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Abstract—Morpheus II is a secure processor designed
to prevent control flow attacks. Morpheus II strengthens
the defenses of the Morpheus [1] processor, by deploying
always-on encryption to obfuscate code and pointers along
with runtime churn to thwart side-channel attacks. Focusing
on Remote Code Execution attacks, we modified the RISC-
V Rocket core to support always-encrypted code and code
pointers with negligible performance impact and less than
2% area overhead. Morpheus II was deployed running a
web server interface to a mock medical database on AWS F1
instances, where it was red-teamed for three months by over
500 security researchers. No vulnerabilities were discovered
in Morpheus II. In addition, we evaluated Morpheus II
against a range of CWE attack classes including a Blind
ROP attack on the web server. We show that Morpheus II
defenses increase Blind ROP probe time for gadgets from
weeks to likely thousands of years.

I. INTRODUCTION

With the growth of cloud computing and IoT, data
security has never been more important. With cloud
computing, we hand over our personal and private
information to cloud providers and their customers, and
we can only hope that they steward our data well. For IoT
devices, we install them everywhere in our homes, cars,
and workplaces, and then we trust these devices to not spy
on us. We extend trust to the manufacturers and vendors
of computing systems today, and, in many cases, they
are letting us down. The world of computing is replete
with examples of data breaches and poor stewardship of
sensitive data, suggesting that stronger security measures
are surely needed.

Today’s Defenses Lack Durability: In modern com-
puter security, there are two primary means by which
systems are protected. The first is a patch-based security
approach where software and hardware vulnerabilities
are addressed by patching the system’s software. The
key challenge with this approach is that attacks will
not stop until the system is free of vulnerabilities.
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Figure 1: Deployed Morpheus II system for the DARPA Fett
Challenge [2]. Attackers attempted to exploit a mock COVID-
19 SQLite database (M3DB) running on a FreeRTOS-based
web server by sending requests to our AWS FPGA prototype.
Morpheus II always encrypts code and code pointers in M3DB,
making control-flow hijacking attacks infeasible.

Unfortunately, the complexity of modern software and
hardware, combined with the rate at which new software
is created, ensures that patched systems always have
plenty of additional vulnerabilities for motivated attackers
to exploit.

A more powerful approach is to outfit the system’s
software or hardware with a targeted defenses against
well-known attacks. Examples of these defenses include
no-execute stacks [3], which prevents code injection on
the stack, or CATalyst [4] which uses Intel’s Cache Allo-
cation Technology (CAT) [5] to silence covert channels
in the last-level cache. These defenses are superior to
patch-based defenses because they can typically defend
against an entire class of attacks. However, targeted
attacks often have limited scope, thus, attackers will
devise ways to step around these defenses to continue
exploiting vulnerable systems. For example, when no-
execute stacks were introduced, the attack community
quickly perfected techniques to inject code into the heap
with heap-spray attacks [6].



Unfortunately, the sum total of today’s security defense
only throws moderately-strong barriers in the face of
oncoming attackers for existing attacks. If new “zero-day”
vulnerabilities are discovered, systems are completely
unprotected from attacks. As such, there is a great need
for new thinking in the arena of computer security, in
particular, for defenses that are more durable against a
fast-growing slate of security attacks.

Morpheus Defenses Work Despite Vulnerabilities:
Moving target defenses like the Morpheus [1] security
technology works in a vulnerability-agnostic fashion,
allowing it to stop attacks on vulnerable software and
hardware. Where traditional security defenses focus
on specific vulnerabilities, Morpheus defenses instead
obfuscate the information assets required by attacks. This
approach denies attackers timely access to the critical
information assets needed to attack systems. The critical
information assets that Morpheus can protect include the
following:

• Code representation
• Code and data pointer representation
• Code and data layout (both absolute and relative)
• Function and return pointer representation

Critical information assets are protected using encryption
and churn. By encrypting code and data pointers, attacks
lose the ability to find code gadgets, inject pointers into
the stack, perform relative address attacks, and so on. Yet,
savvy attackers can adapt to even high-entropy encryption
by utilizing memory disclosures and side-channel attacks
to eventually acquire the information assets they need to
attack a system. Consequently, Morpheus uses churn to
re-key the cipher used to protect information assets on a
regular basis, thereby destroying any information assets
that were disclosed or inferred by attackers.

