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Abstract. We prove the analogue of the strong Szegő limit theorem for a large class of bordered
Toeplitz determinants. In particular, by applying our results to the formula of Au-Yang and Perk
[AYP87] for the next-to-diagonal correlations 〈𝜎0,0𝜎𝑁−1,𝑁 〉 in the square lattice Ising model,
we rigorously justify that the next-to-diagonal long-range order is the same as the diagonal and
horizontal ones in the low temperature regime. We also confirm the leading and subleading terms in
an asymptotic formula of Cheng and Wu [CW] for 〈𝜎0,0𝜎𝑀,𝑁 〉when 𝑀 = 𝑁 and 𝑀 = 𝑁−1, thereby
establishing the anisotropy-dependence of the subleading term in the asymptotics of the next-to-
diagonal correlations. We use Riemann-Hilbert and operator theory techniques, independently and
in parallel, to prove these results.

1. Introduction

Starting from the seminal works of Szegő, Kaufman and Onsager, Toeplitz determinants have
played a very important role in many areas of analysis and mathematical physics. Indeed, an
extraordinary variety of problems in mathematics, physics, and engineering can be expressed in
terms of Toeplitz matrices and determinants. We refer to the monograph [BS06] and the more
recent survey paper [DIK13] for the details of the theory and applications of Toeplitz determinants.

A growing interest has recently developed in the study of certain generalizations of Toeplitz
determinants. Among those are the determinants of Toeplitz + Hankel matrices - see [DIK11],
[BE17], [GI], integrable Fredholm determinants [IIKS90], [Dei99], 2 𝑗 − 𝑘 and 𝑗 −2𝑘 determinants
[GW]. These determinants appear in the study of the Ising model in the zig-zag layered half-plane
[CHM19], in the spectral analysis of the Hankel matrices, in the theory of exactly solvable quantum
models [FA06], and in asymptotic analysis of moments of derivatives of characteristic polynomials
Λ𝐴(𝑠) = det(𝐼 − 𝐴𝑠), where 𝐴 ∈𝑈𝑆𝑝(2𝑁), 𝑆𝑂 (2𝑁),𝑂−(2𝑁) [ABP+2014].

In this paper we are concerned with yet another deformation of Toeplitz determinants - the so
called "bordered Toeplitz determinants". The latter also arise in applications, for example, in
the the next-to-diagonal correlation functions for the Ising model. The goal of this paper is to
launch a new research project devoted to the asymptotics of these determinants and to discuss this
application in particular.
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Let 𝜙 and 𝜓 be the 𝐿1-functions on the (positively oriented) unit circle,

T = {𝑧 ∈ C : |𝑧 | = 1}.
The bordered Toeplitz determinant, 𝐷𝐵

𝑁 [𝜙;𝜓], is defined as

(1.1) 𝐷𝐵
𝑁 [𝜙;𝜓] := det

������
𝜙0 · · · 𝜙𝑁−2 𝜓𝑁−1
𝜙−1 · · · 𝜙𝑁−3 𝜓𝑁−2

...
...

...
...

𝜙1−𝑁 · · · 𝜙−1 𝜓0

������
, 𝑁 > 1,

where

(1.2) 𝜙𝑛 =
∫
T

𝑧−𝑛𝜙(𝑧) d𝑧

2𝜋i𝑧
, 𝜓𝑛 =

∫
T

𝑧−𝑛𝜓(𝑧) d𝑧

2𝜋i𝑧
,

are respectively the 𝑛-th Fourier coefficients of 𝜙 and 𝜓. To fix the notation, we let

(1.3) 𝐷𝑁 [𝜙] := det
0≤ 𝑗 ,𝑘≤𝑁−1

{𝜙 𝑗−𝑘 },

denote the 𝑁 ×𝑁 (pure) Toeplitz determinant corresponding to the symbol 𝜙. As with the Toeplitz
determinants, the principal analytic question is the asymptotic behavior of 𝐷𝐵

𝑁 [𝜙;𝜓] as 𝑁 →∞.

The asymptotics of the Toeplitz determinants are well known and given by the Szegő-Widom
theorem [Wid76, Sze52, BS06]

(1.4) 𝐷𝑁 [𝜙] ∼ 𝐺 [𝜙]𝑁 𝐸 [𝜙], 𝑁 →∞,

where

(1.5) 𝐺 [𝜙] = exp ( [log𝜙]0) and 𝐸 [𝜙] = exp

(∑
𝑛≥1

𝑛[log𝜙]𝑛 [log𝜙]−𝑛
)

,

where [log𝜙]𝑘 is the 𝑘-th Fourier coefficient of log𝜙. This holds if the function 𝜙 is sufficiently
smooth (e.g., in Hölder class 𝐶1+𝜖 ), does not vanish on T, and has zero winding number. Note
that the constants involve the 𝑛-th Fourier coefficients [log𝜙]𝑛 of the continuous logarithm of the
function 𝜙.

In this paper, we will show that for the bordered determinants a similar theorem holds,

(1.6) 𝐷𝐵
𝑁 [𝜙;𝜓] ∼ 𝐺 [𝜙]𝑁 𝐸 [𝜙] 𝐹 [𝜙;𝜓], 𝑁 →∞,

and where 𝐹 [𝜙;𝜓] is a constant described in Theorems 1.1 and 1.2 below.

Our general result above will become explicit in the case of the next-to-diagonal Ising correlations.
There it happens that 𝜓 is a constant times something of the form

(1.7) 𝜓(𝑧) = 𝜙(𝑧)𝑧− 𝑑

𝑧− 𝑐
,

where 𝑑 and 𝑐 are complex parameters. Hence particular attention will be paid to such functions.
In Theorem 1.1 below, we present the asymptotics of 𝐷𝐵

𝑁 [𝜙;𝜓], where 𝜓 is of the more general
form

(1.8) 𝜓(𝑧) = 𝑞1(𝑧)𝜙(𝑧) + 𝑞2(𝑧),
where

(1.9) 𝑞1(𝑧) = 𝑎0 + 𝑎1𝑧+ 𝑏0
𝑧
+

𝑚∑
𝑗=1

𝑏 𝑗 𝑧

𝑧− 𝑐 𝑗
, and 𝑞2(𝑧) = 𝑎̂0 + 𝑎̂1𝑧+ 𝑏̂0

𝑧
+

𝑚∑
𝑗=1

𝑏̂ 𝑗

𝑧− 𝑐 𝑗
,
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where all parameters are complex and the 𝑐 𝑗 are nonzero and do not lie on the unit circle. Indeed
it is straightforward to pass from the rational functions 𝑞1 and 𝑞2 with one simple pole to the
ones with multiple simple poles, as one can use the following elementary properties of bordered
Toeplitz determinants:

(1.10) 𝐷𝐵
𝑁

⎡⎢⎢⎢⎢⎣𝜙;
𝑚∑
𝑗=1

𝑎 𝑗𝜓 𝑗

⎤⎥⎥⎥⎥⎦ =
𝑚∑
𝑗=1

𝑎 𝑗𝐷
𝐵
𝑁 [𝜙,𝜓 𝑗],

(1.11) 𝐷𝐵
𝑁 [𝜙;𝜙] = 𝐷𝑁 [𝜙],

(1.12) 𝐷𝐵
𝑁 [𝜙;1] = 𝐷𝑁−1 [𝜙] .

Throughout the the paper, we will refer to a symbol 𝜙 as a Szegő type symbol, if it is smooth
and nonzero on the unit circle, has winding number zero, and admits an analytic continuation in a
neighborhood of the unit circle.

Theorem 1.1. Let 𝐷𝐵
𝑁 [𝜙;𝜓] be the bordered Toeplitz determinant with 𝜓 = 𝑞1𝜙+𝑞2 given by (1.8)

and (1.9), and 𝜙 of Szegő type. Then, the following asymptotic behavior of 𝐷𝐵
𝑁 [𝜙;𝜓] as 𝑁 →∞

takes place

(1.13) 𝐷𝐵
𝑁 [𝜙;𝜓] = 𝐺 [𝜙]𝑁 𝐸 [𝜙]

(
𝐹 [𝜙;𝜓] +𝑂 (𝑒−𝔠𝑁 )

)
,

where 𝐺 [𝜙] and 𝐸 [𝜙] are given by (1.5),

(1.14) 𝐹 [𝜙;𝜓] = 𝑎0 + 𝑏0 [log𝜙]1 +
𝑚∑
𝑗=1

0< |𝑐 𝑗 |<1

𝑏 𝑗
𝛼(𝑐 𝑗)
𝛼(0) +

1
𝛼(0)

�����𝑎̂0− 𝑎̂1 [log𝜙]−1−
𝑚∑
𝑗=1

|𝑐 𝑗 |>1

𝑏̂ 𝑗

𝑐 𝑗
𝛼(𝑐 𝑗)

����� ,

(1.15) 𝛼(𝑧) := exp
[

1
2𝜋𝑖

∫
T

log(𝜙(𝜏))
𝜏− 𝑧

𝑑𝜏

]
,

and 𝔠 is some positive constant.

It is occasionally convenient to use different notation related to the function 𝛼(𝑧),

(1.16) 𝛼(𝑧) =
{

𝜙+(𝑧), |𝑧 | < 1,

𝜙−1− (𝑧), |𝑧 | > 1,

with

(1.17) 𝜙+(𝑧) := exp

( ∞∑
𝑛=0

[log𝜙]𝑛𝑧𝑛

)
, 𝜙−(𝑧) := exp

( ∞∑
𝑛=1

[log𝜙]−𝑛𝑧−𝑛
)

.

In fact, these functions are the factors of a canonical Wiener-Hopf factorization of the symbol 𝜙,
𝜙(𝑧) = 𝜙−(𝑧)𝜙+(𝑧), |𝑧 | = 1. Factors in a Wiener-Hopf factorization are unique up to a multiplicative
constant. With the factors as given above, we have the normalization,

(1.18) 𝜙+(0) = 𝛼(0) = 𝐺 [𝜙], 𝜙−(∞) = 1 = 𝛼(∞).
More generally we can find the constant 𝐹 [𝜙;𝜓] in (1.6) as described in the following theorem,
which is proven using operator theory and Riemann-Hilbert methods respectively in Sections 3.1
and 5.2.
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Theorem 1.2. Let 𝜓(𝑧) be a function which admits an analytic continuation in a neighborhood of
the unit circle, and let 𝜙 be of Szegő type. Denote by 𝜙±(𝑧) the factors of a canonical Wiener-Hopf
factorization of the symbol 𝜙(𝑧), i.e., 𝜙 = 𝜙−𝜙+. Then

(1.19) 𝐷𝐵
𝑁 [𝜙;𝜓] = 𝐺 [𝜙]𝑁 𝐸 [𝜙]

(
𝐹 [𝜙;𝜓] +𝑂 (𝑒−𝔠𝑁 )

)
,

where 𝐺 [𝜙] and 𝐸 [𝜙] are given by (1.5),

(1.20) 𝐹 [𝜙;𝜓] = [𝜙−1− 𝜓]0
[𝜙+]0 ,

and 𝔠 is some positive constant.

Remark 1.3. As it is shown in Section 3, with the change to 𝑜(1) in the error term, the asymptotics
(1.13) and (1.19) are valid for all 𝜓 ∈ 𝐿2(T) and 𝜙 satisfying the assumptions of the strong Szegő
theorem, i.e., 𝜙(𝑧) belongs to a Hölder class 𝐶1+𝜖 , is nonzero on the unit circle, and has zero
winding number.

In this paper, we also apply our general results mentioned above to the problem of rigorous
evaluation of the next-to-diagonal two-point correlation function in the Ising model. To that
end, let us first recall more precisely the situation in the two-dimensional Ising model, solved by
Onsager (see, e.g., [MW73]). In this model a 2M× 2N rectangular lattice is considered with an
associated spin variable 𝜎𝑗𝑘 taking the values 1 and −1 at each vertex ( 𝑗 , 𝑘), −M ≤ 𝑗 ≤M− 1,
−N ≤ 𝑘 ≤ N−1. There are 24MN possible spin configurations {𝜎} of the lattice (a configuration
corresponds to values of all 𝜎𝑗𝑘 fixed). By 𝐽ℎ and 𝐽𝑣 we respectively denote the horizontal
and vertical nearest neighbor coupling constants and with each configuration we associate its
nearest-neighbor coupling energy given by

(1.21) 𝐸 ({𝜎}) = −
M−1∑
𝑗=−M

N−1∑
𝑘=−N

(
𝐽ℎ𝜎𝑗𝑘𝜎𝑗 𝑘+1 + 𝐽𝑣𝜎𝑗𝑘𝜎𝑗+1 𝑘

)
, 𝐽ℎ, 𝐽𝑣 > 0.

The partition function at a temperature 𝑇 > 0 is equal to

(1.22) 𝑍 (𝑇) =
∑
{𝜎 }

𝑒−𝐸 ( {𝜎 })/𝑘𝐵𝑇 ,

where the sum is over all configurations and 𝑘𝐵 is the Boltzmann constant. A remarkable feature
of this model is the presence of a thermodynamic phase transition (in the limit of the infinite lattice,
M,N→∞) at a certain temperature 𝑇𝑐 whose dependence on 𝐽ℎ, 𝐽𝑣 is described by the equation,

(1.23) sinh
(

2𝐽ℎ
𝑘𝐵𝑇𝑐

)
sinh

(
2𝐽𝑣
𝑘𝐵𝑇𝑐

)
= 1.

Define a 2-spin correlation function by the expression

(1.24) 〈𝜎0,0𝜎𝑁 ,𝑀 〉 = lim
M,N→∞

1
𝑍 (𝑇)

∑
{𝜎 }

𝜎0,0𝜎𝑁 ,𝑀 𝑒−𝐸 ( {𝜎 })/𝑘𝐵𝑇 .

Let us introduce the notations,

𝑆ℎ = sinh
(

2𝐽ℎ
𝑘𝐵𝑇

)
, 𝑆𝑣 = sinh

(
2𝐽𝑣
𝑘𝐵𝑇

)
,

𝐶ℎ = cosh
(

2𝐽ℎ
𝑘𝐵𝑇

)
, 𝐶𝑣 = cosh

(
2𝐽𝑣
𝑘𝐵𝑇

)
,

(1.25)
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and

(1.26) 𝑘 = 𝑆ℎ𝑆𝑣 .

In this paper we shall focus on

(1.27) 𝑘 > 1,

which, in view of equation (1.23), corresponds to the low temperature regime 𝑇 < 𝑇𝑐 . It is known
(see, e.g., [MW73, Chap. VIII]) that the diagonal correlations 〈𝜎0,0𝜎𝑁 ,𝑁 〉 and the horizontal
correlations 〈𝜎0,0𝜎0,𝑁 〉 have Toeplitz determinant representations. Indeed, we have

〈𝜎0,0𝜎𝑁 ,𝑁 〉 = 𝐷𝑁 [𝜙 ], 𝜙(𝑧) =
√

1− 𝑘−1𝑧−1

1− 𝑘−1𝑧
,(1.28)

〈𝜎0,0𝜎0,𝑁 〉 = 𝐷𝑁 [𝜂 ], 𝜂(𝑧) =
√
(1−𝛼1𝑧) (1−𝛼2𝑧−1)
(1−𝛼1𝑧−1) (1−𝛼2𝑧) ,(1.29)

where the constants 𝛼1 and 𝛼2 are given by

𝛼1 =
𝑧ℎ (1− 𝑧𝑣 )

1+ 𝑧𝑣
, 𝛼2 =

1− 𝑧𝑣
𝑧ℎ (1+ 𝑧𝑣 ) , 𝑧ℎ,𝑣 = tanh

(
𝐽ℎ,𝑣
𝑘𝐵𝑇

)
.

In the low temperature regime, the symbols 𝜙 and 𝜂 enjoy the regularity properties required by the
strong Szegő limit theorem and the diagonal and horizontal long-range orders

𝑀𝐷 :=
√

lim
𝑁→∞

〈𝜎0,0𝜎𝑁 ,𝑁 〉 and 𝑀𝐻 :=
√

lim
𝑁→∞

〈𝜎0,0𝜎0,𝑁 〉,

both evaluate to (1− 𝑘−2)1/8 (see [MW73, Chap. XI]).

In an interesting development, it was shown by Au-Yang and Perk in [AYP87], that the next-to-
diagonal two point correlation function is given by the following bordered Toeplitz determinant,

(1.30) 〈𝜎0,0𝜎𝑁−1,𝑁 〉 = 𝐷𝐵
𝑁 [𝜙;𝜓],

where 𝜙 is given in (1.28), and

(1.31) 𝜓(𝑧) = 𝐶𝑣 𝑧𝜙(𝑧) +𝐶ℎ

𝑆𝑣 (𝑧− 𝑐∗) , with 𝑐∗ = −𝑆ℎ
𝑆𝑣

.

This is straightforward to derive these formulae from the original expressions in [AYP87], and
we have provided it as an appendix in Section 5.3. We would like to emphasize that in the low-
temperature regime (𝑘 > 1) and in the anisotropic case (𝐽ℎ ≠ 𝐽𝑣 ), the symbols 𝜙 and 𝜓 satisfy the
corresponding assumptions of Theorem 1.1, in particular, 𝜙 is of Szegő type. The function 𝜓(𝑧)
actually does not have a pole at 𝑧 = 𝑐∗, and therefore it is analytic on a neighborhood of the unit
circle, even in the isotropic case when 𝑐∗ = −1.

Our results being applied to the next-to-diagonal theory for the Ising model show the following
large 𝑁 behavior of the corresponding correlation function in the low temperature regime (𝑘 > 1),
which is valid in both the isotropic and anisotropic cases.

Theorem 1.4. Let 〈𝜎0,0𝜎𝑁−1,𝑁 〉 be the next-to-diagonal two point correlation function in the
square lattice Ising model. Then, in the low-temperature regime, the long-range order in the
next-to-diagonal direction is the same as of the diagonal and horizontal ones, i.e.,

(1.32) lim
𝑁→∞

〈𝜎0,0𝜎𝑁−1,𝑁 〉 = (1− 𝑘−2)1/4.
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It is worth noticing that, although the bordered Toeplitz determinant which defines the correlation
function 〈𝜎0,0𝜎𝑁−1,𝑁 〉 depends on the relation between 𝐽ℎ and 𝐽𝑣 , its leading order asymptotics
does not. However, the sensitivity to the horizontal and vertical parameters is reflected in the
second-order term of the asymptotic expansion as our next theorem illustrates.

Theorem 1.5. The next-to-diagonal two point correlation function has, in the low-temperature
regime 𝑘 > 1, the 𝑁 →∞ asymptotics

〈𝜎0,0𝜎𝑁−1,𝑁 〉 = (1− 𝑘−2)1/4
(
1+ 1

2𝜋(1− 𝑘−2)
( 1
𝐶2
𝑣

+ 1
𝑘2−1

)
𝑁−2𝑘−2𝑁

(
1+𝑂 (𝑁−1)

))
.(1.33)

For comparison, asymptotics of the diagonal correlation function is given by

〈𝜎0,0𝜎𝑁 ,𝑁 〉 = (1− 𝑘−2)1/4
(
1+ 1

2𝜋(1− 𝑘−2)2𝑘2 𝑁−2𝑘−2𝑁
(
1+𝑂 (𝑁−1)

))
, 𝑁 →∞(1.34)

(see formula (3.27) in Chap. XI of [MW73]). As part of our computation leading to (1.33), we
reconfirm (1.34) as well.

The critical temperature (𝑘 = 1) and the high temperature regime (𝑘 < 1) correspond to the ap-
pearance of the Fisher-Hartwig type singularities in the symbol (1.28), or continuous nonvanishing
symbols with a nonzero winding number, and will be considered in a future publication.

It also should be mentioned that Theorems 1.4 and 1.5 confirm the long-range behavior of the
next-to-diagonal correlation functions of the Ising model that have already been known in the
physical literature [CW] (see also Chapter XII of [MW73] which is itself based on [CW]) . In
fact, the formulae (5.1) and (5.2) of [CW] are quite impressive in that they give the long-range
asymptotics for the general correlation function 〈𝜎0,0𝜎𝑀,𝑁 〉 respectively for 𝑇 > 𝑇𝑐 and 𝑇 < 𝑇𝑐 .
However, regarding a gap in their arguments, in [CW] the authors mention that:

“Note that our Hamiltonian as given by (2.1) is dependent on 𝑀 . That is, we are
here proposing to calculate the spin-spin correlation function 〈𝜎0,0𝜎𝑀,𝑁 〉 with a
Hamiltonian which varies with 𝑀 . Strictly speaking this is not the Ising model.
However, the dependence on M comes from the boundary terms only. It is our
hope that, asM, N→∞, the "boundary effects" would vanish, and the correlation
function we obtain agrees with that of the Ising model.”6

For the two choices 𝑀 = 𝑁 and 𝑀 = 𝑁 − 1, we have compared the formulae (1.33) and (1.34)
with the formula (5.2) of [CW] and our results are in complete agreement. Thereby Theorem 1.5
provides a rigorous justification of the formula (5.2) of [CW] along the diagonal and the next-to-
diagonal directions for the leading and the subleading terms. Here we have not included the details
of this comparison as one only needs to perform straightforward (yet somewhat lengthy) algebraic
manipulations. We would like to emphasize that the Riemann-Hilbert and the Operator Theory
approaches presented in this paper (See §2 and §3 respectively) are distinctive from the approach
taken in [CW].7

Finally we remark that the constant 𝐹 [𝜙;𝜓] can actually vanish for certain 𝜓. This happens, for
example, if 𝜓 = 𝜙 𝑧

𝑧−𝑐 with |𝑐 | > 1 as can be seen from (1.14)). In this case the second-order term

6This issue was not resolved by the time the classical work [MW73] was published and the same remark can also be
found in page 285 of [MW73].
7Regarding other works on the general correlation function 〈𝜎0,0𝜎𝑀,𝑁 〉, in [CW] the works [Rya65] and [Kad66] are
cited for the isotropic case 𝐽ℎ = 𝐽𝑣 and when 𝑇 does not differ too much from 𝑇𝑐 . It is then stated in [CW] that the
results of [Rya65] and [Kad66] are not in agreement with those in [CW].
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in the asymptotics becomes important, which is exponentially decaying under the assumptions of
Theorems 1.1 and 1.2.

