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Counting integer points of flow polytopes
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Abstract The Baldoni–Vergne volume and Ehrhart polynomial formulas for flow polytopes are significant in at
least two ways. On one hand, these formulas are in terms of Kostant partition functions, connecting flow polytopes
to this classical vector partition function fundamental in representation theory. On the other hand the Ehrhart
polynomials can be read off from the volume functions of flow polytopes. The latter is remarkable since the
leading term of the Ehrhart polynomial of an integer polytope is its volume! Baldoni and Vergne proved these
formulas via residues. To reveal the geometry of these formulas, the second author and Morales gave a fully
geometric proof for the volume formula and a part generating function proof for the Ehrhart polynomial formula.
The goal of the present paper is to provide a fully geometric proof for the Ehrhart polynomial formula of flow
polytopes.

Keywords Flow polytope · Ehrhart polynomial

1 Introduction

Polytopes are ubiquitous in mathematics. Two immediate questions about any integer polytope P are to compute its
volume and the number of integer points in P and its dilations. The Baldoni–Vergne formulas (Theorem 1) answer
these questions for flow polytopes. This paper is concerned with understanding the aforementioned formulas
geometrically, as their original proof [1] is via residues and only a partial geometric proof is known to date [10].

Flow polytopes are fundamental in combinatorial optimization [2, 13]. Postnikov and Stanley discovered the
connection of volumes of flow polytopes to Kostant partition functions (unpublished; see [1, 9]), inspiring the
work of Baldoni and Vergne [1]. Flow polytopes are also related to Schubert and Grothendieck polynomials [12]
and the space of diagonal harmonics [8, 11].

The connection between flow polytopes and Kostant partition functions is a motivating force of this paper.
While it is abundantly clear from the definition of a flow polytope (given in (1.1) below) that the number of its
integer points is an enumeration of the Kostant partition function, the relation of its volume to the Kostant partition
function is less than obvious. Before we explain the above, we define the Kostant partition function and highlight
its importance.

The Kostant partition function Kn(a) of type An is the number of ways to write the vector a=(a1, . . . ,an+1)∈
Zn+1 as a nonnegative integral combination of the vectors ei−e j for 1 ≤ i < j ≤ n+1, where ei is the i-th standard
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basis vector in Rn+1. It is a special vector partition function introduced by Bertram Kostant in 1958 in order to get
an expression for the multiplicity of a weight of an irreducible representation of a semisimple Lie algebra [6, 7],
now known as the Weyl character formula. Kostant partition functions appear not only in representation theory,
but in algebraic combinatorics, toric geometry and approximation theory, among other areas.

The Kostant partition function is a piecewise polynomial function [14], whose domains of polynomiality are
maximal convex cones in the common refinement of all triangulations of the convex hull of the positive roots [3].
Despite the above description of the domains of polynomiality of the Kostant partition function, enumerating these
domains has remained elusive [3–5]. In this paper we will be concerned with the Kostant partition function and its
generalizations evaluated at vectors a = (a1, . . . ,an+1) ∈ Zn+1, where ai ≥ 0 for all i ∈ [n]. These vectors form the
“nice chamber” [1], which is a distinguished domain of polynomiality of the Kostant partition function.

We now define our main geometric object, the flow polytope, as well as relate it to the generalized Kostant
partition function KG(·) defined below.

Let MG denote the incidence matrix of the graph G on the vertex set [n+ 1]; that is let the columns of MG
be the vectors ei − e j for (i, j) ∈ E(G), i < j, where ei is the i-th standard basis vector in Rn+1. Then, the flow
polytope FG(a) associated to the graph G and the netflow vector a = (a1, . . . ,an+1) ∈ Zn+1 is defined as

FG(a) = { f ∈ R|E(G)|
≥0 : MG f = a}. (1.1)

The flows f given in (1.1) are also referred to as a-flows on the graph G.
The normalized volume of a d-dimensional polytope P ⊂Rn is the volume form vol(·) that assigns a volume

of one to the smallest d-dimensional simplex whose vertices are in the lattice equal to the intersection of Zn with
the affine span of the polytope P. The number of lattice points of the tth dilate of P ⊂ Rn, tP := {(tx1, . . . , txn) |
(x1, . . . ,xn) ∈ P}, is given by the Ehrhart function Ehr(P, t). If P has integral vertices then Ehr(P, t) is a polyno-
mial. The leading coefficient of the Ehrhart polynomial Ehr(P, t) is dim(P)!vol(P).

