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Abstract

Additive manufacturing (AM) has yielded major innovations in the electronics, biomedical and energy domains. One of the AM techniques which
has witnessed widespread use is the inkjet 3D printing (IJP). The IJP process fabricates parts by depositing colloidal liquid droplets on substrates.
Despite its advantages, variations in input process parameters and fluid properties can have a profound impact on the print quality. This paper
aims to address this issue by presenting a novel vision-based approach for in-situ monitoring of droplet formation. Further, a machine learning
model was used to study the relationship between droplet attributes and droplet modes. A drop watcher camera was used to capture a sequence
of videos obtained from different combinations of voltage and frequency. Custom source code was developed using python libraries to capture
variations in droplet attributes (droplet size, velocity, aspect ratio, and presence of satellites) and their impact on the droplet modes (normal,
satellite, and no-droplet) using computer vision. A backpropagation neural network mode (BPNN) was applied, with the droplet features as inputs,
to classify output droplet modes. The BPNN classified droplet modes with 90% (high) accuracy. This research forms the basis for future

development of digital twin model of inkjet 3D printing towards predictive analysis and process optimization.
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1. Introduction

Additive Manufacturing (AM), popularly known as 3D
Printing, is the “process of joining materials to make objects
from 3D model data usually layer-by-layer, as opposed to
subtractive manufacturing technologies such as traditional
manufacturing”. AM has been hailed as the third industrial
revolution which enables the fabrication of complex freeform
designs. AM is a creative technology which has the capability
to revolutionize the global manufacturing industry [1].
According to American Society for Testing and Materials
(ASTM), there are different types of additive manufacturing
processes, including photo-polymerization process, extrusion-
based systems, powder bed fusion processes, material jetting
processes, binder jetting processes, beam deposition processes,
sheet lamination processes and direct write technologies [2].

2351-9789 © 2021 The Authors. Published by Elsevier B.V.

AM has numerous benefits over the traditional and subtractive
manufacturing methods. Some of the important benefits include
complexity, efficiency, flexibility, high degree of design
freedom, reduced assembly and predictable production [3]. The
materials that can be used for fabricating 3D structures include
metallic, polymers, ceramics, and composites. Initially, AM
known as rapid prototyping was developed for building
prototypes only, With the advancement of the technologies and
materials AM has broadened its applications into a wide range
of fields such as biomedical, aerospace, electronics,
automobile, construction, food industry, consumer, jewelry,
military, and manufacturing [4-9].

Inkjet 3D printing (IJP) [10] is one of the most popular AM
techniques that deposits a sequence of sub-millimeter (micro
scale) liquid droplets with very high precision and accuracy.
The deposition can be customized to build both 2D and 3D
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printed artifacts. Of all the AM processes, inkjet printing has
emerged at the frontline due to the following desirable features:
low cost, high pattern precision and resolution, scalability, and
non-contact approach [11-14]. IJP consists of two techniques
which include continuous inkjet and drop-on-demand inkjet
[15-17]. In continuous inkjet technique, drops are produced
continuously, and their paths are varied by the amount of charge
applied. In drop-on-demand ink-jet technique, droplets are
produced as needed (on demand) by applying the voltage only
when a drop is desired. In the IJP process the liquid material is
jetted out from the printer head (carrying an ink-filled cartridge)
in a sequence of micro-droplets via a micrometer-sized nozzle
head which are then solidified on the substrate. The deposited
materials are in the form of chemical solutions and colloidal
dispersions. The major actuation mechanisms of the inkjet
nozzle head include thermal, piezoelectric  and
electrohydrodynamic. The benefits of IJP are compatibility
with elastomers, mask less, reduced manufacturing costs, and
the fabrication steps. The crucial challenges of the inkjet 3D
printing technology in real-life applications are the need for
inspection techniques and robust procedure to quantify and
validate the process repeatability and component
reproducibility. The significant requirements for any printing
process include high throughput and high precision. An in-situ
inspection tool is critical for IJP as minor drifts in process
conditions can lead to large variations on the output part quality.
To ensure the high throughput of the IJP process, in-situ
monitoring and verification of the process parameters at each
printing step is needed. There are numerous available sensing
platforms, but they lack the high precision and throughput
requirements and are quite expensive [18].

