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ABsTrRACT. We prove the analogue of the strong Szegd limit theorem for a large class of bordered
Toeplitz determinants. In particular, by applying our results to the formula of Au-Yang and Perk
[AYP87] for the next-to-diagonal correlations (o go—1,n) in the square lattice Ising model,
we rigorously justify that the next-to-diagonal long-range order is the same as the diagonal and
horizontal ones in the low temperature regime. We also confirm the leading and subleading terms in
an asymptotic formula of Cheng and Wu [CW] for {07, oo ps, v ) when M = N and M = N — 1, thereby
establishing the anisotropy-dependence of the subleading term in the asymptotics of the next-to-
diagonal correlations. We use Riemann-Hilbert and operator theory techniques, independently and
in parallel, to prove these results.

1. INTRODUCTION

Starting from the seminal works of Szegd, Kaufman and Onsager, Toeplitz determinants have
played a very important role in many areas of analysis and mathematical physics. Indeed, an
extraordinary variety of problems in mathematics, physics, and engineering can be expressed in
terms of Toeplitz matrices and determinants. We refer to the monograph [BS06] and the more
recent survey paper [DIK13] for the details of the theory and applications of Toeplitz determinants.

A growing interest has recently developed in the study of certain generalizations of Toeplitz
determinants. Among those are the determinants of Toeplitz + Hankel matrices - see [DIK11],
[BE17], [GI], integrable Fredholm determinants [IIKS90], [Dei99], 2j — k and j —2k determinants
[GW]. These determinants appear in the study of the Ising model in the zig-zag layered half-plane
[CHM19], in the spectral analysis of the Hankel matrices, in the theory of exactly solvable quantum
models [FA06], and in asymptotic analysis of moments of derivatives of characteristic polynomials
Aa(s) =det(I - As), where A € USp(2N),SO(2N),0~ (2N) [ABP+2014].

In this paper we are concerned with yet another deformation of Toeplitz determinants - the so
called "bordered Toeplitz determinants". The latter also arise in applications, for example, in
the the next-to-diagonal correlation functions for the Ising model. The goal of this paper is to
launch a new research project devoted to the asymptotics of these determinants and to discuss this
application in particular.
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2 ASYMPTOTICS OF BORDERED TOEPLITZ DETERMINANTS AND NEXT-TO-DIAGONAL ISING CORRELATIONS
Let ¢ and  be the L'-functions on the (positively oriented) unit circle,
T={zeC:|z|=1}.
. . B . .
The bordered Toeplitz determinant, D, [¢;¢/], is defined as

¢o 0 N2 YUN-1
¢-1 - ON-3 YUN-2
(1.1 DE [#;y] :=det| _ _ . N>,
¢1-Nn 0 1 Yo
where
(1.2) $n = _”¢(Z)— Un = ‘%(z)—
2riz 27iz
are respectively the n-th Fourler coeflicients of ¢ and . To fix the notation, we let
1.3 D = det ik}
(1.3) N [4] 05_,',kegzv—1{¢J 3

denote the N X N (pure) Toeplitz determinant corresponding to the symbol ¢. As with the Toeplitz
determinants, the principal analytic question is the asymptotic behavior of Dg [#;¢] as N — oo,

The asymptotics of the Toeplitz determinants are well known and given by the Szegd-Widom
theorem [Wid76, Sze52, BS06]

(1.4) Dn[¢]l ~G[¢]VE[¢], N — oo,

where

(1.5) Gl¢] =exp([logglo) and E[g] =exp| > n[logg]a[logs]
n>1

where [log @], is the k-th Fourier coefficient of log¢. This holds if the function ¢ is sufficiently
smooth (e.g., in Holder class C 1+€) " does not vanish on T, and has zero winding number. Note
that the constants involve the n-th Fourier coefficients [log ¢],, of the continuous logarithm of the
function ¢.

In this paper, we will show that for the bordered determinants a similar theorem holds,

(1.6) DY [¢:y] ~GIoIVE[$] Flp;¢], N —> oo,

and where F[¢;y/] is a constant described in Theorems 1.1 and 1.2 below.

Our general result above will become explicit in the case of the next-to-diagonal Ising correlations.
There it happens that ¢ is a constant times something of the form
¢(2)z—d
(1.7) Y(2)=——",
Z—c
where d and ¢ are complex parameters. Hence particular attention will be paid to such functions.

In Theorem 1.1 below, we present the asymptotics of Dﬁ [¢;¢¥], where i is of the more general
form

(1.8) ¥ (z) = q1(2)¢(2) +q2(2),

where

b; by < b,
X and qz(z)—ao+a1z+—+z /
Z—Cj =

(1.9) q1(2) =

z—cj’
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where all parameters are complex and the c; are nonzero and do not lie on the unit circle. Indeed
it is straightforward to pass from the rational functions ¢; and g, with one simple pole to the
ones with multiple simple poles, as one can use the following elementary properties of bordered
Toeplitz determinants:

(1.10) DR (¢ ) ajuj| = ) a;DR 6.0,
= j=1

(1.11) D% [¢:¢] =Dy (4],

(1.12) DR [¢;1]=Dn_1[9].

Throughout the the paper, we will refer to a symbol ¢ as a Szegd type symbol, if it is smooth
and nonzero on the unit circle, has winding number zero, and admits an analytic continuation in a
neighborhood of the unit circle.

Theorem 1.1. Let Dg [¢; ] be the bordered Toeplitz determinant with W = g1 ¢+ g, given by (1.8)
and (1.9), and ¢ of Szegd type. Then, the following asymptotic behavior of Dﬁ [¢;¢] as N — o0
takes place

(1.13) Df [¢:01 = GIoIVElg] (Flg:01+0(™™)),
where G @] and E[¢] are given by (1.5),

~

m 1 ULE N
(114 Flg:9] =ao+bolloggli+ ). b; Aen) do—aillogg]-1- ) —alc)) |,

2(0) * a0 vy
0<|c]-\<1 \Cj|>1
(1.15) a(2) —exp[zﬂl/log7_(¢(ZT)) }

and ¢ is some positive constant.

It is occasionally convenient to use different notation related to the function a/(z),

_ #+(2), zl <1,
(1.16) a(z) = {rﬁ:l(z), 2> 1.
with
(1.17) 6.(2) = exp (Z [log ¢]nz") . 6(2) =exp (Z [log ¢] z) .
n=0 n=1

In fact, these functions are the factors of a canonical Wiener-Hopf factorization of the symbol ¢,
#(z) = p_(2)¢4(z2), |z| = 1. Factors in a Wiener-Hopf factorization are unique up to a multiplicative
constant. With the factors as given above, we have the normalization,

(1.18) $:+(0)=a(0)=G[g],  ¢-(c0) =1=a(c).

More generally we can find the constant F[¢;y] in (1.6) as described in the following theorem,
which is proven using operator theory and Riemann-Hilbert methods respectively in Sections 3.1
and 5.2.
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Theorem 1.2. Let Y (z) be a function which admits an analytic continuation in a neighborhood of
the unit circle, and let ¢ be of Szegd type. Denote by ¢+ (z) the factors of a canonical Wiener-Hopf
factorization of the symbol ¢(z), i.e., ¢ = ¢_¢,. Then

(1.19) DF [¢:0] = GLo1VE[g] (Flg:01+0(™™)),
where G @] and E[¢] are given by (1.5),

(1.20) Flgsy]=
and ¢ is some positive constant.

Remark 1.3. Asitis shown in Section 3, with the change to o(1) in the error term, the asymptotics
(1.13) and (1.19) are valid for all € L?(T) and ¢ satisfying the assumptions of the strong Szegd
theorem, i.e., ¢(z) belongs to a Holder class C!*€, is nonzero on the unit circle, and has zero
winding number.

In this paper, we also apply our general results mentioned above to the problem of rigorous
evaluation of the next-to-diagonal two-point correlation function in the Ising model. To that
end, let us first recall more precisely the situation in the two-dimensional Ising model, solved by
Onsager (see, e.g., [MW73]). In this model a 2M x 2N rectangular lattice is considered with an
associated spin variable o taking the values 1 and —1 at each vertex (j,k), -M < j <M -1,
—N < k < N—1. There are 2N possible spin configurations {o"} of the lattice (a configuration
corresponds to values of all o fixed). By J, and J, we respectively denote the horizontal
and vertical nearest neighbor coupling constants and with each configuration we associate its
nearest-neighbor coupling energy given by

M-1 N-1
(1.21) E({c})=- Z Z (Jho ko k1 + Iy 0T 41 k) s Jn,Jy, > 0.

J=—Mk=—N

The partition function at a temperature 7 > 0 is equal to
(1.22) Z(T) = Ze—E“‘T})/kBT,
{0}

where the sum is over all configurations and kg is the Boltzmann constant. A remarkable feature
of this model is the presence of a thermodynamic phase transition (in the limit of the infinite lattice,
M, N — oo) at a certain temperature 7, whose dependence on Jj,, J,, is described by the equation,

. 2Jn 1\ . 2J,
1.23 h h =1.
( ) sin (kBTc)Sm (kBTc)

Define a 2-spin correlation function by the expression

ZC’O oorn pe EQTNIkBT

(1.24) (00,00N M>_MN—>oo Z(T)

Let us introduce the notations,

. 2J . 2J
Sh=smh(le;), Sv:smh(quvT) s
(1.25)

2J 2J
Cp =COSh(ﬁ)’ C, :cosh(kbf;w) ,
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and

(1.26) k=SpS,.
In this paper we shall focus on

(1.27) k>1,

which, in view of equation (1.23), corresponds to the low temperature regime 7' < 7. It is known
(see, e.g., [MW73, Chap. VIII]) that the diagonal correlations (o oon n) and the horizontal
correlations (07,009, n ) have Toeplitz determinant representations. Indeed, we have

_ B 1—k=1z71
(1.28) (o000n.N)=DnN[¢],  ¢(2)= T
_ _ l—a1z2)(1—anz!
(1.29) (oo0008)=DnIn],  n(2)= ( 1)_5 2 ),
(1-a1z7H) (1 -2z)
where the constants @ and @, are given by
o _z(l-2y) ORI St 2 = tanh Jn,v
! l+z0 2 zu(l+z0) v kgT |

In the low temperature regime, the symbols 5 and 77 enjoy the regularity properties required by the
strong Szegd limit theorem and the diagonal and horizontal long-range orders

Mp = \/Jgim (0p00n,ny) and My = /A}im (00.000.N)>

both evaluate to (1 —k~2)!/8 (see [MW73, Chap. XI]).

In an interesting development, it was shown by Au-Yang and Perk in [AYP87], that the next-to-
diagonal two point correlation function is given by the following bordered Toeplitz determinant,

(1.30) (00.00Nn-1.8) = DR [B:9],
where g/b\is given in (1.28), and

Coz¢(2)+Cy . Sh
—_— with Co=——.

N v (Z —C *) S %
This is straightforward to derive these formulae from the original expressions in [AYP87], and
we have provided it as an appendix in Section 5.3. We would like to emphasize that in the low-
temperature regime (k > 1) and in the anisotropic case (J;, # J,,), the symbols ¢ and ¢ satisfy the
corresponding assumptions of Theorem 1.1, in particular, $ is of Szegd type. The function :,/b\ (2)
actually does not have a pole at z = c,, and therefore it is analytic on a neighborhood of the unit
circle, even in the isotropic case when c, = —1.

(1.31) U(z)=

Our results being applied to the next-to-diagonal theory for the Ising model show the following
large N behavior of the corresponding correlation function in the low temperature regime (k > 1),
which is valid in both the isotropic and anisotropic cases.

Theorem 1.4. Let {09 00n-1,N) be the next-to-diagonal two point correlation function in the
square lattice Ising model. Then, in the low-temperature regime, the long-range order in the
next-to-diagonal direction is the same as of the diagonal and horizontal ones, i.e.,

(1.32) lim (0000n-1.8) = (1= k72!,
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It is worth noticing that, although the bordered Toeplitz determinant which defines the correlation
function (o ,0on-1,n) depends on the relation between J;, and J,, its leading order asymptotics
does not. However, the sensitivity to the horizontal and vertical parameters is reflected in the
second-order term of the asymptotic expansion as our next theorem illustrates.

Theorem 1.5. The next-to-diagonal two point correlation function has, in the low-temperature
regime k > 1, the N — co asymptotics

1 (1 1

1.33 ) = =k 1+ ot
(1.33)  (oo00n-1,n) = ( ) wm(-k2)\c2 "I

)N‘zk‘ZN (1 +0(N—‘))) .