In this paper we shall present two different approaches to the general problem of bordered deter-
minants. One is based on the relatively new Riemann-Hilbert method of the asymptotic analysis
of Toeplitz and Hankel determinants (see [BDJ99], [FIK92], [DIK11]). The Riemann-Hilbert
approach has been inspired by the work [Wit07] where the connection of bordered Toeplitz deter-
minants of the type 𝐷𝐵

𝑁 [𝜙;𝑞𝜙] to the system of biorthogonal polynomials on the unit circle was
found for the first time. Another approach is based on the operator theoretic techniques, and it has
been used in the theory of Toeplitz and Hankel determinants since the classical works of Szegő
and Widom (see [Wid76], [Sze52], [BS06], [BS99], [BE17], [BE01]). For the last 25 years these
two techniques has been very closely interacting and greatly enhancing each other. In particular,
the asymptotic analysis of the bordered Toeplitz determinants whose results are presented in this
work has been carried out within constant interaction and information exchanges between the first
two and the last three co-authors. Hence we decided that it would be very proper to present both
the operator and Riemann-Hilbert methods of the solution in one paper.

1.1. Outline. The paper is organized as follows. In Section 2 we shall present the Riemann-Hilbert
representation of the bordered Toeplitz determinant corresponding to a symbol pair (𝜙,𝜓), 𝜓 given
by (1.8) and (1.9). In this section we shall basically follow [Wit07] where the connection with
the corresponding system of bi-orthogonal polynomials on the unit circle was first obtained. We
will then prove Theorems 1.1, 1.4, and 1.5 based on the Riemann-Hilbert formulation. Theorems
1.1, 1.2, 1.4 and 1.5 will be proven using operator theory techniques in Section 3. In Section 4
a numerical verification for the asymptotics of the correlation function in Theorem 1.5 as well
as for the asymptotics of 𝐷𝐵

𝑁 [𝜙;𝜓] in the case 𝜓 = 𝜙 𝑧
𝑧−𝑐 is done. Finally Section 5 contains

four appendices respectively on the solution of the associated Riemann-Hilbert problem, proof of
Theorem 1.2 using the Riemann-Hilbert approach, derivation of the Ising symbol pair (𝜙,𝜓), and
some other auxiliary results.

2. Bordered Toeplitz determinants and the Riemann-Hilbert problem for
bi-orthogonal polynomials on the unit circle

As mentioned in the outline, the goal of this section is to prove Theorem 1.1. In order to achieve
that, we will first establish the relationship between the bordered Toeplitz determinant 𝐷𝐵

𝑁 [𝜙;𝜓],
𝜓 given by (1.8), and the solution of the Riemann-Hilbert problem for the system of bi-orthogonal
polynomials on the unit circle (BOPUC). Let 𝑄𝑛 and 𝑄𝑛 be respectively defined by

(2.1) 𝑄𝑛 (𝑧) :=
1√

𝐷𝑛 [𝜙]𝐷𝑛+1 [𝜙]
det

��������

𝜙0 𝜙−1 · · · 𝜙−𝑛
𝜙1 𝜙0 · · · 𝜙−𝑛+1
...

...
. . .

...
𝜙𝑛−1 𝜙𝑛−2 · · · 𝜙−1

1 𝑧 · · · 𝑧𝑛

��������
,

and

(2.2) 𝑄𝑛 (𝑧) :=
1√

𝐷𝑛 [𝜙]𝐷𝑛+1 [𝜙]
det

������
𝜙0 𝜙−1 · · · 𝜙−𝑛+1 1
𝜙1 𝜙0 · · · 𝜙−𝑛+2 𝑧
...

...
. . .

...
𝜙𝑛 𝜙𝑛−1 · · · 𝜙1 𝑧𝑛

������
,
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where 𝜙 𝑗 , 𝑗 ∈ Z, are defined by (1.2) and 𝐷𝑛 [𝜙] is given by (1.3). Note that, from (2.1) and (2.2),
we have

(2.3) 𝑄𝑛 (𝑧) = 𝜅𝑛𝑧𝑛 +
𝑛−1∑
ℓ=0

𝑐ℓ 𝑧ℓ , and 𝑄𝑛 (𝑧) = 𝜅𝑛𝑧𝑛 +
𝑛−1∑
ℓ=0

𝑐̂ℓ 𝑧ℓ ,

where

(2.4) 𝜅𝑛 =

√
𝐷𝑛 [𝜙]

𝐷𝑛+1 [𝜙] .

One can readily observe that {𝑄𝑛}∞𝑛=0 and {𝑄𝑛}∞𝑛=0 form the bi-orthogonal system of polynomials
on the unit circle with respect to the weight 𝜙 :

(2.5)
∫
T

𝑄𝑛 (𝑧)𝑄𝑛 (𝑧−1)𝜙(𝑧) d𝑧

2𝜋i𝑧
= 𝛿𝑛𝑘 , 𝑛, 𝑘 = 0,1,2, · · · .

It is due to J.Baik, P.Deift and K.Johansson ([BDJ99]) that the following matrix-valued function
constructed out of the polynomials 𝑄𝑛 and 𝑄𝑛

(2.6) 𝑋 (𝑧;𝑛) :=
�����

𝜅−1
𝑛 𝑄𝑛 (𝑧) 𝜅−1

𝑛

∫
T

𝑄𝑛 (𝜁)
(𝜁 − 𝑧)

𝜙(𝜁)d𝜁

2𝜋i𝜁𝑛

−𝜅𝑛−1𝑧𝑛−1𝑄𝑛−1(𝑧−1) −𝜅𝑛−1

∫
T

𝑄𝑛−1(𝜁−1)
(𝜁 − 𝑧)

𝜙(𝜁)d𝜁

2𝜋i𝜁

����� ,

satisfies the following Riemann-Hilbert problem for BOPUC, which in the subsequent parts of this
text will occasionally be referred to as the 𝑋-RHP:

• RH-X1 𝑋 : C \T→ C2×2 is analytic,
• RH-X2 The limits of 𝑋 (𝜁) as 𝜁 tends to 𝑧 ∈ T from the inside and outside of the unit

circle exist, and are denoted 𝑋±(𝑧) respectively and are related by

(2.7) 𝑋+(𝑧) = 𝑋−(𝑧)
(
1 𝑧−𝑛𝜙(𝑧)
0 1

)
, 𝑧 ∈ T,

• RH-X3 As 𝑧 →∞
(2.8) 𝑋 (𝑧) = (

𝐼 +𝑂 (𝑧−1))𝑧𝑛𝜎3 .

For convenience of the reader, in the Appendix 5.1 we have provided the solution of the 𝑋-RHP
when 𝜙 is of Szegő type.

In the following subsections we will analyze bordered Toeplitz determinants of the following three
types

• 𝐷𝐵
𝑁 [𝜙; 𝑧𝑘],

• 𝐷𝐵
𝑁 [𝜙;𝑞],

• 𝐷𝐵
𝑁 [𝜙;𝑞𝜙],

where 𝑞 is a rational function with simple poles. The lemmas in the following subsections, whose
proofs are inspired by calculations in [Wit07], show that the bordered Toeplitz determinants of the
above types are encoded into the solution of the 𝑋-RHP. In fact, we will show that the bordered
Toeplitz determinants of the first two types are related to the 𝑋11 and the bordered Toeplitz
determinants of the third type are related to the 𝑋12, respectively, the 11 and 12 entries of the
solution of the 𝑋-RHP. Later we will show how these cases are relevant to the next-to-diagonal
correlations in the 2D-Ising model.
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2.1. Bordered Toeplitz determinants of the type 𝐷𝐵
𝑁 [𝜙; 𝑧𝑘], 𝑘 ∈ Z. Let us start this subsection

with the following elementary lemma.

Lemma 2.1. The following identity holds for the Bordered Toeplitz determinants

(2.9) 𝐷𝐵
𝑛+1 [𝜙; 𝑧𝑘] = 0, 𝑘 ∈ Z \ {0,1, · · · , 𝑛}.

Proof. It suffices to note that all Fourier coefficients (𝑧𝑘) 𝑗 = 0 for 0 ≤ 𝑗 ≤ 𝑛, 𝑘 ∈ Z\ {0,1, · · ·𝑛}. �

Note that for 𝑘 = 0, we obviously have (1.12). Now, we turn our attention to

(2.10) 𝐷𝐵
𝑛+1 [𝜙; 𝑧𝑘], 𝑘 ∈ {1, · · · , 𝑛}.

From

(2.11) 𝐷𝐵
𝑛+1 [𝜙; 𝑧𝑘] = det

��������

𝜙0 𝜙−1 · · · 𝜙𝑘−𝑛+1 𝜙𝑘−𝑛 𝜙𝑘−𝑛−1 · · · 𝜙−𝑛
𝜙1 𝜙0 · · · 𝜙𝑘−𝑛+2 𝜙𝑘−𝑛+1 𝜙𝑘−𝑛 · · · 𝜙−𝑛+1
...

... · · · ...
𝜙𝑛−1 𝜙𝑛−2 · · · 𝜙𝑘 𝜙𝑘−1 𝜙𝑘−2 · · · 𝜙−1

0 0 · · · 0 1 0 · · · 0

��������
.

we observe that (by (2.1) and (2.4)) the determinant on the right hand side of (2.11) is exactly the
coefficient of 𝑧𝑛−𝑘 in the polynomial

(2.12) 𝜅−1
𝑛 𝐷𝑛 [𝜙]𝑄𝑛 (𝑧).

Let

(2.13) 𝑄𝑛 (𝑧) ≡
𝑛∑
𝑗=0

𝜅 (𝑛)𝑗 𝑧 𝑗 .

where for brevity of notation, throughout this paper we use

(2.14) 𝜅𝑛 ≡ 𝜅 (𝑛)𝑛 .

Therefore

(2.15) 𝐷𝐵
𝑛+1 [𝜙; 𝑧𝑘] = 𝐷𝑛 [𝜙]

𝜅 (𝑛)𝑛−𝑘
𝜅𝑛

.

We are now in a position to express 𝐷𝐵
𝑛+1 [𝜙; 𝑧𝑘], 1 ≤ 𝑘 ≤ 𝑛, in terms of 𝑋-RHP data in a recursive

way as follows:

(2.16) 𝐷𝐵
𝑛+1 [𝜙; 𝑧] = 𝐷𝑛 [𝜙] lim

𝑧→∞

(
𝑋11(𝑧;𝑛) − 𝑧𝑛

𝑧𝑛−1

)
≡ 𝐷𝑛 [𝜙]

𝜅 (𝑛)𝑛−1
𝜅𝑛

,

(2.17) 𝐷𝐵
𝑛+1 [𝜙; 𝑧2] = 𝐷𝑛 [𝜙] lim

𝑧→∞
����

𝑋11(𝑧;𝑛) − 𝑧𝑛 − 𝜅
(𝑛)
𝑛−1
𝜅𝑛

𝑧𝑛−1

𝑧𝑛−2

���� ≡ 𝐷𝑛 [𝜙]
𝜅 (𝑛)𝑛−2
𝜅𝑛

,

and so on. These formulae are recursive, in the sense that the second and third members of the
equality (2.16) can be regarded as the definition of 𝑘 (𝑛)𝑛−1 in terms of the 𝑋-RHP, which one needs
in (2.17).

Here, in particular we present how the asymptotics of 𝐷𝐵
𝑛+1 [𝜙; 𝑧] can be obtained from the

Riemann-Hilbert data. In lemma (2.7) we will show that this is actually related to 𝐷𝑛 [𝜙; 𝜙𝑧 ].
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Lemma 2.2. Let 𝜙 be of Szegő type. Then, as 𝑛 →∞ we have

(2.18) 𝐷𝐵
𝑛+1 [𝜙; 𝑧] = 𝐷𝑛 [𝜙]

(
− 1

2𝜋i

∫
T

ln(𝜙(𝜏))d𝜏 +𝑂 (𝑒−𝔠𝑛)
)

,

for some positive constant 𝔠.

Proof. Expanding 𝛼(𝑧), given by (5.9), as 𝑧 →∞ we get

(2.19) 𝛼(𝑧) = 1− 𝑎0
2𝜋i𝑧

−
(

𝑎1
2𝜋i

+ 𝑎2
0

8𝜋2

)
1
𝑧2 + · · · , 𝑧 →∞,

where

(2.20) 𝑎𝑘 :=
∫
T

𝜏𝑘 ln (𝜙(𝜏)) d𝜏.

Also from (5.19), and (5.20) we have

(2.21) 𝑋11(𝑧;𝑛) = 𝛼(𝑧)𝑧𝑛
(
1+ 𝑂 (𝑒−2𝔠𝑛)

1+ |𝑧 |
)

, 𝑧 ∈ Ω∞, 𝑛 →∞.

Combining (2.16), (2.19) and (2.21) gives (2.18). �

In a similar fashion, and with increasing effort, one can obtain similar formulae for 𝐷𝐵
𝑛+1 [𝜙; 𝑧𝑘],

𝑘 > 1.

2.2. Bordered Toeplitz determinants of the type 𝐷𝐵
𝑁 [𝜙;𝑞]. Let us define

(2.22) 𝑞0(𝑧) :=
1

𝑧− 𝑐
.

The Fourier coefficients of 𝑞0 are given by

(2.23) 𝑞0, 𝑗 =

{
0, |𝑐 | < 1,

−(𝑐)− 𝑗−1, |𝑐 | > 1,
0 ≤ 𝑗 ≤ 𝑛.

The following lemma establishes how 𝐷𝐵
𝑁 [𝜙;𝑞0] is encoded into 𝑋-RHP data.

Lemma 2.3. The bordered Toeplitz determinant 𝐷𝐵
𝑛+1 [𝜙,

1
𝑧− 𝑐

], is encoded into 𝑋-RHP data
described by

(2.24) 𝐷𝐵
𝑛+1 [𝜙;

1
𝑧− 𝑐

] =
{

0, |𝑐 | < 1,

−𝑐−𝑛−1𝐷𝑛 [𝜙]𝑋11(𝑐;𝑛), |𝑐 | > 1,

where 𝐷𝑛 [𝜙] is given by (1.3) and 𝑋11 is the 11 entry of the solution to RH-X1 through RH-X3.

Proof. The case of |𝑐 | < 1 is obvious due to (2.23). Consider |𝑐 | > 1. Recalling that 𝑋11(𝑧;𝑛) =
𝜅−1
𝑛 𝑄𝑛 (𝑧), from (2.1) and (2.4) we have

(2.25) 𝑋11(𝑧;𝑛) = 1
𝐷𝑛 [𝜙] det

��������

𝜙0 𝜙−1 · · · 𝜙−𝑛
𝜙1 𝜙0 · · · 𝜙−𝑛+1
...

... · · · ...
𝜙𝑛−1 𝜙𝑛−2 · · · 𝜙−1

1 𝑧 · · · 𝑧𝑛

��������
.
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Therefore from (2.23)

−𝑐−𝑛−1𝐷𝑛 [𝜙]𝑋11(𝑐;𝑛) = det

��������

𝜙0 𝜙−1 · · · 𝜙−𝑛
𝜙1 𝜙0 · · · 𝜙−𝑛+1
...

... · · · ...
𝜙𝑛−1 𝜙𝑛−2 · · · 𝜙−1
−𝑐−𝑛−1 −𝑐−𝑛 · · · −𝑐

��������
= det

��������

𝜙0 𝜙−1 · · · 𝜙−𝑛
𝜙1 𝜙0 · · · 𝜙−𝑛+1
...

... · · · ...
𝜙𝑛−1 𝜙𝑛−2 · · · 𝜙−1
𝑞0,𝑛 𝑞0,𝑛−1 · · · 𝑞0,0

��������
≡ 𝐷𝐵

𝑛+1 [𝜙, 𝑞0] .

(2.26)

�

Corollary 2.4. We have

(2.27) 𝐷𝐵
𝑛+1

⎡⎢⎢⎢⎢⎣𝜙;𝑎 + 𝑏0
𝑧
+

𝑚∑
𝑗=1

𝑏 𝑗

𝑧− 𝑐 𝑗

⎤⎥⎥⎥⎥⎦ = 𝐷𝑛 [𝜙]
�����𝑎−

𝑚∑
𝑗=1

|𝑐 𝑗 |>1

𝑏 𝑗𝑐
−𝑛−1
𝑗 𝑋11(𝑐 𝑗 ;𝑛)

����� ,

and for a Szegő type 𝜙

(2.28) 𝐷𝐵
𝑛+1

⎡⎢⎢⎢⎢⎣𝜙;𝑎 + 𝑏0
𝑧
+

𝑚∑
𝑗=1

𝑏 𝑗

𝑧− 𝑐 𝑗

⎤⎥⎥⎥⎥⎦ = 𝐺 [𝜙]𝑛𝐸 [𝜙]
�����𝑎−

𝑚∑
𝑗=1

|𝑐 𝑗 |>1

𝑏 𝑗

𝑐 𝑗
𝛼(𝑐 𝑗)

�����
(
1+𝑂 (𝑒−𝔠𝑛)) ,

as 𝑛 →∞, where

(2.29) 𝛼(𝑧) := exp
[

1
2𝜋𝑖

∫
T

ln(𝜙(𝜏))
𝜏− 𝑧

𝑑𝜏

]
,

𝐺 [𝜙] and 𝐸 [𝜙] are given by (1.5) and 𝔠 is some positive constant.

Proof. Note that (2.27) immediately follows from (2.24), (1.12) and (1.10); and then we get (2.28)
as a direct consequence of (1.4), (1.5), (5.19) and (5.20). �

2.3. Bordered Toeplitz determinants of the type 𝐷𝐵
𝑁 [𝜙;𝑞𝜙]. Now we turn our attention to the

bordered Toeplitz determinants where the border symbol is given by 𝑞𝜙, 𝑞 being a rational function
with simple poles. Let us start with proving a fundamental identity relating one such bordered
Toeplitz determinant to the pure Toeplitz Riemann-Hilbert data.

Lemma 2.5. Let 𝜓0 := 𝑞0𝜙, where 𝑞0 is defined in (2.22), with 𝑐 ≠ 0. Then the bordered Toeplitz
determinant 𝐷𝐵

𝑛 [𝜙;𝜓0] can be written in terms of the following data from the solution of the
X-RHP:

(2.30) 𝐷𝐵
𝑛+1 [𝜙;𝜓0] = −1

𝑐
𝐷𝑛+1 [𝜙] + 1

𝑐
𝐷𝑛 [𝜙]𝑋12(𝑐,𝑛),

where 𝐷𝑛 [𝜙] is given by (1.3) and 𝑋12 is the 12 entry of the solution to RH-X1 through RH-X3.

Proof. Note that

𝜓0, 𝑗 =
∫
T

𝑧− 𝑗𝜓0(𝑧) d𝑧

2𝜋i𝑧
=
∫
T

𝑧− 𝑗
1

𝑧(𝑧− 𝑐) 𝜙(𝑧) d𝑧

2𝜋i
,
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thus

(2.31) 𝜓0, 𝑗 = −1
𝑐

∫
T

𝑧− 𝑗𝜙(𝑧) d𝑧

2𝜋i𝑧
+ 1

𝑐

∫
T

𝑧− 𝑗𝜙(𝑧)
(𝑧− 𝑐)

d𝑧

2𝜋i
= −1

𝑐
𝜙 𝑗 + 1

𝑐

∫
T

𝑧− 𝑗𝜙(𝑧)
(𝑧− 𝑐)

d𝑧

2𝜋i
.

Now, observe that

𝐷𝐵
𝑛+1 [𝜙,𝜓0] = det

��������

𝜙0 𝜙−1 · · · 𝜙−𝑛
𝜙1 𝜙0 · · · 𝜙−𝑛+1
...

... · · · ...
𝜙𝑛−1 𝜙𝑛−2 · · · 𝜙−1
𝜓0,𝑛 𝜓0,𝑛−1 · · · 𝜓0,0

��������
=

1
𝑐

det

��������

𝜙0 𝜙−1 · · · 𝜙−𝑛
𝜙1 𝜙0 · · · 𝜙−𝑛+1
...

... · · · ...
𝜙𝑛−1 𝜙𝑛−2 · · · 𝜙−1

−𝜙𝑛 +
∫
T

𝑧−𝑛𝜙 (𝑧)
(𝑧−𝑐)

d𝑧
2𝜋i −𝜙𝑛−1 +

∫
T

𝑧−𝑛+1𝜙 (𝑧)
(𝑧−𝑐)

d𝑧
2𝜋i · · · −𝜙0 +

∫
T

𝜙 (𝑧)
(𝑧−𝑐)

d𝑧
2𝜋i

��������
=

(2.32)

− 1
𝑐

det

��������

𝜙0 𝜙−1 · · · 𝜙−𝑛
𝜙1 𝜙0 · · · 𝜙−𝑛+1
...

... · · · ...
𝜙𝑛−1 𝜙𝑛−2 · · · 𝜙−1
𝜙𝑛 𝜙𝑛−1 · · · 𝜙0

��������
+ 1

𝑐
det

��������

𝜙0 𝜙−1 · · · 𝜙−𝑛
𝜙1 𝜙0 · · · 𝜙−𝑛+1
...

... · · · ...
𝜙𝑛−1 𝜙𝑛−2 · · · 𝜙−1∫

T

𝑧−𝑛𝜙 (𝑧)
(𝑧−𝑐)

d𝑧
2𝜋i

∫
T

𝑧−𝑛+1𝜙 (𝑧)
(𝑧−𝑐)

d𝑧
2𝜋i · · ·

∫
T

𝜙 (𝑧)
(𝑧−𝑐)

d𝑧
2𝜋i

��������
.

