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Bacterial metatranscriptomes in wastewater can differentiate virally
infected human populations
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Abstract:

Monitoring wastewater samples at building-level resolution screens large populations for SARS-
CoV-2, prioritizing testing and isolation efforts. Here we perform untargeted metatranscriptomics
on virally-enriched wastewater samples from 10 locations on the UC San Diego campus,
demonstrating that resulting bacterial taxonomic and functional profiles discriminate SARS-CoV-
2 status even without direct detection of viral transcripts. Our proof-of-principle reveals
emergent threats through changes in the human microbiome, suggesting new approaches for
untargeted wastewater-based epidemiology.
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Body:

Our past work deploying a highly spatially resolved, high-throughput wastewater monitoring
system on a college campus (1) enabled collection and qPCR characterization of thousands of
wastewater samples, identifying 85% of SARS-CoV-2 clinical cases (2), and also enabling
genomic surveillance for emerging variants of concern by complete genome sequencing from
extracted RNA (3). Wastewater-based epidemiology (WBE) provides additional advantages in
that it is (i) non-invasive, (ii) cost-effective relative to individual clinical testing, (iii) does not
require individuals to consent to clinical testing that is often reported to public health agencies,
and (iv) can therefore benefit under-served populations (4-6). However, this WBE scheme is
currently limited to pathogen detection and characterization through targeted qPCR and
sequencing, and cannot detect agents of disease for which a screening test has not been
developed.

Here we describe an untargeted community/population level disease monitoring strategy using
metatranscriptomics, which leverages correlations in observable changes in wastewater
microbiomes with human microbiome disruptions associated with disease state. SARS-CoV-2,
like many pathogens, has been reported to cause systematic disruptions in the human gut
microbiome (7-9), which is the principal human microbial input to wastewater (10). We
employed this strategy to test whether information in the wastewater metatranscriptome could
discriminate SARS-CoV-2 positive from negative wastewater samples (assessed by gPCR) as a
proof-of-principle.

We present a high-throughput wastewater metatranscriptomics pipeline that lowers the
accessibility to an otherwise cost-prohibitive sequencing method at scale through
miniaturization, parallelization, and automation (11-12). (Sup. Fig. S1) Using this pipeline, we
generated metatranscriptomics sequencing data for 313 virally-enriched (VE) wastewater
samples collected from manholes servicing different residential buildings across a college
campus, including isolation housing buildings (Manhole IDs: C6M095-C6M098), from Nov 23
2020 to January 7 2021. Sequencing reads were demultiplexed, trimmed, and quality filtered
before being deposited in Qiita (13), where ribosomal reads were removed using SortMeRNA
(14) using default processing recommendations; non-ribosomal reads were aligned to genomes
or genes using Woltka (15) resulting in two different feature tables: taxonomic and functional
(details in Materials and Methods).

Samples obtained from each manhole have a distinct microbiome signature, likely a composite
of the individual microbiomes of the people contributing to each wastewater stream. Beta-
diversity analyses of both metatranscriptomic feature tables (taxonomic and functional)
measured by Aitchison distance and robust Aitchison principal component analysis (RPCA) (16)
reveal that wastewater samples cluster primarily by manhole source (manhole_id) (Fig. 1A),
with a stronger signal than SARS-CoV-2 detection status (Fig. 1B)(Sup. Table ST1).
Wastewater samples separate according to SARS-CoV-2 status based on these bacterial
profiles alone, but this signal is obscured in the RPCA ordination by the stronger manhole_.id
clustering effect. Taxonomic features provide better separation by both SARS-CoV-2 status and
manhole_id than functional features (Supp. Table ST1), suggesting that microbial community
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81  membership rather than current functional gene expression is more strongly affected by
82 infection.

83

84 To test whether the SARS-CoV-2 detection status-dependent microbiome signal can be
85 identified even against the stronger manhole_id clustering effect, we selected a subset of
86  samples for paired comparisons between SARS-CoV-2 positive and negative samples within
87  specific manholes across one week (selection process detailed in Materials and Methods). This
88  subset (squares, n=28 Fig. 1A-B) was analyzed by dimensionality reduction with compositional
89  tensor factorization (CTF) (17), which accounts for the intra-manhole sample correlation. The
90 resulting ordination shows that samples of the microbiome in any specific manhole undergo a
91 pronounced shift along one of the main principal components (PC1 for taxonomic, PC2 for
92 functional), when the subject population it services becomes infected with SARS-CoV-2 (Fig.
93 1C-D). Consequently, taxonomic features (genomes) that drive segregation along PC2 (Fig.
94  1E), or functional features (genes) along PC1 (Fig. 1F), can be positively or negatively
95 correlated with SARS-CoV-2 detection. Log-ratio analysis of the top and bottom ranked
96 taxonomic features as numerator and denominator respectively show a significant difference in
97  the means of the SARS-CoV-2 detection sample groupings (Fig. 1G). Similarly, a log-ratio of six
98 functional features positively and negatively ranked along PC2 also shows a significant
99 difference in the means of the SARS-CoV-2 detection sample groupings (Fig. 1H) (see
100  Materials and Methods).