For comparison, asymptotics of the diagonal correlation function is given by

(134) (o000 n) = (1—k )14 (1 + N72k2N (1 +0(N-1))), N = oo

1
2m(1 —k=2)2k2
(see formula (3.27) in Chap. XI of [MW73]). As part of our computation leading to (1.33), we
reconfirm (1.34) as well.

The critical temperature (k = 1) and the high temperature regime (k < 1) correspond to the ap-
pearance of the Fisher-Hartwig type singularities in the symbol (1.28), or continuous nonvanishing
symbols with a nonzero winding number, and will be considered in a future publication.

It also should be mentioned that Theorems 1.4 and 1.5 confirm the long-range behavior of the
next-to-diagonal correlation functions of the Ising model that have already been known in the
physical literature [CW] (see also Chapter XII of [MW73] which is itself based on [CW]) . In
fact, the formulae (5.1) and (5.2) of [CW] are quite impressive in that they give the long-range
asymptotics for the general correlation function {0y oo, n) respectively for T > T, and T < 7.
However, regarding a gap in their arguments, in [CW] the authors mention that:

“Note that our Hamiltonian as given by (2.1) is dependent on M. That is, we are
here proposing to calculate the spin-spin correlation function {000 N ) With a
Hamiltonian which varies with M. Strictly speaking this is not the Ising model.
However, the dependence on M comes from the boundary terms only. It is our
hope that, as M, N — oo, the "boundary effects” would vanish, and the correlation
function we obtain agrees with that of the Ising model.” ©

For the two choices M = N and M = N — 1, we have compared the formulae (1.33) and (1.34)
with the formula (5.2) of [CW] and our results are in complete agreement. Thereby Theorem 1.5
provides a rigorous justification of the formula (5.2) of [CW] along the diagonal and the next-to-
diagonal directions for the leading and the subleading terms. Here we have not included the details
of this comparison as one only needs to perform straightforward (yet somewhat lengthy) algebraic
manipulations. We would like to emphasize that the Riemann-Hilbert and the Operator Theory
approaches presented in this paper (See §2 and §3 respectively) are distinctive from the approach
taken in [CW].7

Finally we remark that the constant F[¢;y] can actually vanish for certain . This happens, for
example, if ¥ = ¢ﬁ with |¢| > 1 as can be seen from (1.14)). In this case the second-order term

¢This issue was not resolved by the time the classical work [MW73] was published and the same remark can also be
found in page 285 of [MW73].

7Regarding other works on the general correlation function (09 goas N ), in [CW] the works [Rya65] and [Kad66] are
cited for the isotropic case Jj, = J,, and when T does not differ too much from 7. It is then stated in [CW] that the
results of [Rya65] and [Kad66] are not in agreement with those in [CW].
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in the asymptotics becomes important, which is exponentially decaying under the assumptions of
Theorems 1.1 and 1.2.

In this paper we shall present two different approaches to the general problem of bordered deter-
minants. One is based on the relatively new Riemann-Hilbert method of the asymptotic analysis
of Toeplitz and Hankel determinants (see [BDJ99], [FIK92], [DIK11]). The Riemann-Hilbert
approach has been inspired by the work [Wit07] where the connection of bordered Toeplitz deter-
minants of the type Dﬁ [#;g¢] to the system of biorthogonal polynomials on the unit circle was
found for the first time. Another approach is based on the operator theoretic techniques, and it has
been used in the theory of Toeplitz and Hankel determinants since the classical works of Szegd
and Widom (see [Wid76], [Sze52], [BS06], [BS99], [BE17], [BEO1]). For the last 25 years these
two techniques has been very closely interacting and greatly enhancing each other. In particular,
the asymptotic analysis of the bordered Toeplitz determinants whose results are presented in this
work has been carried out within constant interaction and information exchanges between the first
two and the last three co-authors. Hence we decided that it would be very proper to present both
the operator and Riemann-Hilbert methods of the solution in one paper.

1.1. Outline. The paper is organized as follows. In Section 2 we shall present the Riemann-Hilbert
representation of the bordered Toeplitz determinant corresponding to a symbol pair (¢, ), i given
by (1.8) and (1.9). In this section we shall basically follow [Wit07] where the connection with
the corresponding system of bi-orthogonal polynomials on the unit circle was first obtained. We
will then prove Theorems 1.1, 1.4, and 1.5 based on the Riemann-Hilbert formulation. Theorems
1.1, 1.2, 1.4 and 1.5 will be proven using operator theory techniques in Section 3. In Section 4
a numerical verification for the asymptotics of the correlation function in Theorem 1.5 as well
as for the asymptotics of Dﬁ[qﬁ;w] in the case ¢ = ¢*; is done. Finally Section 5 contains
four appendices respectively on the solution of the associated Riemann-Hilbert problem, proof of
Theorem 1.2 using the Riemann-Hilbert approach, derivation of the Ising symbol pair (5, J), and
some other auxiliary results.

2. BORDERED TOEPLITZ DETERMINANTS AND THE RIEMANN-HILBERT PROBLEM FOR
BI-ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE

As mentioned in the outline, the goal of this section is to prove Theorem 1.1. In order to achieve
that, we will first establish the relationship between the bordered Toeplitz determinant Dﬁ [o;0],
¥ given by (1.8), and the solution of the Riemann-Hilbert problem for the system of bi-orthogonal
polynomials on the unit circle (BOPUC). Let Q,, and Qn be respectively defined by

o P11 0 Pon
| b1 b0 0 Ponsl
(2.1) 0n(z) = det| : : R
Dn [¢]Dn+l [¢] ¢n_1 ¢n_2 ¢—l
1 z B
and
do d-1 0 Poper 1
22) 0u(2) = 1 e A |
Dn [¢]Dn+1 [¢]

én Gn - 1
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where ¢ ;, j € Z, are defined by (1.2) and D,[¢] is given by (1.3). Note that, from (2.1) and (2.2),
we have

n—1 n—1
(2.3) 0n(z) = kn2" + Z ced, and  Qu(z) = kn2"+ Z e,
=0 £=0
where
D,[¢]
2.4 Kn=q|————.
( ) Dn+1 [¢]

[

One can readily observe that {Q,},, and {Qn}:’zo form the bi-orthogonal system of polynomials
on the unit circle with respect to the weight ¢ :

25) f 0n(0u V) s =6 k=012,
T 1z

It is due to J.Baik, P.Deift and K.Johansson ([BDJ99]) that the following matrix-valued function
constructed out of the polynomials Q,, and Q,

2.6) X(zn) = r{¢-2) amicn |
On-1(7) ¢(H)d
v ({-2) 2rif
satisfies the following Riemann-Hilbert problem for BOPUC, which in the subsequent parts of this
text will occasionally be referred to as the X-RHP:

_Kn—lzn_lQn—l (Z_l) —Kn-1

e RH-X1 X : C\'T — C*>? is analytic,
¢ RH-X2 The limits of X (/) as ¢ tends to z € T from the inside and outside of the unit
circle exist, and are denoted X (z) respectively and are related by

2.7) X, (2) = X_(2) ((1) Z_n‘f(Z)), Z€eT,
¢ RH-X3 Asz— o
(2.8) X(z) = (I+0(z7h)z".

For convenience of the reader, in the Appendix 5.1 we have provided the solution of the X-RHP
when ¢ is of Szegd type.

In the following subsections we will analyze bordered Toeplitz determinants of the following three
types

o DB [¢:2"],
o D¥[¢:4],
e DY [¢:q0],

where ¢ is a rational function with simple poles. The lemmas in the following subsections, whose
proofs are inspired by calculations in [Wit07], show that the bordered Toeplitz determinants of the
above types are encoded into the solution of the X-RHP. In fact, we will show that the bordered
Toeplitz determinants of the first two types are related to the X;; and the bordered Toeplitz
determinants of the third type are related to the X,, respectively, the 11 and 12 entries of the
solution of the X-RHP. Later we will show how these cases are relevant to the next-to-diagonal
correlations in the 2D-Ising model.
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2.1. Bordered Toeplitz determinants of the type Dﬁ [¢;2%], k € Z. Let us start this subsection
with the following elementary lemma.

Lemma 2.1. The following identity holds for the Bordered Toeplitz determinants
(2.9) D [#:21=0,  keZ\{0,1,---,n}.

Proof. It suffices to note that all Fourier coefficients (zk)j =0for0<j<n,keZ\{0,1,---n}. O

Note that for £ = 0, we obviously have (1.12). Now, we turn our attention to

(2.10) DB [#:2*],  ke{l,---,n}.
From
o b1 - Pk—n+s1  Pk-n  Pk—n-1 ‘- -n
o1 oo o Pk—ne2 Okt Pk-n 0 P_nnl
(2.11) DB [¢:2"] =det| : Do
bn-1 Pn—2 - bk D1 [
0 0 - 0 1 0 0

we observe that (by (2.1) and (2.4)) the determinant on the right hand side of (2.11) is exactly the
coefficient of 7% in the polynomial

(2.12) k' D[]0 (2).

Let

(2.13) 0.(2) = K](-n)Zj.
=0

where for brevity of notation, throughout this paper we use

(2.14) kn = k.
Therefore

K<n>k
2.15) Dy [432"] = Dulg] ===

We are now in a position to express Df ol [&; zk ], 1 £ k < n,in terms of X-RHP data in a recursive
way as follows:

(n)
. X (zzn)=2" K,_
(2.16) DE, [¢:2] = Du[¢] lim (—“( f )sDn[ab] n-l
Z7—00 z Kn
e
s ) o[ Xu(zn) -2t — =t 7! K;ri)2
(2.17) Dy [#:2°] = Dn[¢] lim ) =D,[¢] )
Z7—00 i Kn

and so on. These formulae are recursive, in the sense that the second and third members of the
equality (2.16) can be regarded as the definition of k,(qri)l in terms of the X-RHP, which one needs
in (2.17).

B [¢;z] can be obtained from the

n+l
Riemann-Hilbert data. In lemma (2.7) we will show that this is actually related to D, [ ¢; %].

Here, in particular we present how the asymptotics of D
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Lemma 2.2. Let ¢ be of Szegd type. Then, as n — co we have

1
2.18) D}1[#:2] = Dul4] (—% [ntoenar+oe).

Jor some positive constant c.

Proof. Expanding a(z), given by (5.9), as z — co we get

2
ap aj ap |1
2.1 =12 L 0 :
(2.19) a(z) Iriz (27Ti+87r2)12+ , z— 00
where
(2.20) ag = / *1n (¢(7)) dr.
T

Also from (5.19), and (5.20) we have

9] —2¢n
(2.21) Xi(zzn)=a()7" |1+ M , 7€ Qu, n— oo.
1+|z]
Combining (2.16), (2.19) and (2.21) gives (2.18). O

In a similar fashion, and with increasing effort, one can obtain similar formulae for DS 1 [#; z* 1,
k>1.

2.2. Bordered Toeplitz determinants of the type Dﬁ [#;q]. Let us define

1
(2.22) qo(z) = —.
—cC

The Fourier coefficients of g¢ are given by

(2.23) = 0, lef <1, 0<j<
. P = . <j<n
40.J —(c)_f_l, lc| > 1, /

The following lemma establishes how Dﬁ [#;go] is encoded into X-RHP data.
1
Lemma 2.3. The bordered Toeplitz determinant Df+l[¢,—], is encoded into X-RHP data
z—c

described by

—c" D@1 X11(c3n), e > 1,
where D, [ @] is given by (1.3) and X1 is the 11 entry of the solution to RH-X1 through RH-X3.