Now note that, using (2.1) and (2.4) we have

(2.33) 𝜅−1
𝑛 𝜁−𝑛𝑄𝑛 (𝜁) = 1

𝐷𝑛 [𝜙] det

��������

𝜙0 𝜙−1 · · · 𝜙−𝑛
𝜙1 𝜙0 · · · 𝜙−𝑛+1
...

... · · · ...
𝜙𝑛−1 𝜙𝑛−2 · · · 𝜙−1
𝜁−𝑛 𝜁−𝑛+1 · · · 1

��������
.

Combining this equation with (2.6) yields

(2.34) 𝑋12(𝑧;𝑛) = 1
𝐷𝑛 [𝜙] det

��������

𝜙0 𝜙−1 · · · 𝜙−𝑛
𝜙1 𝜙0 · · · 𝜙−𝑛+1
...

... · · · ...
𝜙𝑛−1 𝜙𝑛−2 · · · 𝜙−1∫

T

𝜁 −𝑛𝜙 (𝜁 )
𝜁−𝑧

d𝜁
2𝜋i

∫
T

𝜁 −𝑛+1𝜙 (𝜁 )
𝜁−𝑧

d𝜁
2𝜋i · · ·

∫
T

𝜙 (𝜁 )
𝜁−𝑧

d𝜁
2𝜋i

��������
.

Thus, using (2.32) and (2.34) we arrive at (2.30). �

Corollary 2.6. We have

(2.35) 𝐷𝐵
𝑛+1

⎡⎢⎢⎢⎢⎣𝜙;���𝑎 +
𝑚∑
𝑗=1

𝑏 𝑗 𝑧

𝑧− 𝑐 𝑗

���𝜙

⎤⎥⎥⎥⎥⎦ = 𝑎𝐷𝑛+1 [𝜙] +𝐷𝑛 [𝜙]
𝑚∑
𝑗=1

𝑏 𝑗𝑋12(𝑐 𝑗 ;𝑛),
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and for a Szegő type 𝜙

(2.36) 𝐷𝐵
𝑛+1

⎡⎢⎢⎢⎢⎣𝜙;���𝑎 +
𝑚∑
𝑗=1

𝑏 𝑗 𝑧

𝑧− 𝑐 𝑗

���𝜙

⎤⎥⎥⎥⎥⎦ = 𝐺 [𝜙]𝑛+1𝐸 [𝜙]
�����𝑎 +

1
𝐺 [𝜙]

𝑚∑
𝑗=1

|𝑐 𝑗 |<1

𝑏 𝑗𝛼(𝑐 𝑗)
�����
(
1+𝑂 (𝑒−𝔠𝑛)) ,

as 𝑛 →∞, where 𝛼 is defined in (2.29), 𝐺 [𝜙] and 𝐸 [𝜙] are given by (1.5), and 𝔠 is some positive
constant.

Proof. (2.35) directly follows from (2.30), (1.11), and (1.10). For the asymptotic statement, notice
that from (5.16), (5.19) and (5.20) we have

(2.37) 𝑋12(𝑐;𝑛) =
{

𝛼(𝑐) (1+𝑂 (𝑒−𝔠𝑛)), |𝑐 | < 1,

𝑅1,12(𝑐;𝑛)𝛼−1(𝑐)𝑐−𝑛 (1+𝑂 (𝑒−𝔠𝑛)), |𝑐 | > 1,

as 𝑛→∞, where 𝑅1,12 is given by (5.18). Now (2.36) follows from (1.4), (1.5), (2.35), (2.37), and
(5.16). �

Now, we prove the analogue of Lemma 2.5 for 𝑐 = 0.

Lemma 2.7. We have the following identity8

(2.38) 𝐷𝐵
𝑛 [𝜙;

1
𝑧

𝜙] = −𝐷𝐵
𝑛+1 [𝜙; 𝑧],

and hence for a Szegő type 𝜙

(2.39) 𝐷𝐵
𝑛 [𝜙;

1
𝑧

𝜙] = 1
2𝜋i

𝐺 [𝜙]𝑛𝐸 [𝜙]
(∫
T

ln(𝜙(𝜏))d𝜏 +𝑂 (𝑒−𝔠𝑛)
)

,

as 𝑛 →∞, where 𝐺 [𝜙] and 𝐸 [𝜙] are given by (1.5), and 𝔠 is some positive constant.

8Throughout the paper we occasionally use 𝑓 (𝑧), to denote 𝑓 (𝑧−1).
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Proof. Note that

𝐷𝐵
𝑛+1 [𝜙; 𝑧] = det

��������

𝜙0 𝜙−1 · · · 𝜙−𝑛+2 𝜙−𝑛+1 𝜙−𝑛
𝜙1 𝜙0 · · · 𝜙−𝑛+3 𝜙−𝑛+2 𝜙−𝑛+1
...

... · · · ...
...

...
𝜙𝑛−1 𝜙𝑛−2 · · · 𝜙1 𝜙0 𝜙−1

0 0 · · · 0 1 0

��������
= det

��������

𝜙0 𝜙1 · · · 𝜙𝑛−2 𝜙𝑛−1 𝜙𝑛

𝜙−1 𝜙0 · · · 𝜙𝑛−3 𝜙𝑛−2 𝜙𝑛−1
...

... · · · ...
...

...
𝜙−𝑛+1 𝜙−𝑛+2 · · · 𝜙−1 𝜙0 𝜙1

0 0 · · · 0 1 0

��������
= −det

������
𝜙0 𝜙1 · · · 𝜙𝑛−2 𝜙𝑛

𝜙−1 𝜙0 · · · 𝜙𝑛−3 𝜙𝑛−1
...

... · · · ...
...

𝜙−𝑛+1 𝜙−𝑛+2 · · · 𝜙−1 𝜙1

������
= −det

��������

𝜙0 𝜙−1 · · · 𝜙−𝑛+1
𝜙1 𝜙0 · · · 𝜙−𝑛+2
...

... · · · ...
𝜙𝑛−2 𝜙𝑛−3 · · · 𝜙−1
𝜙𝑛 𝜙𝑛−1 · · · 𝜙1

��������
= −𝐷𝐵

𝑛 [𝜙;
1
𝑧

𝜙],

because the 𝑗-th Fourier coefficient of 𝑧−1𝜙(𝑧) is 𝜙 𝑗+1. Now (2.39) immediately follows from
(2.18) and the fact that 𝐷𝑛 [𝜙] = 𝐷𝑛 [𝜙]. �

Lemma 2.8. For 𝜓 = 𝑧𝑘𝜙, 𝑘 = 0,1, · · · , 𝑛, we have

(2.40) 𝐷𝐵
𝑛 [𝜙, 𝑧𝑘𝜙] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐷𝑛 [𝜙], 𝑘 = 0,

0, 𝑘 = 1, · · · , 𝑛−1,

(−1)𝑛−1𝐷𝑛 [𝑧𝜙], 𝑘 = 𝑛.

Proof. Note that [𝑧𝑘𝜙] 𝑗 = 𝜙 𝑗−𝑘 and thus, 𝐷𝐵
𝑛 [𝜙, 𝑧𝑘𝜙] has two identical columns for 𝑘 = 1, · · · , 𝑛−1,

and (2.40) is obvious for 𝑘 = 0. For 𝑘 = 𝑛, (2.40) follows immediately if one moves the border
column to the first column by making 𝑛−1 swaps of adjacent columns. �

Theorem 1.1 is now proven by combining lemmas 2.2, 2.7, 2.8 and the corollaries 2.4 and 2.6 via
(1.10).

2.4. Ising model next-to-diagonal correlations. In this section we focus on the specific symbols
𝜙 and 𝜓, respectively given by (1.28) and (1.31), corresponding to the next-to-diagonal correlations
in the Ising model via (1.30). For a derivation of (1.31) from the formulae in [AYP87] see Section
5.3. This is clear that in the low temperature regime (𝑘 > 1) the symbols 𝜙 and 𝜓 fit the class
of symbols considered in Theorem 1.1. Indeed, comparing (1.31) with (1.8) we can find the
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corresponding parameters:

𝑚 = 1, 𝑎 = 𝑏0 = 𝑏̂0 = 0, 𝑏1 =
𝐶𝑣

𝑆𝑣
,

𝑐1 = 𝑐∗ ≡ −𝑆ℎ
𝑆𝑣

, 𝑎̂ =
𝐶ℎ

𝑆ℎ
, 𝑏̂1 = −𝐶ℎ

𝑆ℎ
.

(2.41)

Therefore the constant 𝐹 [𝜙;𝜓] given by (1.14) simplifies to

(2.42) 𝐹 [𝜙;𝜓] =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐶𝑣

𝑆𝑣
𝛼(𝑐∗), 𝐽𝑣 > 𝐽ℎ,

𝐶ℎ

𝑆ℎ
𝛼(𝑐∗), 𝐽𝑣 < 𝐽ℎ .

where we have used
|𝑐∗ | ≶ 1 ⇐⇒ 𝐽ℎ ≶ 𝐽𝑣 .

Now let us compute 𝛼(𝑐∗). We observe that

(2.43) 𝜙(𝑧) = 𝑒𝑖 𝜋/2𝑘1/2(𝑧− 𝑘)−1/2(𝑧− 𝑘−1)1/2𝑧−1/2,

where the branches of the roots all have arguments from 0 to 2𝜋. Recalling the expression (2.29)
for 𝛼, we can compute 𝛼(𝑐∗) by a simple contour integration (deform the integral on T to the
interval [0, 𝑘−1], and note that we get a residue term when −1 < 𝑐∗ < 0 ). We eventually arrive at

(2.44) 𝛼(𝑐∗) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑆𝑣
𝐶𝑣

, 𝐽𝑣 > 𝐽ℎ,

𝑆ℎ
𝐶ℎ

, 𝐽𝑣 < 𝐽ℎ .

This can also be seen in a more straightforward way by recalling (1.16), which in the Ising case
amounts to:

(2.45) 𝛼(𝑧) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1√
1− 𝑘−1𝑧

, |𝑧 | < 1,

1√
1− 𝑘−1𝑧−1

, |𝑧 | > 1.

Combining (2.42) and (2.44) yields

(2.46) 𝐹 [𝜙;𝜓] = 1, 𝐽ℎ ≠ 𝐽𝑣 .

This concludes the proof of Theorem 1.4 in the anisotropic case by recalling that 𝐺 [𝜙 ] = 1 and
𝐸 [𝜙 ] = (1− 𝑘−2)1/4.

Remark 2.9. Notice that the next-to-diagonal long range order in the isotropic case 𝐽ℎ = 𝐽𝑣
deserves special attention as |𝑐∗ | = 1. It is important to notice that while it seems that the function
𝜓(𝑧) has a pole at 𝑧 = 𝑐∗ it actually has a removable singularity there. In other words, 𝜓(𝑧) (as
well as 𝜙(𝑧)) are analytic in a neighborhood of the unit circle T irrespective of the value of 𝑐∗. To
be precise both functions are analytic in 𝑧 for 𝑘−1 < |𝑧 | < 𝑘 . However, the splitting of 𝜓(𝑧) done in
the proof of Theorem 1.1 would re-introduce this pole at 𝑧 = 𝑐∗ in both terms and render the proof
invalid when |𝑐∗ | = 1. To circumvent this problem we resort to a “deformation trick”. For a fixed

0 < 𝜀 <
𝑘 − 𝑘−1

𝑘 + 𝑘−1 , let
𝑘−1

1− 𝜀
< 𝜌 <

𝑘

1+ 𝜀
and introduce the functions

𝜙𝜌 (𝑧) := 𝜙(𝜌𝑧), 𝜓𝜌 (𝑧) := 𝜓(𝜌𝑧),
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where the condition on 𝜌 ensures that both functions are analytic in the 𝜀-neighborhood of T:
{𝑧 : 1− 𝜀 < |𝑧 | < 1+ 𝜀}. The 𝑛-th Fourier coefficient of these new functions differs from 𝑛-the
Fourier coefficient of the original functions by a factor 𝜌𝑛. For this reason, we have that

𝐷𝑁 [𝜙] = 𝐷𝑁 [𝜙𝜌], 𝐷𝐵
𝑁 [𝜙;𝜓] = 𝐷𝐵

𝑁 [𝜙𝜌;𝜓𝜌] .
Indeed, the underlying matrices are related to each other by appropriate multiplication of diagonal
matrices. Thus the derivation of the determinant asymptotics can be based on the pair (𝜙𝜌;𝜓𝜌)
rather than the pair (𝜙;𝜓). These functions are clearly of a similar form as the original ones. The
crucial point however is that when we consider 𝜓𝜌 and split it into two parts, each part has a pole at
𝑧 = 𝑐∗/𝜌 rather than at 𝑧 = 𝑐∗. Thus Theorem 1.1 is applicable to (𝜙𝜌;𝜓𝜌) whenever |𝑐∗ | ≠ 𝜌. As
we can choose this 𝜌 within at least a small range, 𝑘−1 < 𝜌 < 𝑘 , the asymptotic results concerning
these functions remains true also when |𝑐∗ | = 1. Notice that since the determinant 𝐷𝐵

𝑁 [𝜙𝜌;𝜓𝜌]
is 𝜌-independent, in particular, its leading order asymptotics given by Theorem 1.1 is also 𝜌-
independent. This can also be checked directly by looking at the terms on the right hand side of
(1.13). To this end, we obviously have from (1.5) that 𝐺 [𝜙𝜌] = 𝐺 [𝜙] and 𝐸 [𝜙𝜌] = 𝐸 [𝜙]. Also the
role of 𝛼 on the right hand side of (1.14) is now played by 𝛼𝜌 which satisfies 𝛼𝜌,+(𝑧) = 𝛼𝜌,−(𝑧)𝜙𝜌 (𝑧)
and is explicitly given by

𝛼𝜌 (𝑧) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1√

1− 𝑘−1𝜌𝑧
, |𝑧 | < 1,

1√
1− 𝑘−1𝜌−1𝑧−1

, |𝑧 | > 1.

Therefore from (1.14) it can be directly checked that 𝐹 [𝜙𝜌;𝜓𝜌] = 1.

2.5. Proof of Theorem 1.5. Based on (1.10), (1.31), (2.27), and (2.35), the bordered Toeplitz de-
terminant representing the Ising correlation function 〈𝜎0,0𝜎𝑁−1,𝑁 〉 satisfies the following relation

(2.47)
𝐷𝐵

𝑁 [𝜙;𝜓]
𝐷𝑁−1 [𝜙 ]

=
𝐶𝑣

𝑆𝑣
𝑋12(𝑐∗; 𝑁 −1) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑐−𝑁+1∗

𝐶ℎ

𝑆ℎ
𝑋11(𝑐∗; 𝑁 −1), |𝑐∗ | > 1,

0, |𝑐∗ | < 1.

Also, for the Toeplitz determinant 𝐷𝑁−1 [𝜙 ] we have that

(2.48) ln 𝐷𝑁 [𝜙 ] = ln𝐸 [𝜙 ] −
∞∑

𝑛=𝑁

ln 𝜅−2
𝑛 =

1
4

ln
(
1− 𝑘−2

)
−

∞∑
𝑛=𝑁

ln 𝜅−2
𝑛 ,

where

(2.49) 𝜅−2
𝑛 = 𝑋12(0),

and 𝑋 (𝑧) ≡ 𝑋 (𝑧; 𝑁 − 1) is the solution of the 𝑋 - Riemann-Hilbert problem, RH-X1 - RH-X3
generated by the weight 𝜙(𝑧) and corresponding to 𝑛 = 𝑁 −1. Equations (2.47) - (2.49) show us
that in order to calculate the correction to the leading term, i.e., (1− 𝑘−2) 1

4 , to the determinant
𝐷𝐵

𝑁 [𝜙;𝜓] we need the high terms in the estimation of the solution 𝑋 (𝑧) of the Riemann-Hilbert
problem.

The asymptotic analysis of the Riemann-Hilbert problem RH-X1 - RH-X3 is presented in detail
in Section 5.1 and for its solution 𝑋 (𝑧;𝑛) we have formula (5.19) where 𝑅(𝑧;𝑛) is the solution of
the small norm Riemann-Hilbert problem RH-R1 - RH-R3. We have already used this formula
and the estimate (5.20) in the proof of Theorem 1.1. Now, we need more terms in (5.20). These
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are given by the second term, 𝑅2(𝑧;𝑛) in the iterative series (5.14). From (5.15), (5.17), and (5.18)
that

(2.50)

𝑅2(𝑧;𝑛) =
�������
− 1

4𝜋2

∫
Γ1

𝑏(𝜇)
[∫

Γ0

𝑎(𝜏) 𝑑𝜏

𝜏− 𝜇

]
𝑑𝜇

𝜇− 𝑧
0

0 − 1
4𝜋2

∫
Γ0

𝑎(𝜇)
[∫

Γ1

𝑏(𝜏) 𝑑𝜏

𝜏− 𝜇

]
𝑑𝜇

𝜇− 𝑧

�������
, 𝑧 ∈C\Σ𝑅,

where we have introduced the notations,

𝑎(𝑧;𝑛) = −𝑧𝑛𝜙−1(𝑧)𝛼2(𝑧), and 𝑏(𝑧;𝑛) = 𝑧−𝑛𝜙−1(𝑧)𝛼−2(𝑧),
and we also remind that

𝛼(𝑧) = exp

[
1

2𝜋𝑖

∫
T

ln(𝜙(𝜏))
𝜏− 𝑧

𝑑𝜏

]
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√

1− 𝑘−1𝑧
, |𝑧 | < 1,

1√
1− 𝑘−1𝑧−1

, |𝑧 | > 1.

Formula (2.50) in conjunction with the equations (5.18) and (5.19) yield the following estimations
for the relevant matrix entries of 𝑋 (𝑧) in the regions Ω0, Ω1, Ω2, and Ω∞, (see Figure 5):

(2.51) 𝑋12(𝑧;𝑛) = 𝛼(𝑧)
(
1− 1

4𝜋2

∫
Γ1

𝑏(𝜇;𝑛)
[∫

Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝜇

]
𝑑𝜇

𝜇− 𝑧
+𝑂 (𝜌−4𝑛)

)
, 𝑧 ∈Ω0∪Ω1,

(2.52) 𝑋12(𝑧;𝑛) = 𝑧−𝑛𝛼−1(𝑧)
(

1
2𝜋𝑖

∫
Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝑧
+𝑂

(
𝜌−3𝑛

1+ |𝑧 |
))

, 𝑧 ∈ Ω2∪Ω∞,

(2.53) 𝑋11(𝑧;𝑛) = −𝛼−1(𝑧)
(

1
2𝜋𝑖

∫
Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝑧
+𝑂 (𝜌−3𝑛)

)
, 𝑧 ∈ Ω0,

𝑋11(𝑧;𝑛) = 𝑧𝑛𝛼(𝑧)𝜙−1(𝑧)
(
1− 1

4𝜋2

∫
Γ1

𝑏(𝜇;𝑛)
[∫

Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝜇

]
𝑑𝜇

𝜇− 𝑧
+𝑂 (𝜌−4𝑛)

)
(2.54) −𝛼−1(𝑧)

(
1

2𝜋𝑖

∫
Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝑧
+𝑂 (𝜌−3𝑛)

)
, 𝑧 ∈ Ω1,

𝑋11(𝑧;𝑛) = 𝑧𝑛𝛼(𝑧)
(
1− 1

4𝜋2

∫
Γ1

𝑏(𝜇;𝑛)
[∫

Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝜇

]
𝑑𝜇

𝜇− 𝑧
+𝑂 (𝜌−4𝑛)

)
(2.55) −𝛼−1(𝑧)𝜙−1(𝑧)

(
1

2𝜋𝑖

∫
Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝑧
+𝑂 (𝜌−3𝑛)

)
, 𝑧 ∈ Ω2,

(2.56)

𝑋11(𝑧;𝑛) = 𝑧𝑛𝛼(𝑧)
(
1− 1

4𝜋2

∫
Γ1

𝑏(𝜇;𝑛)
[∫

Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝜇

]
𝑑𝜇

𝜇− 𝑧
+𝑂

(
𝜌−4𝑛

1+ |𝑧 |
))

, 𝑧 ∈ Ω∞.
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In the above equations, it is assumed that the circle Γ1 is centered at 𝑧 = 0 and has radius 𝜌, the
circle Γ0 is centered at 𝑧 = 0 and has radius 𝜌−1, and the inequality

(2.57) 𝑘
2
3 < 𝜌 < 𝑘

holds. Note that the last equation implies that

(2.58) 𝜌−3𝑛 = 𝑘−(2+𝛿)𝑛,

where

𝛿 =
3ln 𝜌−2ln 𝑘

ln 𝑘
> 0.

Let us first apply these formulae to the evolution of the higher term in the asymptotics of the pure
Toeplitz determinant 𝐷𝑁 [𝜙 ]. To this end, taking into account (2.48), (2.49) we need first to
estimate the value 𝑋12(0). According to (2.51), we have that

(2.59) 𝑋12(0;𝑛) = 𝛼(0)
(
1− 1

4𝜋2

∫
Γ1

𝑏(𝜇;𝑛)
[∫

Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝜇

]
𝑑𝜇

𝜇
+𝑂 (𝜌−4𝑛)

)
.

Proposition 2.10. The following estimates take place,

1
2𝜋𝑖

∫
Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝑧
= − 1√

𝜋
𝛼2(𝑘−1)

√
𝑘 − 𝑘−1

𝑘

1
𝑘−1− 𝑧

𝑘−𝑛−1/2𝑛−1/2
(
1+𝑂

(
1
𝑛

))
, 𝑛 →∞,

(2.60)

for all |𝑧 | > 𝜌−1, and
(2.61)

1
4𝜋2

∫
Γ1

𝑏(𝜇;𝑛)
[∫

Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝜇

]
𝑑𝜇

𝜇− 𝑧
= − 1

2𝜋

1
𝑘−1− 𝑘

1
𝑘 − 𝑧

𝑘−2𝑛𝑛−2
(
1+𝑂

(
1
𝑛

))
, 𝑛 →∞,

for all |𝑧 | < 𝜌.

