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Machine learning and earthquake
forecasting—next steps
Gregory C. Beroza1✉, Margarita Segou2 & S. Mostafa Mousavi1

A new generation of earthquake catalogs developed through supervised
machine-learning illuminates earthquake activity with unprecedented detail.
Application of unsupervised machine learning to analyze the more complete
expression of seismicity in these catalogs may be the fastest route to improving
earthquake forecasting.

The past 5 years have seen a rapidly accelerating effort in applying machine learning to seis-
mological problems. The serial components of earthquake monitoring workflows include:
detection, arrival time measurement, phase association, location, and characterization. All of
these tasks have seen rapid progress due to effective implementation of machine-learning
approaches. They have proven opportune targets for machine learning in seismology mainly due
to the large, labeled data sets, which are often publicly available, and that were constructed
through decades of dedicated work by skilled analysts. These are the essential ingredient for
building complex supervised models. Progress has been realized in research mode to analyze the
details of seismicity well after the earthquakes being studied have occurred, and machine-
learning techniques are poised to be implemented in operational mode for real-time monitoring.
We will soon have a next generation of earthquake catalogs that contain much more informa-
tion. How much more? These more complete catalogs typically feature at least a factor of ten
more earthquakes (Fig. 1) and provide a higher-resolution picture of seismically active faults.

This next generation of earthquake catalogs will not be the single, static objects seismologists
are accustomed to working with. For example, less than 2 years after the 2019 Ridgecrest,
California earthquake sequence there already exist four next-generation catalogs, each of which
were developed with different enhanced detection techniques. Now, and in the future, this will be
the norm, and earthquake catalogs will be updated and improved—potentially dramatically—
with time. Second-generation deep learning models1 that are specifically designed based on
earthquake signal characteristics and that mimic the manual processing by analysts, can lead to
performance increases beyond those offered by earlier models that adapted neural network
architectures from other fields. Those interested in using earthquake catalogs for forecasting can
anticipate a shifting landscape with continuing improvements.

While these improvements are impressive, the value of the extra information they provide is
less clear. What will we learn about earthquake behavior from these deeper catalogs and how
might it improve the prospects for the stubbornly difficult problem of earthquake forecasting?

Short-term deterministic earthquake prediction remains elusive and is perhaps impossible;
however, probabilistic earthquake forecasting is another matter. It remains the subject of focused
and sustained attention and it informs earthquake hazard characterization2 and thus both policy
and earthquake risk reduction. A key assumption is that what we learn from the newly
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uncovered small earthquakes in AI-based catalogs, will inform
earthquake forecasting for events of all magnitudes. The observed
scale invariance of earthquake behavior suggests this is a rea-
sonable expectation.

Empirical seismological relationships have played a key role in
the development of earthquake forecasting. These include
Omori’s law3 that describes the temporal decay of aftershock rate,
the magnitude-frequency distribution, with the b-value describing
the relative numbers of small vs. large earthquakes4, and the
Epidemic Type Aftershock Sequence (ETAS) model5 in which
earthquakes are treated as a self-exciting process governed by
Omori’s law for their frequency of occurrence and
Gutenberg–Richter statistics for their magnitude. These empirical
laws continue to prove their utility. Just in the past few years, the
time dependence of the b-value has been used to try to anticipate
the likelihood of large earthquakes during an ongoing earthquake
sequence6 and the ETAS model has been improved to better
anticipate future large events7. So it appears that there is value in
applying these longstanding relationships to improved earth-
quake catalogs, but our opinion is that much more needs to
be done.

The relationships cited above date from 127, 77, and 33 years
ago. The oldest of them, Omori’s Law, was developed based on
felt reports without the benefit of instrumental measurements.
We suggest that a fresh approach using more powerful techniques
is warranted. Earthquake catalogs are complex, high-dimensional
objects and as Fig. 1 makes clear, that is even more true for the
deeper catalogs that are being developed through machine
learning. Their high dimensionality makes them challenging for
seismologists to explore, and the conventional approaches noted
above seem unlikely to be taking advantage of the wealth of new
information available in the new generation of deeper catalogs.
We suggest that, having first enabled the development of these
catalogs, the statistical-learning techniques of data science are
now poised to play an important role in uncovering new rela-
tionships within them. The obvious next step is to apply the
techniques of machine learning in discovery mode8 to discern
new relationships encoded in the seismicity.

There are tantalizing indications that such an approach may
lead to new insights. In double-direct-shear experiments, back-
ground signals that were thought to be uninformative random

noise have instead been shown to encode information on the state
of friction and the eventual time of failure of faults in a laboratory
setting9. Well-controlled laboratory analogs to faults lack the
geologic complexity of the Earth, yet, weak natural background
vibrations of a similar sort, that again were thought to be random
noise, have been shown to embody information that can be used
to predict the onset time of slow slip events in the Cascadia
subduction zone10. Finally, unsupervised deep learning, in which
algorithms are used to discern patterns in data without the benefit
of prior labels, applied to seismic waveform data uncovered
precursory signals preceding the large and damaging 2017 land-
slide and tsunami in Greenland11.

These examples are compelling but come with the caveat that
they are not representative of the typical fast rupture velocity
earthquakes on tectonic faults that are of societal concern. For
such earthquakes, however, there are also indications from state-
of-the-art forecasting approaches that next-generation earthquake
catalogs may contain information that will lead to progress.
Physics-based forecasting models, which account for changes in
the Coulomb failure stress due to antecedent earthquakes that
favor the occurrence of subsequent earthquakes, have shown
increasing skill such that they are competitive with, and are
beginning to outperform, statistical models. Coulomb failure
models benefit particularly from deeper catalogs because they
include many more small magnitude earthquakes. These small
earthquakes add predictive power through their secondary trig-
gering effects tracking the evolution of the fine-scale stress field
that ultimately controls earthquake nucleation in foreshock and
aftershock sequences. They can also be used to define the emer-
ging active structures that comprise fault networks and by doing
so clarify the relevant components of stress that would act to
trigger earthquakes12. Secondary triggering and background
stress heterogeneity were shown to improve stress triggering
models13 but were most effective when they incorporated near‐
real‐time aftershock data from the sequence as it unfolded14. We
note that there is no reason why more complete earthquake
catalogs, developed with pre-trained neural network models,
cannot be created in real time as an earthquake sequence unfolds.
Finally, despite the disappointing history of the search for pre-
cursors, due diligence requires that seismologists consider the
pursuit of signals that might be precursory.

Fig. 1 A year of seismicity in the epicentral area of the 2016M= 6.0 Amatrice earthquake (star) in Italy color coded by time of occurrence. a Real-time
catalog, available at http://cnt.rm.ingv.it/ and (b) machine-learning catalog16 are shown for event magnitudes above their respective magnitude of
completeness12,16 Mc= 2.2 and Mc= 0.5.
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We conclude that it is now possible to image the activity on
active fault systems with unprecedented spatial resolution. This will
enable experimentation with familiar hypotheses and enable the
formulation of new hypotheses. It seems certain that the underlying
processes that drive earthquake occurrence are encoded in this next
generation of earthquake catalogs, but we may not find them unless
we put new effort into searching for them. Unsupervised learning
methods15 are particularly well-suited tool for that effort.
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