Note that the number of integer points in FG(a) is exactly the number of ways to write a as a nonnegative
integral combination of the vectors ei − e j for edges (i, j) in G, i < j, that is the generalized Kostant partition
function KG(a). It thus follows that Ehr(FG(a), t) = KG(ta). The classical Kostant partition function Kn(a) cor-
responds to the case of the complete graph Kn+1. Following Baldoni and Vergne [1] for brevity we will simply
refer to the generalized Kostant partition function as the Kostant partition function.

The magic of the Baldoni–Vergne formulas is that for flow polytopes FG(a), their Ehrhart polynomial
Ehr(FG(a), t) = KG(ta) can be deduced from their volume function!

Theorem 1 (Baldoni–Vergne formulas [1, Thm. 38]) Let G be a connected graph on the vertex set [n+1], with
m = |E(G)| edges directed i → j when i < j, with at least one outgoing edge at vertex i for i = 1, . . . ,n, and let
a = (a1, . . . ,an,−∑

n
i=1 ai), ai ∈ Z≥0. Then

volFG(a) = ∑
j

(︃
m−n

j1, . . . , jn

)︃
a j1

1 · · ·a jn
n ·KG ( j1 −outG(1), . . . , jn −outG(n),0) , (1.2)

KG(a) = ∑
j

(︃(︃
a1 − inG(1)

j1

)︃)︃
· · ·

(︃(︃
an − inG(n)

jn

)︃)︃
·KG ( j1 −outG(1), . . . , jn −outG(n),0) , (1.3)

for outG(i) = outdegG(i)− 1 and inG(i) = indegG(i)− 1 where outdegG(i) and indegG(i) denote the outde-
gree and indegree of vertex i in G. Each sum is over weak compositions j = ( j1, j2, . . . , jn) of m− n that are
≥ (outG(1), . . . ,outG(n)) in dominance order (that is ∑

l
k=1 jk ≥ ∑

l
k=1 outG(k) for all l ∈ [n]) and

(︁(︁n
k

)︁)︁
:=

(︁n+k−1
k

)︁
.

The proof provided by Baldoni–Vergne [1] for Theorem 1 relies on residue computations, leaving the combi-
natorial nature of their formulas a mystery. The aim of the authors in [10] was to demystify Theorem 1 by proving
it via polytopal subdivisions of FG(a). They do this by constructing a special subdivision of FG(a) referred to as
the canonical subdivision, which allows for a geometric computation of the volume of FG(a). In order to deduce
(1.3) the generating functions of the Kostant partition functions are also used in [10]. While the use of the afore-
mentioned generating functions in [10] is natural, our goal and result in the present paper is to avoid them and
give a purely geometric proof of (1.3).

Outline of the paper. Section 2 explains subdivisions of flow polytopes, Section 3 provides further polytopal
insights and Section 4 provides a new, completely geometric proof of (1.3). We conclude in Section 5 with general
remarks.
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Fig. 1: Reduction tree with root labeled by the graph K4(3,2,2) := ([0,4],E(K4) ∪
{{(0,1),(0,1),(0,1),(0,2),(0,2),(0,3),(0,3)}}). The notation fi j+ jk stands for the formal sum of edges
fi j + f jk. The vertex of the graph where the reduction is taking place is enlarged. The flow polytopes corre-
sponding to the leaves of the reduction tree dissect the flow polytope corresponding to the root of the tree, see
Lemma 1.