1 0 1,
(2.24) DB [¢:—] :{ ’ el <
Z—cC

Proof. The case of |c| < 1 is obvious due to (2.23). Consider |c| > 1. Recalling that X;(z;n) =
k,;'Qn(z), from (2.1) and (2.4) we have

do P10 P
b1 do 0 Ponwl
(2.25) Xi1(zzn) = det oL :
D, : : :
L¢] bn-1 Pn—2 -+ P

1 Z "
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Therefore from (2.23)

b0 ¢p-1 o Pn
b1 do 0 Ponl
—c" D [p] X1 (c3n) = det| L
dn-1 Gno2 - P
_C_n_l _C_n e —C
(2.26)
$o é-1 0 Pon
b1 do - Pontl
=det| : © ... |=DE (4,90l
¢n—1 ¢n—2 ¢—1
qo.n  4qo.n-1 - 40,0
O
Corollary 2.4. We have
(2.27) DE | o +@+i bi =D,[¢]|a- i bic:" 'X11(cin)
: n+l ¢sa z ._12—Cj =Dnl¢]|a - J€j 1\c;n) i,
J= ch'\>l
and for a Szegd type ¢
(2.28) DB a+—+i b []"E[p]|a— i ﬁa/(c-) (1+0(e™™))
. n+l1 4 7— C] < Cj J >
= \cj|>l
as n — oo, where
1
(2.29) @ (z) —exp[ / @), ]
2ri T—2

G|[¢] and E[¢] are given by (1.5) and ¢ is some positive constant.

Proof. Note that (2.27) immediately follows from (2.24), (1.12) and (1.10); and then we get (2.28)
as a direct consequence of (1.4), (1.5), (5.19) and (5.20). O

2.3. Bordered Toeplitz determinants of the type Dﬁ [¢;qp]. Now we turn our attention to the
bordered Toeplitz determinants where the border symbol is given by g¢, g being a rational function
with simple poles. Let us start with proving a fundamental identity relating one such bordered
Toeplitz determinant to the pure Toeplitz Riemann-Hilbert data.

Lemma 2.5. Let o := qop, where qq is defined in (2.22), with ¢ # 0. Then the bordered Toeplitz
determinant DB[¢;y0] can be written in terms of the following data from the solution of the
X-RHP:

1 1
230) D, [9:00] ==~ Dyut [81+ - Dul9]Xi2(c,n),
where D, [¢] is given by (1.3) and X is the 12 entry of the solution to RH-X1 through RH-X3.

Proof. Note that

o= [z [t
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thus
1 [ 77¢(z) dz / 7 ¢(z) dz
2.31 = J — 4= e 2
2.31) Vo c/ ¢(Z)2mz 1 (z—c¢) 27 ¢] r (z—c¢) 27i’
Now, observe that
¢0 ¢—1 ¢—n
b1 $o D-n+l
DE [¢.v0] =det| : : :
Sn-1 Pn-2 ¢-1
Yon Yon-1 Y0,0
¢0 ¢—1 -n
| ¢1 ¢0 ¢—n+l
= —det : : : _
c
¢n 1 ¢n—2 | ¢—1
27"p(z) d " o(z) d ¢(z) d
¢n+‘/T (z— C)Z 27?1 _¢"_1+/TZ (z—c)Z 2_;1 _¢0+fT (z—Zc)Z_ji
(2.32)
do ¢ ¢-n o $-1 P-n
¢1 do -n+1 | 1 o P-n+1
— —det| : : D |+ —det : : :
c c
Prt On2 i ¢;ZB ¢F¢f) MR
2 "¢(z) d 27" p(z) d z) d
P Pn-1 o T (z-0) I f]r (z=0) I T (z—c) I
Now note that, using (2.1) and (2.4) we have
¢O ¢—1 -n
b1 o -n+1
(2.33) K, C"0 = det| : :
Sn-1 Pn-2 -1
é«—n éf—n+l 1
Combining this equation with (2.6) yields
¢0 ¢—1 -n
| ¢l ¢O ¢7n+1
(2.34) X12(z;n) = det : : :
D
nl9] b bnr oo
f LML) dg / o) d¢ / #(¢) dZ
T <¢-z 2ni T { z 2 T -z 2nmi

Thus, using (2.32) and (2.34) we arrive at (2.30).

Corollary 2.6. We have

DB bz

n+l

(2.35)

—z-c;

>¢ =aDn+1[¢]+D

¢] ijXu(Cj;n),
=
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and for a Szegd type ¢

3
S
~
A\l
~—  —
S
Il

(2.36) Dy, ¢;(a+2z—cj Gl¢]"'E[g] a+ Gl Z bia(c) |(1+0(e™)),

\Cj\<l

as n — oo, where « is defined in (2.29), G[¢] and E[¢] are given by (1.5), and ¢ is some positive
constant.

Proof. (2.35) directly follows from (2.30), (1.11), and (1.10). For the asymptotic statement, notice
that from (5.16), (5.19) and (5.20) we have

a(c)(1+0(e™™)), le] <1,

(2.37) Xlz(C;fl) = {Rl’lg(c;n)a_l(C)C_n(l"'o(e_m))’ |c| > l,

as n — oo, where R 12 is given by (5.18). Now (2.36) follows from (1.4), (1.5), (2.35), (2.37), and
(5.16). O

Now, we prove the analogue of Lemma 2.5 for ¢ = 0.

Lemma 2.7. We have the following identity ¢

1 -
(2.38) Dy [¢:=¢] = =Dy, (],
Z
and hence for a Szegd type ¢

(239) DE10i201 = 5-Glo"Elo] [ m(@ear+ore )
z T

2mi

as n — oo, where G| @] and E[¢] are given by (1.5), and ¢ is some positive constant.

8Throughout the paper we occasionally use f (z), to denote f (z_l).
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Proof. Note that

¢1 ¢0 —n+3 -n+2 $—n+1
D2 [4;z] = det : :
&n—l (gn—Z &1 ¢§0 5—1
0 0 0 1
®o b1 © Pn—2 Gu-1 Pn
¢—1 ¢0 ¢n—3 ¢n—2 ¢n—l
Gn+1 P-ne2 0 P11 o b1
0 0 cee 0 1 0
¢O ¢1 T ¢n—2 ¢n

¢—1 ¢0 ¢n—3 ¢n—1
= —det| . . . .

O nst P2 0 1 Py

¢ b1 Ponw
¢ b0 o done2 1
=—det| : ... : |=-DE[g:-9],
V4
On-2 Pn-3 - ¢-1
P R J

because the j-th Fourier coefficient of z7'¢(z) is ¢j+1. Now (2.39) immediately follows from
(2.18) and the fact that D,,[¢] = D,,[&]. O

Lemma 2.8. Fory =zK¢, k=0,1,---,n, we have

D, [¢], k=0,
(2.40) DBl¢,7*¢] =10, k=1,---.n—1,
(-D"'Dy[z¢], k=n.

Proof. Note that [z5¢] ; = ¢ ;_i and thus, DB [¢, ¥ ¢] has two identical columns for k =1,--- ,n—1,
and (2.40) is obvious for k = 0. For k = n, (2.40) follows immediately if one moves the border
column to the first column by making n — 1 swaps of adjacent columns. O

Theorem 1.1 is now proven by combining lemmas 2.2, 2.7, 2.8 and the corollaries 2.4 and 2.6 via
(1.10).

2.4. Ising model next-to-diagonal correlations. In this section we focus on the specific symbols
a and J;, respectively given by (1.28) and (1.31), corresponding to the next-to-diagonal correlations
in the Ising model via (1.30). For a derivation of (1.31) from the formulae in [AYP87] see Section
5.3. This is clear that in the low temperature regime (k > 1) the symbols 5 and ;’b\ fit the class
of symbols considered in Theorem 1.1. Indeed, comparing (1.31) with (1.8) we can find the
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corresponding parameters:

~ (&
m=1, a=by=by=0, bl:S_v’
v
(2.41) S, e R Ch
Cl=Cs =~ a=—-, by =——.
Sy Sh Sh

Therefore the constant F[¢;¢] given by (1.14) simplifies to

C
—a(es), Jy>Jn,
S,

C
—ha/(c*), J, <Jp.
Sh

(2.42) Fl¢;y] =

where we have used
e s1 = JpsJ,.

Now let us compute a(c.). We observe that
(2.43) $(2) = N2 (= k)T (2= kY22,

where the branches of the roots all have arguments from 0 to 2. Recalling the expression (2.29)
for @, we can compute a(c,) by a simple contour integration (deform the integral on T to the
interval [0, k~'], and note that we get a residue term when —1 < ¢, < 0 ). We eventually arrive at

S
_V’ Jv > ‘]ha
Cy

(2.44) a(cy) =
S—h J, <J
Ch, v I’l

This can also be seen in a more straightforward way by recalling (1.16), which in the Ising case
amounts to:

—, |zl <1,
N
(2.45) a()={ V! ’; ¢
, 7]l >1
1— k_lz_l
Combining (2.42) and (2.44) yields
(2.46) Flg:yl=1,  Jn#J,.

This concludes the proof of Theorem 1.4 in the anisotropic case by recalling that G [q/; ]=1and
E[¢]=(1-k2)!

Remark 2.9. Notice that the next-to-diagonal long range order in the isotropic case J, = J,
deserves special attention as |c.| = 1. It is important to notice that while it seems that the function
¥ (2) has a pole at z = ¢, it actually has a removable singularity there. In other words, ¥(z) (as
well as 5 (z)) are analytic in a neighborhood of the unit circle T irrespective of the value of c.. To
be precise both functions are analytic in z for k! < |z| < k. However, the splitting of 1; (z) done in
the proof of Theorem 1.1 would re-introduce this pole at z = ¢, in both terms and render the proof
invalid when |c1*| =1. T? circumvent this problem we resort to a “deformation trick”. For a fixed
k—k~ k™

k
O<e< , let < p < — and introduce the functions
k+k-1 l-¢ l+e&

$p(2) = d(p2),  ¥p(2) =¥ (p2),
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where the condition on p ensures that both functions are analytic in the e-neighborhood of T:
{z:1-& < |z| < 1+¢&}. The n-th Fourier coeflicient of these new functions differs from n-the
Fourier coefficient of the original functions by a factor p”. For this reason, we have that

Dn[$]=Dnldpl.  DR1$:0]=D1dp0].
Indeed, the underlying matrices are related to each other by appropriate multiplication of diagonal
matrices. Thus the derivation of the determinant asymptotics can be based on the pair (@);@,)
rather than the pair (5 ; (Z). These functions are clearly of a similar form as the original ones. The
crucial point however is that when we consider fﬁ\p and split it into two parts, each part has a pole at
Z = ¢,/ p rather than at z = c,.. Thus Theorem 1.1 is applicable to (ap;t;p) whenever |c.| # p. As
we can choose this p within at least a small range, k~!' < p < k, the asymptotic results concerning
these functions remains true also when |c.| = 1. Notice that since the determinant Dg [ap;z;p]
is p-independent, in particular, its leading order asymptotics given by Theorem 1.1 is also p-
independent. This can also be checked directly by looking at the terms on the right hand side of
(1.13). To this end, we obviously have from (1.5) that G [(}\p] =G[¢] and E[ap] = E[¢]. Also the

role of @ on the right hand side of (1.14) is now played by @, which satisfies @, +(z) = @, - (2)$, ()
and is explicitly given by

1
ﬁ, lz| < 1,
—K ' pZ
ay(2) = F
— 7| > 1.
1= kl 1 -1

Therefore from (1.14) it can be directly checked that F [¢p; 1://\p] =1

2.5. Proof of Theorem 1.5. Based on (1.10), (1.31), (2.27), and (2.35), the bordered Toeplitz de-
terminant representing the Ising correlation function {0 oon-1,n) satisfies the following relation

Z—VXlz(C*;N—1)+ " Sh
0, lc.| < 1.

- Ch
DB : C_N+1_X1](C*;N_ 1)9 |C*| > 1’
(2.47) wld f]
N-1l¢

—

Also, for the Toeplitz determinant Dy _;[¢ ] we have that

(2.48) nDn[$]=E[F Z ——ln(l— ) ZIHK
where
(2.49) K7 = X12(0),

and X(z) = X(z;N — 1) is the solution of the X - Riemann-Hilbert problem, RH-X1 - RH-X3
generated by the weight 5 (z) and corresponding to n = N — 1. Equations (2.47) - (2.49) show us
that in order to calculate the correction to the leading term, i.e., (1— k‘z)%, to the determinant
Dﬁ [(?’;; l/ﬁ\] we need the high terms in the estimation of the solution X (z) of the Riemann-Hilbert
problem.