Vision-based approaches for in-situ quality assurance of AM
processes can be employed for the enhancement of AM printing
quality. Sensing, imaging and video devices such as cameras,
sensors, and related devices are prominent for the
implementation of in-situ process monitoring [19,20]. An
efficacious real-time monitoring system plays a crucial role in
quality assurance of the 3D printing process. The reliable
monitoring system enables closed-loop control-based
autonomous 3D printing systems along with the in-process
diagnosis for AM processes. Over the past decades, numerous
research studies have been conducted to establish advanced
sensing technologies for the in-situ sensing and vision
monitoring of 3D printing processes. Tapia and Elwany [21]
reported a broad and thorough review of research efforts
performed in the field of process monitoring and control for the
improvement of part quality in metal-based AM process. Spears
and Gold [22] conducted a progress review of process
monitoring technology within the domain of Selective Laser
Melting (SLM) additive manufacturing to establish a real-time
quality assurance, and closed-loop feedback control of the SLM
additive machine. Everton et al. [20] reported a state-of-the-art
comprehensive review of various in-situ inspection and closed-
loop control techniques employed in the assessment of AM
printing quality. They reviewed literature that utilized
pyrometry, the use of infrared cameras, visual and other
camera/video-based methods for in-situ process monitoring.
Qin et al. [23] demonstrated a real-time imaging
characterization technique to create a real-time monitor system

for printing detection. Their research also provided a
foundation for an automated fabrication approach for E-jet
printing. Other methods such as thermal imaging [24], high
speed imaging [25], acoustic sensing, and inline coherent
imaging [26] have been proposed as alternatives for in-situ
monitoring of AM processes. Artificial intelligence (Al) and
machine learning (ML) approaches were also utilized by
researchers for process monitoring of different AM techniques.
A comprehensive review of various artificial intelligence
methods employed throughout AM are presented in [27] and
[28]. A machine learning approach was utilized by Caggiano et
al. [29] to develop on-line fault recognition through the use of
automatic image processing in timely identifying material
defects which occur as a result of process non-conformities in
SLM of metal powders. Their research entailed the retrieval of
in-process images captured during the layer-by-layer SLM
process. These images were then examined via a bi-stream
Deep Convolutional Neural Network-based model, and the
recognition of SLM defective condition-related pattern was
accomplished by automated image feature learning and feature
fusion. Wu and Xu [30] utilized predictive models for
predicting droplet velocity and volume using ensemble
learning. Lin et al. [31] evaluated the two aspects of droplets
profiles; droplet shape and temperature, using radial basis
function neural networks. Huan et al. illustrated a deep learning
method for unsupervised learning of droplet flow patterns. A
deep recurrent neural network (DRNN) was used to execute the
unsupervised learning portion of their research.

This research work focuses on the IJP process. Within this
area, particular attention was devoted to in-situ monitoring of
droplet formation since it poses one of the most vital
components related to the quality and reliability of the IJP
process. Ink droplet properties such as velocity, size, aspect
ratio, and presence of satellites, are among the critical factors
associated with droplet formation and behavior. Therefore, a
crucial understanding of these parameters was investigated to
create parts with geometric and operational integrity [32]. The
main contributions of this paper include: 1) To apply a vision-
based approach for in-situ monitoring of droplet formation. 2)
Utilize machine learning models in studying the relationship
between droplet parameters and droplet modes.

2. System overview

The FUJIFILM Dimatix material printer DMP 2850 with
piezoelectric jetting system was employed in this research
work. It has a resolution of 5 um and repeatability of +25 um
as shown in Fig. 1. The cartridge consists of a jetting module
with 16 piezoelectric jetting nozzles, and a fluid module with a
built-in fluid bag. The mechanism of an individual
piezoelectric inkjet print nozzle is shown in Fig. 2. The nozzles
can deliver a drop volume of 1 pL and 10 pL. For this research
work, Dimatix fluid material was used for jetting the droplets
for in-situ monitoring of the inkjet process. Drop watcher
camera system was used to monitor the jetting behavior of each
nozzle on-the-fly by modifying the waveform, voltage, and
frequency setting.
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Fig. 1. (a) Dimatix-2850 inkjet printer; (b) printer cartridge assembly [33].
3. Methodology

The methodology was performed as two tasks which include
(1) image acquisition and processing and (2) droplet
classification using a neural network algorithm. For the real-
time monitoring of inkjet printing, the following subtasks were
performed:

1. Construction of matrix for equipment parameter
settings;

2. Capturing of data;

3. Preprocessing of captured data;

4.  Measuring of attributes of droplets from captured

5. Classification of droplets;
6.  Training of machine learning algorithm;
7. Testing and validating of machine learning algorithm.
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Fig. 2. Schematic diagram of a piezoelectric inkjet nozzle mechanism [33].