2 Subdividing flow polytopes

The guiding principle beneath subdivisions of polytopes is a simple one: we aim to subdivide polytopes into
smaller ones in hopes of using our understanding of the smaller polytopes to gain understanding of the polytope
we started with. For example, we may be interested in the volume of a polytope P, and one way to calculate
it would be if we could count the top dimensional simplices of a unimodular triangulation of P (provided one
exists). This is exactly what Morales and the second author of this paper accomplish for flow polytopes in order
to prove their volume formula (1.2) geometrically in [10]. However, understanding the top dimensional simplices
of a unimodular triangulation of P is not sufficient for counting the number of integer points of P, since we cannot
simply sum over the top dimensional simplices as we do for volume! This is why getting a geometric proof of
(1.3) requires further insights. The main insight is the realization that we can reinterpret the left hand side of
(1.3) as a volume of a flow polytope (different from FG(a)), and then the right hand side can be obtained by
summing volumes of polytopes in a subdivision of our new flow polytope. This way we do not have the issue
of overcounting integer points on the intersections of the polytopes in a subdivision of FG(a)! More details on
this construction are coming in Section 3. This section is devoted to reviewing and generalizing the subdivision
construction of [10], whose exposition we follow.

The crucial lemma that we are building up to in this section is the Subdivision Lemma, Lemma 1. The following
sequence of definitions are necessary in order to understand the right hand side of (2.1).

A bipartite noncrossing tree is a tree with a distinguished bipartition of vertices into left vertices x1, . . . ,xℓ
and right vertices xℓ+1, . . . ,xℓ+r with no pair of edges (xp,xℓ+q),(xt ,xℓ+u) where p < t and q > u. Denote by
TL,R the set of bipartite noncrossing trees where L and R are the ordered sets (x1, . . . ,xℓ) and (xℓ+1, . . . ,xℓ+r)

respectively. Note that #TL,R =
(︁ℓ+r−2

ℓ−1

)︁
.
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Consider a graph G on the vertex set [n+1] with edges oriented from smaller to larger vertices and an integer
netflow vector a = (a1, . . . ,an,−∑i ai), with ai ≥ 0, i ∈ [n]. Pick an arbitrary vertex i,1 < i < n+ 1, of G as well
as a submultiset Ii of the multiset of incoming edges to i and submultiset Oi of the multiset of outgoing edges
from i. Given an ordering on the sets Ii and Oi and a bipartite noncrossing tree T ∈ TIi∪{i},Oi , where Ii ∪{i}
is ordered according to the order on Ii with i appended as its last element,we describe the construction of new
graphs G(i)

T (Ii,Oi) from G as follows.
For each tree-edge (e1,e2) of T where e1 = (r, i) ∈ Ii and e2 = (i,s) ∈ Oi let edge(e1,e2) = (r,s) and we let

edge(i,(i, j)) = (i, j). We think of edge(e1,e2) as a formal sum of the edges e1 and e2, where edge(i,(i, j)) = (i, j)
as the edge (i, j).

The graph G(i)
T (Ii,Oi) is then defined as the graph obtained from G by deleting all edges in Ii ∪Oi of G

and adding the multiset of edges {{edge(e1,e2) | (e1,e2) ∈ E(T )}}∪{{edge(i,(i, j)) | (i,(i, j)) ∈ E(T )}}. See
Figure 1.

The difference in the above and that of [10, Section 3] is that in [10] the multisets Ii and Oi are always taken
to equal to the multiset of incoming and the multiset of outgoing edges of i, whereas here we allow them to be
proper submultisets of the multiset of incoming and the multiset of outgoing edges of i. Note that in the example
on Figure 1 we have that I3 and I2 are proper subsets of the incoming edges at vertices 3, and 2, respectively.

The Subdivision Lemma, Lemma 1, states that FG(a) is a union over T ∈ TIi∪{i},Oi of the smaller polytopes
φT (FG(i)

T (Ii,Oi)
(a)), where φT is an integral equivalence between F

G(i)
T (Ii,Oi)

(a) and its image φT (FG(i)
T (Ii,Oi)

(a)).
We now define integrally equivalence of polytopes and the maps φT .

Two polytopes P1 ⊆ Rk1 and P2 ⊆ Rk2 are integrally equivalent if there is an affine transformation t : Rk1 →
Rk2 that is a bijection P1 → P2 and a bijection aff(P1)∩Zk1 → aff(P2)∩Zk2 . Integrally equivalent polytopes have
the same face lattice, volume, and Ehrhart polynomial.