The asymptotic analysis of the Riemann-Hilbert problem RH-X1 - RH-X3 is presented in detail
in Section 5.1 and for its solution X (z;n) we have formula (5.19) where R(z;n) is the solution of
the small norm Riemann-Hilbert problem RH-R1 - RH-R3. We have already used this formula
and the estimate (5.20) in the proof of Theorem 1.1. Now, we need more terms in (5.20). These
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are given by the second term, R, (z;n) in the iterative series (5.14). From (5.15), (5.17), and (5.18)
that

(2.50)

)
o 0

1 dr
oz [ o | [ e
T Jr, o T—H|H—2Z
Ry(z3n) = , z€C\Zp,

0 L aw [/F b(r)- L ]d—“

4n? Jr, T—p|p—z

where we have introduced the notations,
a(zzn) =-7"¢ ' (2)a*(z), and b(zn)=z"¢ '()a*(2),

and we also remind that

1
—~ _, lz] < 1,
1 /ln(¢(T)) Vi-k-lz
a(z)=exp|z— | ———=dr|=
2ri Jr T-2 1 2> 1

Formula (2.50) in conjunction with the equations (5.18) and (5.19) yield the following estimations
for the relevant matrix entries of X (z) in the regions Qq, Q1, €, and Q. (see Figure 5):

@51) X12<z;n>=a<z>(1—%/b<u;n) [/ a(zim - ]d_ﬂ+o<p—4”>), 2e QU
4r= Jr, I T—H[H—2

-3n
(2.52) xlz(z;n):z-"a—l(z)(i./a(r;n)ﬁm(p )) 2eQUQ,
27i Jr, T-2 1+|z]
-1 1 dT _3n
(2.53) Xi(@n == |5 [ atmm T r0e™). zeo
2ri Jr, T—2
Xn(z;n)=z”a(z)$‘1(Z)(1—4L2/ b(p;n) /a(T;n) dr ]d—“+0(p‘4"))
T Jry Iy T—H]lH—Z
-1 1 dr -3n
(2.54) —-a (2) —,/a(‘r;n)—+0(p )|, z€Q,
27 Jr, T—2

d d
X11(Z;n)=z"a(z)(1—#/rlb(,u;n) [‘/FOQ(T;n)T_Tﬂ]#_fZ_FO(p_M))

-~ 1
255) —a (F () (2—m /F a(r;n>Td—_TZ+0<p‘3")), zeQ,

(2.56)
1
(e =069 15 [ 000

d d —4n
/a(‘r;n) T] H +0(p )), 7€ Q.
ro T—pp=2 1+
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In the above equations, it is assumed that the circle I'; is centered at z = 0 and has radius p, the
circle I' is centered at z = 0 and has radius p~', and the inequality

(2.57) k3i<p<k
holds. Note that the last equation implies that

(258) p—3n — k—(2+5)n,
where

_ 3lnp-2Ink 20
Ink

Let us first apply these formulae to the evolution of the higher term in the asymptotics of the pure

Toeplitz determinant Dy [¢ |. To this end, taking into account (2.48), (2.49) we need first to
estimate the value X2(0). According to (2.51), we have that

1 d d
(2.59) X12(0;n)=6¥(0)(1—_2/ b(u;n) [/ a(tin)— ]—'u+0(p_4")).
4ns Jry o T—H] H
Proposition 2.10. The following estimates take place,
(2.60)

1 1 Vi — k-1 1 1
e g K2 1+0(— L noe,
27 Jr, T-z W k kl-z n

forall |z| > p‘l, and
(2.61)

1 dr | du 11 | 1
_ b(u: . B K-2n 1+olX
e

forall |z| < p.

Proof. Consider first the single, a - integral. It can be deformed to the integral over the segment
[0, k'] so that we would have,

1 d 1k
(2.62) 55 a(T;n)—T = ——/ (k7 =) Po(1)dr,
2mi o T—2Z T Jo

where

®(7) =Vrk Wk - TCfET)

<

is holomorphic at 7 = k1. Let
- 1 2(7-1
1=0 k k=1 —z

be the Taylor series of ®(7) at 7 = k~!. Then, according to the standard Watson Lemma type
arguments, we arrive at the asymptotic formula,

1 dr RS K ngp—1 1-1/2
(2.64) a(t;n) a7k =)
=0 Y0

2ni Jr, T-2 e
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and this asymptotic is uniform in any compact subset of {z : |z| > p~'} and, in particular, for z € T';.
For the integrals in the right hand side of (2.64), we have,

(2.65)

k! 1
/ (kT =) g = k-"-l-l/Z/ 1= dr =k 2B+ 1,1+1/2)
0 0

_ -1

LT+ DIU+1/2) “-1)2 1
Foaream =k T(l+1/2)n (1+0(n)),

as n — oo, and hence
1 d 1 Vk-k=1 1 1
(2.66) — a(T;n)—T =——a* (k™ k22 1+ 0 (=),
2ni Jr, T-z m k  k™l-z n

as n — oo, uniformly in any compact subset of {z : |z| > p~'}. This is the estimate (2.60).

Consider now the double integral (2.61). In view of (2.66) we have at once that®
(2.67)
1 d d j
— | b(u;n) [/ a(t;n) T ] Ko ! az(k_l)
Ty T—H

4n2 Jr, p-z 2732

: dy L
/n bluin) (k' —p)(pu—2) +O( n )

Applying to the b -integral in the right hand side of the last equation the same arguments as we
used for derivation of the estimate (2.66), we obtain that
(2.68)

, du = 1 L ap —3/2( (l))
J o e = Ot 1o )

as n — oo, uniformly in any compact subset of {7 : |z| < p}. This in turns yields the estimate,

1 1 o*(k a2 1 1
— [ b(u:n) [/ a(rim) L. Ay L R)o 7)1 an2 () 0(t), wow.
4n? Jr, To T-u|lu-z 2 kl-k k-z n

which, taking into account that

Vk - k! 12,12
k

X n — oo,

’

a ' (Da(z =1,

implies (2.61) m|

Using (2.59), (2.61) and taking into account that (0) = 1 we conclude that

1 1 1
(2.69) K2=X1p(0n) =1+ ———k"n2|1+0( -], n— oo,
27 1—k? n
and, also,
(2.70) Ink;? = L1 k"n2|1+0 1 n— oo
’ " 21— k2 nl|’ '
In view of (2.48), we need now the asymptotics of the sum
e k—2n
> —, p=23.
n=N n

9We are also taking into account that /Fl b(u) f(u)ydu = O(k™™) for any bounded f(u) analytic in the annulus,
p—€<|ul <k+e.
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This can be easily done by the summation by parts. Indeed, put

[ee)

1
S, = Zk—zz — 2

— 1—k=2
Then we have,
°°k‘2”_°°SS 1_°°S1 °°S1
Z np _Z( n n+1)n_P_Z n_p_z n+l )
n=N n=N = n=
1 - R 1 1 < 1 1
—SNW"' Sn__ZSnH p—SNW*' n+l(( +1)1’_n_P)
n=N+1 n n
1
2.71) - - k_2N‘Pk‘2N+0(N‘P‘1k‘2N).

Combining (2.71) with (2.70) and (2.48) we arrive at the final formula for the asymptotics of the
Toeplitz determinant D [¢ ] with the explicit second term,

272)  Dn[F]=(1-k2)\/* (1 + N‘zk‘z’v‘z(l +0(N—1))), N — co.

2n(1—k=2)2
In the next section this formula will be also proven by the operator technique.

Let us move now to the bordered Topelitz determinant Dg [éﬁ\; {p\] and consider first the case when
lc.| < 1.

In this case, according to (2.47), we will only need the asymptotics for X, (z) for z € QoUQy, i.e.
formula (2.51) with z = ¢, and n = N — 1. Moreover, we can use the estimate (2.61) for the double
integral involved and get at once that

1 1 1

Xip(co N=1) =a(c) |1+ KNEN2 140 <)), N> oo

12(c ) a(c)( 2 (k= =k)(k—c.) N -
The last equation in conjunction with (2.47) yields the formula
(2.73)

~~ C 1 1 k 1

Broy) =2 — kA _ _ -2 -2N -1

DRIFII = Sra(e)(1-k7) (1+2ﬂ1_k_2( k_C*+1_k_2)N N (1+0(N )))

This formula, taking into account the definitions (1.26) and (1.31) of the parameters k and ¢, and
the equation (2.44) for a(c.) (the case we consider now is J,, > J) we can rewrite (2.73) as

1 1 1
—(—+ )N‘zk_ZN(1+O(N_1)) .
2n(1-k2)\C2  k2-1
This proves Theorem 1.5 for the case |c.| < 1. The proof of Theorem 1.5 for the case |c.| > 1 (i.e.

if ¢, € Qy or ¢. € Q, see Figure 5) follows from almost identical considerations employed in the
case |c.| < 1. Let us first discuss the case when ¢, € ;. In this case we have

274  DEsyl=(-k2H* (1+

v v o _ 1 d _
(2.75) C—Xlz(c*;N—1)=C—C*N+la l(c*)(—./ a(t;N-1)-2% +0(p 3N)),
2ri Jr,

Sy Sy T—Cs
and
(2.76)
C C 1 d d
c;N”—hxu(c*;N—1)=—ha(6*>(1‘_z/b(’“N_l) Jamn-nZ —M+O(p_4N))
Sh Sh 4 T To T—H] H—Cx
C -~ 1 d
—C;N+1S—ha_1(c*)¢_l(c*)(r‘/a(T;N_l) T +0(p—3N)).
h Tl Ty T—Cx
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These are the terms needed to compute Dﬁ [¢;¢] in view of (2.47). Notice that the contribution
from (2.75) cancels the contribution from the second term on the right hand side of (2.76), as one
can simply check that

(2.77) o) = 2.

Now, from (2.44), (2.47), (2.61), (2.72), (2.76) we can easily show that (1.33) holds when c, € €;.
Finally we discuss the case ¢, € Q. Equation (2.75) still holds in this case (see (2.52)). Using
(2.44) and (2.60) we can write

(2.78)
Cy N+ 2, -1y V=K1 1 ~N+1/2 A7—1/2 1
—X oaN-1 ——a"(k k N 1+0(—=]],
5, XizleaN=1) = S S e T N
as N — oo. Using (2.56) and (2.44) we have
2.79)
C 1 d d
c;N“—th(c*;N—l):l——z/ b(u; N-1) / a(t;N-1) ‘ ] H +0(p~*Y)
Sn 4 I To T—U | H—Cx

The asymptotics of the integral on the right hand side can be computed from (2.67), however, we
can not use (2.68) directly, because when z € Q. we also get a residue term. To that end by a
straightforward calculation when z € Q, we find

X d/'l _ -n— 1—"__ £ _t
(2.80) /rlb(,u,n) =) (i) =2miz 2i / (t— _1)\/_\/_

We notice that the residue term (combined with the prefactors coming from (2.67)) exactly cancels
out the contribution from (2.78). Finally, the asymptotic expansion of the second term in (2.80)
can be written as a series involving Beta functions similar to what is shown in equations (2.62)
through (2.65). Finding the asymptotics of the first term in that series using Stirling’s formula and
then combining this with (2.47), (2.67), (2.72) and (2.79) finishes the proof of Theorem 1.5 for
Cy € Q.

3. AsYMPTOTICS OF BORDERED TOEPLITZ DETERMINANTS: OPERATOR THEORY APPROACH

3.1. General results. For ¢ € L'(T) we define the N x N Toeplitz matrix,

do b1 - PN+
(3.1) vy =| % %

: IR |

éN-1 - P $o

where, as before, ¢,, are the Fourier coefficients of ¢. Occasionally, the notation
1 2

[¢]nzg )

will be used as well. Clearly, detTn (¢) = Dy [&].

¢(€i9)€_in0 4o

In what follows, e( stands for the column vector (1,0,0, ... ,O)T inCN, and eg signals its transpose,
the row vector (1,0,0,...,0).

Proposition 3.1. Let ¢,y € L' (T), and assume that Tn (¢) is invertible. Then
(3.2) DR [¢:¢] = Dn[9]-e5 Ty (H)Tn (¥)eo.
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Proof. Via a rearrangement of rows and columns in (1.1) (or, more formally, by multiplying with
a “flip matrix” from both sides) we see that

Yo -1 0 PN
(3.3) DYlowl=de| V1 0 T
: : |
Yn-1 dN-2 - o
By observing that T (¥)eq is the column vector (o, ...,n_1)!, the statement follows from
Cramer’s rule. o

In view of computing the asymptotics, the above formula reduces bordered Toeplitz determinants
to usual Toeplitz determinants Dy [¢] and the scalar quantity

(3.4) Fnlosy] = el Ty (#)Tn () eo.

Under appropriate assumptions, the asymptotics of Dy [¢] is given by the SzegG-Widom limit
theorem, whereas the asymptotics of the scalar quantity follows from the asymptotics of the
inverse of the Toeplitz matrix Tn (¢).