A key aspect of Morpheus is that it only protects infor-
mation assets within the program and micro-architecture
implementation. These assets possess undefined semantics
because they are the internal workings of compilers
and micro-architectures. Consequently, encrypting and
churning these assets, while breaking attacks, has little
to no effect on normal software. This property allows
Morpheus to imbue defenses into vulnerable software
and hardware without putting undue burdens on users. It
is quite challenging to find any attack that doesn’t utilize
some subset of these critical information assets. Thus,
protecting these information assets broadly stops security
attacks [7], ranging from control-flow attacks, to privilege
escalation, to disclosure attacks and beyond. Moreover,
it is likely that attacks discovered in the future will also
utilize some subset of these information assets, thus, it is

possible that Morpheus systems could have some measure
of immunity from attacks in the near future.

Morpheus Design Challenges: A drawback of the
original Morpheus design is that it has significant over-
heads, invasive changes to the micro-architecture, and
requires complex software support. Simulation estimates
in gem5 [8, 9] for Morpheus show worst-case overheads
of 6.71% at 50ms churn with overheads over 30% as
the churn rate increases, without protecting system calls
or kernel code. Morpheus requires memory tagging to
implement runtime churn that updates the represention of
all pointers in the system. These tags require adding
2 bits to the register file and caches, as well as a
dedicated portion of DRAM. A dedicated tag cache
is required for acceptable performance. While most
Morpheus protections can be implemented with minimal
software burden and compiler support, data pointer
encryption requires a complex LLVM pass and manual
porting of code that acccesses raw addesses (e.g., device
drivers).

Morpheus II Secure Processor: In this paper, we
introduce Morpheus II, which implements a subset of the
Morpheus protections with negligible overhead, less than
2% area, and simple hardware modifications. Morpheus
II is a modified RISC-V Rocket [10] core prototyped
on Xilinx FPGAs and deployed on Amazon AWS F1
instances. It provides always-on code and code pointer
encryption, protecting against a large class of high-
value control-flow hijacking attacks. Morpheus II consists
of simple LLVM support to identify function pointers
and transform instructions, and only requires software
modifications in rare handwritten assembly. Instead of
configurable run-time churn, Morpheus II only changes
encryption keys when a program starts or an exception is
encountered, greatly simplifying the implementation of
churn. Fig. 1 shows our deployment of Morpheus II on
AWS, consisting of a SQLite mock COVID-19 medical
database (M3DB) running on a FreeRTOS web server.
As part of the DARPA FETT bug bounty [2], Morpheus
II was attacked by over 500 researchers for 3 months.
Attackers were given knowledge of the software stack and
potential vulnerabilites, and attempted to exploit them
by sending malicious requests to the M3DB web server.
None of the attackers were successful in infiltrating the
database running on our protected Morpheus II system.

II. BACKGROUND & RELATED WORK

In this section, we briefly recall classic control flow
attacks and their proposed defenses. While we describe



potential defenses, we leave the direct comparison with
related work to Section VIII.

A. Control Flow Attacks.

Control flow attacks refer to attacks that result in
the attacker being able deviate the program execution
from normal behaviors or execute arbitrary code in the
victim program. A vast majority of control flow attacks
stem from memory errors. These software vulnerabilities
are categorized into spatial memory safety issues like
buffer overflows [11–13], format string [14], and temporal
memory safety issues like use-after-free [15] and double-
free [16]. Memory errors are usually introduced by
memory unsafe languages, which are pervasive as they
are often used to implement run-time libraries and
system software for even memory-safe languages. These
vulnerabilities, once exploited, can grant the attacker
arbitrary read and/or write access within the execution
context of the victim.