Fix T ∈ TIi∪{i},Oi . Recall that F
G(i)

T (Ii,Oi)
(a) ⊂ R|E(G(i)

T (Ii,Oi))| and denote the coordinates of R|E(G(i)
T (Ii,Oi))|

by (coorde)e∈E(G(i)
T (Ii,Oi))

; moreover, FG(a) ⊂ R|E(G)| and denote the coordinates of R|E(G)| by (coordd)d∈E(G).

Recall that each edge of e∈G(i)
T (Ii,Oi) is a sum of (one or more) edges of the original graph G; denote by s(e) the

subset of edges of G which we sum in order to get e. Define the affine transformation φT :R|E(G(i)
T (Ii,Oi))| →R|E(G)|

via
φT ((ce)e∈E(G(i)

T (Ii,Oi))
) = (cd)d∈E(G), where cd = ∑

e:d∈s(e)
ce.

Note that φT is an invertible linear map between vector spaces of the same dimension which restricts to a bijection
on the underlying lattice. Therefore φT is an integral equivalence between F

G(i)
T
(Ii,Oi) and its image in R|E(G)|.

By definition, φT (FG(i)
T (Ii,Oi)

(a))⊆ FG(a). An illustration of the map φT appears on Figure 2.

By abuse of notation instead of writing φT (FG(i)
T (Ii,Oi)

(a)) we write F
G(i)

T (Ii,Oi)
(a) from now on, including in

Lemma 1. With this convention we have F
G(i)

T (Ii,Oi)
(a)⊆ FG(a).

The following Subdivision Lemma generalizes [10, Lemma 3.4]. The proof is analogous to that of [10, Lemma
3.4], and we leave it to the interested reader.

Lemma 1 (Subdivision Lemma) Let G be a graph on the vertex set [n + 1]. Fix an integer netflow vector
a = (a1, . . . ,an,−∑

n
i=1 ai), ai ∈ Z≥0 as well as a vertex i ∈ {2, . . . ,n} and ordered multisets Ii,Oi, which are

submultisets of the multiset of incoming and outgoing edges incident to i. Then,

FG(a) =
⋃︂

T∈TIi∪{i},Oi

F
G(i)

T (Ii,Oi)
(a). (2.1)

Moreover, {F
G(i)

T (Ii,Oi)
(a)}T∈TIi∪{i},Oi

are interior disjoint.

We refer to replacing G by {G(i)
T (Ii,Oi)}T∈TIi∪{i},Oi

as in Lemma 1 as a reduction. We can encode a series
of reductions on a flow polytope FG(a) in a rooted tree called a reduction tree with root G; see Figure 1 for an
example. The root of this tree is the original graph G. After doing reductions on vertex i with fixed Ii,Oi ordered
submultisets of the multiset of incoming and outgoing edges incident to i, the descendant nodes of the root are
the graphs G(i)

T (Ii,Oi), for T ∈ TIi∪{i},Oi . For each new node we decide whether to stop or repeat this process
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Fig. 2: Illustration of φT (0,1,0,1,1,1) = (0,1,1,0,2,1). Note that we ordered the coordinates of R|E(G(i)
T (Ii,Oi))|

(where i = 2, Ii = ( f1,2) and Oi) = ( f24, f24′)) by ordering the edges of G(i)
T (Ii,Oi) in the order

(cg14 ,cg14′ ,cg12+24 ,cg12+24′ ,cg24′ ,cg34); we ordered the coordinates of R|E(G)| by ordering the edges of G in
the order (c f14 ,c f14′ ,c f12 ,c f24 ,c f24′ ,c f34). We have that s(g14) = { f14},s(g14′) = { f14′},s(g12+24) = { f12, f24},
s(g12+24′) = { f12, f24′},s(g24′) = { f24′},s(g34) = { f34}.

to define its descendants. The leaves of the reduction tree are those with no children. Note that the flow polytopes
FH(a) of the graphs H at the leaves of the reduction tree are interior disjoint and their union is FG(a) by repeated
application of Lemma 1.