We proceed to give some operator-theoretic background; for details we refer to [BS06] or [BS99].
For ¢ € L' (T) we define the infinite Toeplitz and Hankel matrices

T(¢) =(¢j-k),  H(P) =(djrx+1), 0=,k <oo.

In case ¢ € L*(T) these represent bounded linear operators acting on £%(Z). Note that Toeplitz
and Hankel operator satisfy the identity

(3.5) T(¢y) = T(HTW)+H(P)HW),
where ¢,y € L®(T) and /(z) := ¢/(z~"). In particular,
(3.6) T(W-¢ys) =T W )T(H)T (Y+)

if . € HY, where

HY :={feL™T): f,=0forall ¥n >0}
are the usual Hardy spaces. We will identify functions in H(T) with their analytic extensions
onto the inside or outside, resp., of T.

Among the various versions of Wiener-Hopf factorization we are going to use the following one.
We say that a function ¢ € C(T) has a continuous canonical Wiener-Hopf factorization if it can be
written as

#(2) = 9-(2)$+(2), lz| =1,
where
¢s.01' € HY N C(T).

A sufficient criterium for the existence of such a factorization is that ¢ belongs to the Holder class
C*(T) for some & > 0, is nonvanishing on T and has winding number zero (see, e.g., [BS06,
Sect. 10.2]). In this case, the Wiener-Hopf factorization is given by

(37 $:(2) = exp (Z Z"[log ¢]n) . ¢ =exp (Zz‘" [log ¢] ) :
n=0 n=1

On the other hand, a necessary condition is that ¢ is continuous and nonvaninshing on T and has
winding number zero.
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For ¢ € C(T) the Toeplitz operator T(¢) on £>(Zsg) is invertible if and only if ¢ does not vanish
on T and has winding number zero. If ¢ admits a continuous canonical Wiener-Hopf factorization
then the inverse of T'(¢) is given by

(3.8) T~ (¢) =T(¢;)T(42)).
as can be seen from (3.6).

Finally, let us introduce the finite section projection

Py (fo, fise- )T o (fos fiseeos fn-1,0,0,..)7

acting on £?(Zsg). As usual, we will identify CV with the image of Py. Correspondingly we
have PNT(¢)Pn =Tn (¢). The complementary projection is Qn = I — Py, and we remark that
On =VnV_n where Vy =T(zV) and V_y =T (z™") are forward and backward shift operators.
Despite having used the notation e for finite vectors already, we will also use it to refer to the
infinite column vector,

eo = (1,0,0,...)7 € £3(Zso).

Correspondingly, eg stands for infinite row vector (1,0,0,...) or the respective linear functional
on £*(Zso).

Proposition 3.2. Let y € L*(T), and assume that ¢ € C(T) does not vanish on T and has winding
number zero. Then

Fnl¢syl = Flgsy]  as N — oo,

where the constant

(3.9) Fl¢:¢]:= e T~ ()T (%)eo.
If, in addition, ¢ has a continuous canonical Wiener-Hopf factorization ¢ = ¢_¢.., then
[¢="¥]o
Floy] = .
[¢ '70] [¢+]0

Proof. Under above the assumptions on ¢, it is well-known (see, e.g., [BS99, Sect. 1.5 and 2.3])
that the Toeplitz operator T (¢) is invertible, that the matrix T (¢) is invertible for sufficiently large
N, and that Tg,l (¢) converges to T~!(¢) strongly on £%(Zs) as N — co. Here we use the afore-
mentioned identification of CV with a subspace of £2(Zs() and the corresponding identification
of an N x N matrix with an operator on £?(Zsq). Obviously, T (¥)eqg — T (¢)eg in the norm of
{?(Zs0). Therefore, again in the norm

TN ()TN (W)eog > T (T (W)eg  as N — oo

This proves the first assertion. As to the evaluation of the constant we use (3.6) and (3.8) to see
that

T HHT W) =TT ()T () =T(¢;)T(-'y)
and
Flg;y] = el T"H®)T(W)eo = ef T(#:)T(¢"¥)eo,

where in the last expression we interpret the operators on £2(Zs() as infinite matrices. Since
T(¢;') is lower triangular it follows that F[¢;¢] = [¢7']o- [¢="w]o. Observe that [¢7']o =
¢5'(0) = 1/[¢4]o O
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The previous results combined with the Szeg6-Widom limit theorem (1.4) establishes the first order
(or leading order) asymptotics for bordered Toeplitz determinants. In fact, if we assume that ¢ is
in Holder class C!*€, does not vanish on the unit circle T, and has winding number zero, then

(3.10) DY [¢:y]1=G[oIVE[¢] (Flp;y]+0(1)), N — oo,
where

G[¢] =exp([logglo), E[g]=detT(#)T(¢™") = exp Zn[log¢]n[10g¢]—n :

n>1

Thus, what has been stated in Remark 1.3 regarding (1.19) is proved, which is Theorem 1.2 except
for the claim that the error term is decaying exponentially.

Let us emphasize at this point that it can happen that F[¢;y/] is zero. In this case, the subleading
terms in the asymptotics might be of interest as well. Later in this section will take up this question.

Let ¢ be a function with a continuous canonical Wiener-Hopf factorization ¢ = ¢_¢,. Each
function ¢ € L?(T) has a unique representation of the form

(3.11) W =¢p.+p_ with p, € HX(T), p_e€ H*(T),
where
HA(T) = {f € LX(T) : f,=0foralln < o},
H2(T) = {f € LX(T) : f,=0foralln > o}
are the corresponding Hardy spaces. Indeed, (3.11) is equivalent to
(3.12) 670 = pupatop-,
from which it can be seen that the terms p, and p_ are uniquely given by
pe=¢;'Ple~y].  p-=¢-(I-P)[¢~'y].

Here P is the Riesz projection (i.e., the orthogonal projection on L?(T) with range equal to H>(T)).
We remark that if we consider the Toeplitz operator T (¢) on H>(T) (rather than on £%(Zx)), then

(3.13) p+ =T ($)P[y].

Theorem 3.3. Let ¢ € C(T) have a continuous canonical Wiener-Hopf factorization ¢ = ¢_¢,.
Assume that = ¢p. + p_ with p,. € H*(T) and p_ € H*(T). Then

(3.14) Flo:¢] = [p+]o.
In particular,
(3.15)
Fl¢;|ap+aiz+ % +]Z:; Zb_jjj @] = ao+bo[log]; + |CZ|;] b ¢;++((Coj))’
(3.16) j
by <~ bj ao [log #]-1 bj

Fl¢; ao+a1z+—+Z
7 £
j=1

=6 T 0o a0 () L, €0:(000-(c))’
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Proof. To prove (3.14) we note that identity (3.12) implies that

[¢:1‘//]0 = [¢+p+]o = [#+]o[p+]o
and thus F[¢;¥] = [p+]o. We remark that this can also be obtained from (3.13).

For the evaluations of F[¢;y] for concrete ¥ we compute the corresponding function p.(z) and
then obtain [p4]o = p+(0). This function can be obtained most conveniently by writing down the
decomposition (3.12), ¢~y = ¢ p, + ¢! p_, explicitly.

We start with considering the cases related to (3.15). For ¢ = Z:¢ with |c| > 1, we have p_ =0,
ie.,
_ $+(2)z z
¢—11// =2 ¢+p+, p+(2)=——, [p+]lo=p+(0)=0.
z—c z—c
The same conclusion is obtained in the case ¥ = z¢. Hence the corresponding terms a; and b;
(whenever |c ;| > 1) do not occur on the right hand side of (3.15).

For yy = ¢ with |c| < 1, the decomposition is

-1, _ $+(2)z _ ¢+ (2)z—ds(c)c  @i(c)c
o-¥ = z-c z—c " z—c
Hence |
=47 (D (e)c _$.(0)
p+(Z)_ 7—c 5 p+(0)—¢+(0)

The case ¢ = 0 covers the case ¥ = ¢ (related with the coefficient ag) as well.

Lastly, if ¢ = ¢p/z we observe that
¢+(Z) _ ¢4 (2) - ¢+(O) + ¢+(0)

< < Z

¢~y =

whence
_ -l _ _ ¢4(0)
P+(2) =¢1 (2) [P+]lo=p+(0) = .(0)

Here recall the definition the Wiener-Hopf factor in (3.7).

M , = (102 ¢+(2))"|z=0 = [log ¢]1.

Now let us turn to the cases related to (3.16). For ¢ = Z% with |c| <1 ory = % we will have
p+=0and p_ =y. Hence the terms by and b; (whenever |c;| < 1) do not occur on the right hand
side of (3.16).

For ¢ = Z+C with |c| > 1, the decomposition is

_¢21@) _ 9210 2 (D=9 ()

¢~y = — - -
z—cC i—c¢ z=c¢
Thus 1 1
_ ¢ (29 (o) o
pla = T O = o

The case ¢ = 1 is treated in the same way. Finally, for ¢ = z we decompose
- , _ | . 1, -
oY =m0+ (@2 (D -nl(0) )z, with n.(2)=¢Z' (=T,

Hence p..(z) = ¢7' (2)n}(0) and p.(0) = ¢! (0)n/(0), where
1:(0)
1n+(0)

= (10g77+(2))’ ;=0 = ~[log ] -1, and  7.(0) = =" (c0),
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using (3.7). This complete the proof. O

The previous theorem combined with the Szegé-Widom Theorem implies Theorems 1.1, up to the
claim that the error terms are exponentially decaying. In fact, what has been claimed in Remark 1.3
regarding (1.13) is proved. The identification of the constant F'[¢;¥] as given in (3.15) and (3.16)
coincides with the expression for (1.14) by taking the relations (1.16) and (1.18) into account.

3.2. Higher order asymptotics. The following “exact formula” is the key to the higher order
asymptotics of Fn [¢;¢].

Proposition 3.4. Let ¢ € C'/**2(T) be a nonvanishing function on the unit circle with winding
number zero. Assume that ¢ = ¢_¢.. is its Wiener-Hopf factorization. Let

¢-(2)
¢+(Z) ’

An(2) =z27NA(2), A(z) =
and put Ky = H(/IN)H(ZI_VI). Then

(i) Dn[¢] =Glg]"N E[g]det(I-Kn).
(ii) Tn (@) is invertible if and only if I — K is invertible.
(ii1) In this case,

(3.17) T3 () =T (¢:)Px (=TI =Kn)™'T(w) ) PuT (67).

Proof. We note that (i) is the Borodin-Okounkov-Case-Geronimo (BOCG) identity (see, e.g.,
[BSO06, Sect. 10.40]), and (ii) is an obvious consequence of it. Formula (3.17) is basically formula
(10.27) or (10.47) in [BS06]. O

Theorem 3.5. Let ¢ have a continuous canonical Wiener-Hopf factorization ¢ = ¢_¢, and assume
that = ¢p.+ p_ with p, € H*(T) and p_ € H>(T). Then

(3.18) Fy 6] = Flow] - ﬁ LTI -Kn) " T(6-2N poeo.

Proof. Note that Ty (p-)eo = 0. Using (3.17) we consider
g Tn' ()TN (¢p+)eo
= el T (87") P (1-TQR) (= Kn) ' T(n) ) PN T (67) T (e

=167 o+ €] (=TI = Kn)™'T(An) ) T(9= ) PNT (8P )eo.
Apart from the factor [¢;']o = [¢+], ! this decomposes into

eo T(¢- )PNT (¢ps)eo+e) T(AN)(I-Kn)'T(AN)T($-)ONT (¢p+)e0
—ed T(AN)I—Kn) ' T(AN)T ()T (¢p+)eo.
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The first two terms equal
ef T(¢~")PNT(pps)eo+ef T(A)I—Kn) ' T(AN)T(¢6~-)ONT ($p+)e0
= e\ T(¢~_)PNT(pps)eo+ef T(AN)I=Kn) ' T(ANTA)T (7 YV-NT ($p+)eo
= e T(¢~")PNT(¢p.)eo+e) T(AN)T (6 )VWV-nT(dps)eo
= e T(¢=)PNT(¢p)eo+el T(¢= )W V-nT(dp+)eo
= el T(¢~"")T(pp)eo = e T($+p+)eo = [¢:]o- [p+lo.
which give the first (constant) term in (3.18). The third term from above equals
—eg T(AY)(I=Kn) "' T(AN)T($Z)T (¢p+)eo
=—e{ T(AY)(I-Kn)"'T(AN)T(¢1p4)e0
=—e{ T(AY)I-Kn)"'T(¢-27" p.)eo,

which provides the second term in (3.18). O

The previous result allows to obtain improvements of Proposition 3.2 by expanding the term
(I-—Ky)~! in formula (3.18) into the Neumann series. Notice that Ky = V_yH(1)H(1™")Vy and
H(A)H(A™") is compact since A(z) is continuous. Hence K converges in the operator norm to
zero. In particular, the following conclusions can be drawn.