101

102  The predictive power for wastewater SARS-CoV-2 status discrimination of the features selected
103  through CTF analysis was validated via log-ratios and random forest machine learning (RFML)
104 classification, using the remaining samples in this study (circles, Fig. 1A-B) plus an additional
105 validation set (total n=285, positive=179, negative=106, Sup. Table ST2). Log-ratios of selected
106 taxonomic and functional features showed a significant difference by SARS-CoV-2 detection
107  status across the validation sampleset, with function (t-test, 7=-3.9 p=0.0001) (Fig. 2A) showing
108 a smaller effect than taxonomy (t-test, T=-8.8, p=1.3e-16) (Fig. 2B). Type Il ANOVA of both log-
109 ratios shows that differences in sample means are larger across SARS-CoV-2 status groups
110  than manhole_id or sample_plate confounders (Sup. Fig. S2). The performances of the RFML
111 classification models were evaluated through average area under the curve of precision-recall
112  (AUC-PR) tests of stratified 5-fold cross validation classification tasks distinguishing samples’
113  SARS-CoV-2 status, manhole_id, and sample_plate. Lower dimensional feature tables from
114  feature selection show comparable SARS-CoV-2 status classification performance as full
115  feature tables for both data modalities (taxonomic and functional) (Fig. 2C), but reduced
116  classification performance when distinguishing confounding manhole_id (Fig. 2D) or
117  sample_plate (Sup. Fig. S3).

118

119  Our results demonstrate that wastewater metatranscriptomes can reveal traces of rare
120  pathogens through alterations of the microbiome of the afflicted individuals, which are eventually
121 reflected in the wastewater microbiome. When effects are confounded by site/population,
122  leveraging generalizable log-ratios separating positive/negative groupings across sites reduces
123  overfitting. This proof-of-principle justifies further research on high-throughput wastewater
124  metatranscriptome biomarker discovery for WBE; the untargeted nature of this data modality
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125 makes it flexible enough to monitor multiple diseases at the population scale (through traditional
126  direct detection of known sequences from pathogens, but also by leveraging microbiome
127  perturbations as a proxy), and is superior to metagenomic monitoring because it encompasses
128  all living organisms and viruses(18). One of the limitations of the proposed strategy is the
129  narrow stability of the samples’ RNA molecules. However, our methods don’'t claim to
130 comprehensively characterize the wastewater metatranscriptome and instead focus on the fact
131  that changes in the observable bacterial metatranscriptome are sufficient to discriminate the
132  wastewater’s viral status, with SARS-CoV-2 detection status serving as a relevant case study.
133  Although key features of the bacterial metatranscriptome discriminate SARS-CoV-2 detection,
134  further work is needed to determine how broadly this phenomenon generalizes to other
135 pathogens. Lastly, our methodology allows automated high-throughput metatranscriptomics
136  processing, applicable to many biospecimen types, and could have considerable impact beyond
137 WBE.
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Figure 1: Microbial community composition changes can be observed in SARS-CoV-2
positive vs. negative wastewater samples. Robust principal component analysis (RPCA) of
wastewater samples colored by SARS-CoV-2 detection status (A) and manhole source (B). A
subset of samples (squares) was selected for pairwise comparisons of SARS-CoV-2 positive
and negative wastewater microbiomes within a manhole and a week using compositional tensor
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206 factorization (CTF) on taxonomic (genomes, C) and functional (genes, D) features. Results
207  shown in the dashed box are exclusive to this subset of samples. Important bacterial genomes
208 (E) and genes (F) identified from CTF show significant differences between positive and
209 negative sample groupings by log-ratios of top and bottom ranked features respectively (G-H).
210  Error bar on the x-axis of the ranked features plot represents the standard error in the PC2 loadings
211 across strains within the same species. The log-ratio boxplot elements are defined as follows: the
212  centerline is the median of the distribution, box limits represent upper and lower quartiles,
213  whiskers span 1.5x of the interquartile range, and points represent all data points.
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216  Figure 2: Key bacterial features identified in small paired subset show significant
217  differences in larger validation dataset and provide RFML the ability to accurately predict
218 SARS-CoV-2 status but not manhole source in wastewater. Log-ratios of important features,
219  taxonomic (A) and functional (B), identified by CTF significantly separate wastewater samples
220 by SARS-CoV-2 detection status in the remaining samples not included in the CTF subset. The
221  log-ratio boxplot elements are defined as follows: the centerline is the median of the distribution,
222  box limits represent upper and lower quartiles, whiskers span 1.5x of the interquartile range,
223  and points represent all data points. C) Random forest machine learning 5-fold cross-validation
224  shows high precision-recall of samples with positive SARS-CoV-2 detection status from
225 taxonomic and functional tables with all features or a few selected features. D) Feature selection
226 reduces Manhole ID classification performance while retaining SARS-CoV-2 discrimination,
227  suggesting a reduction of overfitting. The translucent precision-recall curve traces of each
228 feature table reflect all 5-fold cross-validation results while the bold trace represents the
229 average.
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232  Supplementary Figure S1: High Throughput pipeline for Virally Enriched (VE) wastewater
233 metatranscriptomics. Flow diagram of metatranscriptomic data generation from VE
234  wastewater samples, from auto-sampler to sequencer. Key robotic instrumentation and tools are
235 depicted alongside each step. The flow diagram is color coded according to the different stages
236  of sample processing. The high throughput pipeline increases sample processing parallelization
237  through incremental compression of samples from 24-well plates to 384-well plates. Significant
238 per sample cost savings are achieved through miniaturization of molecular reactions in 384-well
239 format, for which specialized low volume liquid handling infrastructure is needed.