In [10] the authors used their less general version of Lemma 1 to define the canonical subdivision of flow
polytopes FG(a). This allowed them in particular to derive (1.2) purely geometrically. We include their construc-
tion here and will use it in the next section.

Definition 1 The canonical reduction tree RG for a graph G on the vertex set [n+1] is obtained by repeated use
of Lemma 1 on the vertices n,n−1, . . . ,2 in this order and on the sets of edges Ii = {{( j, i) ∈ E(G) | j < i}} and
Oi = {{(i, j) ∈ E(G) | i < j}}, i ∈ {n,n−1, . . . ,2}, where both Ii and Oi are ordered by decreasing edge lengths.

For an example of a canonical reduction tree see Figure 3. Note that at each vertex i the set Ii is all of the
coming edges at i (unlike in Figure 1) and the set Oi is the set of all outgoing edges at i.

Definition 2 Given a tuple m = (m1, . . . ,mn) of positive integers, let G[m] be the graph with vertices [n+1] and
mi edges (i,n+1).

Note that the leaves of the canonical reduction tree in Figure 3 are both of the form G[m] for some m; in
particular the leaf on the left is G[4,1,1] and the leaf on the right if G[3,2,1]. The following theorem states that
this is no coincidence.

Recall that given graph G on the vertex set [n+ 1] we let outG(i) = outdegG(i)− 1, where outdegG(i) is the
outdegree of vertex i in G. We denote outG = (outG(1), . . . ,outG(n)).

Theorem 2 [10, Section 4] The canonical reduction tree RG of G on the vertex set [n+1] with m edges has

∑
j≥outG

j1+···+ jn=m−n

KG( j1 −outG(1), . . . , jn −outG(n),0)

leaves, where:

– the sum is over weak compositions j = ( j1, j2, . . . , jn) of m− n that are ≥ (out(1), . . . ,out(n)) in dominance
order, that is, ∑

l
k=1 jk ≥ ∑

l
k=1 outG(k) for all l ∈ [n];
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G[4, 1, 1] G[3, 2, 1]

Fig. 3: The canonical reduction tree for complete graph K4 with nonnegative netflows on the first 3 vertices.

– KG( j1 −outG(1), . . . , jn −outG(n),0) of the leaves of RG are G[j+1];
– the polytopes FG[j+1](a) are interior disjoint and their union is FG(a);
– if ai > 0, i ∈ [n], then the polytopes FG[j+1](a) are of the same dimension as FG(a).

The polytopes specified in Theorem 2 are the top dimensional polytopes in the canonical subdivision of
FG(a) [10].

Example 1 Let us apply Theorem 2 to the canonical reduction tree RK4 from Figure 3. Here n = 3 and m = 6. We
have that (outdegK4(1),outdegK4(2),outdegK4(3)) = (3,2,1) and thus, (outK4(1),outK4(2),outK4(3)) = (2,1,0).
The sum in Theorem 2 is over compositions j = ( j1, j2, j3) of 3 that are ≥ (2,1,0) in dominance order. Thus, the
two possible j’s are (3,0,0) and (2,1,0). The first two points of Theorem 2 thus state that there are KK4(3−2,0−
1,0−0,0) = 1 leaves of RK4 that are G[4,1,1] and KK4(2−2,1−1,0−0,0) = 1 leaves of RK4 that are G[3,2,1];
see Figure 3.

3 A few geometric insights

This section collects the main insights necessary for proving (1.3) purely geometrically. The proof of (1.3) relies
on stringing all the following statements together in order to give a proof of it in Theorem 5. As mentioned
in the previous section: we reinterpret the left hand side of (1.3) as a volume of a flow polytope (namely, of
FG(c)(e1 − en+2), see Definition 3 for the meaning of G(c)), and then the right hand side can be obtained by
summing volumes of polytopes in a subdivision of our new flow polytope.