3.1. Construction of matrix for obtaining multiple droplet
videos for feature extraction

The parameters of the DMP-2850 that were tuned for jetting
the droplets were voltage and frequency. To capture different
inkjet 3D printing scenarios, multiple videos at different
voltage and frequency but at a constant waveform was recorded
according to the constructed matrix in Table 1.

Table 1. Possible combinations of levels for voltage and frequency.

Sequence  Voltage  Frequency
No. ) (kHz)

1 15 5.6

2 25 5.6

3 30 5.6

4 15 7

5 25 7

6 30

3.2. Capturing of data

The drop watcher camera of the DMP-2850 was used to
capture movies for a constant waveform and by setting
frequency and voltage according to each experimental
combination set as given in Table 1. For each movie, out of the
sixteen piezoelectric jetting nozzles only a maximum of seven
were activated to fit the camera view and reduce the volume
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and size of data generated. The drop watcher generates 15
frames in a second and has a resolution of 720 pixels by 480
pixels by 3 channels.

3.3. Preprocessing of captured data

The videos obtained from the drop watcher camera contain
noises which are from various sources. Some of those noises
are from the cleaning mechanism during cleaning procedures
of spitting, purging or blotting are carried out. Sometimes, ink
droplets from nozzles that do not fire well could result in a
bigger clogging of ink or splashes. As a result, we do not want
to confuse a satellite for a noise in the system. Thus, one of the
reasons we performed data preprocessing before analyzing,
extracting, and measuring some droplet attributes. So, the
concept of background subtraction was deployed to obtain our
foreground (that is, ink droplets from each nozzle). To be
consistent, a unique background frame was used for each
movie as obtained according to session 3.2. The background
frame was manually selected from the movie with the aid of a
custom-written Python code and chiefly using OpenCV and
NumPy libraries. A good background should have minimum or
no noise and no initial ink droplet to provide only the region of
interest when background subtraction is performed.

Our background subtraction was based on the principle of
matrix addition and subtraction, for frames in the video, the
foreground frames were obtained by subtracting the
background frame from the considered frames.
Mathematically, Equation 1 shows the relationship:

Fgd frame; = frame; - Bgd_frame (1)

where Bgd frame is the background frame, Fgd frame; is
the frame showing the considered ink droplet of the ith frame
frame;is ith frame in the movie

After background subtraction, to have a better and clearer
foreground frame that will aid analysis, further preprocessing
was carried out using OpenCV functions (blur, thresh, and
dilate).

3.4. Measuring attributes of droplets from captured data

After removing the noises from the images in each frame,
we proceeded into capturing four main droplet attributes which
include droplet size, aspect ratio, droplet velocity, and presence
of satellites. For clarity, our chosen droplet parameters are
described and explained as given below and illustrated in Fig.
3:

Droplet size: Droplet size is captured in this work with the
droplet area. Minimum droplet size was set to 10 pixels to
capture satellites if any.

Aspect ratio (AR): It is the ratio of droplet width to its height
as AR = width/height. Four categories are used for our AR,
round when 4R is approximately 1, mid elongation when 4R is
greater than 0.5, high elongation when AR is less than 0.5, and
none when AR is 0.

Droplet velocity: In this work, velocity is captured by
measuring the distance of a droplet between two successive
frames and the dividing by the time between the two frames.

The video play rate is 15 fps (frames per second), and it is not
the actual camera shutter speed. The camera of the Dimatix
does not support kHz image capturing. The Dimatix software
actually combines the images of different droplets under the
same parameter settings and uses 15 fps (1s) in the video to
depict the life of a droplet. As a result, the actual time between
two consecutive frames will be 1/(Voltage frequency*15)
seconds. The distance of the droplet movement during this time
can be measured in pixels as shown in Fig. 3(c). This time and
distance information can then yield the droplet velocity.

