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Abstract: 24 
Monitoring wastewater samples at building-level resolution screens large populations for SARS-25 
CoV-2, prioritizing testing and isolation efforts. Here we perform untargeted metatranscriptomics 26 
on virally-enriched wastewater samples from 10 locations on the UC San Diego campus, 27 
demonstrating that resulting bacterial taxonomic and functional profiles discriminate SARS-CoV-28 
2 status even without direct detection of viral transcripts. Our proof-of-principle reveals 29 
emergent threats through changes in the human microbiome, suggesting new approaches for 30 
untargeted wastewater-based epidemiology. 31 
 32 
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Body: 37 
Our past work deploying a highly spatially resolved, high-throughput wastewater monitoring 38 
system on a college campus (1) enabled collection and qPCR characterization of thousands of 39 
wastewater samples, identifying 85% of SARS-CoV-2 clinical cases (2), and also enabling 40 
genomic surveillance for emerging variants of concern by complete genome sequencing from 41 
extracted RNA (3). Wastewater-based epidemiology (WBE) provides additional advantages in 42 
that it is (i) non-invasive, (ii) cost-effective relative to individual clinical testing, (iii) does not 43 
require individuals to consent to clinical testing that is often reported to public health agencies, 44 
and (iv) can therefore benefit under-served populations (4-6). However, this WBE scheme is 45 
currently limited to pathogen detection and characterization through targeted qPCR and 46 
sequencing, and cannot detect agents of disease for which a screening test has not been 47 
developed.  48 
 49 
Here we describe an untargeted community/population level disease monitoring strategy using 50 
metatranscriptomics, which leverages correlations in observable changes in wastewater 51 
microbiomes with human microbiome disruptions associated with disease state. SARS-CoV-2, 52 
like many pathogens, has been reported to cause systematic disruptions in the human gut 53 
microbiome (7-9), which is the principal human microbial input to wastewater (10). We 54 
employed this strategy to test whether information in the wastewater metatranscriptome could 55 
discriminate SARS-CoV-2 positive from negative wastewater samples (assessed by qPCR) as a 56 
proof-of-principle. 57 
 58 
We present a high-throughput wastewater metatranscriptomics pipeline that lowers the 59 
accessibility to an otherwise cost-prohibitive sequencing method at scale through 60 
miniaturization, parallelization, and automation (11-12). (Sup. Fig. S1) Using this pipeline, we 61 
generated metatranscriptomics sequencing data for 313 virally-enriched (VE) wastewater 62 
samples collected from manholes servicing different residential buildings across a college 63 
campus, including isolation housing buildings (Manhole IDs: C6M095-C6M098), from Nov 23 64 
2020 to January 7 2021. Sequencing reads were demultiplexed, trimmed, and quality filtered 65 
before being deposited in Qiita (13), where ribosomal reads were removed using SortMeRNA 66 
(14) using default processing recommendations; non-ribosomal reads were aligned to genomes 67 
or genes using Woltka (15) resulting in two different feature tables: taxonomic and functional 68 
(details in Materials and Methods).  69 
 70 
Samples obtained from each manhole have a distinct microbiome signature, likely a composite 71 
of the individual microbiomes of the people contributing to each wastewater stream. Beta-72 
diversity analyses of both metatranscriptomic feature tables (taxonomic and functional) 73 
measured by Aitchison distance and robust Aitchison principal component analysis (RPCA) (16) 74 
reveal that wastewater samples cluster primarily by manhole source (manhole_id) (Fig. 1A), 75 
with a stronger signal than SARS-CoV-2 detection status (Fig. 1B)(Sup. Table ST1). 76 
Wastewater samples separate according to SARS-CoV-2 status based on these bacterial 77 
profiles alone, but this signal is obscured in the RPCA ordination by the stronger manhole_id 78 
clustering effect. Taxonomic features provide better separation by both SARS-CoV-2 status and 79 
manhole_id than functional features (Supp. Table ST1), suggesting that microbial community 80 
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membership rather than current functional gene expression is more strongly affected by 81 
infection. 82 
 83 
To test whether the SARS-CoV-2 detection status-dependent microbiome signal can be 84 
identified even against the stronger manhole_id clustering effect, we selected a subset of 85 