Definition 3 Fix a vector c = (c1, . . . ,cn) ∈ Zn
>0 and a graph G on the vertex set [n+1]. The graph G(c) is defined

to be the graph obtained by adding a source vertex 0 to V (G), so that V (G(c)) = [0,n+ 1], along with ci edges
edges (0, i), for every i ∈ [n], to E(G). Formally, we have

G(c) := (V (G)∪{0},E(G)∪{{(0, i)ci | i ∈ [n]}}),

where (0, i)ci signifies ci copies of the edge (0, i). Note that the graph G(c) restricted to the vertex set [n+ 1] is
equal to the graph G.
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Of importance in Definition 3 is that when we restrict G(c) to the vertex set [n+1], we get G back. This allows
us to use our full knowledge of canonical reduction trees, as given in Theorem 2. This is because Lemma 1 allows
for not using all the incoming (or outgoing) edges at a vertex – and yet if we use all incoming and outgoing edges
that are in a given subgraph of the graph, we can still invoke Theorem 2 for the mentioned subgraph! Details are
spelled out in Theorem 3 below.

Recall that given graph G on the vertex set [n+1] we let inG(i)= indegG(i)−1, where indegG(i) is the indegree
of vertex i in G.

With Definition 3 we have that:

Lemma 2 Fix a vector c = (c1, . . . ,cn)∈Zn
>0 and a graph G on the vertex set [n+1]. Define ai := inG(i)+ci. The

number of integer points in FG(a1, . . . ,an,−∑
n
i=1 ai) is equal to the number of integer points in the flow polytope

FG(c)(0, inG(c)(1), . . . , inG(c)(n),−∑
n
i=1 inG(c)(i)). In other words,

KG

(︃
a1, . . . ,an,−

n

∑
i=1

ai

)︃
= KG(c)

(︃
0, inG(c)(1), . . . , inG(c)(n),−

n

∑
i=1

inG(c)(i)
)︃
.

Proof Consider an integer (0, inG(c)(1), . . . , inG(c)(n),−∑
n
i=1 inG(c)(i))-flow f on the graph G(c). Note that when

we restrict f to G ⊂ G(c) it is an (inG(c)(1), . . . , inG(c)(n),−∑
n
i=1 inG(c)(i))-flow on G. By the definition of G(c),

we have inG(c)(i) = inG(i)+ci = ai. Thus, an integer (0, inG(c)(1), . . . , inG(c)(n),−∑
n
i=1 inG(c)(i))-flow on G(c) re-

stricts to an integer (a1, . . . ,an,−∑
n
i=1 ai)-flow on G. This is clearly a bijection showing that the number of integer

(0, inG(c)(1), . . . , inG(c)(n),−∑
n
i=1 inG(c)(i))-flows on G(c) equals to the number of integer (a1, . . . ,an,−∑

n
i=1 ai)-

flows on G. The latter equal KG(c)(0, inG(c)(1), . . . , inG(c)(n),−∑
n
i=1 inG(c)(i)) and KG(a1, . . . ,an,−∑

n
i=1 ai), re-

spectively.

3.1 Dissecting FG(c)(e1 − en+2).

In this section we show how to dissect FG(c)(e1 − en+2), c ∈ Zn
>0, into

∑
j≥outG

j1+···+ jn=m−n

(c1) j1
j1!

. . .
(cn) jn

jn!
KG( j1 −outG(1), . . . , jn −outG(n),0)

many unimodular simplices. The notation (k) j stands for (k) j := k(k−1) · · ·(k− j+1).

Definition 4 Given a graph G on the vertex set [n+1] define the reduction tree Rc
G with root G(c) as the reduction

tree obtained by repeated use of Lemma 1 on the vertices n,n− 1, . . . ,2 in this order and on the sets of edges
Ii = {{( j, i) ∈ E(G) | j < i}} and Oi = {{(i, j) ∈ E(G) | i < j}}, i ∈ {n,n−1, . . . ,2}, where both Ii and Oi are
ordered by decreasing edge lengths.

We note that Definition 4 is set up so that if we delete all edges incident to 0 in the graphs labeling the nodes of
Rc

G we obtain the canonical reduction tree RG of G as in Definition 1. For an example of the reduction tree R(3,2,2)
K4

see Figure 1; compare this with the canonical reduction tree RK4 on Figure 3.

