level taxonomic units identified by Bracken, which shows a diagonal
pattern that aligns all samples of the four non-oral body sites in one plane (also see Figs. S2B and S3).

C. Proportions of community structure variance explained by the first three axes of PCoA. D. Mean
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ratio of the beta diversity distances from any oral sample to a sample of the two other oral sites versus to
that of non-oral body sites. The lower the mean ratio is, the more similar communities of the three oral
sites are to each other in the background of multiple body environments. The bold line in each box
represents the median. The whiskers represent 1.5 IQR. E and F. PERMANOVA pseudo-F statistics
indicating the differentiation of community structures by body site (E) and by host sex (F). The larger '
is, the more distinct the community structures are between groups versus within groups. The y-axis is
aligned to F=1.0 which indicates no difference. For E, all statistics have a p-value of 0.001. For F, an
asterisk (*) indicates p-value < 0.05. G. Differentially abundant phylogenetic clades by host sex inferred
using PhyloFactor and visualized using EMPress on the WoL reference phylogeny. The tree was
subsetted to only include OGUs detected in the dataset. The top 20 clades by effect size are colored (full
details provided in Figs. S4-5). The top five clades are numbered 1 through 5 by decreasing effect size,
circled, and labeled with corresponding taxonomic annotations. The small color ring represents phylum-
level annotations. The inner and outer barplot rings indicate the OGU counts split by body site (using the

same color scheme as in A and B) and by host sex, respectively.

Figure 3. Analysis of the FINRISK metagenomes showing superior prediction accuracy over
taxonomic units and 16S rRNA data. A. The empirical error (mean absolute error, MAE) in
predicting host chronological age using microbiome features at distinct taxonomic ranks in paired 16S
rRNA amplicon and shotgun metagenomics data with a Random Forests regressor. “None” represents
the taxonomy-free, finest-possible level (ASV for 16S, OGU for shotgun). Small circles indicate MAEs
in all iterations of five-fold cross validation. Large circles and error bars indicate the mean and standard
deviations of the five MAEs. B. Scatter plot of the actual age vs. the predicted age by the best-
performing model with OGU features in the five-fold cross-validation. The black line was generated

using ggplot2’s local polynomial regression fitting. C. Phylogenomic tree of 169 OGUs with importance
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score > 0.1 in the prediction model. The tree was subsampled based on the WoL reference phylogeny,
and drawn to scale (branch lengths represent mutations per site). Branch colors indicate the mean
importance score of all descendants of the clade. Taxonomic labels are displayed where needed. Circles
and lines with stops are displayed where needed to assist location of taxonomic labels to target branches

or clades.
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