240

241
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242
243
244
245
246
247
PERMANOVA: F-stat. PERMANOVA: p-value
manhole_id 23.9008 0.0002
. |time_encoded 0.8869 0.7321
taxonomic
sars_cov_2_status 8.8129 0.0002
across- sample_plate 21.2303 0.0002
all
manhole_id 11.9542 0.0002
functional time_encoded 0.9860 0.5055
sars_cov_2_status 4.0365 0.0180
sample_plate 9.1532 0.0002
248

249  Supplementary Table ST1: PERMANOVA results on RPCA distance matrix show stronger
250 manhole of origin effect than SARS-CoV-2 status. An analysis of variance of the Aitchison
251 distance between wastewater samples shows that manhole of origin has the strongest effect
252  size, followed by sample processing plate, and SARS-CoV-2 status. Samples from different
253 manholes were not uniformly distributed across sample processing plates, confounding the
254  effect sizes for both independent variables.

255
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sample_plate manhole_id |sars_cov_2_status samples
negative 37
CiMo3a
positive 6
Sample_Plate_1 C3Mo42 negative 38
negative 7
C6Mo21
positive 5
negative 5
C6Mo21
positive 16
Sample_Plate_2 negative 10
C6Moz2s
positive 19
C6Mogs positive 15
negative 2
C6Mo33
positive 7
C6Mogs positive 22
Sample_Plate_3
C6Mog7y positive 22
negative 3
C6Mog8
positive 12
C6Mo33 positive 14
negative 1
C7Mo17
Sample_Plate_4 positive 29
negative 3
C7Mo24
positive 12
TOTAL | 285

Supplemental Table ST2: Description of validation dataset for Random Forest Machine
Learning (RFML). Distribution of samples across different groupings relevant to the observed
variance in the unsupervised learning analysis. Sample plate 1 was added, as an additional
validation set, to the RFML analyses. The validation dataset excludes the subset of samples
selected for the CTF analysis (n=28).
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265 Supplementary Figure S2: Analysis of variance (ANOVA) of both log-ratios show that
266 SARS-CoV-2 status has the strongest effect size. Boxplots with overlaid swarmplots show
267  the distribution of selected log-ratios for both taxonomic and functional feature tables, grouped
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by relevant sample metadata. The log-ratio boxplot elements are defined as follows: the
centerline is the median of the distribution, box limits represent upper and lower quartiles,
whiskers span 1.5x of the interquartile range, and points represent all data points. Results from
ANOVA (type II) analyses are shown as tables for each feature modality. Statistical tests results
(Student’s t-test) between SARS-CoV-2 status subgroupings (negative=blue / positive=red) in
manhole_id and sample_plate plots are also shown, evidencing that the log-ratios generalize
and perform better at discriminating SARS-CoV-2 status across all samples than within specific
manholes.


https://doi.org/10.1101/2022.02.23.481658
http://creativecommons.org/licenses/by-nc-nd/4.0/

277
278

279
280
281
282
283
284

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.23.481658; this version posted February 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Sample plate

All bacterial genomes 0.90 +£0.03
All bacterial functional genes 0.84 = 0.03
Trichococcus flocculiformis &

sulfuritalea hydrogenivorans 0.57 +0.03

Functional EC#(s): 4.6.1.12,3.6.1.1, 2.3.1.51
2.7.7.99,3.61.7,...4.1.2.22 0.67 £0.02

0.0 0.2 0.4 0.6 0.8 1.0
recall

Supplementary Figure S$3: Random forest machine learning 5-fold cross-validation shows a
decrease in precision-recall of samples’ processing plate (sample plate) from feature selection
of taxonomic and functional feature tables in comparison to full feature tables, suggesting a
reduction of overfitting on a possible technical confounder. The translucent precision-recall
curve traces of each feature table reflect all 5-fold cross-validation results while the bold trace
represents the average.
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