Proof. Consider first the single, 𝑎 - integral. It can be deformed to the integral over the segment
[0, 𝑘−1] so that we would have,

(2.62)
1

2𝜋𝑖

∫
Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝑧
= − 1

𝜋

∫ 𝑘−1

0
𝜏𝑛 (𝑘−1− 𝜏)−1/2Φ(𝜏)𝑑𝜏,

where

Φ(𝜏) =
√

𝜏𝑘−1
√

𝑘 − 𝜏
𝛼2(𝜏)
𝜏− 𝑧

is holomorphic at 𝜏 = 𝑘−1. Let

(2.63) Φ(𝜏) =
∞∑
𝑙=0

𝑑𝑙 (𝜏− 𝑘−1)𝑙, 𝑑0 = Φ(𝑘−1) = 1
𝑘

√
𝑘 − 𝑘−1 𝛼2(𝑘−1)

𝑘−1− 𝑧
,

be the Taylor series of Φ(𝜏) at 𝜏 = 𝑘−1. Then, according to the standard Watson Lemma type
arguments, we arrive at the asymptotic formula,

(2.64)
1

2𝜋𝑖

∫
Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝑧
∼ − 1

𝜋

∞∑
𝑙=0

𝑑𝑙

∫ 𝑘−1

0
𝜏𝑛 (𝑘−1− 𝜏)𝑙−1/2𝑑𝜏,
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and this asymptotic is uniform in any compact subset of {𝑧 : |𝑧 | > 𝜌−1} and, in particular, for 𝑧 ∈ Γ1.
For the integrals in the right hand side of (2.64), we have,

∫ 𝑘−1

0
𝜏𝑛 (𝑘−1− 𝜏)𝑙−1/2𝑑𝜏 = 𝑘−𝑛−𝑙−1/2

∫ 1

0
𝑡𝑛 (1− 𝑡)𝑙−1/2𝑑𝑡 = 𝑘−𝑛−𝑙−1/2𝐵(𝑛+1, 𝑙 +1/2)

= 𝑘−𝑛−𝑙−1/2Γ(𝑛+1)Γ(𝑙 +1/2)
Γ(𝑛+ 𝑙 +3/2) = 𝑘−𝑛−𝑙−1/2Γ(𝑙 +1/2)𝑛−𝑙−1/2

(
1+𝑂

(
1
𝑛

))
,

(2.65)

as 𝑛 →∞, and hence

(2.66)
1

2𝜋𝑖

∫
Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝑧
= − 1√

𝜋
𝛼2(𝑘−1)

√
𝑘 − 𝑘−1

𝑘

1
𝑘−1− 𝑧

𝑘−𝑛−1/2𝑛−1/2
(
1+𝑂

(
1
𝑛

))
,

as 𝑛 →∞, uniformly in any compact subset of {𝑧 : |𝑧 | > 𝜌−1}. This is the estimate (2.60).

Consider now the double integral (2.61). In view of (2.66) we have at once that9

1
4𝜋2

∫
Γ1

𝑏(𝜇;𝑛)
[∫

Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝜇

]
𝑑𝜇

𝜇− 𝑧
= − 𝑖

2𝜋3/2 𝛼2(𝑘−1)
√

𝑘 − 𝑘−1

𝑘
𝑘−𝑛−1/2𝑛−1/2

×
[∫

Γ1

𝑏(𝜇;𝑛) 𝑑𝜇

(𝑘−1− 𝜇) (𝜇− 𝑧) +𝑂

(
𝑘−𝑛

𝑛

)]
, 𝑛 →∞.

(2.67)

Applying to the 𝑏 -integral in the right hand side of the last equation the same arguments as we
used for derivation of the estimate (2.66), we obtain that
(2.68)∫

Γ1

𝑏(𝜇;𝑛) 𝑑𝜇

(𝑘−1− 𝜇) (𝜇− 𝑧) = −𝑖
√

𝜋𝛼−2(𝑘) 1
(𝑘 − 𝑧)

√
𝑘 − 𝑘−1

1
𝑘−1− 𝑘

𝑘−𝑛+3/2𝑛−3/2
(
1+𝑂

(
1
𝑛

))
,

as 𝑛 →∞, uniformly in any compact subset of {𝑧 : |𝑧 | < 𝜌}. This in turns yields the estimate,
1

4𝜋2

∫
Γ1

𝑏(𝜇;𝑛)
[∫

Γ0

𝑎(𝜏;𝑛) 𝑑𝜏

𝜏− 𝜇

]
𝑑𝜇

𝜇− 𝑧
=− 1

2𝜋

𝛼2(𝑘−1)𝛼−2(𝑘)
𝑘−1− 𝑘

1
𝑘 − 𝑧

𝑘−2𝑛𝑛−2
(
1+𝑂

(
1
𝑛

))
, 𝑛→∞,

which, taking into account that
𝛼−1(𝑧)𝛼(𝑧−1) = 1,

implies (2.61) �

Using (2.59), (2.61) and taking into account that 𝛼(0) = 1 we conclude that

(2.69) 𝜅−2 = 𝑋12(0;𝑛) = 1+ 1
2𝜋

1
1− 𝑘2 𝑘−2𝑛𝑛−2

(
1+𝑂

(
1
𝑛

))
, 𝑛 →∞,

and, also,

(2.70) ln 𝜅−2
𝑛 =

1
2𝜋

1
1− 𝑘2 𝑘−2𝑛𝑛−2

(
1+𝑂

(
1
𝑛

))
, 𝑛 →∞.

In view of (2.48), we need now the asymptotics of the sum
∞∑

𝑛=𝑁

𝑘−2𝑛

𝑛𝑝
, 𝑝 = 2,3.

9We are also taking into account that
∫
Γ1

𝑏(𝜇) 𝑓 (𝜇)𝑑𝜇 = 𝑂 (𝑘−𝑛) for any bounded 𝑓 (𝜇) analytic in the annulus,
𝜌− 𝜖 < |𝜇 | < 𝑘 + 𝜖 .
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This can be easily done by the summation by parts. Indeed, put

𝑆𝑛 =
∞∑
𝑙=𝑛

𝑘−2𝑙 ≡ 𝑘−2𝑛 1
1− 𝑘−2 .

Then we have,
∞∑

𝑛=𝑁

𝑘−2𝑛

𝑛𝑝
=

∞∑
𝑛=𝑁

(𝑆𝑛 − 𝑆𝑛+1) 1
𝑛𝑝

=
∞∑

𝑛=𝑁

𝑆𝑛
1

𝑛𝑝
−

∞∑
𝑛=𝑁

𝑆𝑛+1
1

𝑛𝑝

= 𝑆𝑁
1

𝑁 𝑝
+

∞∑
𝑛=𝑁+1

𝑆𝑛
1

𝑛𝑝
−

∞∑
𝑛=𝑁

𝑆𝑛+1
1

𝑛𝑝
= 𝑆𝑁

1
𝑁 𝑝

+
∞∑

𝑛=𝑁

𝑆𝑛+1

(
1

(𝑛+1) 𝑝 −
1

𝑛𝑝

)
(2.71) =

1
1− 𝑘−2 𝑁−𝑝𝑘−2𝑁 +𝑂

(
𝑁−𝑝−1𝑘−2𝑁

)
.

Combining (2.71) with (2.70) and (2.48) we arrive at the final formula for the asymptotics of the
Toeplitz determinant 𝐷𝑁 [𝜙 ] with the explicit second term,

(2.72) 𝐷𝑁 [𝜙 ] = (1− 𝑘−2)1/4
(
1+ 1

2𝜋(1− 𝑘−2)2 𝑁−2𝑘−2𝑁−2
(
1+𝑂 (𝑁−1)

))
, 𝑁 →∞.

In the next section this formula will be also proven by the operator technique.

Let us move now to the bordered Topelitz determinant 𝐷𝐵
𝑁 [𝜙;𝜓] and consider first the case when

|𝑐∗ | < 1.

In this case, according to (2.47), we will only need the asymptotics for 𝑋12(𝑧) for 𝑧 ∈ Ω0∪Ω1, i.e.
formula (2.51) with 𝑧 = 𝑐∗ and 𝑛 = 𝑁 −1. Moreover, we can use the estimate (2.61) for the double
integral involved and get at once that

𝑋12(𝑐∗; 𝑁 −1) = 𝛼(𝑐∗)
(
1+ 1

2𝜋

1
(𝑘−1− 𝑘) (𝑘 − 𝑐∗)

𝑘−2𝑁+2𝑁−2
(
1+𝑂

(
1
𝑁

)))
, 𝑁 →∞.

The last equation in conjunction with (2.47) yields the formula
(2.73)

𝐷𝐵
𝑁 [𝜙;𝜓] = 𝐶𝑣

𝑆𝑣
𝛼(𝑐∗)(1− 𝑘−2)1/4

(
1+ 1

2𝜋

1
1− 𝑘−2

(
− 𝑘

𝑘 − 𝑐∗
+ 1

1− 𝑘−2

)
𝑁−2𝑘−2𝑁

(
1+𝑂 (𝑁−1)

))
.

This formula, taking into account the definitions (1.26) and (1.31) of the parameters 𝑘 and 𝑐∗ and
the equation (2.44) for 𝛼(𝑐∗) (the case we consider now is 𝐽𝑣 > 𝐽ℎ) we can rewrite (2.73) as

𝐷𝐵
𝑁 [𝜙;𝜓] = (1− 𝑘−2)1/4

(
1+ 1

2𝜋(1− 𝑘−2)
( 1
𝐶2
𝑣

+ 1
𝑘2−1

)
𝑁−2𝑘−2𝑁

(
1+𝑂 (𝑁−1)

))
.(2.74)

This proves Theorem 1.5 for the case |𝑐∗ | < 1. The proof of Theorem 1.5 for the case |𝑐∗ | > 1 (i.e.
if 𝑐∗ ∈ Ω2 or 𝑐∗ ∈ Ω∞, see Figure 5) follows from almost identical considerations employed in the
case |𝑐∗ | < 1. Let us first discuss the case when 𝑐∗ ∈ Ω2. In this case we have

(2.75)
𝐶𝑣

𝑆𝑣
𝑋12(𝑐∗; 𝑁 −1) = 𝐶𝑣

𝑆𝑣
𝑐−𝑁+1
∗ 𝛼−1(𝑐∗)

(
1

2𝜋𝑖

∫
Γ0

𝑎(𝜏; 𝑁 −1) 𝑑𝜏

𝜏− 𝑐∗
+𝑂

(
𝜌−3𝑁

))
,

and

𝑐−𝑁+1
∗

𝐶ℎ

𝑆ℎ
𝑋11(𝑐∗; 𝑁 −1) = 𝐶ℎ

𝑆ℎ
𝛼(𝑐∗)

(
1− 1

4𝜋2

∫
Γ1

𝑏(𝜇; 𝑁 −1)
[∫

Γ0

𝑎(𝜏; 𝑁 −1) 𝑑𝜏

𝜏− 𝜇

]
𝑑𝜇

𝜇− 𝑐∗
+𝑂 (𝜌−4𝑁 )

)
− 𝑐−𝑁+1

∗
𝐶ℎ

𝑆ℎ
𝛼−1(𝑐∗)𝜙−1(𝑐∗)

(
1

2𝜋𝑖

∫
Γ0

𝑎(𝜏; 𝑁 −1) 𝑑𝜏

𝜏− 𝑐∗
+𝑂 (𝜌−3𝑁 )

)
.

(2.76)
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These are the terms needed to compute 𝐷𝐵
𝑁 [𝜙;𝜓] in view of (2.47). Notice that the contribution

from (2.75) cancels the contribution from the second term on the right hand side of (2.76), as one
can simply check that

(2.77)
𝐶ℎ

𝑆ℎ
𝜙−1(𝑐∗) = 𝐶𝑣

𝑆𝑣
.

Now, from (2.44), (2.47), (2.61), (2.72), (2.76) we can easily show that (1.33) holds when 𝑐∗ ∈ Ω2.
Finally we discuss the case 𝑐∗ ∈ Ω∞. Equation (2.75) still holds in this case (see (2.52)). Using
(2.44) and (2.60) we can write
(2.78)
𝐶𝑣

𝑆𝑣
𝑋12(𝑐∗; 𝑁 −1) = 𝐶𝑣𝐶ℎ

𝑆𝑣𝑆ℎ
𝑐−𝑁+1
∗

(
− 1√

𝜋
𝛼2(𝑘−1)

√
𝑘 − 𝑘−1

𝑘

1
𝑘−1− 𝑐∗

𝑘−𝑁+1/2𝑁−1/2
) (

1+𝑂

(
1
𝑁

))
,

as 𝑁 →∞. Using (2.56) and (2.44) we have
(2.79)

𝑐−𝑁+1
∗

𝐶ℎ

𝑆ℎ
𝑋11(𝑐∗; 𝑁 −1) = 1− 1

4𝜋2

∫
Γ1

𝑏(𝜇; 𝑁 −1)
[∫

Γ0

𝑎(𝜏; 𝑁 −1) 𝑑𝜏

𝜏− 𝜇

]
𝑑𝜇

𝜇− 𝑐∗
+𝑂 (𝜌−4𝑁 )

The asymptotics of the integral on the right hand side can be computed from (2.67), however, we
can not use (2.68) directly, because when 𝑧 ∈ Ω∞ we also get a residue term. To that end by a
straightforward calculation when 𝑧 ∈ Ω∞ we find

(2.80)
∫
Γ1

𝑏(𝜇;𝑛) 𝑑𝜇

(𝑘−1− 𝜇) (𝜇− 𝑐∗)
= 2𝜋i𝑧−𝑛−1

√
𝑘 − 𝑧√

𝑘 − 𝑧−1
−2i

√
𝑘

𝑧

∫ 𝑘−1

0

𝑡𝑛
√

𝑘−1− 𝑡

(𝑡 − 𝑧−1)√𝑘 − 𝑡
√

𝑡
d𝑡.

We notice that the residue term (combined with the prefactors coming from (2.67)) exactly cancels
out the contribution from (2.78). Finally, the asymptotic expansion of the second term in (2.80)
can be written as a series involving Beta functions similar to what is shown in equations (2.62)
through (2.65). Finding the asymptotics of the first term in that series using Stirling’s formula and
then combining this with (2.47), (2.67), (2.72) and (2.79) finishes the proof of Theorem 1.5 for
𝑐∗ ∈ Ω∞.

3. Asymptotics of Bordered Toeplitz determinants: Operator Theory approach

3.1. General results. For 𝜙 ∈ 𝐿1(T) we define the 𝑁 ×𝑁 Toeplitz matrix,

(3.1) 𝑇𝑁 (𝜙) :=

�������
𝜙0 𝜙−1 · · · 𝜙−𝑁+1

𝜙1 𝜙0
. . .

...
...

. . .
. . . 𝜙−1

𝜙𝑁−1 · · · 𝜙1 𝜙0

�������
,

where, as before, 𝜙𝑛 are the Fourier coefficients of 𝜙. Occasionally, the notation

[𝜙]𝑛 = 1
2𝜋

∫ 2𝜋

0
𝜙(𝑒𝑖 𝜃 )𝑒−𝑖𝑛𝜃 𝑑𝜃

will be used as well. Clearly, det𝑇𝑁 (𝜙) = 𝐷𝑁 [𝜙].
In what follows, 𝑒0 stands for the column vector (1,0,0, . . . ,0)𝑇 inC𝑁 , and 𝑒𝑇0 signals its transpose,
the row vector (1,0,0, . . . ,0).
Proposition 3.1. Let 𝜙,𝜓 ∈ 𝐿1(T), and assume that 𝑇𝑁 (𝜙) is invertible. Then
(3.2) 𝐷𝐵

𝑁 [𝜙;𝜓] = 𝐷𝑁 [𝜙] · 𝑒𝑇0 𝑇−1
𝑁 (𝜙)𝑇𝑁 (𝜓)𝑒0.
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Proof. Via a rearrangement of rows and columns in (1.1) (or, more formally, by multiplying with
a “flip matrix” from both sides) we see that

(3.3) 𝐷𝐵
𝑁 [𝜙;𝜓] = det

�������
𝜓0 𝜙−1 · · · 𝜙−𝑁−1

𝜓1 𝜙0
. . .

...
...

...
. . . 𝜙−1

𝜓𝑁−1 𝜙𝑁−2 · · · 𝜙0

�������
.

By observing that 𝑇𝑁 (𝜓)𝑒0 is the column vector (𝜓0, . . . ,𝜓𝑁−1)𝑇 , the statement follows from
Cramer’s rule. �

In view of computing the asymptotics, the above formula reduces bordered Toeplitz determinants
to usual Toeplitz determinants 𝐷𝑁 [𝜙] and the scalar quantity

𝐹𝑁 [𝜙;𝜓] := 𝑒𝑇0 𝑇−1
𝑁 (𝜙)𝑇𝑁 (𝜓)𝑒0.(3.4)

Under appropriate assumptions, the asymptotics of 𝐷𝑁 [𝜙] is given by the Szegő-Widom limit
theorem, whereas the asymptotics of the scalar quantity follows from the asymptotics of the
inverse of the Toeplitz matrix 𝑇𝑁 (𝜙).
We proceed to give some operator-theoretic background; for details we refer to [BS06] or [BS99].
For 𝜙 ∈ 𝐿1(T) we define the infinite Toeplitz and Hankel matrices

𝑇 (𝜙) � (𝜙 𝑗−𝑘), 𝐻 (𝜙) � (𝜙 𝑗+𝑘+1), 0 ≤ 𝑗 , 𝑘 < ∞.

In case 𝜙 ∈ 𝐿∞(T) these represent bounded linear operators acting on ℓ2(Z≥0). Note that Toeplitz
and Hankel operator satisfy the identity

𝑇 (𝜙𝜓) = 𝑇 (𝜙)𝑇 (𝜓) +𝐻 (𝜙)𝐻 (𝜓̃),(3.5)

where 𝜙,𝜓 ∈ 𝐿∞(T) and 𝜓̃(𝑧) := 𝜓(𝑧−1). In particular,

(3.6) 𝑇 (𝜓−𝜙𝜓+) = 𝑇 (𝜓−)𝑇 (𝜙)𝑇 (𝜓+)
if 𝜓± ∈ 𝐻∞± , where

𝐻∞
± := { 𝑓 ∈ 𝐿∞(T) : 𝑓𝑛 = 0 for all ∓𝑛 > 0}

are the usual Hardy spaces. We will identify functions in 𝐻∞± (T) with their analytic extensions
onto the inside or outside, resp., of T.

Among the various versions of Wiener-Hopf factorization we are going to use the following one.
We say that a function 𝜙 ∈ 𝐶 (T) has a continuous canonical Wiener-Hopf factorization if it can be
written as

𝜙(𝑧) = 𝜙−(𝑧)𝜙+(𝑧), |𝑧 | = 1,

where
𝜙±, 𝜙−1

± ∈ 𝐻∞
± ∩𝐶 (T).

A sufficient criterium for the existence of such a factorization is that 𝜙 belongs to the Hölder class
𝐶 𝜀 (T) for some 𝜀 > 0, is nonvanishing on T and has winding number zero (see, e.g., [BS06,
Sect. 10.2]). In this case, the Wiener-Hopf factorization is given by

(3.7) 𝜙+(𝑧) = exp

( ∞∑
𝑛=0

𝑧𝑛 [log𝜙]𝑛
)

, 𝜙−(𝑧) = exp

( ∞∑
𝑛=1

𝑧−𝑛 [log𝜙]−𝑛
)

.

On the other hand, a necessary condition is that 𝜙 is continuous and nonvaninshing on T and has
winding number zero.
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For 𝜙 ∈ 𝐶 (T) the Toeplitz operator 𝑇 (𝜙) on ℓ2(Z≥0) is invertible if and only if 𝜙 does not vanish
on T and has winding number zero. If 𝜙 admits a continuous canonical Wiener-Hopf factorization
then the inverse of 𝑇 (𝜙) is given by

(3.8) 𝑇−1(𝜙) = 𝑇 (𝜙−1
+ )𝑇 (𝜙−1

− ).
as can be seen from (3.6).

Finally, let us introduce the finite section projection

𝑃𝑁 : ( 𝑓0, 𝑓1, . . . )𝑇 ↦→ ( 𝑓0, 𝑓1, . . . , 𝑓𝑁−1,0,0, . . . )𝑇

acting on ℓ2(Z≥0). As usual, we will identify C𝑁 with the image of 𝑃𝑁 . Correspondingly we
have 𝑃𝑁𝑇 (𝜙)𝑃𝑁 = 𝑇𝑁 (𝜙). The complementary projection is 𝑄𝑁 = 𝐼 −𝑃𝑁 , and we remark that
𝑄𝑁 = 𝑉𝑁𝑉−𝑁 where 𝑉𝑁 = 𝑇 (𝑧𝑁 ) and 𝑉−𝑁 = 𝑇 (𝑧−𝑁 ) are forward and backward shift operators.
Despite having used the notation 𝑒0 for finite vectors already, we will also use it to refer to the
infinite column vector,

𝑒0 = (1,0,0, . . . )𝑇 ∈ ℓ2(Z≥0).
Correspondingly, 𝑒𝑇0 stands for infinite row vector (1,0,0, . . . ) or the respective linear functional
on ℓ2(Z≥0).
Proposition 3.2. Let 𝜓 ∈ 𝐿2(T), and assume that 𝜙 ∈ 𝐶 (T) does not vanish on T and has winding
number zero. Then

𝐹𝑁 [𝜙;𝜓] → 𝐹 [𝜙;𝜓] as 𝑁 →∞,

where the constant

(3.9) 𝐹 [𝜙;𝜓] := 𝑒𝑇0 𝑇−1(𝜙)𝑇 (𝜓)𝑒0.