Theorem 3 Fix c ∈ Zn
>0. Given a graph G on the vertex set [n+ 1] with m edges, the reduction tree Rc

G of G(c)
has

∑
j≥outG

j1+···+ jn=m−n

KG( j1 −outG(1), . . . , jn −outG(n),0)

leaves, where:

– the sum is over weak compositions j = ( j1, j2, . . . , jn) of m−n that are ≥ (out1, . . . ,outn) in dominance order;
– KG( j1 −outG(1), . . . , jn −outG(n),0) of the leaves of Rc

G are G[j+1](c);
– the polytopes FG[j+1](c)(e1 − en+2) are interior disjoint and their union is FG(c)(e1 − en+2);
– the polytopes FG[j+1](c)(e1 − en+2) are of the same dimension as FG(c)(e1 − en+2).

Before proceeding with the proof of Theorem 3, we illustrate it with an example. Compare this to Example 1.
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Example 2 Let us apply Theorem 3 to the reduction tree R(3,2,2)
K4

from Figure 1. Here n = 3 and m = 6. We have
that (outdegK4(1),outdegK4(2),outdegK4(3)) = (3,2,1) and thus, (outK4(1),outK4(2),outK4(3)) = (2,1,0). The
sum in Theorem 3 is over compositions j = ( j1, j2, j3) of 3 that are ≥ (2,1,0) in dominance order. Thus, the two
possible j’s are (3,0,0) and (2,1,0). The first two points of Theorem 3 thus state that there are KK4(3− 2,0−
1,0−0,0) = 1 leaves of R(3,2,2)

K4
that are G[4,1,1](3,2,2) and KK4(2−2,1−1,0−0,0) = 1 leaves of R(3,2,2)

K4
that

are G[3,2,1](3,2,2); see Figure 1.

Proof of Theorem 3 Definitions 1 and 4 are set up so that appealing to Lemma 1 and Theorem 2 instantly implies
the first three statements of Theorem 3. It remains to show that the polytopes FG[j+1](c)(e1 − en+2) are of the
same dimension as FG(c)(e1 −en+2). Since the dimension of FH(e1 −en+2), where H is a graph on the vertex set
[0,n+ 1] is |E(H)|− |V (H)|+ 1, the same dimensionality of FG[j+1](c)(e1 − en+2) and FG(c)(e1 − en+2) readily
follows for j ≥ outG, j1 + · · ·+ jn = m−n. ⊓⊔

Lemma 3 Fix c ∈ Zn
>0. There is a dissection of FG[j+1](c)(e1 − en+2) into

(c1) j1
j1! . . .

(cn) jn
jn! many unimodular sim-

plices.

Before giving a proof of Lemma 3 we include a version of the Subdivision Lemma appearing in [10, Lemma
3.4].

Lemma 4 [10, Lemma 3.4] Let {F
G(i)

T (Ii,Oi)
(a)}T∈TIi∪{i},Oi

as in Lemma 1. Let Ii,Oi be the multiset of incoming

and outgoing edges incident to i, with fixed arbitrary ordering. Assume that ai = 0. Then, it is exactly those of the
polytopes among {F

G(i)
T (Ii,Oi)

(a)}T∈TIi∪{i},Oi
that are of the same dimension as FG(a) for which there is exactly

one edge incident to i in T ∈ TIi∪{i},Oi . Such polytopes form a dissection of FG(a).

Proof of Lemma 3. Repeatedly use Lemma 4 for the case of netflow vector coordinate value 0 on the vertices
1,2, . . . ,n of G[j+1](c). This amounts to picking tuples of bipartite noncrossing trees (T1, . . . ,Tn) ∈ TL1,R1 ×
·· · ×TLn,Rn , where |Li| = ci and |Ri| = ji + 1, for i ∈ [n]. The number of such tuples is

(c1) j1
j1! . . .

(cn) jn
jn! , since

(ci) ji
ji!

= #TLi,Ri . ⊓⊔

Theorem 4 Fix c ∈ Zn
>0. There is a dissection of FG(c)(e1 − en+2) into

∑
j≥outG

j1+···+ jn=m−n

(c1) j1
j1!