samples for paired comparisons between SARS-CoV-2 positive and negative samples within 86 
specific manholes across one week (selection process detailed in Materials and Methods). This 87 
subset (squares, n=28 Fig. 1A-B) was analyzed by dimensionality reduction with compositional 88 
tensor factorization (CTF) (17), which accounts for the intra-manhole sample correlation. The 89 
resulting ordination shows that samples of the microbiome in any specific manhole undergo a 90 
pronounced shift along one of the main principal components (PC1 for taxonomic, PC2 for 91 
functional), when the subject population it services becomes infected with SARS-CoV-2 (Fig. 92 
1C-D). Consequently, taxonomic features (genomes) that drive segregation along PC2 (Fig. 93 
1E), or functional features (genes) along PC1 (Fig. 1F), can be positively or negatively 94 
correlated with SARS-CoV-2 detection. Log-ratio analysis of the top and bottom ranked 95 
taxonomic features as numerator and denominator respectively show a significant difference in 96 
the means of the SARS-CoV-2 detection sample groupings (Fig. 1G). Similarly, a log-ratio of six 97 
functional features positively and negatively ranked along PC2 also shows a significant 98 
difference in the means of the SARS-CoV-2 detection sample groupings (Fig. 1H) (see 99 
Materials and Methods).  100 
 101 
The predictive power for wastewater SARS-CoV-2 status discrimination of the features selected 102 
through CTF analysis was validated via log-ratios and random forest machine learning (RFML) 103 
classification, using the remaining samples in this study (circles, Fig. 1A-B) plus an additional 104 
validation set (total n=285, positive=179, negative=106, Sup. Table ST2). Log-ratios of selected 105 
taxonomic and functional features showed a significant difference by SARS-CoV-2 detection 106 
status across the validation sampleset, with function (t-test, T=-3.9 p=0.0001) (Fig. 2A) showing 107 
a smaller effect than taxonomy (t-test, T=-8.8, p=1.3e-16) (Fig. 2B). Type II ANOVA of both log-108 
ratios shows that differences in sample means are larger across SARS-CoV-2 status groups 109 
than manhole_id or sample_plate confounders (Sup. Fig. S2). The performances of the RFML 110 
classification models were evaluated through average area under the curve of precision-recall 111 
(AUC-PR) tests of stratified 5-fold cross validation classification tasks distinguishing samples’ 112 
SARS-CoV-2 status, manhole_id, and sample_plate. Lower dimensional feature tables from 113 
feature selection show comparable SARS-CoV-2 status classification performance as full 114 
feature tables for both data modalities (taxonomic and functional) (Fig. 2C), but reduced 115 
classification performance when distinguishing confounding manhole_id (Fig. 2D) or 116 
sample_plate (Sup. Fig. S3). 117 
 118 
Our results demonstrate that wastewater metatranscriptomes can reveal traces of rare 119 
pathogens through alterations of the microbiome of the afflicted individuals, which are eventually 120 
reflected in the wastewater microbiome. When effects are confounded by site/population, 121 
leveraging generalizable log-ratios separating positive/negative groupings across sites reduces 122 
overfitting. This proof-of-principle justifies further research on high-throughput wastewater 123 
metatranscriptome biomarker discovery for WBE; the untargeted nature of this data modality 124 
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makes it flexible enough to monitor multiple diseases at the population scale (through traditional 125 
direct detection of known sequences from pathogens, but also by leveraging microbiome 126 
perturbations as a proxy), and is superior to metagenomic monitoring because it encompasses 127 
all living organisms and viruses(18). One of the limitations of the proposed strategy is the 128 
narrow stability of the samples’ RNA molecules. However, our methods don’t claim to 129 
comprehensively characterize the wastewater metatranscriptome and instead focus on the fact 130 
that changes in the observable bacterial metatranscriptome are sufficient to discriminate the 131 
wastewater’s viral status, with SARS-CoV-2 detection status serving as a relevant case study. 132 
Although key features of the bacterial metatranscriptome discriminate SARS-CoV-2 detection, 133 
further work is needed to determine how broadly this phenomenon generalizes to other 134 
pathogens. Lastly, our methodology allows automated high-throughput metatranscriptomics 135 
processing, applicable to many biospecimen types, and could have considerable impact beyond 136 
WBE.  137 
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Figures: (223 words, excluding supplementary figs) 199 