Corollary 3.6. Under the same assumptions as in the previous theorem,

1
(3.19)  Fnly:ol =[p+lo- o0 ed T(ANT (¢-27 N pa)eg

+0 (1K ey IPLR T2 IPL6 -2V pillse) - as N — oo,

Therein, the first term [p4]o is the constant, whereas the second one, which can be written as the

sum
(e8]
SO M
- e —p + )
[#+]0 =N ¢- -n n
converges to zero as N — co. One should expect that in many cases, (i.e., unless some “cancellation”
occurs in the previous sum), the third (or error) term converges faster to zero because it contains

IKNII-

In the case that the generating functions ¢ and ¢ are analytic in a neighborhood of T, exponentially
fast convergence can be derived.

Corollary 3.7. Let ¢(z) be analytic an nonvanishing function on the annulus a, < |z| < by with
winding number zero, and let Y (z) be analytic on the annulus a) < |z| < by, where a; <1 < b;.
Then, for each k with k > a; max{b7',b;'}, we have

1 °72
(3.20) Fy[¢:] =Fl:y]1+0(«Y), N>,
and
(3.21) DY [9:0] =GIINEIS] (FIpw] +O(M)., N .

Proof. The function A(z)~! = ¢, (z)/¢_(z) isanalyticona; < |z| < by as well, and hence the Fourier
coefficients [17!]_,, = O (k') asn — +oo foreach ky > ay. As¢_p, = ¢_¢7 ' P[¢~" ], the function
P[¢="y] is analytic on the disc |z| < b, and ¢_ p, is analytic on the annulus a; < |z| < min{b,b>}.
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Thus, for every k» > max{b;',b;'}, the Fourier coefficients [¢_p,], = O(«}) as n — +oo. Using
this information about the Fourier coeffcients, it is easily seen that the second and third term on

the right hand side of (3.19) decays as O(«} «3') as N — co. This implies (3.20). For (3.21), we

notice that this follows from (3.20) combined with Proposition3.4(ii) since a similar estimate can
be made for the det(/ — K ) term. O

This together with Theorem 3.3 completes the proofs of Theorems 1.1 and Theorem 1.2.

3.3. Concrete evaluations. The functions that are of interest in the Ising model are ¢ = 5 given
by (1.28),

k-1
(3.22) $(2) = | ———— k>,
1-k-1z

and the function ¢y given by (1.31). Apart from a constant factor, this function can be written as

¢(z)z—d(c)c

Z—cC

U(z) =
with ¢ = ¢, < 0. Notice that ¢ is analytic (and nonzero) on C except on the branch cut
[y =0,k U [k, +00).

Therefore, being more general than necessary for the Ising model, we can also allow for complex
values ¢ ¢ I'x. Indeed, ¢(c) is well-defined, and therefore i (z) is analytic on C\ T'k.

We can apply the formulas established in Theorem 3.5 and Corollary 3.6 directly to ¥, and this is
what we will do below. Alternatively, we could split ¢ into two terms
Z o(c)c
Y(z) =¢(2) — -

z—cC i—C

This basically means that we deal with the functions
Z 1
¢(z)—— and ——.
Z—c Z—c

We do not have to exclude the values ¢ € I, but to exclude |¢| = 1 and distinguish the cases |c¢| > 1
and |c| < 1. In the latter case, the asymptotics can be gleaned from Theorem 3.9 and it should
be noted that Fy [¢; Z_Lc] =0. In the former case, the asymptotics of Fy [¢;¢ =] is discussed
numerically in Section 4.2, but we refrain from providing the rigorous details.

Note that ¢ has Wiener-Hopf factors given by

(3.23) ¢(2)=(1-k"'27"2  p_()=(1-k""7")2
We see that
(3.24) AN@=z2NA2), A2)=VA-k1z7)(1-k"'7)

We start with the asymptotics of Dy [¢].

Theorem 3.8. For ¢ given by (3.22) with k > 1, we have that

1

mN_2k_2N_2(1+0(N_1)) > N — oo,
7T —

Dylg]l=(1-k2)"* {1+
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Proof. We are going to use the BOCG identity stated in Proposition 3.4(i). A straightforward
evaluation of the constants gives G[¢] =1 and E[¢] = (1 —k~2)!/*. Thus we are left with
analyzing
det(I-Ky) =1-traceKy +O([|Kn?), N — co.

Let us first estimate the trace norm of the operator Ky = V_yH(A)H (A1 ")Vy. Since A(z) is
analytic on the annulus k~! < |z| < k, the Fourier coefficients decay as [1], = O (k")) as |n| — o
for each fixed k > k~!. A straightforward computation of the Hilbert-Schmidt norm of the Hankel
operators appearing in K implies that the trace norm of K decays exponentially as

IKnlli=0(*N), N —o.
As a consequence the term O (|| Ky ||%) is negligible in comparison to the other expected terms.

Let us finally compute the asymptotics of the trace of K. Obviously,

trace Ky = Z Z[/l]n+j+1 i Z [l jsten [ s joion
n=N j=0 n,j=0

= Z(n+ D[t [ ] cpo1on
n=0

In view of (3.24), the asymptotics of the Fourier coefficients of A and A~! is given by

1_k_2 _/ —-n _
(3.25) =i 32 (1+0(n 1)),
|
3.26 AN, =, ——— 2 (1o ™),
(3.26) A = 1 = o e (1+00:7h)

as n — oo. Here we used Lemma 5.3 withb =k, {o(z) =0and w=1/2,£(z) =k~ 2(1 -k~ 1z~ 1)1/2
in the first case and w = —1/2, £(z) = k'/2(1 - k~'z71)~1/2 in the second case. Hence

_ N (n+1) —27,-2(N+n+l) -
tI'aCCKN—nZOm(n'FN'FI) 2k 2N ! (1+O((I’Z+N) 1))

1
:—mN_zk_2N_2(l+0(N_l)), N—)OO,

by Lemma 5.2. Combining all this we arrive at

det(I—Ky) = 1 N—Zk—ZN—2(1 +0(N—1)), N — o,

B e —
2r(1—k=2)2
and this proves the assertion. O

Let us now turn to the asymptotics of Fy [¢;y] in a setting which is slightly more general than
necessary for the Ising model.

Theorem 3.9. For ¢ given by (3.22) with k > 1, ¢ € C\ [k, +0), let
¢(z)z—d

i—¢C

Y(z) =
where

{¢(c>c if el > 1

arbitrary  if |c|] < 1.
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Then, as N — oo,
k1/2 Ckl/Z

= _ —2,-2N -1
Fl\,[(p’gﬂ_(k—c)l/2 27r(k—c)3/2(1—k‘2)N k (1+O(N >)'

Proof. We are going to use Corollary 3.6 and start with identifying the functions therein. To
compute p, recall (3.11) and (3.12) to see that the latter decomposition, ¢='yy = ¢, .p, +¢-'p_ is
given by
$+(2)z— ¢~ (2)d ¢4 (2)z—¢s(c)c N p+(c)c—¢~ (2)d
z—c¢ - z-c¢ z—c )
The first term is analytic for |z| < k, while second term is analytic for |z| > 1 — & and vanishes at
z =o00. Hence

2= 67" (24 (c)c

p+(2) = —c
and © 2
B _¢i(c)  k
pelo=p 0= 50 = o
Furthermore,
—_ ! (111 AN/2¢1 _ -1 .-1/2
$-(2)p+(2) = $_(2)" ¢+z(f)c¢+(dc=(1—k_IZ‘1)1/2Z = Z)z—(cl o

Lemma 5.3 with w =1/2, b =k,

_ U=k Pk -o)M e (1=K
£(z)=- —c ) f(k)——w,
gives
(l_k—Z)l/ZC ~ s ~
[¢-p+ln = _F(—1/2)(k—c)3/2n 32k 1/2(1+0(n 1)), n— oo,

Hence, together with (3.26),
_ Cc 2, _ _
[/1 1]—n[¢—P+]n: Wﬂ 2]( 2n+1/2(1+0(7’l 1)), n — 0o,

Therefore, we get

[

S TANT (G- preo= Y [ ouon [6ps|
n=0
Ck1/2
" 2n(k-¢)32(1-k72)
using Lemma 5.1. Noting that [¢.]o = ¢+(0) = 1 and that the error term in Corollary 3.6 decays
even as O («*N) (for any fixed k~! < k < 1), proves the asymptotics. m]

NZkN(1+0(N7)

Corollary 3.10. Let ¢ = 5 be given by (3.22) with k = §;,S, > 1 and

J(Z) _ r¢(Z)Z —¢(ci)cs
Z—Cx
withr =C, /S, and ¢, = =Sy /S,. Then, as N — oo,
DB A; Uy
(3.27) el . ! N‘zk‘zN(l +0(N-1)),
Dy |[¢] 27C5(1-k72)

S 1 1 1
BI7. 71 _(1_1-2\1/4 -2, -2N -1
(328)  DE[gd]=(1-k7?) (1+2n(1—k—2)(c3+k2—1)N k (1+0(N )))
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Proof. We notice that

K2 s, 1 —c. 1
(k—c)V2 C, r k—c. C%¥
The rest is straightforward computation. O

With this computation we have proved the final two theorems stated in the introduction.

4. NUMERICAL VERIFICATIONS

In this section, we assume that ¢ = q?, the symbol for the Ising model defined by (1.28). To fix the
problem, we set ,{—Z = % and ]{—; = % for the J;, > J, case and Z—Z = zlt and ,{—; = % for the J,, < J, case.
Solving (1.23) numerically in both cases, we get 7. = 0.820508964964 - - -. We thus fix T = ‘3‘ <T,
in the following numerical verifications, which ensures that ¢ is of Szegé type. Then, we have

k= sinh(%) sinh( lf;V ) = 1.067666675, which is, as expected, bigger than 1. In fact, the reason

T
why we choose T so close to T, is that the error terms often have factors of the form N="k~"V, so

a k slightly greater than 1 will guarantee the results being not so small for relatively large N.

For computing Dg [¢;] and Dy [¢], from (1.2) we first compute ¢;, j=1-N,---,N -1, and
Yj, j=0,---N -1, by the trapezoidal rule up to precision of more than 100 digits (which is far
more than needed in the following calculations). Then we compute Dﬁ [#;¢] and D [¢] directly
from (1.1) and (1.3) respectively.

4.1. Verification of (1.33). Let us define

DR($:91 271 - k2NN
Vi-k-2 Cy2+(k2=1)7!
Then formula (1.33) is equivalent to

4.1 G4 =1+0(N7").

A . _
N ™

Figure 1 is the numerical result for a case Jj, > J,, with ,{—h = % and ,{—; = %. go = 1 and a finite fixed
g-1 show asymptotics (4.1) is indeed right. A more careful look into the numerical values of g;
suggests that ), g_;N" is an asymptotic series.

In principle, Gg is only defined on integer N. The red line is a smooth link of the ten points
obtained by numerical experiments. The numerical values of Gg for other integer N will be
visually indistinguishable from the points on the red line.

_ 1

In — 1 and ,{—; =3 Numerical values of

. kB B
g—; also show the series ), g_;N~" is an asymptotic one. go = 1 and a finite fixed g_; show (4.1) is
also true for this case.