If, in addition, 𝜙 has a continuous canonical Wiener-Hopf factorization 𝜙 = 𝜙−𝜙+, then

𝐹 [𝜙;𝜓] = [𝜙−1− 𝜓]0
[𝜙+]0 .

Proof. Under above the assumptions on 𝜙, it is well-known (see, e.g., [BS99, Sect. 1.5 and 2.3])
that the Toeplitz operator 𝑇 (𝜙) is invertible, that the matrix 𝑇𝑁 (𝜙) is invertible for sufficiently large
𝑁 , and that 𝑇−1

𝑁 (𝜙) converges to 𝑇−1(𝜙) strongly on ℓ2(Z≥0) as 𝑁 →∞. Here we use the afore-
mentioned identification of C𝑁 with a subspace of ℓ2(Z≥0) and the corresponding identification
of an 𝑁 ×𝑁 matrix with an operator on ℓ2(Z≥0). Obviously, 𝑇𝑁 (𝜓)𝑒0 → 𝑇 (𝜓)𝑒0 in the norm of
ℓ2(Z≥0). Therefore, again in the norm

𝑇−1
𝑁 (𝜙)𝑇𝑁 (𝜓)𝑒0 → 𝑇−1(𝜙)𝑇 (𝜓)𝑒0 as 𝑁 →∞.

This proves the first assertion. As to the evaluation of the constant we use (3.6) and (3.8) to see
that

𝑇−1(𝜙)𝑇 (𝜓) = 𝑇 (𝜙−1
+ )𝑇 (𝜙−1

− )𝑇 (𝜓) = 𝑇 (𝜙−1
+ )𝑇 (𝜙−1

− 𝜓)
and

𝐹 [𝜙;𝜓] = 𝑒𝑇0 𝑇−1(𝜙)𝑇 (𝜓)𝑒0 = 𝑒𝑇0 𝑇 (𝜙−1
+ )𝑇 (𝜙−1

− 𝜓)𝑒0,

where in the last expression we interpret the operators on ℓ2(Z≥0) as infinite matrices. Since
𝑇 (𝜙−1+ ) is lower triangular it follows that 𝐹 [𝜙;𝜓] = [𝜙−1+ ]0 · [𝜙−1− 𝜓]0. Observe that [𝜙−1+ ]0 =
𝜙−1+ (0) = 1/[𝜙+]0. �
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The previous results combined with the Szegő-Widom limit theorem (1.4) establishes the first order
(or leading order) asymptotics for bordered Toeplitz determinants. In fact, if we assume that 𝜙 is
in Hölder class 𝐶1+𝜖 , does not vanish on the unit circle T, and has winding number zero, then

(3.10) 𝐷𝐵
𝑁 [𝜙;𝜓] = 𝐺 [𝜙]𝑁 𝐸 [𝜙] (𝐹 [𝜙;𝜓] + 𝑜(1)) , 𝑁 →∞,

where

𝐺 [𝜙] = exp( [log𝜙]0), 𝐸 [𝜙] = det𝑇 (𝜙)𝑇 (𝜙−1) = exp

(∑
𝑛≥1

𝑛[log𝜙]𝑛 [log𝜙]−𝑛
)

.

Thus, what has been stated in Remark 1.3 regarding (1.19) is proved, which is Theorem 1.2 except
for the claim that the error term is decaying exponentially.

Let us emphasize at this point that it can happen that 𝐹 [𝜙;𝜓] is zero. In this case, the subleading
terms in the asymptotics might be of interest as well. Later in this section will take up this question.

Let 𝜙 be a function with a continuous canonical Wiener-Hopf factorization 𝜙 = 𝜙−𝜙+. Each
function 𝜓 ∈ 𝐿2(T) has a unique representation of the form

(3.11) 𝜓 = 𝜙𝑝+ + 𝑝− with 𝑝+ ∈ 𝐻2(T), 𝑝− ∈ 𝐻2
−(T),

where

𝐻2(T) =
{

𝑓 ∈ 𝐿2(T) : 𝑓𝑛 = 0 for all 𝑛 < 0
}
,

𝐻2
−(T) =

{
𝑓 ∈ 𝐿2(T) : 𝑓𝑛 = 0 for all 𝑛 ≥ 0

}
are the corresponding Hardy spaces. Indeed, (3.11) is equivalent to

(3.12) 𝜙−1
− 𝜓 = 𝜙+𝑝+ +𝜙−1

− 𝑝−,

from which it can be seen that the terms 𝑝+ and 𝑝− are uniquely given by

𝑝+ = 𝜙−1
+ 𝑃[𝜙−1

− 𝜓], 𝑝− = 𝜙−(𝐼 −𝑃) [𝜙−1
− 𝜓] .

Here 𝑃 is the Riesz projection (i.e., the orthogonal projection on 𝐿2(T) with range equal to 𝐻2(T)).
We remark that if we consider the Toeplitz operator 𝑇 (𝜙) on 𝐻2(T) (rather than on ℓ2(Z≥0)), then

𝑝+ = 𝑇−1(𝜙)𝑃[𝜓] .(3.13)

Theorem 3.3. Let 𝜙 ∈ 𝐶 (T) have a continuous canonical Wiener-Hopf factorization 𝜙 = 𝜙−𝜙+.
Assume that 𝜓 = 𝜙𝑝+ + 𝑝− with 𝑝+ ∈ 𝐻2(T) and 𝑝− ∈ 𝐻2−(T). Then

(3.14) 𝐹 [𝜙;𝜓] = [𝑝+]0.

In particular,

𝐹 [𝜙;���𝑎0 + 𝑎1𝑧+ 𝑏0
𝑧
+

𝑚∑
𝑗=1

𝑏 𝑗 𝑧

𝑧− 𝑐 𝑗

���𝜙] = 𝑎0 + 𝑏0 [log𝜙]1 +
∑
|𝑐 𝑗 |<1

𝑏 𝑗
𝜙+(𝑐 𝑗)
𝜙+(0) ,

(3.15)

𝐹 [𝜙;���𝑎0 + 𝑎1𝑧+ 𝑏0
𝑧
+

𝑚∑
𝑗=1

𝑏 𝑗

𝑧− 𝑐 𝑗

���] = 𝑎0
𝜙+(0)𝜙−(∞) − 𝑎1

[log𝜙]−1
𝜙+(0)𝜙−(∞) −

∑
|𝑐 𝑗 |>1

𝑏 𝑗

𝑐 𝑗𝜙+(0)𝜙−(𝑐 𝑗) .

(3.16)
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Proof. To prove (3.14) we note that identity (3.12) implies that

[𝜙−1
− 𝜓]0 = [𝜙+𝑝+]0 = [𝜙+]0 [𝑝+]0,

and thus 𝐹 [𝜙;𝜓] = [𝑝+]0. We remark that this can also be obtained from (3.13).

For the evaluations of 𝐹 [𝜙;𝜓] for concrete 𝜓 we compute the corresponding function 𝑝+(𝑧) and
then obtain [𝑝+]0 = 𝑝+(0). This function can be obtained most conveniently by writing down the
decomposition (3.12), 𝜙−1− 𝜓 = 𝜙+𝑝+ +𝜙−1− 𝑝−, explicitly.

We start with considering the cases related to (3.15). For 𝜓 = 𝑧
𝑧−𝑐𝜙 with |𝑐 | > 1, we have 𝑝− = 0,

i.e.,

𝜙−1
− 𝜓 =

𝜙+(𝑧)𝑧
𝑧− 𝑐

= 𝜙+𝑝+, 𝑝+(𝑧) = 𝑧

𝑧− 𝑐
, [𝑝+]0 = 𝑝+(0) = 0.

The same conclusion is obtained in the case 𝜓 = 𝑧𝜙. Hence the corresponding terms 𝑎1 and 𝑏 𝑗

(whenever |𝑐 𝑗 | > 1) do not occur on the right hand side of (3.15).

For 𝜓 = 𝑧
𝑧−𝑐𝜙 with |𝑐 | < 1, the decomposition is

𝜙−1
− 𝜓 =

𝜙+(𝑧)𝑧
𝑧− 𝑐

=
𝜙+(𝑧)𝑧−𝜙+(𝑐)𝑐

𝑧− 𝑐
+ 𝜙+(𝑐)𝑐

𝑧− 𝑐
.

Hence

𝑝+(𝑧) = 𝑧−𝜙−1+ (𝑧)𝜙+(𝑐)𝑐
𝑧− 𝑐

, 𝑝+(0) = 𝜙+(𝑐)
𝜙+(0) .

The case 𝑐 = 0 covers the case 𝜓 = 𝜙 (related with the coefficient 𝑎0) as well.

Lastly, if 𝜓 = 𝜙/𝑧 we observe that

𝜙−1
− 𝜓 =

𝜙+(𝑧)
𝑧

=
𝜙+(𝑧) −𝜙+(0)

𝑧
+ 𝜙+(0)

𝑧
,

whence

𝑝+(𝑧) = 𝜙−1
+ (𝑧) 𝜙+(𝑧) −𝜙+(0)

𝑧
, [𝑝+]0 = 𝑝+(0) = 𝜙′+(0)

𝜙+(0) = (log𝜙+(𝑧))′|𝑧=0 = [log𝜙]1.

Here recall the definition the Wiener-Hopf factor in (3.7).

Now let us turn to the cases related to (3.16). For 𝜓 = 1
𝑧−𝑐 with |𝑐 | < 1 or 𝜓 = 1

𝑧 , we will have
𝑝+ = 0 and 𝑝− = 𝜓. Hence the terms 𝑏0 and 𝑏 𝑗 (whenever |𝑐 𝑗 | < 1) do not occur on the right hand
side of (3.16).

For 𝜓 = 1
𝑧−𝑐 with |𝑐 | > 1, the decomposition is

𝜙−1
− 𝜓 =

𝜙−1− (𝑧)
𝑧− 𝑐

=
𝜙−1− (𝑐)
𝑧− 𝑐

+ 𝜙−1− (𝑧) −𝜙−1− (𝑐)
𝑧− 𝑐

.

Thus

𝑝+(𝑧) = 𝜙−1+ (𝑧)𝜙−1− (𝑐)
𝑧− 𝑐

, and 𝑝+(0) = − 1
𝑐𝜙+(0)𝜙−(𝑐) .

The case 𝜓 = 1 is treated in the same way. Finally, for 𝜓 = 𝑧 we decompose

𝜙−1
− 𝜓 = 𝜂′+(0) + (𝜙−1

− (𝑧) −𝜂′+(0)
1
𝑧
)𝑧, with 𝜂+(𝑧) = 𝜙−1

− (𝑧−1).

Hence 𝑝+(𝑧) = 𝜙−1+ (𝑧)𝜂′+(0) and 𝑝+(0) = 𝜙−1+ (0)𝜂′+(0), where
𝜂′+(0)
𝜂+(0) = (log𝜂+(𝑧))′|𝑧=0 = −[log𝜙]−1, and 𝜂+(0) = 𝜙−1

− (∞),
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using (3.7). This complete the proof. �

The previous theorem combined with the Szegő-Widom Theorem implies Theorems 1.1, up to the
claim that the error terms are exponentially decaying. In fact, what has been claimed in Remark 1.3
regarding (1.13) is proved. The identification of the constant 𝐹 [𝜙;𝜓] as given in (3.15) and (3.16)
coincides with the expression for (1.14) by taking the relations (1.16) and (1.18) into account.

3.2. Higher order asymptotics. The following “exact formula” is the key to the higher order
asymptotics of 𝐹𝑁 [𝜙;𝜓].

Proposition 3.4. Let 𝜙 ∈ 𝐶1/2+𝜀 (T) be a nonvanishing function on the unit circle with winding
number zero. Assume that 𝜙 = 𝜙−𝜙+ is its Wiener-Hopf factorization. Let

𝜆𝑁 (𝑧) = 𝑧−𝑁𝜆(𝑧), 𝜆(𝑧) = 𝜙−(𝑧)
𝜙+(𝑧) ,

and put 𝐾𝑁 = 𝐻 (𝜆𝑁 )𝐻 (𝜆̃−1
𝑁 ). Then

(i) 𝐷𝑁 [𝜙] = 𝐺 [𝜙]𝑁 𝐸 [𝜙]det(𝐼 −𝐾𝑁 ).
(ii) 𝑇𝑁 (𝜙) is invertible if and only if 𝐼 −𝐾𝑁 is invertible.
(iii) In this case,

(3.17) 𝑇−1
𝑁 (𝜙) = 𝑇𝑁 (𝜙−1

+ )𝑃𝑁

(
𝐼 −𝑇 (𝜆−1

𝑁 ) (𝐼 −𝐾𝑁 )−1𝑇 (𝜆𝑁 )
)

𝑃𝑁𝑇𝑁 (𝜙−1
− ).

Proof. We note that (i) is the Borodin-Okounkov-Case-Geronimo (BOCG) identity (see, e.g.,
[BS06, Sect. 10.40]), and (ii) is an obvious consequence of it. Formula (3.17) is basically formula
(10.27) or (10.47) in [BS06]. �

Theorem 3.5. Let 𝜙 have a continuous canonical Wiener-Hopf factorization 𝜙 = 𝜙−𝜙+, and assume
that 𝜓 = 𝜙𝑝+ + 𝑝− with 𝑝+ ∈ 𝐻2(T) and 𝑝− ∈ 𝐻2−(T). Then

(3.18) 𝐹𝑁 [𝜙;𝜓] = 𝐹 [𝜙;𝜓] − 1
[𝜙+]0 · 𝑒

𝑇
0 𝑇 (𝜆−1

𝑁 ) (𝐼 −𝐾𝑁 )−1𝑇 (𝜙−𝑧−𝑁 𝑝+)𝑒0.

Proof. Note that 𝑇𝑁 (𝑝−)𝑒0 = 0. Using (3.17) we consider

𝑒𝑇0 𝑇−1
𝑁 (𝜙)𝑇𝑁 (𝜙𝑝+)𝑒0

= 𝑒𝑇0 𝑇𝑁 (𝜙−1
+ )𝑃𝑁

(
𝐼 −𝑇 (𝜆−1

𝑁 ) (𝐼 −𝐾𝑁 )−1𝑇 (𝜆𝑁 )
)

𝑃𝑁𝑇𝑁 (𝜙−1
− )𝑇𝑁 (𝜙𝑝+)𝑒0

= [𝜙−1
+ ]0 · 𝑒𝑇0

(
𝐼 −𝑇 (𝜆−1

𝑁 ) (𝐼 −𝐾𝑁 )−1𝑇 (𝜆𝑁 )
)
𝑇 (𝜙−1

− )𝑃𝑁𝑇 (𝜙𝑝+)𝑒0.

Apart from the factor [𝜙−1+ ]0 = [𝜙+]−1
0 , this decomposes into

𝑒𝑇0 𝑇 (𝜙−1
− )𝑃𝑁𝑇 (𝜙𝑝+)𝑒0 + 𝑒𝑇0 𝑇 (𝜆−1

𝑁 ) (𝐼 −𝐾𝑁 )−1𝑇 (𝜆𝑁 )𝑇 (𝜙−1
− )𝑄𝑁𝑇 (𝜙𝑝+)𝑒0

− 𝑒𝑇0 𝑇 (𝜆−1
𝑁 ) (𝐼 −𝐾𝑁 )−1𝑇 (𝜆𝑁 )𝑇 (𝜙−1

− )𝑇 (𝜙𝑝+)𝑒0.
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The first two terms equal
𝑒𝑇0 𝑇 (𝜙−1

− )𝑃𝑁𝑇 (𝜙𝑝+)𝑒0 + 𝑒𝑇0 𝑇 (𝜆−1
𝑁 ) (𝐼 −𝐾𝑁 )−1𝑇 (𝜆𝑁 )𝑇 (𝜙−1

− )𝑄𝑁𝑇 (𝜙𝑝+)𝑒0

= 𝑒𝑇0 𝑇 (𝜙−1
− )𝑃𝑁𝑇 (𝜙𝑝+)𝑒0 + 𝑒𝑇0 𝑇 (𝜆−1

𝑁 ) (𝐼 −𝐾𝑁 )−1𝑇 (𝜆𝑁 )𝑇 (𝜆−1
𝑁 )𝑇 (𝜙−1

+ )𝑉−𝑁𝑇 (𝜙𝑝+)𝑒0

= 𝑒𝑇0 𝑇 (𝜙−1
− )𝑃𝑁𝑇 (𝜙𝑝+)𝑒0 + 𝑒𝑇0 𝑇 (𝜆−1

𝑁 )𝑇 (𝜙−1
+ )𝑉−𝑁𝑇 (𝜙𝑝+)𝑒0

= 𝑒𝑇0 𝑇 (𝜙−1
− )𝑃𝑁𝑇 (𝜙𝑝+)𝑒0 + 𝑒𝑇0 𝑇 (𝜙−1

− )𝑉𝑁𝑉−𝑁𝑇 (𝜙𝑝+)𝑒0

= 𝑒𝑇0 𝑇 (𝜙−1
− )𝑇 (𝜙𝑝+)𝑒0 = 𝑒𝑇0 𝑇 (𝜙+𝑝+)𝑒0 = [𝜙+]0 · [𝑝+]0,

which give the first (constant) term in (3.18). The third term from above equals
−𝑒𝑇0 𝑇 (𝜆−1

𝑁 ) (𝐼 −𝐾𝑁 )−1𝑇 (𝜆𝑁 )𝑇 (𝜙−1
− )𝑇 (𝜙𝑝+)𝑒0

= −𝑒𝑇0 𝑇 (𝜆−1
𝑁 ) (𝐼 −𝐾𝑁 )−1𝑇 (𝜆𝑁 )𝑇 (𝜙+𝑝+)𝑒0

= −𝑒𝑇0 𝑇 (𝜆−1
𝑁 ) (𝐼 −𝐾𝑁 )−1𝑇 (𝜙−𝑧−𝑁 𝑝+)𝑒0,

which provides the second term in (3.18). �

The previous result allows to obtain improvements of Proposition 3.2 by expanding the term
(𝐼 −𝐾𝑁 )−1 in formula (3.18) into the Neumann series. Notice that 𝐾𝑁 =𝑉−𝑁 𝐻 (𝜆)𝐻 (𝜆̃−1)𝑉𝑁 and
𝐻 (𝜆)𝐻 (𝜆̃−1) is compact since 𝜆(𝑧) is continuous. Hence 𝐾𝑁 converges in the operator norm to
zero. In particular, the following conclusions can be drawn.

Corollary 3.6. Under the same assumptions as in the previous theorem,

𝐹𝑁 [𝜓;𝜙] = [𝑝+]0− 1
[𝜙+]0 · 𝑒

𝑇
0 𝑇 (𝜆−1

𝑁 )𝑇 (𝜙−𝑧−𝑁 𝑝+)𝑒0(3.19)

+𝑂
(
‖𝐾𝑁 ‖𝐿 (ℓ2 (Z≥0)) ‖𝑃[𝜆̃−1

𝑁 ] ‖𝐻 2 ‖𝑃[𝜙−𝑧−𝑁 𝑝+]‖𝐻 2

)
as 𝑁 →∞.

Therein, the first term [𝑝+]0 is the constant, whereas the second one, which can be written as the
sum

− 1
[𝜙+]0

∞∑
𝑛=𝑁

[
𝜙+
𝜙−

]
−𝑛

[
𝜙−𝑝+

]
𝑛
,

converges to zero as 𝑁 →∞. One should expect that in many cases, (i.e., unless some “cancellation”
occurs in the previous sum), the third (or error) term converges faster to zero because it contains
‖𝐾𝑁 ‖.
In the case that the generating functions 𝜙 and 𝜓 are analytic in a neighborhood of T, exponentially
fast convergence can be derived.

Corollary 3.7. Let 𝜙(𝑧) be analytic an nonvanishing function on the annulus 𝑎1 < |𝑧 | < 𝑏1 with
winding number zero, and let 𝜓(𝑧) be analytic on the annulus 𝑎2 < |𝑧 | < 𝑏2, where 𝑎𝑖 < 1 < 𝑏𝑖 .
Then, for each 𝜅 with 𝜅 > 𝑎1 max{𝑏−1

1 , 𝑏−1
2 }, we have

𝐹𝑁 [𝜙;𝜓] = 𝐹 [𝜙;𝜓] +𝑂 (𝜅𝑁 ), 𝑁 →∞,(3.20)
and

𝐷𝐵
𝑁 [𝜙;𝜓] = 𝐺 [𝜙]𝑁 𝐸 [𝜙]

(
𝐹 [𝜙;𝜓] +𝑂 (𝜅𝑁 )

)
, 𝑁 →∞.(3.21)

Proof. The function 𝜆(𝑧)−1 = 𝜙+(𝑧)/𝜙−(𝑧) is analytic on 𝑎1 < |𝑧 | < 𝑏1 as well, and hence the Fourier
coefficients [𝜆−1]−𝑛 =𝑂 (𝜅𝑛1 ) as 𝑛→+∞ for each 𝜅1 > 𝑎1. As 𝜙−𝑝+ = 𝜙−𝜙−1+ 𝑃[𝜙−1− 𝜓], the function
𝑃[𝜙−1− 𝜓] is analytic on the disc |𝑧 | < 𝑏2 and 𝜙−𝑝+ is analytic on the annulus 𝑎1 < |𝑧 | < min{𝑏1, 𝑏2}.
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Thus, for every 𝜅2 > max{𝑏−1
1 , 𝑏−1

2 }, the Fourier coefficients [𝜙−𝑝+]𝑛 = 𝑂 (𝜅𝑛2 ) as 𝑛 →+∞. Using
this information about the Fourier coeffcients, it is easily seen that the second and third term on
the right hand side of (3.19) decays as 𝑂 (𝜅𝑁1 𝜅𝑁2 ) as 𝑁 →∞. This implies (3.20). For (3.21), we
notice that this follows from (3.20) combined with Proposition3.4(ii) since a similar estimate can
be made for the det(𝐼 −𝐾𝑁 ) term. �

This together with Theorem 3.3 completes the proofs of Theorems 1.1 and Theorem 1.2.