Satellite droplets: In this case, we are only interested to see
if there are any lingering droplets after the main droplet. One
of the properties assigned to satellites in this work is its area
which is much smaller than its main droplet. With this, we can
measure if there is a satellite or no-satellite.
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Fig. 3. (a) The droplet size is captured by the area of the droplet within the
bounding box. The droplet below the bounding box is a mirrored or reflected
droplet which they both have the same characteristics; (b) The dimension in
red gives the width and green gives the height which are both used to calculate
aspect ratio; (c) Two consecutive frames with the vertical distance between
them are used for velocity calculation; (d) A main droplet and a satellite.

3.5. Classification of droplets

One of our tasks is to monitor the process in real-time. From
the droplet attributes in session 3.4, each droplet from a nozzle
in a frame is labelled according to its class. This led to
supervised learning. In this work, three droplet modes were
considered, these include normal, no-droplet, and satellite
modes. In a piezoelectric actuator as in our printer case,
frequency and voltage amplitude are some of the parameters
that determine the type and nature of droplet formed as clearly
explained in the works of [18] and [34].

Normal Droplet Mode: This is the desirable condition when
a nozzle of the inkjet printer releases a fine drop of ink with
consistent and uniform droplet size, having speeds and aspect
ratios within + or - a given range, and with no satellites. Normal
ink droplet is expected at a minimum voltage and frequency for
the actuator to release fine ink droplet.

No-Droplet Mode: In this mode, one or more nozzles are not
injecting out ink or the droplet details are not captured. So,
droplet dimensions are not available. This could be because of
insufficient voltage or frequency to cause a droplet release from
the reservoir or one or more nozzles are clogged or not
functional. This will result in voids in the printed parts.
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Satellite Mode: This is a condition when there is at least one
satellite droplet from a nozzle. Satellite droplet is an elongated
part of the main droplet that are formed by a thread-like ink
which are usually much smaller than the main droplet in size.
This is usually caused by low ink particle concentrations or
local trapping of particles despite having minimum voltage and
frequency. The satellite droplets are usually not desirable as
they will reduce the printing resolution.

Main .~
Droplet

Satellite

Fig. 4. (a) Normal droplet mode with width, height, and aspect ratio for six
nozzles, (b) satellite droplet mode, and (c) satellite droplet mode with other
features such as main droplets, satellites and nozzle point, no-droplet mode
(blocked nozzle), and noises.

After data preprocessing, four nominal input features with
their respective coded values were generated. From the code
run on different movies as performed on each experiment, data
were collected and presented in Table 2 to train and test the
chosen machine learning algorithm. Fig. 4(a) and 4(b) show
normal and satellite droplet modes displaying droplet width,

height, and aspect ratio for all six nozzles activated with main
droplets depicted above and mirrored droplets below for each
nozzle point. Fig. 4(c) shows a view where satellite mode and
no-droplet mode coexist for different nozzles. Raw datasets for
different droplet attributes were extracted using the above-
developed code. To capture reality, some of the noises are
shown as depicted in Fig. 4(a), 4(b), and 4(c). It is worth to note
that, these noises are contaminants caused during the inkjet 3D
printer self-cleaning process.

Table 2. Input features and associated coded values.

Aspect Ratio Size Velocity Satellite Class
(Code 1) (Code 2) (Code 3) (Code 4)
Round (1) Normal (1) Normal (1) No (1) Normal (1)
Mid- Low (2) Low (2) One (2) Satellite (2)
elongation (2)
High- High (3) High (3) Two or No-droplet
elongation (3) more (3) 3)
None (4) None (4) None (4) N/A N/A