Figure 2 is the numerical result for a case J, < J,, with

4.2. The sensitivity for the case ¢ = 5 = withcnear 1. Ifc <1, Fy [(}\; ] is given by Theorem
3.9. Also recall from (3.2) and (3.4) that
DY [4:¢]

Fnlo:y] :W'
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A

GN

1.0
_1
0.9 + s 2
1 S _1
kg — 4
0.8 T 4
i r=5

1 1 1 1 l 1 1 1

—
S L
S
=

=

DRI$:] )20k )N 2N
Vi—k2 Cy2+(k2=1)~!
g0~ 1-5.643811% 1071 g_| ~ —25.367279, g_ ~ 798.967, g_3 ~ —30863.1, g_4 ~ 1.42051 x
100, g5 ~ —7.55845x 107, g_g ~ 4.41553x 10°, g_7 ~ =2.51667 x 10!, g_g ~ 1.12018 x 1013,
g-9 ~ —2.59581 x 104, Appending more points such as adding Gg for N =250, g; will change
with an obvious pattern: the smaller 7 is, the smaller percent change is. For example, the change
of go is smaller than 10710, and g_¢ will change to 4.55987 x 10° while g_g will change to

~7.08571x 1014,

9 .
Ficure 1. Plot ofGQ =( . Fitting the 10 points by 'Zog,iN_‘, we get
i

A
GN
1.0 +
1
0.9 + il
1 Ty _ 1
0.8 1 7
1 =53

S
1000

DE [¢:)] _1)2n(1—k-2)N2k2N
Vi-k2 CP+(k2-1)7!
20~ 1-5.92566x 10711, g_; ~ —26.191288, g_» ~ 830.85573, g_3 ~ —32206.7, g_4 ~ 1.48546 x
100, g_s5 ~ =7.91507 x 107, g_¢ ~ 4.62828 x 10°, g_7 ~ —2.63956 x 10!, g_g ~ 1.1753 x 1013,

g_9 ~ —2.72407x 104,

Ficure 2. Plot ofG‘;}] =(

9 .
. Fitting the 10 pointsby », g_;N~*, we get
i=0

So Theorem 3.9 means that

4.2)

B ._
GN Dt

DX [¢:y]

k1/2

2n(k —c)32(1-k72)

N?K2N =1+0(N7Y).

Dnl¢]  (k—c)'2

Figure 3 is the plot of G¥ with ¢ =
numerically.

It is not surprising that Figures 1, 2 and 3 look so similar since they all have the same go = 1 and

similar g_, and g_3.

975

1000 *

ckl/?

go =1 and a finite fixed g_; verify Theorem 3.9
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B
Gy
1.0 T
T In 1
kg ~ 2
0.9 + o1
+ kg — 4
_4
0.8 + r=s
+ =5
x €= 1000
—ttt ]t N
500 1000
B __(PRISW] 12 \2r(k=c)P(1-k) \2,2N g .
Ficure 3. Plot of Gy, = Daid] k-7 AT N*k=" . Fitting the 10 points

9 .
by 3 g_iN7\, we get go ~ 1—-1.5286x 10710, g_| ~ =27.7534, g_» ~ 938.882, g_3 ~ —39575.1,
i=0
g4 ~2.02757 x 100, g_s ~ —1.22089 x 108, g_¢ ~ 8.089x 10, g_7 ~ —5.12614 x 10'!, g_g ~
2.45747x 1013, g_g ~ —=5.96334x 104,

Now, let us consider the case ¢ > 1. For ¢ > 1, we recall that p,(z) = z%;. Now, let us compute
Fn(v; ¢] by Corollary 3.6. First, [p+]o = p+(0) = 0. Next, ¢ p+=V1- k 1z-1_2_ Therefore,

1 z7" dz | 1 _
4.3 -— —f1=—c", f 1.
(4.3) [6-p-+1n / kzz—c2ni ke$ O

Recall that

Zn—l

=/ 7" Z :l‘/k dz
TNk D)=k 27T To (kT T =D (1- k1)

We get
o Z Zn lc—n
- -P+In = -7 d
2, P = ) kc/ Vo Dk
1 Z)N-11
— l 1- / (c) c dZ
T ke Jo (1-2) (kT2 1= 1) (1 -k~ 1z)
1 N-1
(4.4) - Loewpn oL / !
u keJo (1-L)(1-0)(1-k 2z)
-N-N
4.5) ~ ¢k .
VAN [1 - LNT—%=2

(4.4) is the exact value of the second term in Corollary 3.6. Actually, we do not use (4.5) since
(4.4) itself can be calculated directly. Let us define Ay as

1 N-1 BT
46)  Ani= e NeN 1oL / i 4. DRsu
" kedo (1-L)JA-n(1-k2)  Dnl4l

Then Ay is the negative of the third term in Corollary 3.6.
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lnAN
500 1000
f —t N
Jn_ 1
| % _1
—100+ kp f
T = g
T c= 1025
~ 1000
-200t
_1 .-N;-N [{_ 1 rl N3 _Df,[$;¢]
Figure4. PlotoflnAy, where Ay = -c™ k 1 kc/o (l—ﬁ)\/(l—t)(l—k-zz)dt Dol "

7 .
Fitting the 10 points by g\N+grInN+ Y g_;N~', we get g; ~ —0.2211193827735, g1, =
i=0
—2.499999847 and go ~ 3.928447182. Notice that the numerical g; and g7 obtained by the
fitting of the 10 points are very close to 31n k=l +1Inc™! ~ —0.22111938274235 and —%. This

suggests that g} =3Ink~' +Inc™! and g7 = —% are exact.

Figure 4 is the plot of Ay with ¢ = }8%8 The numerical results mean

MR _1 NN - -5 _N,-3N
47) —L—o KN J1-— dt+O(N72¢™N =N,
“ o kc/ v<1—r><1—k2r> o )

in this case.

1l—

5. APPENDICES

5.1. Solution of the Riemann-Hilbert problem for BOPUC with Szegé type symbols. The
following Riemann-Hilbert problem for BOPUC is due to J.Baik, P.Deift and K.Johansson.

e RH-X1 X : C\'T — C>? is analytic,
¢ RH-X2 The limits of X () as ¢ tends to z € T from the inside and outside of the unit
circle exist, and are denoted X (z) respectively and are related by

5.1 x@=x@f 1Y) er

¢ RH-X3 As 7z — o0

(5.2) X(z) = (I+0(z™1))",

(see [Dei99],[DIK11],[CIK11]). Below we show the standard steepest descent analysis to asymp-
totically solve this problem, in the case where ¢ is a symbol analytic in a neighborhood of the unit
circle and with zero winding number. Note that the symbol ¢ associated to the 2D Ising model
in the low temperature regime enjoys these properties. We first normalize the behavior at co by
defining

(5.3) T(Z;n)::{X(Z;n)z‘ 5 l2l > 1,

X(z;n), lz| < 1.
The function T defined above satisfies the following RH problem
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FS . Qoo

FiGure 5. Opening of lenses: the jump contour for the S-RHP.

e RH-T1 T(-;n) : C\'T — C>*? is analytic,
7 P(2)
e RH-T2 T.(z;n) =T_(z;n) 0 o z€T,
e RH-T3 T(z;n)=1+0(1/z), 7 — 00,
So T has a highly-oscillatory jump matrix as n — oo. The next transformation yields a Riemann

Hilbert problem, normalized at infinity, having an exponentially decaying jump matrix on the
lenses. Note that we have the following factorization of the jump matrix of the 7-RHP:

" ¢(2) 1 0 0 #(2) 1 0 (o0)
5.4 = =Jo(z;n)J Ji(z;n).
(5.4) (0 z n) (Z_n(b(Z)_l 1 —¢(Z)_1 0 Zn¢(Z)_1 1 o(z;n) (2)J1(z;n)
Now, we define the following function :
T(z:n)J7 (zin), z€Qy,
(5.5 S(z;n) :=4T(z;n)Jo(z:n), z€Q,
T(z;n), Z €U Q.
Also introduce the following functionon I's :=T'yUTUT
Ji(z;n), z€Ty,
(5.6) Js(z:n) =47 (), zeT,
Jo(z;n), zeTy.

We have the following Riemann-Hilbert problem for S(z;n)

e RH-S1 S(-;n) : C\I's — C>*? is analytic.
e RH-S2 Si(z;n) =S_(z;n)Js(z;n), z€Tls.
e RH-S3 S(z;n) =1+0(1/z), as z — oo.

Note that the matrices Jo(z;n) and J; (z;n) tend to the identity matrix uniformly on their respective
contours, exponentially fast as n — co.

5.1.1. Global parametrix RHP. We are looking for a piecewise analytic function P(*) (z) : C\ T :—
C?*2 such that

e RH-Globall P is holomorphic in C\ T.
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o RH-Global2 for z € T we have

57 P (2) = P (2) (_¢—01(z) %Z)).

e RH-Global3 P () =1+0(1/z2), as 7 — oo,

We can find a piecewise analytic function @ which solves the following scalar multiplicative
Riemann-Hilbert problem

(5.8) ay(z) =a_(2)¢(z2) zeT.
By Plemelj-Sokhotski formula we have
(5.9) a(z) =exp [L / Mdr} ,
2ri Jr T-2
Now, using (5.8) we have the following factorization
0 #(2)\ _ (aZ'(z) 0 0 1)({a7'(z) 0
(5.10) (—¢_1(Z) 0 ) B ( 0 a_(z)) (—1 0) ( 0 a4 (2)]°
So, the function
0 a(z)
(—a-l(z) 0 ) <t
(5.11) P (z):=
a(z) 0
( 0 a,—l(z))’ |Z| > 1,

satisfies (5.7). Also, by the properties of the Cauchy integral, P (z) is holomorphic in C\ T.
Moreover, a(z) = 1+0(z7"), as z — oo and hence

(5.12) P ()=1+0(1/z), z— oo.

Therefore P(*) given by (5.11) is the unique solution of the global parametrix Riemann-Hilbert
problem.

5.1.2. Small-norm RHP. Let us consider the ratio

-1
(5.13) R(zn) =$(zn) [P @)
We have the following Riemann-Hilbert problem for R(z;n)
e RH-R1 R is holomorphic in C\ (Ty UT").

e RH-R2 Ri(z;n) = R_(z;n)Jr(z;n), ze€lgUl' =: Xg,
e RH-R3 R(z;n)=1+0(1/z2) as z — co.

This Riemann Hilbert problem is solvable for large n ((DKM+99a],[DKM+99b]) and R(z;n) can
be written as

(5.14) R(z;n) =I1+R|(z;n)+Ry(z;n) +R3(zsm)+---,  n=ng

where Ry can be found recursively. Indeed

(5.15) Rk(z;n):i,/ [R"‘l(“;”)/]l—(j’*(“;”)_l)du, 2eC\Zk, k>1.
R -

2
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It is easy to check that Ry (z;n) is diagonal and Ry¢41(z;n) is off-diagonal; £ € NU {0}, and that

O(p™*)

516 R ij 5 = s
( ) k,](Z I’l) 1+|Z|

n— oo, k>1, 7€ C\ Zg,

where p (resp. p~!) is the radius of I';(resp. I'p). Let us compute R (z;7); we have

(5.17)
_n -1 2
p(oo)(z)( ?1 0) [P<°°)(z)]_], zeTy, (0 "¢ (D) (z)), LeT.
Z"p7(z) O 0 0
Tr(z)=1= 0 0 - 0 0
P P (]! r r,.
@) "¢ (2) 0)[ @], zel, (z‘"gb‘l(z)a‘z(z) O)’ el
Therefore
np—1 2
0 _%/ "¢ T(T)Za (T)dT
(5.18) Ri(z:n) = 1y 2 o -
L./T ¢ (1) (T)dT 0
2ri Jr, T—2

5.1.3. Tracing back Riemann-Hilbert transformations. If we trace back the Riemann-Hilbert prob-
lems R+ S+ T — Y we will obtain

, 0
G’(Z) ) Zna3, Z€ Qooa
0 o (2
a(z) 0 27 e 0
- N 2)¢ 7 (2) () ’ ’
(5.19) X(zin)=R(zn) ) » !
a(2)¢™'(z) a(z) 0
o > z €,
a ' (z) 0
0 a
1 (2 ; z € Qo,
-a ' (z) O
where for z € C\ Xk, as n — oo, we have
1+ O 2") R zn)+ 2 )
(5.20) R(z:n) = P .
Ry 21(z;3n) + T+]z] 1+ T+]z]

5.2. Proof of Theorem 1.2 using the Riemann-Hilbert approach. For the inverse of a Toeplitz

matrix T, [¢] = {¢,_« }?_kl:O’ we have

(5.21) (T,;1 [¢])j =P FLS) 0<jksn-t,

where 0 is the Kronecker delta function,

(522 (@8 = [ F@E 5
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and

(5.23) RP: f(2) o /T R (z,w) f(w)dw

is the Resolvent operator with the kernel

X(¢)(z)X(¢)(w) X(¢)(W)X(¢)(Z) d(w) -1
Z—Ww 2miwn

where Xl(f’) (z) = X1(¢) (z;n) and X(d’) (z) = X(d’) (z;n) are the entries of the solution to the RH-X1
through RH-X3. In terms of the assomated blorthogonal polynomials, in view of (2.6), we can
write

(5.24) R (z,w) =

VD1 [@]1Dns1 [¢] Qn(W)Q5 1 (2) = Qn(2) Q5 (W) (W) -1
D,[¢] z—-w 2w
where we have used the standard notation

Pi(z) :=7"Pu(z7")

(5.25) R (z,w) =

>

for a polynomial P,(z) of degree n.