. . .
(cn) jn

jn!
KG( j1 −outG(1), . . . , jn −outG(n),0)

many unimodular simplices.

Proof Follows readily from Theorem 3 and Lemma 3. ⊓⊔

4 The geometric proof of (1.3)

In this section we prove the Baldoni–Vergne–Lidskii integer point formula (1.3) from Theorem 1. As mentioned
in the Introduction, the original proof by Baldoni and Vergne [1] relies on residue calculations and a second,
combinatorial proof by Mészáros and Morales [10] makes use of a canonical subdivision of flow polytopes and
generating functions of Kostant partition functions to prove (1.3). In contrast, here we give a purely geometric
proof of (1.3). For the reader’s reference we rewrite (1.3) in Theorem 5 in the form that we prove it:

Theorem 5 Let G be a connected graph on vertex set [n+1] so that G has at least one outgoing edge at vertex i
for i ≤ n. For i ∈ [n] we set inG(i) := indegG(i)−1 and outG(i) := outdegG(i)−1. Fix positive integers c1, . . . ,cn.
Let ai := inG(i)+ ci. Then we have

KG

(︃
a1, . . . ,an,−

n

∑
i=1

ai

)︃
= ∑

j≥outG
j1+···+ jn=m−n

(c1) j1
j1!

. . .
(cn) jn

jn!
KG( j1 −outG(1), . . . , jn −outG(n),0),

where ≥ denotes the dominance order, that is, j1 + · · ·+ jk ≥ outG(1)+ · · ·+(outG)k for all k ∈ [n], and (n)k :=
n(n+1) . . .(n+ k−1).

8



Proof Given a vector c := (c1, . . . ,cn)∈Zn
>0 and a graph G on the vertex set [n+1], we defined G(c) on the vertex

set [0,n+1] so that

KG

(︃
a1, . . . ,an,−

n

∑
i=1

ai

)︃
= KG(c)

(︃
0, inG(c)(1), . . . , inG(c)(n),−

n

∑
i=1

inG(c)(i)
)︃
,

where ai := inG(i)+ ci. See Definition 3 and Lemma 2.
By (1.2) the normalized volume of FG(c)(e1 − en+2) is precisely

KG(c)(0, inG(c)(1), . . . , inG(c)(n),−
n

∑
i=1

inG(c)(i)).

(Recall that the proof of (1.2) given in [10] via the canonical subdivision is fully geometric.) In particular, the
number of simplices in a unimodular triangulation of FG(c)(e1 − en+2) is

KG(c)(0, inG(c)(1), . . . , inG(c)(n),−
n

∑
i=1

inG(c)(i)).

By Theorem 4 there is a dissection of FG(c)(e1 − en+2) into

∑
j≥outG

j1+···+ jn=m−n

(c1) j1
j1!

. . .
(cn) jn

jn!
KG( j1 −outG(1), . . . , jn −outG(n),0)

many unimodular simplices.

Thus, chaining all the equalities we get that

KG

(︃
a1, . . . ,an,−

n

∑
i=1

ai

)︃
= KG(c)

(︃
0, inG(c)(1), . . . , inG(c)(n),−

n

∑
i=1

inG(c)(i)
)︃

= ∑
j≥outG

j1+···+ jn=m−n

(c1) j1
j1!

. . .
(cn) jn

jn!
KG( j1 −outG(1), . . . , jn −outG(n),0),

to obtain Theorem 5. ⊓⊔

5 Concluding remarks

Faced with the formulas for volume and integer point count of flow polytopes given in equations (1.2) and (1.3),
one instantly observes the nonnegativity of the quantities involved. Yet, the original proof of Baldoni and Vergne
[1] is via residue calculations: involving complex numbers and subtractions.

When we study manifestly nonnegative quantities, as in equations (1.2) and (1.3), it is natural to seek a mani-
festly nonnegative proof: a proof devoid of subtraction (and complex numbers). A geometric proof can make this
aspiration a reality. A geometric construction was used by Mészáros and Morales [10] to prove (1.2) in a manifestly
nonnegative way and the present paper accomplishes the same goal via geometric constructions for (1.3).
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