3.6. BPNN-based machine learning for IJP process
monitoring

The tradeoff between functionality and simplicity weighed
heavily in the selection of the BPNN as the choice for the neural
network algorithm. The BPNN was selected for use due to its;
quick and easy implementation and being less complicated than
other neural networks. In addition, the literature reveals that
BPNN has previously been applied to the inkjet printing
process [32,35]. A back propagation artificial neural network
was developed to serve as a predictive model for different [JP
droplet patterns. Typically, a normal droplet pattern is
preferred in the IJP printing process, however, complications
arise from determining the features or properties which
influence droplet patterns. Therefore, the goal of the neural
network model is to collect various droplet properties and
assess the combination which gives a particular droplet mode.
Neural network was employed to demonstrate the relationship
between droplet properties and patterns. Back propagation
neural network (BPNN) algorithm was used based on its high
accuracy for predictive and classification purposes. The BPNN
structure is made up of three layers: input layer, the hidden
layer, and output layer. Its operation entails the computation of
difference in error between the network’s output and desired
output which is then propagated back through the network.
Error minimization is performed during the back-propagation
process and involves the recurrent adjustment of weights
within the network’s intermediary layers. The required number
of hidden units and layers are dependent on problem
complexity.
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For this research, a sigmoid and SoftMax activation function
were used in the hidden and output layer, respectively, as
shown in Fig. 5. The BPNN was constructed with four (4) input
features: satellite droplets, droplet aspect ratio, droplet size, and
droplet velocity and three (3) output patterns: normal, satellite,
and no-droplet. As suggested by Chattopadhyay [36], and
based on a sensitivity analysis for the number of hidden nodes,
n=3 hidden nodes were used as this number gave the optimal
tuning without overfitting the dataset. Source code in
MATLAB R2017a was used to develop the BPNN model and
evaluate its performance. The Levenberg-Marquardt (LM)
algorithm was used to train the neural network. 95 sets of data
were collected from some selected frames in different cycles
associated with different video movies based on the three
droplet modes to train and test the neural network model. The
data consisted of input features and output patterns which were
assigned numerical nomenclature (code) as seen in Table 3, and
split into two sets: the training dataset, comprising of about
70% of the entire dataset and test dataset containing the
remaining 30%.

Table 3. Snapshot of dataset.

Data Aspect Size Velocity  Satellite Class
Index Ratio Output
1 1 1 1 1 1
2 4 4 4 1 3
3 3 1 2 2 2
4 2 2 2 3 2
5 3 2 3 3 2
6 2 2 1 2 2
7 3 2 1 3 2
8 1 1 1 2 2

To address the initial paucity of training data, k - fold cross-
validation method [37] was used. The dataset was randomly
split into k equal-size subsamples. The k-1 subsamples were
used as a training dataset and the leftover single subsample was
used for validating the model. The cross-validation process was
then repeated for k times, with each of the k subsamples used
exactly once as the validation data. A 4-fold cross-validation
was performed, which enabled the algorithm to evaluate 4

folders (each group holds 25% of the training dataset to be
tested 4 times) in random to conduct the analysis. Thus, the
total datasets for the algorithm were augmented to N = 380 data
points. Each fold was also applied to prevent the overfitting of
the problem. For testing, 30% of the entire dataset was used to
test the accuracy of the BPNN models.

4. Results and Discussion

The prediction performance of the BPNN was assessed
based on the accurate classification of the test data set. A
confusion matrix was applied to detect the prediction accuracy
of the network. Fig. 6. illustrates the confusion matrix for the
BPNN which had an overall accuracy of 90%. The
nomenclature droplet patterns in the confusion matrix are as
follows: Normal: 1, Satellite: 2 and No-droplet: 3. Out of the
30 test data, 3 were classified incorrectly and the remaining 27
were classified correctly. In addition to the confusion matrix,
the target output from test data was plotted against the network
output to demonstrate the efficacy of the network as seen in
Fig. 7. Overall, considering the limited data, the BPNN gave
highly accurate results and demonstrated the efficacy of neural
network application on in-situ droplet monitoring. It is believed
that the accuracy can be higher with more available data.
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5. Conclusion and Future Work

In this research work, we demonstrated a novel in-situ
process monitoring for inkjet-based 3D printing systems. The
framework utilized in this paper integrates the image
processing technique and machine learning algorithms for
vision-based approach of in-situ monitoring of droplet
formation. A sequence of videos was captured by a drop
watcher camera for different voltage and frequency
combinations. The four attributes (droplet size, aspect ratio,
droplet velocity, presence of satellites) of the droplet were
extracted from the video frames to categorize the behavior of
the droplet (normal, no-droplet, and satellite modes). A
backpropagation artificial neural network (BPNN) was
developed to integrate various droplet properties and assess the
combination which gives a particular droplet mode. The overall
accuracy of the BPNN for classification of the test data set was
around 90% and thus illustrates the efficacy of neural network
application for in-situ droplet monitoring.

This paper presents our ongoing work, which is a
preliminary part of our long-term goal of a digital twin model
of inkjet 3D printing towards process optimization and closed-
loop control. The feasible, simplicity and accuracy of the
BPNN method presented in the paper provides the foundation
for our future advancement. Based on the identification of the
current droplet mode, a closed-loop control method will be
developed in the future by adjusting the key control parameters
(e.g., voltage and frequency) and keeping the droplets in the
desirable mode.
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