3.3. Concrete evaluations. The functions that are of interest in the Ising model are 𝜙 = 𝜙 given
by (1.28),

𝜙(𝑧) =
√

1− 𝑘−1𝑧−1

1− 𝑘−1𝑧
, 𝑘 > 1,(3.22)

and the function 𝜓̂ given by (1.31). Apart from a constant factor, this function can be written as

𝜓(𝑧) = 𝜙(𝑧)𝑧−𝜙(𝑐)𝑐
𝑧− 𝑐

with 𝑐 = 𝑐∗ < 0. Notice that 𝜙 is analytic (and nonzero) on C except on the branch cut

Γ𝑘 := [0, 𝑘−1] ∪ [𝑘,+∞).
Therefore, being more general than necessary for the Ising model, we can also allow for complex
values 𝑐 ∉ Γ𝑘 . Indeed, 𝜙(𝑐) is well-defined, and therefore 𝜓(𝑧) is analytic on C \Γ𝑘 .

We can apply the formulas established in Theorem 3.5 and Corollary 3.6 directly to 𝜓, and this is
what we will do below. Alternatively, we could split 𝜓 into two terms

𝜓(𝑧) = 𝜙(𝑧) 𝑧

𝑧− 𝑐
− 𝜙(𝑐)𝑐

𝑧− 𝑐

This basically means that we deal with the functions

𝜙(𝑧) 𝑧

𝑧− 𝑐
and

1
𝑧− 𝑐

.

We do not have to exclude the values 𝑐 ∈ Γ𝑘 , but to exclude |𝑐 | = 1 and distinguish the cases |𝑐 | > 1
and |𝑐 | < 1. In the latter case, the asymptotics can be gleaned from Theorem 3.9 and it should
be noted that 𝐹𝑁 [𝜙; 1

𝑧−𝑐 ] = 0. In the former case, the asymptotics of 𝐹𝑁 [𝜙;𝜙 𝑧
𝑧−𝑐 ] is discussed

numerically in Section 4.2, but we refrain from providing the rigorous details.

Note that 𝜙 has Wiener-Hopf factors given by

𝜙+(𝑧) = (1− 𝑘−1𝑧)−1/2, 𝜙−(𝑧) = (1− 𝑘−1𝑧−1)1/2.(3.23)

We see that

𝜆𝑁 (𝑧) = 𝑧−𝑁𝜆(𝑧), 𝜆(𝑧) =
√
(1− 𝑘−1𝑧−1) (1− 𝑘−1𝑧)(3.24)

We start with the asymptotics of 𝐷𝑁 [𝜙].
Theorem 3.8. For 𝜙 given by (3.22) with 𝑘 > 1, we have that

𝐷𝑁 [𝜙] = (1− 𝑘−2)1/4
(
1+ 1

2𝜋(1− 𝑘−2)2 𝑁−2𝑘−2𝑁−2(1+𝑂 (𝑁−1))
)

, 𝑁 →∞.
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Proof. We are going to use the BOCG identity stated in Proposition 3.4(i). A straightforward
evaluation of the constants gives 𝐺 [𝜙] = 1 and 𝐸 [𝜙] = (1 − 𝑘−2)1/4. Thus we are left with
analyzing

det(𝐼 −𝐾𝑁 ) = 1− trace𝐾𝑁 +𝑂 (‖𝐾𝑁 ‖2
1), 𝑁 →∞.

Let us first estimate the trace norm of the operator 𝐾𝑁 = 𝑉−𝑁 𝐻 (𝜆)𝐻 (𝜆̃−1)𝑉𝑁 . Since 𝜆(𝑧) is
analytic on the annulus 𝑘−1 < |𝑧 | < 𝑘 , the Fourier coefficients decay as [𝜆]𝑛 = 𝑂 (𝜅 |𝑛 | ) as |𝑛| → ∞
for each fixed 𝜅 > 𝑘−1. A straightforward computation of the Hilbert-Schmidt norm of the Hankel
operators appearing in 𝐾𝑁 implies that the trace norm of 𝐾𝑁 decays exponentially as

‖𝐾𝑁 ‖1 = 𝑂 (𝜅2𝑁 ), 𝑁 →∞.

As a consequence the term 𝑂 (‖𝐾𝑁 ‖2
1) is negligible in comparison to the other expected terms.

Let us finally compute the asymptotics of the trace of 𝐾𝑁 . Obviously,

trace𝐾𝑁 =
∞∑

𝑛=𝑁

∞∑
𝑗=0
[𝜆]𝑛+ 𝑗+1 [𝜆−1]−𝑛− 𝑗−1 =

∞∑
𝑛, 𝑗=0

[𝜆]𝑛+ 𝑗+1+𝑁 [𝜆−1]−𝑛− 𝑗−1−𝑁

=
∞∑
𝑛=0

(𝑛+1) [𝜆]𝑛+1+𝑁 [𝜆−1]−𝑛−1−𝑁 .

In view of (3.24), the asymptotics of the Fourier coefficients of 𝜆 and 𝜆−1 is given by

[𝜆]𝑛 =
√

1− 𝑘−2

Γ(−1/2) 𝑛−3/2𝑘−𝑛
(
1+𝑂 (𝑛−1)

)
,(3.25)

[𝜆−1]−𝑛 = [𝜆−1]𝑛 = 1
Γ(1/2)

√
1− 𝑘−2

𝑛−1/2𝑘−𝑛
(
1+𝑂 (𝑛−1)

)
,(3.26)

as 𝑛→∞. Here we used Lemma 5.3 with 𝑏 = 𝑘 , 𝜁0(𝑧) = 0 and 𝜔 = 1/2, 𝜉 (𝑧) = 𝑘−1/2(1− 𝑘−1𝑧−1)1/2
in the first case and 𝜔 = −1/2, 𝜉 (𝑧) = 𝑘1/2(1− 𝑘−1𝑧−1)−1/2 in the second case. Hence

trace𝐾𝑁 =
∞∑
𝑛=0

(𝑛+1)
Γ(−1/2)Γ(1/2) (𝑛+𝑁 +1)−2𝑘−2(𝑁+𝑛+1)

(
1+𝑂 ((𝑛+𝑁)−1)

)
= − 1

2𝜋(1− 𝑘−2)2 𝑁−2𝑘−2𝑁−2
(
1+𝑂 (𝑁−1)

)
, 𝑁 →∞,

by Lemma 5.2. Combining all this we arrive at

det(𝐼 −𝐾𝑁 ) = 1+ 1
2𝜋(1− 𝑘−2)2 𝑁−2𝑘−2𝑁−2

(
1+𝑂 (𝑁−1)

)
, 𝑁 →∞,

and this proves the assertion. �

Let us now turn to the asymptotics of 𝐹𝑁 [𝜙;𝜓] in a setting which is slightly more general than
necessary for the Ising model.

Theorem 3.9. For 𝜙 given by (3.22) with 𝑘 > 1, 𝑐 ∈ C \ [𝑘,+∞), let

𝜓(𝑧) = 𝜙(𝑧)𝑧− 𝑑

𝑧− 𝑐

where

𝑑 =

{
𝜙(𝑐)𝑐 if |𝑐 | ≥ 1
arbitrary if |𝑐 | < 1.
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Then, as 𝑁 →∞,

𝐹𝑁 [𝜙;𝜓] = 𝑘1/2

(𝑘 − 𝑐)1/2 −
𝑐𝑘1/2

2𝜋(𝑘 − 𝑐)3/2(1− 𝑘−2)𝑁−2𝑘−2𝑁
(
1+𝑂 (𝑁−1)

)
.

Proof. We are going to use Corollary 3.6 and start with identifying the functions therein. To
compute 𝑝+ recall (3.11) and (3.12) to see that the latter decomposition, 𝜙−1− 𝜓 = 𝜙+𝑝+ + 𝜙−1− 𝑝− is
given by

𝜙+(𝑧)𝑧−𝜙−1− (𝑧)𝑑
𝑧− 𝑐

=
𝜙+(𝑧)𝑧−𝜙+(𝑐)𝑐

𝑧− 𝑐
+ 𝜙+(𝑐)𝑐−𝜙−1− (𝑧)𝑑

𝑧− 𝑐
.

The first term is analytic for |𝑧 | < 𝑘 , while second term is analytic for |𝑧 | > 1− 𝜀 and vanishes at
𝑧 =∞. Hence

𝑝+(𝑧) = 𝑧−𝜙−1+ (𝑧)𝜙+(𝑐)𝑐
𝑧− 𝑐

,

and
[𝑝+]0 = 𝑝+(0) = 𝜙+(𝑐)

𝜙+(0) =
𝑘1/2

(𝑘 − 𝑐)1/2 .

Furthermore,

𝜙−(𝑧)𝑝+(𝑧) = 𝜙−(𝑧) 𝑧−𝜙−1+ (𝑧)𝜙+(𝑐)𝑐
𝑧− 𝑐

= (1− 𝑘−1𝑧−1)1/2 𝑧− (1− 𝑘−1𝑧)1/2(1− 𝑘−1𝑐)−1/2𝑐

𝑧− 𝑐
.

Lemma 5.3 with 𝜔 = 1/2, 𝑏 = 𝑘 ,

𝜉 (𝑧) = − (1− 𝑘−1𝑧−1)1/2(𝑘 − 𝑐)−1/2𝑐

𝑧− 𝑐
, 𝜉 (𝑘) = − (1− 𝑘−2)1/2𝑐

(𝑘 − 𝑐)3/2 ,

gives

[𝜙−𝑝+]𝑛 = − (1− 𝑘−2)1/2𝑐

Γ(−1/2) (𝑘 − 𝑐)3/2 𝑛−3/2𝑘−𝑛+1/2
(
1+𝑂 (𝑛−1)

)
, 𝑛 →∞.

Hence, together with (3.26),

[𝜆−1]−𝑛 [𝜙−𝑝+]𝑛 = 𝑐

2𝜋(𝑘 − 𝑐)3/2 𝑛−2𝑘−2𝑛+1/2
(
1+𝑂 (𝑛−1)

)
, 𝑛 →∞.

Therefore, we get

𝑒𝑇0 𝑇 (𝜆−1
𝑁 )𝑇 (𝜙−𝑧−𝑁 𝑝+)𝑒0 =

∞∑
𝑛=0

[𝜆−1]−𝑛−𝑁
[
𝜙−𝑝+

]
𝑛+𝑁

=
𝑐𝑘1/2

2𝜋(𝑘 − 𝑐)3/2(1− 𝑘−2)𝑁−2𝑘−2𝑁 (1+𝑂 (𝑁−1))

using Lemma 5.1. Noting that [𝜙+]0 = 𝜙+(0) = 1 and that the error term in Corollary 3.6 decays
even as 𝑂 (𝜅4𝑁 ) (for any fixed 𝑘−1 < 𝜅 < 1), proves the asymptotics. �

Corollary 3.10. Let 𝜙 = 𝜙 be given by (3.22) with 𝑘 = 𝑆ℎ𝑆𝑣 > 1 and

𝜓(𝑧) = 𝑟
𝜙(𝑧)𝑧−𝜙(𝑐∗)𝑐∗

𝑧− 𝑐∗
with 𝑟 = 𝐶𝑣/𝑆𝑣 and 𝑐∗ = −𝑆ℎ/𝑆𝑣 . Then, as 𝑁 →∞,

𝐷𝐵
𝑁 [𝜙;𝜓]

𝐷𝑁 [𝜙]
= 1+ 1

2𝜋𝐶2
𝑣 (1− 𝑘−2)𝑁−2𝑘−2𝑁

(
1+𝑂 (𝑁−1)

)
,(3.27)

𝐷𝐵
𝑁 [𝜙;𝜓] = (1− 𝑘−2)1/4

(
1+ 1

2𝜋(1− 𝑘−2)
( 1
𝐶2
𝑣

+ 1
𝑘2−1

)
𝑁−2𝑘−2𝑁

(
1+𝑂 (𝑁−1)

))
.(3.28)
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Proof. We notice that
𝑘1/2

(𝑘 − 𝑐∗)1/2
=

𝑆𝑣
𝐶𝑣

=
1
𝑟

,
−𝑐∗

𝑘 − 𝑐∗
=

1
𝐶2
𝑣

.

The rest is straightforward computation. �

With this computation we have proved the final two theorems stated in the introduction.

4. Numerical Verifications

In this section, we assume that 𝜙 ≡ 𝜙, the symbol for the Ising model defined by (1.28). To fix the
problem, we set 𝐽ℎ

𝑘𝐵
= 1

2 and 𝐽𝑣
𝑘𝐵

= 1
4 for the 𝐽ℎ > 𝐽𝑣 case and 𝐽ℎ

𝑘𝐵
= 1

4 and 𝐽𝑣
𝑘𝐵

= 1
2 for the 𝐽ℎ < 𝐽𝑣 case.

Solving (1.23) numerically in both cases, we get 𝑇𝑐 = 0.820508964964 · · · . We thus fix 𝑇 = 4
5 < 𝑇𝑐

in the following numerical verifications, which ensures that 𝜙 is of Szegő type. Then, we have
𝑘 = sinh( 2𝐽ℎ

𝑘𝐵𝑇
) sinh( 2𝐽𝑣

𝑘𝐵𝑇
) ≈ 1.067666675, which is, as expected, bigger than 1. In fact, the reason

why we choose 𝑇 so close to 𝑇𝑐 is that the error terms often have factors of the form 𝑁−𝑚𝑘−𝑛𝑁 , so
a 𝑘 slightly greater than 1 will guarantee the results being not so small for relatively large 𝑁 .

For computing 𝐷𝐵
𝑁 [𝜙;𝜓] and 𝐷𝑁 [𝜙], from (1.2) we first compute 𝜙 𝑗 , 𝑗 = 1−𝑁, · · · , 𝑁 − 1, and

𝜓 𝑗 , 𝑗 = 0, · · ·𝑁 − 1, by the trapezoidal rule up to precision of more than 100 digits (which is far
more than needed in the following calculations). Then we compute 𝐷𝐵

𝑁 [𝜙;𝜓] and 𝐷𝑁 [𝜙] directly
from (1.1) and (1.3) respectively.

4.1. Verification of (1.33). Let us define

𝐺𝐴
𝑁 :=

(
𝐷𝐵

𝑁 [𝜙;𝜓]
4√1− 𝑘−2

−1

)
2𝜋(1− 𝑘−2)𝑁2𝑘2𝑁

𝐶−2
𝑣 + (𝑘2−1)−1

.

Then formula (1.33) is equivalent to

𝐺𝐴
𝑁 = 1+𝑂 (𝑁−1).(4.1)

Figure 1 is the numerical result for a case 𝐽ℎ > 𝐽𝑣 with 𝐽ℎ
𝑘𝐵

= 1
2 and 𝐽𝑣

𝑘𝐵
= 1

4 . 𝑔0 = 1 and a finite fixed
𝑔−1 show asymptotics (4.1) is indeed right. A more careful look into the numerical values of 𝑔𝑖
suggests that

∑
𝑔−𝑖𝑁−𝑖 is an asymptotic series.

In principle, 𝐺𝐴
𝑁 is only defined on integer 𝑁 . The red line is a smooth link of the ten points

obtained by numerical experiments. The numerical values of 𝐺𝐴
𝑁 for other integer 𝑁 will be

visually indistinguishable from the points on the red line.

Figure 2 is the numerical result for a case 𝐽ℎ < 𝐽𝑣 with 𝐽ℎ
𝑘𝐵

= 1
4 and 𝐽𝑣

𝑘𝐵
= 1

2 . Numerical values of
𝑔−𝑖 also show the series

∑
𝑔−𝑖𝑁−𝑖 is an asymptotic one. 𝑔0 = 1 and a finite fixed 𝑔−1 show (4.1) is

also true for this case.

4.2. The sensitivity for the case 𝜓 = 𝜙 𝑧
𝑧−𝑐 with 𝑐 near 1. If 𝑐 < 1, 𝐹𝑁 [𝜙;𝜓] is given by Theorem

3.9. Also recall from (3.2) and (3.4) that

𝐹𝑁 [𝜙;𝜓] = 𝐷𝐵
𝑁 [𝜙;𝜓]

𝐷𝑁 [𝜙] .
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𝑁
500 1000

0.8

0.9

1.0

𝐺𝐴
𝑁

𝐽ℎ
𝑘𝐵

= 1
2

𝐽𝑣
𝑘𝐵

= 1
4

𝑇 = 4
5

Figure 1. Plot of 𝐺𝐴
𝑁 = (𝐷

𝐵
𝑁 [𝜙;𝜓]
4√1−𝑘−2

−1) 2𝜋 (1−𝑘−2)𝑁 2𝑘2𝑁

𝐶−2
𝑣 +(𝑘2−1)−1 . Fitting the 10 points by

9∑
𝑖=0

𝑔−𝑖𝑁−𝑖 , we get

𝑔0 ≈ 1− 5.643811 ∗ 10−11, 𝑔−1 ≈ −25.367279, 𝑔−2 ≈ 798.967, 𝑔−3 ≈ −30863.1, 𝑔−4 ≈ 1.42051×
106, 𝑔5 ≈ −7.55845× 107, 𝑔−6 ≈ 4.41553× 109, 𝑔−7 ≈ −2.51667× 1011, 𝑔−8 ≈ 1.12018× 1013,
𝑔−9 ≈ −2.59581× 1014. Appending more points such as adding 𝐺𝐴

𝑁 for 𝑁 = 250, 𝑔𝑖 will change
with an obvious pattern: the smaller 𝑖 is, the smaller percent change is. For example, the change
of 𝑔0 is smaller than 10−10, and 𝑔−6 will change to 4.55987× 109 while 𝑔−9 will change to
−7.08571×1014.

𝑁
500 1000

0.8

0.9

1.0

𝐺𝐴
𝑁

𝐽ℎ
𝑘𝐵

= 1
4

𝐽𝑣
𝑘𝐵

= 1
2

𝑇 = 4
5

Figure 2. Plot of 𝐺𝐴
𝑁 = (𝐷

𝐵
𝑁 [𝜙;𝜓]
4√1−𝑘−2

−1) 2𝜋 (1−𝑘−2)𝑁 2𝑘2𝑁

𝐶−2
𝑣 +(𝑘2−1)−1 . Fitting the 10 points by

9∑
𝑖=0

𝑔−𝑖𝑁−𝑖 , we get

𝑔0 ≈ 1−5.92566×10−11, 𝑔−1 ≈ −26.191288, 𝑔−2 ≈ 830.85573, 𝑔−3 ≈ −32206.7, 𝑔−4 ≈ 1.48546×
106, 𝑔−5 ≈ −7.91507× 107, 𝑔−6 ≈ 4.62828× 109, 𝑔−7 ≈ −2.63956× 1011, 𝑔−8 ≈ 1.1753× 1013,
𝑔−9 ≈ −2.72407×1014.

So Theorem 3.9 means that

(4.2) 𝐺𝐵
𝑁 := −

(
𝐷𝐵

𝑁 [𝜙;𝜓]
𝐷𝑁 [𝜙] − 𝑘1/2

(𝑘 − 𝑐)1/2

)
2𝜋(𝑘 − 𝑐)3/2(1− 𝑘−2)

𝑐𝑘1/2 𝑁2𝑘2𝑁 = 1+𝑂 (𝑁−1).

Figure 3 is the plot of 𝐺𝐵
𝑁 with 𝑐 = 975

1000 . 𝑔0 = 1 and a finite fixed 𝑔−1 verify Theorem 3.9
numerically.

It is not surprising that Figures 1, 2 and 3 look so similar since they all have the same 𝑔0 = 1 and
similar 𝑔−2 and 𝑔−3.
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𝑁
500 1000

0.8

0.9

1.0

𝐺𝐵
𝑁

𝐽ℎ
𝑘𝐵

= 1
2

𝐽𝑣
𝑘𝐵

= 1
4

𝑇 = 4
5

𝑐 = 975
1000

Figure 3. Plot of 𝐺𝐵
𝑁 = −

(
𝐷𝐵
𝑁 [𝜙;𝜓]
𝐷𝑁 [𝜙] − 𝑘1/2

(𝑘−𝑐)1/2
)

2𝜋 (𝑘−𝑐)3/2 (1−𝑘−2)
𝑐𝑘1/2 𝑁2𝑘2𝑁 . Fitting the 10 points

by
9∑
𝑖=0

𝑔−𝑖𝑁−𝑖 , we get 𝑔0 ≈ 1−1.5286×10−10, 𝑔−1 ≈ −27.7534, 𝑔−2 ≈ 938.882, 𝑔−3 ≈ −39575.1,

𝑔−4 ≈ 2.02757× 106, 𝑔−5 ≈ −1.22089× 108, 𝑔−6 ≈ 8.089× 109, 𝑔−7 ≈ −5.12614× 1011, 𝑔−8 ≈
2.45747×1013, 𝑔−9 ≈ −5.96334×1014.

Now, let us consider the case 𝑐 > 1. For 𝑐 > 1, we recall that 𝑝+(𝑧) = 𝑧
𝑧−𝑐 . Now, let us compute

𝐹𝑁 [𝜓;𝜙] by Corollary 3.6. First, [𝑝+]0 = 𝑝+(0) = 0. Next, 𝜙−𝑝+ =
√

1− 𝑘−1𝑧−1 𝑧
𝑧−𝑐 . Therefore,

[𝜙−𝑝+]𝑛 =
∫
T

√
1− 1

𝑘𝑧

𝑧−𝑛

𝑧− 𝑐

𝑑𝑧

2𝜋𝑖
= −

√
1− 1

𝑘𝑐
𝑐−𝑛, for 𝑛 > 1.(4.3)

Recall that

[𝜆−1]−𝑛 =
∫
T

𝑧𝑛√
(1− 𝑘−1𝑧−1) (1− 𝑘−1𝑧)

𝑑𝑧

2𝜋𝑖𝑧
=

1
𝜋

∫ 1
𝑘

0

𝑧𝑛−1√
(𝑘−1𝑧−1−1) (1− 𝑘−1𝑧)

𝑑𝑧.