Let X = (x0,x1, -+, XN~ 1)T and ¥ = (Wn-1,¥N-2.-+,00)T. Applying the Cramer’s rule to the
linear system T}, [¢]X =y gives

$o b1 bons2 YN $o ¢ 0 dN-2 YN
¢1 ¢o ¢ +3 YN ¢-1 b0 - IN-3 YN-2
det| : : : detf : : :
dn-1 BN - Yo $1-Nn P2o-N - D1 Yo
AN-1= = =
Dn|[¢] Dn|[¢]
Comparing this with (1.1) we observe that
(5.26) DY [¢:¢]=Dnl¢lxn-1
In view of (??), (5.21), and (5.26) we have
N-1 N-1 5
Fylgsyl=xn-1 = Z (ngl [5]) YN-1-¢ = (5N—1,€+<RI(\?) [Zg],ZN_l>) YN-1-¢-
£=0 N-LL =0
Thus
-1
(5:27) Flo) =+ 3 (RPN ) uneie
£=0

From (5.23) and (5.24) we have

N-1 3
Ivi= 3 (RPN Yoo

£=0
(5.28)
N-1 X1(¢)(Z)X(¢)(W) X(¢’)(W)X2(¢)(Z) ¢(W)—1 e v dz
W dw N =N 1o
= |/T\JT =w 2miw 2ri
Note that
N-1 1 N-1 1 1
(5.29) w NN == 0w = —yy (—) +0 (e‘CON),
=0 Wi W
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where ¢ is some positive constant and

(5.30) (@)= ) w4 ) T =)+ (2).
k=0 k=1
Therefore
San g / / XD @x3 ) - X1 0 x3P @ gon) -1 ( )Z  dwdz
T Z—Ww 2w w 21
Let
D(2) = exp /ln<¢<r>> ]
2ni T-2Z
One can easily check that
(5.32) D(z) = ﬂ,
a(z)
where « is the Szegd function corresponding to the symbol ¢, given by (5.9). For D we have
(5.33) D,(2) =D_(2)d(z), zeT.
Recall from (5.16), (5.19), and (5.20) that
(5.34) XP(2) =DV ¢ (), and XD () ~-D;'(2).
Therefore
(5.35)
// —D;'(W)D+(2)z" ¢~ (2) + DI () D (W)wN ¢~ (w) f(w) ~ 1 ( ) _n dwdz
In = i z .
Z-w 2riw w omi
_ // ~D'(W)D-(2) + D' (D) D+ (W) ()¢~ (W) (w/2)V d(w) =1 (1) dwdz
B —w 27w w| 2mi

Now we deform the contour of integration for variables w and z respectively to the contours T
and T_ respectively, where T} is a circle with radius less than one in the domain of analyticity of
¢ and ¢, and T_ is a circle with radius more than one in the domain of analyticity of ¢ and . So
we have

(5.36)
UNz/ / D' w)D(z) + D1 (2)D(w)g L (2)g~ (W) (w/2)V ¢(W)—1¢i(l)dwdz
_JT, w

Z—w 2miw 2ri

~ -D~'(w)D(z) $(w) -
~ -/T ‘/T+ Z—Ww (271.1)2 '701( )deZ
= N F(w)
_-/T/T D (W)Q(Z)Z(Z) (271'1)2wZ%( )dwdz
3 kP(w) =1 . dz
_kzz(:)[-/ﬂlD (w)w 2miw ( ) ][/ D(2)z ]
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/D@z G / @ty /_( kst /T+<z)z’<2fflz
(5.37) /r D(2)z —=/ (@(0)+Zc ZJ)Z 5o

= TD(O)/ Zkz—. =D(0)6x0 = Sko-
T, 1z

Note that

Thus,
In=— [ D' w)(d(w)- 1)%( )zdw
Ty Tiw
(5.38) /D (W) (d(w) - 1)%( );:VW
= -1 dw
- /T( (w) =Dy (w>)w,( )2mw
Note that o
W —_
/@ (W)'J/l( )271'1W /D (W l)l//l( )27T1W
@+ (w) a(w) aw
/JI“ a(0) Vi (w )2711w / (O)l//z( )—W—l/’o-
Therefore

N 1 dW _ -1 1 1 dW
(5.39) jN——lﬂo+/D (W)lﬁz( )27T1W_ ¢O+AD+ (W)( ( ) lpo( ))27TIW

Note that ¢, (1/w) is an analytic function inside the unit circle with ¢, (1/w) =O(w) as w — 0,

and thus .
[t (2] -

Hence, using this and (5.33) we have

o U (w) dw ¥ (w) dw
(5.40) In = ‘1’0+/D (w)d(w) 2riw vot /D (W (w) 2miw

a(0)
ay(w)’

Note that
a(0)

a_(w)’

D_(w ) =D, (w) = and Dy(w ) =D_(w) =

Therefore
(W)Y (w) dw /
41 IN =— - —
Gan v =cper [ SR s [aowong
Comparing the Wiener-Hopf factorization ¢(w) = ¢_(w)¢.(w) with the scalar Riemann-Hilbert
jump condition a, (w) = @—(w)¢(w), we can identify a_ with ¢~ and @, with ¢,, and thus

[¢_1¢]0
[¢+]0

Finally recalling (5.27), and taking the limit N — oo we arrive at the conclusion of proposition 3.2:

(5.42) ~ o+
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[¢='v]o
[¢+]0 )

(5.43) Flg:y] =

5.3. Derivation of the symbol pair corresponding to the next-to-diagonal Ising correlations.
As it is shown in [AYP87], the next-to-diagonal two point correlation function is given by the
following bordered Toeplitz determinant,

A() AN—Z By -1
Ay -+ ANz By
(5.44) (00,00n-1,n) =det| . ) ) ., N>,
Ay - Al By
where in the notations of [AYP87],
T
(5.45) Ap=— [ e ®(6)db,
2 J_»
§—8"e"0
(5.46) o) =22
VQ(6)
(5.47) Q(6) = 82 +(8*)? - 255" cos(h),
1 [~ _
(5.48) B,=— [ e ™%(0)do,
21 J_»
and
1 CS"™ (88" +e710
(5.49) W(0) = n_ CST(SS" 4T
JQ(0) CC” ++/Q(0)

The quantities C, S,C’*, and S"* are determined by the physical parameters of the model according
to the equations,

. cosh(2K”) 1
: :=cosh(2K), §:=sinh(2K), C™i=————= §%i=———Ho
(550 Ci=cosh(2K),  §:=sinh(2K),  C™:= ShoE sinh(2K")’
where

Jh ’ ‘IV
551 K=— d K==
(5.51) kT’ an kgT

Using (1.25) and (1.26) we can write (5.46), (5.47) and (5.49) in our notations as:
k% +1—2kcos(0)

(5.52) Q(6) = = :
k—ei?
(5.53) ®(6) = ,
(©) Vk2+1-2kcos(6)
and
(5.54) W(6) = Ci(Sn+Sve™)

SpC, — .
Vk2+1—-2kcos(6) ChCy +\k2+1—-2kcos(6)
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Recall that ¢ is given by (1.28) is
1—k-1z-1 k-7l

I-k7'z k4 1—k(z+z 1)
This together with (5.53) immediately yields

(5.55) b(z) =

(5.56) ®(6) = g(e').
Next we want to show that ¥(0) = J (¢'?). To that end note that
(5.57)

1 _CiC, — VK2 +1—k(z+2z7)) B CrhCyz—zVk2+1—k(z+z71)

ChCy+NIZH1—k(z+z 1) Sp+Si+k(z+z7) k(z—c)(z—cih) ’
where
S

(5.58) c.i= —f.
Therefore, as S, +S,z7! =Spz7 (z—c;'),
(5.59) Sp+Syz! _ ShChCy _ Snyk+1-k(z+zh)

ChCy + k2 +1—k(z+z 1)  k(z=c)) k(z=cx)

Combining this with (5.54) gives

S,C%C,
‘P(G) _ ShCV _ hp + ShCh
V2+1—k(z+27)  k(z—c)VR2+1—k(z+z71) k(z=c)
_ SLC, - C; SnhCh L= el
VE2+1—k(z+z71) k(z=c.) | k(z=c.)’ .

and the term in the brackets becomes (kz—1)/(k(z—c.)). Now, using (5.55) we obtain the formula

for y given by (1.31):

Cy26(2) +Ch
SV (Z - C*)

(5.60) P(h) = v (z).

Let us also remark that

(5.61) Iz = Sp . WD —cdle)

Sy 7—Cs

which can be seen from a straightforward computations as well. To summarize, we have shown
that

(5.62) (00,00N-1.8) = DN [:0/].
with ¢ and ¢ given by (1.28) and (1.31).

5.4. Auxiliary results.

Lemma 5.1. Let |a| < 1 and w be complex parameters. Then

[

Z a"'n®(1+0(n ")) =

n=N

aV N@

1-a

(1+0(N7Y), N - .
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Proof. We basically can apply summation by parts,

(1-a) Z a"'n®(1+0(n)) = Z a'n®(1+0(n") - Z e (1+0(n™h))
n=N n=N n=N
=d"N?(1+0(N"))+
> a"+l((n+1)“’(1+O(n_1))—nw(l+0(n_1)))
n=N

[ee)

=a"NY(1+O(N"") + Z a"one .

n=N
The last term we can split into
2N -1 ) )
Do d"0m ) =0@" N, Y a"ome )= Y 0(a"q") = 0((ag)™).
n=N n=2N n=2N

In the latter we choose 1 < g < |a|™!, which guarantees that n~! = 0 (¢") and (aq)*™N =O(N“™).

o
Lemma 5.2. Let |a| < 1 and w be complex parameters. Then
- aN N«
D+ ) (n+N)amN = S(1+0(N7")), N>
n=0 (1 B a)
Proof. After dividing by a”, the difference between the series and the leading term is
(o) Nw [Se]
>+ D(n+N)@a" - 5= > (D" (1 +N) 2 =N )
n=0 (1 _a) n=0
= > (n+1)%a" 0 (max{(n+ N)R( ™ NRe(@ITy) = g(NRe(@) ),
n=0
This implies the estimate. O

Lemma 5.3. Let {(z) be a function holomorphic on {z € C : 1 —e < |z| <b+&}\ [b,b+¢&) with
b > 1, € > 0. Further assume that in some neighborhood of | b, b + €) this function is of the form

{(2) = (b=2)“é(2) +4o(2)

with £(z) and £o(z) being holomorphic, and Re(w) > —1. Then the Fourier coefficients of { have
the asymptotics

£(b)
I'(-w)

+O(n_1))n_“’_lb_"+“’ n— +oo.

&=

Proof. In the formula for the Fourier coefficients we deform the contour into a slightly bigger circle
with radius b(1+6,,) (where 6, =6n~'/? and 0 < 6 < £/b is fixed) and a line segments along the
branch cut [b,b + b6,,] on both sides,

1

ln==— {(2)z7" dz
27t Ji)=1

1 | | pbU+6n) |
"3 Jeninan S d“%/b ((b=1=i0)® = (b=1+i0)*) £() ™" dr.
z|=b(1+68,
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The first integral being O (5, % 1p=(1+6,)™) = O(n/Re(@)/2p=n,-1"26) s neoligible. The
second one becomes

sin(wm) /b(1+5")
T b

sm(wir)

(t-b)°e()™ Vdr = / E(b+bs)s®(1+s) " ds.

Therein, the integral (without the factors in front of 1t) equals

Sn
/ (£(b) +0(s))s@ e~ D06 g
0

nl2s

=n! (b)+0(%))u@e™ 05 gy
;o temsoc)

nll2s
= by /
0

=] (g(b)r(l +w) +0(n-1)).

ni’2s
u“e™ du+n_“’_2/ u®0(u+u*)e™ du
0

Combining all this give the asymptotic formula. O
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