 200 
Figure 1: Microbial community composition changes can be observed in SARS-CoV-2 201 
positive vs. negative wastewater samples. Robust principal component analysis (RPCA) of 202 
wastewater samples colored by SARS-CoV-2 detection status (A) and manhole source (B). A 203 
subset of samples (squares) was selected for pairwise comparisons of SARS-CoV-2 positive 204 
and negative wastewater microbiomes within a manhole and a week using compositional tensor 205 
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factorization (CTF) on taxonomic (genomes, C) and functional (genes, D) features. Results 206 
shown in the dashed box are exclusive to this subset of samples. Important bacterial genomes 207 
(E) and genes (F) identified from CTF show significant differences between positive and 208 
negative sample groupings by log-ratios of top and bottom ranked features respectively (G-H). 209 
Error bar on the x-axis of the ranked features plot represents the standard error in the PC2 loadings 210 
across strains within the same species. The log-ratio boxplot elements are defined as follows: the 211 
centerline is the median of the distribution, box limits represent upper and lower quartiles, 212 
whiskers span 1.5x of the interquartile range, and points represent all data points. 213 
 214 

 215 
Figure 2: Key bacterial features identified in small paired subset show significant 216 
differences in larger validation dataset and provide RFML the ability to accurately predict 217 
SARS-CoV-2 status but not manhole source in wastewater. Log-ratios of important features, 218 
taxonomic (A) and functional (B), identified by CTF significantly separate wastewater samples 219 
by SARS-CoV-2 detection status in the remaining samples not included in the CTF subset. The 220 
log-ratio boxplot elements are defined as follows: the centerline is the median of the distribution, 221 
box limits represent upper and lower quartiles, whiskers span 1.5x of the interquartile range, 222 
and points represent all data points. C) Random forest machine learning 5-fold cross-validation 223 
shows high precision-recall of samples with positive SARS-CoV-2 detection status from 224 
taxonomic and functional tables with all features or a few selected features. D) Feature selection 225 
reduces Manhole ID classification performance while retaining SARS-CoV-2 discrimination, 226 
suggesting a reduction of overfitting. The translucent precision-recall curve traces of each 227 
feature table reflect all 5-fold cross-validation results while the bold trace represents the 228 
average. 229 
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 230 
 231 

Supplementary Figure S1: High Throughput pipeline for Virally Enriched (VE) wastewater 232 
metatranscriptomics. Flow diagram of metatranscriptomic data generation from VE 233 
wastewater samples, from auto-sampler to sequencer. Key robotic instrumentation and tools are 234 
depicted alongside each step. The flow diagram is color coded according to the different stages 235 
of sample processing. The high throughput pipeline increases sample processing parallelization 236 
through incremental compression of samples from 24-well plates to 384-well plates. Significant 237 
per sample cost savings are achieved through miniaturization of molecular reactions in 384-well 238 
format, for which specialized low volume liquid handling infrastructure is needed.  239 
 240 
 241 
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 242 
 243 
 244 
 245 
 246 
 247 

   PERMANOVA: F-stat. PERMANOVA: p-value 

across-
all 
 

taxonomic 
 

manhole_id 23.9008 0.0002 

time_encoded 0.8869 0.7321 

sars_cov_2_status 8.8129 0.0002 

sample_plate 21.2303 0.0002 

functional 
 

manhole_id 11.9542 0.0002 

time_encoded 0.9860 0.5055 

sars_cov_2_status 4.0365 0.0180 

sample_plate 9.1532 0.0002 

 248 
Supplementary Table ST1: PERMANOVA results on RPCA distance matrix show stronger 249 
manhole of origin effect than SARS-CoV-2 status. An analysis of variance of the Aitchison 250 
distance between wastewater samples shows that manhole of origin has the strongest effect 251 
size, followed by sample processing plate, and SARS-CoV-2 status. Samples from different 252 
manholes were not uniformly distributed across sample processing plates, confounding the 253 
effect sizes for both independent variables. 254 
  255 
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 256 

sample_plate manhole_id sars_cov_2_status samples 

Sample_Plate_1 

C1M031 

negative 37 

positive 6 

C3M042 negative 38 

C6M021 

negative 7 

positive 5 

Sample_Plate_2 

C6M021 

negative 5 

positive 16 

C6M025 

negative 10 

positive 19 

C6M095 positive 15 

Sample_Plate_3 

C6M033 

negative 2 

positive 7 

C6M095 positive 22 

C6M097 positive 22 

C6M098 

negative 3 

positive 12 

Sample_Plate_4 

C6M033 positive 14 

C7M017 

negative 1 

positive 29 

C7M024 

negative 3 

positive 12 

    

  TOTAL 285 

 257 
Supplemental Table ST2: Description of validation dataset for Random Forest Machine 258 
Learning (RFML). Distribution of samples across different groupings relevant to the observed 259 
variance in the unsupervised learning analysis. Sample plate 1 was added, as an additional 260 
validation set, to the RFML analyses. The validation dataset excludes the subset of samples 261 
selected for the CTF analysis (n=28).  262 
 263 
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 264 
Supplementary Figure S2: Analysis of variance (ANOVA) of both log-ratios show that 265 
SARS-CoV-2 status has the strongest effect size. Boxplots with overlaid swarmplots show 266 
the distribution of selected log-ratios for both taxonomic and functional feature tables, grouped 267 
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by relevant sample metadata. The log-ratio boxplot elements are defined as follows: the 268 
centerline is the median of the distribution, box limits represent upper and lower quartiles, 269 
whiskers span 1.5x of the interquartile range, and points represent all data points. Results from 270 
ANOVA (type II) analyses are shown as tables for each feature modality. Statistical tests results 271 
(Student’s t-test) between SARS-CoV-2 status subgroupings (negative=blue / positive=red) in 272 
manhole_id and sample_plate plots are also shown, evidencing that the log-ratios generalize 273 
and perform better at discriminating SARS-CoV-2 status across all samples than within specific 274 
manholes. 275 

276 
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 277 
Supplementary Figure S3: Random forest machine learning 5-fold cross-validation shows a 278 
decrease in precision-recall of samples’ processing plate (sample plate) from feature selection 279 
of taxonomic and functional feature tables in comparison to full feature tables, suggesting a 280 
reduction of overfitting on a possible technical confounder. The translucent precision-recall 281 
curve traces of each feature table reflect all 5-fold cross-validation results while the bold trace 282 
represents the average. 283 
 284 
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