We get

∞∑
𝑛=𝑁

−[𝜆−1]−𝑛 [𝜙−𝑝+]𝑛 =
1
𝜋

√
1− 1

𝑘𝑐

∫ 1
𝑘

0

∞∑
𝑛=𝑁

𝑧𝑛−1𝑐−𝑛√
(𝑘−1𝑧−1−1) (1− 𝑘−1𝑧)

𝑑𝑧

=
1
𝜋

√
1− 1

𝑘𝑐

∫ 1
𝑘

0

( 𝑧
𝑐

)𝑁−1 1
𝑐(

1− 𝑧
𝑐

) √(𝑘−1𝑧−1−1) (1− 𝑘−1𝑧)
𝑑𝑧

=
1
𝜋

𝑐−𝑁 𝑘−𝑁
√

1− 1
𝑘𝑐

∫ 1

0

𝑡𝑁−
1
2(

1− 𝑡
𝑘𝑐

) √(1− 𝑡) (1− 𝑘−2𝑡)
𝑑𝑡(4.4)

≈ 1√
𝜋𝑁

𝑐−𝑁 𝑘−𝑁√
1− 1

𝑘𝑐

√
1− 𝑘−2

.(4.5)

(4.4) is the exact value of the second term in Corollary 3.6. Actually, we do not use (4.5) since
(4.4) itself can be calculated directly. Let us define Δ𝑁 as

(4.6) Δ𝑁 :=
1
𝜋

𝑐−𝑁 𝑘−𝑁
√

1− 1
𝑘𝑐

∫ 1

0

𝑡𝑁−
1
2(

1− 𝑡
𝑘𝑐

) √(1− 𝑡) (1− 𝑘−2𝑡)
𝑑𝑡 − 𝐷𝐵

𝑁 [𝜙;𝜓]
𝐷𝑁 [𝜙]

.

Then Δ𝑁 is the negative of the third term in Corollary 3.6.
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𝑁
500 1000

−100

−200

lnΔ𝑁

𝐽ℎ
𝑘𝐵

= 1
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𝐽𝑣
𝑘𝐵

= 1
4

𝑇 = 4
5

𝑐 = 1025
1000

Figure 4. Plot of lnΔ𝑁 , whereΔ𝑁 = 1
𝜋 𝑐−𝑁 𝑘−𝑁

√
1− 1

𝑘𝑐

∫ 1
0

𝑡𝑁− 1
2

(1− 𝑡
𝑘𝑐 )

√
(1−𝑡) (1−𝑘−2𝑡) 𝑑𝑡− 𝐷𝐵

𝑁 [𝜙;𝜓]
𝐷𝑁 [𝜙] .

Fitting the 10 points by 𝑔1𝑁 + 𝑔𝐿 ln 𝑁 +
7∑
𝑖=0

𝑔−𝑖𝑁−𝑖 , we get 𝑔1 ≈ −0.2211193827735, 𝑔𝐿 ≈
−2.499999847 and 𝑔0 ≈ 3.928447182. Notice that the numerical 𝑔1 and 𝑔𝐿 obtained by the
fitting of the 10 points are very close to 3ln 𝑘−1 + ln𝑐−1 ≈ −0.22111938274235 and − 5

2 . This
suggests that 𝑔1 = 3ln 𝑘−1 + ln𝑐−1 and 𝑔𝐿 = − 5

2 are exact.

Figure 4 is the plot of Δ𝑁 with 𝑐 = 1025
1000 . The numerical results mean

(4.7)
𝐷𝐵

𝑁 [𝜙;𝜓]
𝐷𝑁 [𝜙]

=
1
𝜋

𝑐−𝑁 𝑘−𝑁
√

1− 1
𝑘𝑐

∫ 1

0

𝑡𝑁−
1
2(

1− 𝑡
𝑘𝑐

) √(1− 𝑡) (1− 𝑘−2𝑡)
𝑑𝑡 +𝑂 (𝑁− 5

2 𝑐−𝑁 𝑘−3𝑁 ),

in this case.

5. Appendices

5.1. Solution of the Riemann-Hilbert problem for BOPUC with Szegő type symbols. The
following Riemann-Hilbert problem for BOPUC is due to J.Baik, P.Deift and K.Johansson.

• RH-X1 𝑋 : C \T→ C2×2 is analytic,
• RH-X2 The limits of 𝑋 (𝜁) as 𝜁 tends to 𝑧 ∈ T from the inside and outside of the unit

circle exist, and are denoted 𝑋±(𝑧) respectively and are related by

(5.1) 𝑋+(𝑧) = 𝑋−(𝑧)
(
1 𝑧−𝑛𝜙(𝑧)
0 1

)
, 𝑧 ∈ T,

• RH-X3 As 𝑧 →∞

(5.2) 𝑋 (𝑧) = (
𝐼 +𝑂 (𝑧−1))𝑧𝑛𝜎3 ,

(see [Dei99],[DIK11],[CIK11]). Below we show the standard steepest descent analysis to asymp-
totically solve this problem, in the case where 𝜙 is a symbol analytic in a neighborhood of the unit
circle and with zero winding number. Note that the symbol 𝜙 associated to the 2D Ising model
in the low temperature regime enjoys these properties. We first normalize the behavior at ∞ by
defining

(5.3) 𝑇 (𝑧;𝑛) :=

{
𝑋 (𝑧;𝑛)𝑧−𝑛𝜎3 , |𝑧 | > 1,

𝑋 (𝑧;𝑛), |𝑧 | < 1.

The function 𝑇 defined above satisfies the following RH problem
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Ω1

Ω2

Γ1 T Γ0

Ω0

Ω∞Γ𝑆 :

Figure 5. Opening of lenses: the jump contour for the 𝑆-RHP.

• RH-T1 𝑇 (·;𝑛) : C \T→ C2×2 is analytic,

• RH-T2 𝑇+(𝑧;𝑛) = 𝑇−(𝑧;𝑛)
(
𝑧𝑛 𝜙(𝑧)
0 𝑧−𝑛

)
, 𝑧 ∈ T,

• RH-T3 𝑇 (𝑧;𝑛) = 𝐼 +𝑂 (1/𝑧), 𝑧 →∞,

So 𝑇 has a highly-oscillatory jump matrix as 𝑛 →∞. The next transformation yields a Riemann
Hilbert problem, normalized at infinity, having an exponentially decaying jump matrix on the
lenses. Note that we have the following factorization of the jump matrix of the 𝑇-RHP:

(5.4)
(
𝑧𝑛 𝜙(𝑧)
0 𝑧−𝑛

)
=

(
1 0

𝑧−𝑛𝜙(𝑧)−1 1

) (
0 𝜙(𝑧)

−𝜙(𝑧)−1 0

) (
1 0

𝑧𝑛𝜙(𝑧)−1 1

)
≡ 𝐽0(𝑧;𝑛)𝐽 (∞) (𝑧)𝐽1(𝑧;𝑛).

Now, we define the following function :

(5.5) 𝑆(𝑧;𝑛) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑇 (𝑧;𝑛)𝐽−1

1 (𝑧;𝑛), 𝑧 ∈ Ω1,

𝑇 (𝑧;𝑛)𝐽0(𝑧;𝑛), 𝑧 ∈ Ω2,

𝑇 (𝑧;𝑛), 𝑧 ∈ Ω0∪Ω∞.

Also introduce the following function on Γ𝑆 := Γ0∪Γ1∪T

(5.6) 𝐽𝑆 (𝑧;𝑛) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐽1(𝑧;𝑛), 𝑧 ∈ Γ0,

𝐽 (∞) (𝑧), 𝑧 ∈ T,

𝐽0(𝑧;𝑛), 𝑧 ∈ Γ1.

We have the following Riemann-Hilbert problem for 𝑆(𝑧;𝑛)

• RH-S1 𝑆(·;𝑛) : C \Γ𝑆 → C2×2 is analytic.
• RH-S2 𝑆+(𝑧;𝑛) = 𝑆−(𝑧;𝑛)𝐽𝑆 (𝑧;𝑛), 𝑧 ∈ Γ𝑆 .
• RH-S3 𝑆(𝑧;𝑛) = 𝐼 +𝑂 (1/𝑧), as 𝑧 →∞.

Note that the matrices 𝐽0(𝑧;𝑛) and 𝐽1(𝑧;𝑛) tend to the identity matrix uniformly on their respective
contours, exponentially fast as 𝑛 →∞.

5.1.1. Global parametrix RHP. We are looking for a piecewise analytic function 𝑃 (∞) (𝑧) :C\T :→
C

2×2 such that

• RH-Global1 𝑃 (∞) is holomorphic in C \T.
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• RH-Global2 for 𝑧 ∈ T we have

(5.7) 𝑃 (∞)
+ (𝑧) = 𝑃 (∞)

− (𝑧)
(

0 𝜙(𝑧)
−𝜙−1(𝑧) 0

)
.

• RH-Global3 𝑃 (∞) (𝑧) = 𝐼 +𝑂 (1/𝑧), as 𝑧 →∞.

We can find a piecewise analytic function 𝛼 which solves the following scalar multiplicative
Riemann-Hilbert problem

(5.8) 𝛼+(𝑧) = 𝛼−(𝑧)𝜙(𝑧) 𝑧 ∈ T.

By Plemelj-Sokhotski formula we have

(5.9) 𝛼(𝑧) = exp
[

1
2𝜋𝑖

∫
T

ln(𝜙(𝜏))
𝜏− 𝑧

𝑑𝜏

]
,

Now, using (5.8) we have the following factorization

(5.10)
(

0 𝜙(𝑧)
−𝜙−1(𝑧) 0

)
=

(
𝛼−1− (𝑧) 0

0 𝛼−(𝑧)
) (

0 1
−1 0

) (
𝛼−1+ (𝑧) 0

0 𝛼+(𝑧)
)

.

So, the function

(5.11) 𝑃 (∞) (𝑧) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
0 𝛼(𝑧)

−𝛼−1(𝑧) 0

)
, |𝑧 | < 1,(

𝛼(𝑧) 0
0 𝛼−1(𝑧)

)
, |𝑧 | > 1,

satisfies (5.7). Also, by the properties of the Cauchy integral, 𝑃 (∞) (𝑧) is holomorphic in C \T.
Moreover, 𝛼(𝑧) = 1+𝑂 (𝑧−1), as 𝑧 →∞ and hence

(5.12) 𝑃 (∞) (𝑧) = 𝐼 +𝑂 (1/𝑧), 𝑧 →∞.

Therefore 𝑃 (∞) given by (5.11) is the unique solution of the global parametrix Riemann-Hilbert
problem.

5.1.2. Small-norm RHP. Let us consider the ratio

(5.13) 𝑅(𝑧;𝑛) := 𝑆(𝑧;𝑛)
[
𝑃 (∞) (𝑧)

]−1
.

We have the following Riemann-Hilbert problem for 𝑅(𝑧;𝑛)
• RH-R1 𝑅 is holomorphic in C \ (Γ0∪Γ1).
• RH-R2 𝑅+(𝑧;𝑛) = 𝑅−(𝑧;𝑛)𝐽𝑅 (𝑧;𝑛), 𝑧 ∈ Γ0∪Γ1 =: Σ𝑅,
• RH-R3 𝑅(𝑧;𝑛) = 𝐼 +𝑂 (1/𝑧) as 𝑧 →∞.

This Riemann Hilbert problem is solvable for large 𝑛 ([DKM+99a],[DKM+99b]) and 𝑅(𝑧;𝑛) can
be written as

(5.14) 𝑅(𝑧;𝑛) = 𝐼 +𝑅1(𝑧;𝑛) +𝑅2(𝑧;𝑛) +𝑅3(𝑧;𝑛) + · · · , 𝑛 ≥ 𝑛0

where 𝑅𝑘 can be found recursively. Indeed

(5.15) 𝑅𝑘 (𝑧;𝑛) = 1
2𝜋i

∫
Σ𝑅

[𝑅𝑘−1(𝜇;𝑛)]− (𝐽𝑅 (𝜇;𝑛) − 𝐼)
𝜇− 𝑧

d𝜇, 𝑧 ∈ C \Σ𝑅, 𝑘 ≥ 1.
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It is easy to check that 𝑅2ℓ (𝑧;𝑛) is diagonal and 𝑅2ℓ+1(𝑧;𝑛) is off-diagonal; ℓ ∈ N∪ {0}, and that

(5.16) 𝑅𝑘,𝑖 𝑗 (𝑧;𝑛) = 𝑂 (𝜌−𝑘𝑛)
1+ |𝑧 | , 𝑛 →∞, 𝑘 ≥ 1, 𝑧 ∈ C \Σ𝑅,

where 𝜌 (resp. 𝜌−1) is the radius of Γ1(resp. Γ0). Let us compute 𝑅1(𝑧;𝑛); we have
(5.17)

𝐽𝑅 (𝑧)− 𝐼 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑃 (∞) (𝑧)

(
0 0

𝑧𝑛𝜙−1(𝑧) 0

) [
𝑃 (∞) (𝑧)]−1

, 𝑧 ∈ Γ0,

𝑃 (∞) (𝑧)
(

0 0
𝑧−𝑛𝜙−1(𝑧) 0

) [
𝑃 (∞) (𝑧)]−1

, 𝑧 ∈ Γ1,

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
0 −𝑧𝑛𝜙−1(𝑧)𝛼2(𝑧)
0 0

)
, 𝑧 ∈ Γ0,(

0 0
𝑧−𝑛𝜙−1(𝑧)𝛼−2(𝑧) 0

)
, 𝑧 ∈ Γ1.

Therefore

(5.18) 𝑅1(𝑧;𝑛) =
�����

0 − 1
2𝜋𝑖

∫
Γ0

𝜏𝑛𝜙−1(𝜏)𝛼2(𝜏)
𝜏− 𝑧

𝑑𝜏

1
2𝜋𝑖

∫
Γ1

𝜏−𝑛𝜙−1(𝜏)𝛼−2(𝜏)
𝜏− 𝑧

𝑑𝜏 0

����� .

5.1.3. Tracing back Riemann-Hilbert transformations. If we trace back the Riemann-Hilbert prob-
lems 𝑅 ↦→ 𝑆 ↦→ 𝑇 ↦→ 𝑌 we will obtain

(5.19) 𝑋 (𝑧;𝑛) = 𝑅(𝑧;𝑛)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
𝛼(𝑧) 0

0 𝛼−1(𝑧)

)
𝑧𝑛𝜎3 , 𝑧 ∈ Ω∞,(

𝛼(𝑧) 0
−𝑧−𝑛𝛼−1(𝑧)𝜙−1(𝑧) 𝛼−1(𝑧)

)
𝑧𝑛𝜎3 , 𝑧 ∈ Ω2,(

𝑧𝑛𝛼(𝑧)𝜙−1(𝑧) 𝛼(𝑧)
−𝛼−1(𝑧) 0

)
, 𝑧 ∈ Ω1,(

0 𝛼(𝑧)
−𝛼−1(𝑧) 0

)
, 𝑧 ∈ Ω0,

where for 𝑧 ∈ C \Σ𝑅, as 𝑛 →∞, we have

(5.20) 𝑅(𝑧;𝑛) =
(

1+ 𝑂 (𝜌−2𝑛)
1+|𝑧 | 𝑅1,12(𝑧;𝑛) + 𝑂 (𝜌−3𝑛)

1+|𝑧 |
𝑅1,21(𝑧;𝑛) + 𝑂 (𝜌−3𝑛)

1+|𝑧 | 1+ 𝑂 (𝜌−2𝑛)
1+|𝑧 |

)
.

5.2. Proof of Theorem 1.2 using the Riemann-Hilbert approach. For the inverse of a Toeplitz
matrix 𝑇𝑛 [𝜙] = {𝜙 𝑗−𝑘 }𝑛−1

𝑗 ,𝑘=0, we have

(5.21)
(
𝑇−1
𝑛 [𝜙]

)
𝑗 ,𝑘

= 𝛿 𝑗𝑘 + 〈R(𝝓)
𝒏 [𝑧𝑘], 𝑧 𝑗〉, 0 ≤ 𝑗 , 𝑘 ≤ 𝑛−1,

where 𝛿 𝑗𝑘 is the Kronecker delta function,

(5.22) 〈 𝑓 (𝑧), 𝑔(𝑧)〉 =
∫
T

𝑓 (𝑧)𝑔(𝑧) d𝑧

2𝜋i𝑧
,
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and

(5.23) R
(𝝓)
𝒏 : 𝑓 (𝑧) ↦→

∫
T

R
(𝜙)
𝑛 (𝑧,𝑤) 𝑓 (𝑤)d𝑤

is the Resolvent operator with the kernel

(5.24) R
(𝜙)
𝑛 (𝑧,𝑤) = 𝑋

(𝜙)
11 (𝑧)𝑋 (𝜙)

21 (𝑤) − 𝑋
(𝜙)
11 (𝑤)𝑋 (𝜙)

21 (𝑧)
𝑧−𝑤

𝜙(𝑤) −1
2𝜋i𝑤𝑛

,

where 𝑋
(𝜙)
11 (𝑧) ≡ 𝑋

(𝜙)
11 (𝑧;𝑛) and 𝑋

(𝜙)
12 (𝑧) ≡ 𝑋

(𝜙)
12 (𝑧;𝑛) are the entries of the solution to the RH-X1

through RH-X3. In terms of the associated biorthogonal polynomials, in view of (2.6), we can
write

(5.25) R
(𝜙)
𝑛 (𝑧,𝑤) =

√
𝐷𝑛−1 [𝜙]𝐷𝑛+1 [𝜙]

𝐷𝑛 [𝜙]
𝑄𝑛 (𝑤)𝑄∗

𝑛−1(𝑧) −𝑄𝑛 (𝑧)𝑄∗
𝑛−1(𝑤)

𝑧−𝑤

𝜙(𝑤) −1
2𝜋i𝑤𝑛

,

where we have used the standard notation
𝑃∗𝑛 (𝑧) := 𝑧𝑛𝑃𝑛 (𝑧−1)

for a polynomial 𝑃𝑛 (𝑧) of degree 𝑛.

Let �𝑥 = (𝑥0, 𝑥1, · · · , 𝑥𝑁−1)𝑇 and �𝜓 = (𝜓𝑁−1,𝜓𝑁−2, · · · ,𝜓0)𝑇 . Applying the Cramer’s rule to the
linear system 𝑇𝑛 [𝜙] �𝑥 = �𝜓 gives

𝑥𝑁−1 =

det
������

𝜙0 𝜙−1 · · · 𝜙−𝑁+2 𝜓𝑁−1
𝜙1 𝜙0 · · · 𝜙−𝑁+3 𝜓𝑁−2
...

... · · · ...
...

𝜙𝑁−1 𝜙𝑁−2 · · · 𝜙1 𝜓0

������
𝐷𝑁 [𝜙]

=

det
������

𝜙0 𝜙1 · · · 𝜙𝑁−2 𝜓𝑁−1
𝜙−1 𝜙0 · · · 𝜙𝑁−3 𝜓𝑁−2

...
... · · · ...

...
𝜙1−𝑁 𝜙2−𝑁 · · · 𝜙−1 𝜓0

������
𝐷𝑁 [𝜙] .

Comparing this with (1.1) we observe that

(5.26) 𝐷𝐵
𝑁 [𝜙;𝜓] = 𝐷𝑁 [𝜙]𝑥𝑁−1

In view of (??), (5.21), and (5.26) we have

𝐹𝑁 [𝜙;𝜓] ≡ 𝑥𝑁−1 =
𝑁−1∑
ℓ=0

(
𝑇−1
𝑁 [𝜙]

)
𝑁−1,ℓ

𝜓𝑁−1−ℓ =
𝑁−1∑
ℓ=0

(
𝛿𝑁−1,ℓ +

〈
R

(𝝓̃)
𝑵 [𝑧ℓ], 𝑧𝑁−1

〉)
𝜓𝑁−1−ℓ .

Thus

(5.27) 𝐹𝑁 [𝜙;𝜓] = 𝜓0 +
𝑁−1∑
ℓ=0

〈
R

(𝝓̃)
𝑵 [𝑧ℓ], 𝑧𝑁−1

〉
𝜓𝑁−1−ℓ

From (5.23) and (5.24) we have

I𝑁 :=
𝑁−1∑
ℓ=0

〈
R

(𝝓̃)
𝑵 [𝑧ℓ], 𝑧𝑁−1

〉
𝜓𝑁−1−ℓ

𝑁−1∑
ℓ=0

⎧⎪⎪⎨⎪⎪⎩
∫
T

���
∫
T

𝑋
( 𝜙̃)
11 (𝑧)𝑋 ( 𝜙̃)

21 (𝑤) − 𝑋
( 𝜙̃)
11 (𝑤)𝑋 ( 𝜙̃)

21 (𝑧)
𝑧−𝑤

𝜙(𝑤) −1
2𝜋i𝑤𝑁

𝑤ℓd𝑤
��� 𝑧−𝑁

d𝑧

2𝜋i

⎫⎪⎪⎬⎪⎪⎭𝜓𝑁−1−ℓ .

(5.28)

Note that

(5.29)
𝑁−1∑
ℓ=0

𝑤ℓ−𝑁𝜓𝑁−1−ℓ =
1
𝑤

𝑁−1∑
𝑘=0

𝑤−𝑘𝜓𝑘 =
1
𝑤

𝜓𝑖

(
1
𝑤

)
+O

(
𝑒−𝑐0𝑁

)
,
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where 𝑐0 is some positive constant and

(5.30) 𝜓(𝑧) =
∞∑
𝑘=0

𝜓𝑘 𝑧𝑘 +
∞∑
𝑘=1

𝜓−𝑘 𝑧−𝑘 ≡ 𝜓𝑖 (𝑧) +𝜓𝑜 (𝑧).

Therefore

(5.31) I𝑁 �
∫
T

∫
T

𝑋
( 𝜙̃)
11 (𝑧)𝑋 ( 𝜙̃)

21 (𝑤) − 𝑋
( 𝜙̃)
11 (𝑤)𝑋 ( 𝜙̃)

21 (𝑧)
𝑧−𝑤

𝜙(𝑤) −1
2𝜋i𝑤

𝜓𝑖

(
1
𝑤

)
𝑧−𝑁

d𝑤d𝑧

2𝜋i

Let

D(𝑧) := exp
[

1
2𝜋i

∫
T

ln(𝜙(𝜏))
𝜏− 𝑧

d𝜏

]
.

One can easily check that

(5.32) D(𝑧) = 𝛼(0)
𝛼̃(𝑧) ,

where 𝛼 is the Szegő function corresponding to the symbol 𝜙, given by (5.9). For D we have

(5.33) D+(𝑧) =D−(𝑧)𝜙(𝑧), 𝑧 ∈ T.

Recall from (5.16), (5.19), and (5.20) that

(5.34) 𝑋
( 𝜙̃)
11 (𝑧) �D+(𝑧)𝑧𝑁 𝜙−1(𝑧), and 𝑋

( 𝜙̃)
11 (𝑧) � −D−1

+ (𝑧).
Therefore

I𝑁 �
∫
T

∫
T

−D−1+ (𝑤)D+(𝑧)𝑧𝑁 𝜙−1(𝑧) +D−1+ (𝑧)D+(𝑤)𝑤𝑁 𝜙−1(𝑤)
𝑧−𝑤

𝜙(𝑤) −1
2𝜋i𝑤

𝜓𝑖

(
1
𝑤

)
𝑧−𝑁

d𝑤d𝑧

2𝜋i

=
∫
T

∫
T

−D−1+ (𝑤)D−(𝑧) +D−1− (𝑧)D+(𝑤)𝜙−1(𝑧)𝜙−1(𝑤) (𝑤/𝑧)𝑁
𝑧−𝑤

𝜙(𝑤) −1
2𝜋i𝑤

𝜓𝑖

(
1
𝑤

)
d𝑤d𝑧

2𝜋i

(5.35)

Now we deform the contour of integration for variables 𝑤 and 𝑧 respectively to the contours T+
and T− respectively, where T+ is a circle with radius less than one in the domain of analyticity of
𝜙 and 𝜓, and T− is a circle with radius more than one in the domain of analyticity of 𝜙 and 𝜓. So
we have

I𝑁 �
∫
T−

∫
T+

−D−1(𝑤)D(𝑧) +D−1(𝑧)D(𝑤)𝜙−1(𝑧)𝜙−1(𝑤) (𝑤/𝑧)𝑁
𝑧−𝑤

𝜙(𝑤) −1
2𝜋i𝑤

𝜓𝑖

(
1
𝑤

)
d𝑤d𝑧

2𝜋i

�
∫
T−

∫
T+

−D−1(𝑤)D(𝑧)
𝑧−𝑤

𝜙(𝑤) −1
(2𝜋i)2𝑤

𝜓𝑖

(
1
𝑤

)
d𝑤d𝑧

= −
∫
T−

∫
T+
D−1(𝑤)D(𝑧)

∞∑
𝑘=0

(
𝑤

𝑧

) 𝑘
𝜙(𝑤) −1
(2𝜋i)2𝑤𝑧

𝜓𝑖

(
1
𝑤

)
d𝑤d𝑧

= −
∞∑
𝑘=0

[∫
T+
D−1(𝑤)𝑤𝑘 𝜙(𝑤) −1

2𝜋i𝑤
𝜓𝑖

(
1
𝑤

)
d𝑤

] [∫
T−

D(𝑧)𝑧−𝑘 d𝑧

2𝜋i𝑧

]

(5.36)
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Note that ∫
T−

D(𝑧)𝑧−𝑘 d𝑧

2𝜋i𝑧
=
∫
T

D−(𝑧)𝑧−𝑘 d𝑧

2𝜋i𝑧
=
∫
T

D−(𝑧−1)𝑧𝑘 d𝑧

2𝜋i𝑧
=
∫
T

D̃+(𝑧)𝑧𝑘 d𝑧

2𝜋i𝑧

=
∫
T+
D̃(𝑧)𝑧𝑘 d𝑧

2𝜋i𝑧
=
∫
T+

���D̃(0) +
∞∑
𝑗=1

𝑐 𝑗 𝑧
𝑗��� 𝑧𝑘

d𝑧

2𝜋i𝑧

= D̃(0)
∫
T+

𝑧𝑘
d𝑧

2𝜋i𝑧
= D̃(0)𝛿𝑘0 = 𝛿𝑘0.

(5.37)

Thus,

I𝑁 � −
∫
T+
D−1(𝑤) (𝜙(𝑤) −1)𝜓𝑖

(
1
𝑤

)
d𝑤

2𝜋i𝑤

= −
∫
T

D−1
+ (𝑤) (𝜙(𝑤) −1)𝜓𝑖

(
1
𝑤

)
d𝑤

2𝜋i𝑤

= −
∫
T

(
D−1
− (𝑤) −D−1

+ (𝑤)
)
𝜓𝑖

(
1
𝑤

)
d𝑤

2𝜋i𝑤

(5.38)

Note that ∫
T

D−1
− (𝑤)𝜓𝑖

(
1
𝑤

)
d𝑤

2𝜋i𝑤
=
∫
T

D−1
− (𝑤−1)𝜓𝑖 (𝑤) d𝑤

2𝜋i𝑤
=∫

T

𝛼+(𝑤)
𝛼(0) 𝜓𝑖 (𝑤) d𝑤

2𝜋i𝑤
=
∫
T+

𝛼(𝑤)
𝛼(0) 𝜓𝑖 (𝑤) d𝑤

2𝜋i𝑤
= 𝜓0.

Therefore

I𝑁 � −𝜓0 +
∫
T

D−1
+ (𝑤)𝜓𝑖

(
1
𝑤

)
d𝑤

2𝜋i𝑤
= −𝜓0 +

∫
T

D−1
+ (𝑤)

(
𝜓

(
1
𝑤

)
−𝜓𝑜

(
1
𝑤

))
d𝑤

2𝜋i𝑤
(5.39)

Note that 𝜓𝑜 (1/𝑤) is an analytic function inside the unit circle with 𝜓𝑜 (1/𝑤) = 𝑂 (𝑤) as 𝑤 → 0,
and thus ∫

T

D−1
+ (𝑤)𝜓𝑜

(
1
𝑤

)
d𝑤

2𝜋i𝑤
= 0.

Hence, using this and (5.33) we have

I𝑁 � −𝜓0 +
∫
T

𝜓̃(𝑤)
D−(𝑤)𝜙(𝑤)

d𝑤

2𝜋i𝑤
= −𝜓0 +

∫
T

𝜓(𝑤)
D−(𝑤−1)𝜙(𝑤)

d𝑤

2𝜋i𝑤
(5.40)

Note that
D−(𝑤−1) = D̃+(𝑤) = 𝛼(0)

𝛼+(𝑤) , and D+(𝑤−1) = D̃−(𝑤) = 𝛼(0)
𝛼−(𝑤) .

Therefore

I𝑁 � −𝜓0 +
∫
T

𝛼+(𝑤)𝜓(𝑤)
𝛼(0)𝜙(𝑤)

d𝑤

2𝜋i𝑤
= −𝜓0 + 1

𝛼(0)
∫
T

𝛼−(𝑤)𝜓(𝑤) d𝑤

2𝜋i𝑤
(5.41)

Comparing the Wiener-Hopf factorization 𝜙(𝑤) = 𝜙−(𝑤)𝜙+(𝑤) with the scalar Riemann-Hilbert
jump condition 𝛼+(𝑤) = 𝛼−(𝑤)𝜙(𝑤), we can identify 𝛼− with 𝜙−1− and 𝛼+ with 𝜙+, and thus

(5.42) I𝑁 � −𝜓0 + [𝜙
−1− 𝜓]0
[𝜙+]0 .

Finally recalling (5.27), and taking the limit 𝑁 →∞we arrive at the conclusion of proposition 3.2:
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(5.43) 𝐹 [𝜙;𝜓] = [𝜙−1− 𝜓]0
[𝜙+]0 .

5.3. Derivation of the symbol pair corresponding to the next-to-diagonal Ising correlations.
As it is shown in [AYP87], the next-to-diagonal two point correlation function is given by the
following bordered Toeplitz determinant,

(5.44) 〈𝜎0,0𝜎𝑁−1,𝑁 〉 = det
������

𝐴0 · · · 𝐴𝑁−2 𝐵𝑁−1
𝐴−1 · · · 𝐴𝑁−3 𝐵𝑁−2

...
...

...
...

𝐴1−𝑁 · · · 𝐴−1 𝐵0

������
, 𝑁 > 1,

where in the notations of [AYP87],

(5.45) 𝐴𝑛 =
1

2𝜋

∫ 𝜋

−𝜋
𝑒−𝑖𝑛𝜃Φ(𝜃)𝑑𝜃,

(5.46) Φ(𝜃) = 𝑆− 𝑆′∗𝑒−𝑖 𝜃√
Ω(𝜃)

,

(5.47) Ω(𝜃) = 𝑆2 + (𝑆′∗)2−2𝑆𝑆′∗ cos(𝜃),

(5.48) 𝐵𝑛 =
1

2𝜋

∫ 𝜋

−𝜋
𝑒−𝑖𝑛𝜃Ψ(𝜃)𝑑𝜃,

and

(5.49) Ψ(𝜃) = 1√
Ω(𝜃)

(
𝑆𝐶 ′∗ − 𝐶𝑆′∗ (𝑆𝑆′∗ + 𝑒−𝑖 𝜃 )

𝐶𝐶 ′∗ +
√
Ω(𝜃)

)
.

The quantities 𝐶, 𝑆,𝐶 ′∗, and 𝑆′∗ are determined by the physical parameters of the model according
to the equations,

(5.50) 𝐶 := cosh(2𝐾), 𝑆 := sinh(2𝐾), 𝐶 ′∗ :=
cosh(2𝐾 ′)
sinh(2𝐾 ′) , 𝑆′∗ :=

1
sinh(2𝐾 ′) ,

where

(5.51) 𝐾 =
𝐽ℎ

𝑘𝐵𝑇
, and 𝐾 ′ =

𝐽𝑣
𝑘𝐵𝑇

.

Using (1.25) and (1.26) we can write (5.46), (5.47) and (5.49) in our notations as:

(5.52) Ω(𝜃) = 𝑘2 +1−2𝑘 cos(𝜃)
𝑆2
𝑣

,

(5.53) Φ(𝜃) = 𝑘 − 𝑒−𝑖 𝜃√
𝑘2 +1−2𝑘 cos(𝜃)

,

and

(5.54) Ψ(𝜃) = 1√
𝑘2 +1−2𝑘 cos(𝜃)

(
𝑆ℎ𝐶𝑣 − 𝐶ℎ (𝑆ℎ + 𝑆𝑣𝑒−𝑖 𝜃 )

𝐶ℎ𝐶𝑣 +
√

𝑘2 +1−2𝑘 cos(𝜃)

)
.
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Recall that 𝜙 is given by (1.28) is

(5.55) 𝜙(𝑧) =
√

1− 𝑘−1𝑧−1

1− 𝑘−1𝑧
=

𝑘 − 𝑧−1√
𝑘2 +1− 𝑘 (𝑧+ 𝑧−1)

.

This together with (5.53) immediately yields

(5.56) Φ(𝜃) = 𝜙(𝑒𝑖 𝜃 ).
Next we want to show that Ψ(𝜃) = 𝜓(𝑒𝑖 𝜃 ). To that end note that
(5.57)

1
𝐶ℎ𝐶𝑣 +

√
𝑘2 +1− 𝑘 (𝑧+ 𝑧−1)

=
𝐶ℎ𝐶𝑣 −

√
𝑘2 +1− 𝑘 (𝑧+ 𝑧−1)

𝑆2
ℎ + 𝑆2

𝑣 + 𝑘 (𝑧+ 𝑧−1) =
𝐶ℎ𝐶𝑣 𝑧− 𝑧

√
𝑘2 +1− 𝑘 (𝑧+ 𝑧−1)

𝑘 (𝑧− 𝑐∗)(𝑧− 𝑐−1∗ )
,

where

(5.58) 𝑐∗ := −𝑆ℎ
𝑆𝑣

.

Therefore, as 𝑆ℎ + 𝑆𝑣 𝑧−1 = 𝑆ℎ𝑧−1(𝑧− 𝑐−1∗ ),

(5.59)
𝑆ℎ + 𝑆𝑣 𝑧−1

𝐶ℎ𝐶𝑣 +
√

𝑘2 +1− 𝑘 (𝑧+ 𝑧−1)
=

𝑆ℎ𝐶ℎ𝐶𝑣

𝑘 (𝑧− 𝑐∗) −
𝑆ℎ
√

𝑘2 +1− 𝑘 (𝑧+ 𝑧−1)
𝑘 (𝑧− 𝑐∗) .

Combining this with (5.54) gives

Ψ(𝜃) = 𝑆ℎ𝐶𝑣√
𝑘2 +1− 𝑘 (𝑧+ 𝑧−1)

− 𝑆ℎ𝐶2
ℎ𝐶𝑣

𝑘 (𝑧− 𝑐∗)
√

𝑘2 +1− 𝑘 (𝑧+ 𝑧−1)
+ 𝑆ℎ𝐶ℎ

𝑘 (𝑧− 𝑐∗)

=
𝑆ℎ𝐶𝑣√

𝑘2 +1− 𝑘 (𝑧+ 𝑧−1)

[
1− 𝐶2

ℎ

𝑘 (𝑧− 𝑐∗)

]
+ 𝑆ℎ𝐶ℎ

𝑘 (𝑧− 𝑐∗) , 𝑧 = 𝑒𝑖 𝜃 .

and the term in the brackets becomes (𝑘𝑧−1)/(𝑘 (𝑧−𝑐∗)). Now, using (5.55) we obtain the formula
for 𝜓 given by (1.31):

(5.60) Ψ(𝜃) = 𝐶𝑣 𝑧𝜙(𝑧) +𝐶ℎ

𝑆𝑣 (𝑧− 𝑐∗) ≡ 𝜓(𝑧).

Let us also remark that

(5.61) 𝜓(𝑧) = 𝐶𝑣

𝑆𝑣
· 𝑧𝜙(𝑧) − 𝑐∗𝜙(𝑐∗)

𝑧− 𝑐∗
,

which can be seen from a straightforward computations as well. To summarize, we have shown
that

(5.62) 〈𝜎0,0𝜎𝑁−1,𝑁 〉 = 𝐷𝑁 [𝜙;𝜓] .
with 𝜙 and 𝜓 given by (1.28) and (1.31).

5.4. Auxiliary results.

Lemma 5.1. Let |𝑎 | < 1 and 𝜔 be complex parameters. Then
∞∑

𝑛=𝑁

𝑎𝑛𝑛𝜔 (1+𝑂 (𝑛−1)) = 𝑎𝑁 𝑁𝜔

1− 𝑎
(1+𝑂 (𝑁−1)), 𝑁 →∞.
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Proof. We basically can apply summation by parts,

(1− 𝑎)
∞∑

𝑛=𝑁

𝑎𝑛𝑛𝜔 (1+𝑂 (𝑛−1)) =
∞∑

𝑛=𝑁

𝑎𝑛𝑛𝜔 (1+𝑂 (𝑛−1)) −
∞∑

𝑛=𝑁

𝑎𝑛+1𝑛𝜔 (1+𝑂 (𝑛−1))

= 𝑎𝑁 𝑁𝜔 (1+𝑂 (𝑁−1))+
∞∑

𝑛=𝑁

𝑎𝑛+1
(
(𝑛+1)𝜔 (1+𝑂 (𝑛−1)) −𝑛𝜔 (1+𝑂 (𝑛−1))

)
= 𝑎𝑁 𝑁𝜔 (1+𝑂 (𝑁−1)) +

∞∑
𝑛=𝑁

𝑎𝑛+1𝑂 (𝑛𝜔−1).

The last term we can split into
2𝑁−1∑
𝑛=𝑁

𝑎𝑛𝑂 (𝑛𝜔−1) = 𝑂 (𝑎𝑁 𝑁𝜔−1),
∞∑

𝑛=2𝑁
𝑎𝑛𝑂 (𝑛𝜔−1) =

∞∑
𝑛=2𝑁

𝑂 (𝑎𝑛𝑞𝑛) = 𝑂 ((𝑎𝑞)2𝑁 ).

In the latter we choose 1 < 𝑞 < |𝑎 |−1, which guarantees that 𝑛𝜔−1 =𝑂 (𝑞𝑛) and (𝑎𝑞)2𝑁 =𝑂 (𝑁𝜔−1).
�

Lemma 5.2. Let |𝑎 | < 1 and 𝜔 be complex parameters. Then
∞∑
𝑛=0

(𝑛+1) (𝑛+𝑁)𝜔𝑎𝑛+𝑁 =
𝑎𝑁 𝑁𝜔

(1− 𝑎)2 (1+𝑂 (𝑁−1)), 𝑁 →∞.

Proof. After dividing by 𝑎𝑁 , the difference between the series and the leading term is
∞∑
𝑛=0

(𝑛+1) (𝑛+𝑁)𝜔𝑎𝑛 − 𝑁𝜔

(1− 𝑎)2 =
∞∑
𝑛=0

(𝑛+1)𝑎𝑛
(
(𝑛+𝑁)𝜔 −𝑁𝜔

)
=

∞∑
𝑛=0

(𝑛+1)2𝑎𝑛𝑂 (max{(𝑛+𝑁)Re(𝜔)−1, 𝑁Re(𝜔)−1}) = 𝑂 (𝑁Re(𝜔)−1).

This implies the estimate. �

Lemma 5.3. Let 𝜁 (𝑧) be a function holomorphic on {𝑧 ∈ C : 1− 𝜀 < |𝑧 | < 𝑏 + 𝜀} \ [𝑏, 𝑏 + 𝜀) with
𝑏 > 1, 𝜀 > 0. Further assume that in some neighborhood of [𝑏, 𝑏 + 𝜀) this function is of the form

𝜁 (𝑧) = (𝑏− 𝑧)𝜔𝜉 (𝑧) + 𝜁0(𝑧)
with 𝜉 (𝑧) and 𝜁0(𝑧) being holomorphic, and Re(𝜔) > −1. Then the Fourier coefficients of 𝜁 have
the asymptotics

𝜁𝑛 =
( 𝜉 (𝑏)
Γ(−𝜔) +𝑂 (𝑛−1)

)
𝑛−𝜔−1𝑏−𝑛+𝜔 𝑛 →+∞.

Proof. In the formula for the Fourier coefficients we deform the contour into a slightly bigger circle
with radius 𝑏(1+ 𝛿𝑛) (where 𝛿𝑛 = 𝛿𝑛−1/2 and 0 < 𝛿 < 𝜀/𝑏 is fixed) and a line segments along the
branch cut [𝑏, 𝑏 + 𝑏𝛿𝑛] on both sides,

𝜁𝑛 =
1

2𝜋𝑖

∫
|𝑧 |=1

𝜁 (𝑧)𝑧−𝑛−1 𝑑𝑧

=
1

2𝜋𝑖

∫
|𝑧 |=𝑏 (1+𝛿𝑛)

𝜁 (𝑧)𝑧−𝑛−1 𝑑𝑧+ 1
2𝜋𝑖

∫ 𝑏 (1+𝛿𝑛)

𝑏
((𝑏− 𝑡 − 𝑖0)𝜔 − (𝑏− 𝑡 + 𝑖0)𝜔) 𝜉 (𝑡)𝑡−𝑛−1 𝑑𝑡.
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The first integral being 𝑂 (𝛿−|Re(𝜔) |
𝑛 𝑏−𝑛 (1+ 𝛿𝑛)−𝑛) = 𝑂 (𝑛 |Re(𝜔) |/2𝑏−𝑛𝑒−𝑛

1/2 𝛿) is negligible. The
second one becomes

−sin(𝜔𝜋)
𝜋

∫ 𝑏 (1+𝛿𝑛)

𝑏
(𝑡 − 𝑏)𝜔𝜉 (𝑡)𝑡−𝑛−1 𝑑𝑡 = −sin(𝜔𝜋)

𝜋
𝑏𝜔−𝑛

∫ 𝛿𝑛

0
𝜉 (𝑏 + 𝑏𝑠)𝑠𝜔 (1+ 𝑠)−𝑛−1 𝑑𝑠.

Therein, the integral (without the factors in front of it) equals∫ 𝛿𝑛

0
(𝜉 (𝑏) +𝑂 (𝑠))𝑠𝜔𝑒−(𝑛+1) (𝑠+𝑂 (𝑠2)) 𝑑𝑠

= 𝑛−𝜔−1
∫ 𝑛1/2 𝛿

0

(
𝜉 (𝑏) +𝑂 ( 𝑢𝑛 )

)
𝑢𝜔𝑒−𝑢+𝑂 ( 𝑢+𝑢2

𝑛 ) 𝑑𝑢

= 𝜉 (𝑏)𝑛−𝜔−1
∫ 𝑛1/2 𝛿

0
𝑢𝜔𝑒−𝑢 𝑑𝑢 +𝑛−𝜔−2

∫ 𝑛1/2 𝛿

0
𝑢𝜔𝑂 (𝑢 +𝑢2)𝑒−𝑢 𝑑𝑢

= 𝑛−𝜔−1
(
𝜉 (𝑏)Γ(1+𝜔) +𝑂 (𝑛−1)

)
.

Combining all this give the asymptotic formula. �
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