To achieve code execution, code injection or code
reuse techniques are typically employed. In code injection
attacks, adversaries input malicious code into victim
memory (e.g., the stack) using the write access gained
from above vulnerabilities; and overwrite the control
flow targets (e.g., return addresses) to redirect the victim
program to execute the provided code (e.g., code to launch
a shell).

Code reuse attacks were invented to bypass defenses
against code injection attacks. Instead of supplying an
execution payload to the victim program, attackers reuse
instructions that already exist in the address space. For
example, return-to-libc attacks [17] divert control flow
to libc functions for process and memory management
with malicious function arguments. Another example
of powerful code reuse attacks is return oriented pro-
gramming (ROP) [18]. Instead of libc functions, ROP
leverages existing instruction sequences that end with
a return instruction. The sequence of instructions is
called a gadget. Attackers overwrite return addresses
on the stack to chain gadgets together in order to execute
arbitrary code. Variants that target jump (indirect branch)
instructions (JOP) [19], C++ virtual functions (counterfeit
object-oriented programming, also known as COOP) [20],
and just-in-time (JIT) compilation [21, 22] have also been
exploited. The ability to identify these gadgets in the
victim program’s address space is the key to successful
execution of code reuse attacks.

B. Control Flow Defenses.

Enforcing memory safety. Completely enforcing both
spatial and temporal memory safety can stop all memory
error exploits, thus preventing all control flow attacks.
CHERI [23] uses capabilities to enforce memory safety,
requiring tags in hardware and extra capability registers
to define access regions and permissions. CHERI requires
recompilation and significant porting effort for system-
level software, in addition to overheads to store and
access capabilities. Systems such as lowRISC [24],
the Dover processor [25], and PUMP [26] also use
hardware tag support to enforce various policies, in-
cluding memory safety. Intel MPX [27] has registers
and instructions to manage base and bounds associated
with data structures. REST [28] provides coarse-grained
memory safety by placing random tripwires around stack
and heap allocations, utilizing hardware support for
minimal overhead. Califorms [29] strives for fine-grained
memory safety within objects (e.g., members of a struct)
by providing byte granularity blacklisting instead of cache
line granularity provided by REST.
Restricting control flow behavior. Restricting the control
flow behavior of programs limits attackers’ ability to exe-
cute arbitrary code. The NX-bit [30] is a widely-deployed
example that restricts data pages from being executed,
but is not effective against code reuse attacks. Traditional
control flow integrity (CFI) solutions restrict the source
and destination pairs of control flow transfers. A wide
range of CFI techniques have been proposed. For example,
classification-based solutions [31–33] classify control
flow pointers based on pointer categories (e.g., function
pointer vs. return address vs. vtable pointer) and their
static properties (e.g., number of parameters). Prohibiting
control flow transfer between two distinct classes provides
coarse-grained CFI. Labeling approaches [34–36] aim
for fine-grained CFI by labeling control flow sources
and destinations along a statically computed control flow
graph (CFG) and dynamically restricting control flow
to follow the labels. However, static analysis used to
compute the CFGs may not guarantee precision and can
lead to high run-time check overheads. Shadow call stack
solutions [31, 35–37] aim to enforce backward-edge CFI
by storing an extra copy of the return address onto a
shadow stack on each function call and verifying the
integrity of return address upon each return instruction.
Two industrial techniques have been productized: Intel
CET [37], ARM BTI [38].

Software and hardware code pointer integrity solu-
tions [39–41] propose to verify the integrity of pointers



at run-time using cryptographic MACs. At run-time, each
time a control flow pointer is stored into memory, a
MAC of the pointer address, its label, and certain run-
time properties are computed. The integrity is verified
whenever the said pointer is loaded and used. By
enforcing the pointer integrity dynamically, the control
flow behavior is limited to verified pointers.
Obfuscating and hiding attack assets. PointGuard [42]
and similar systems [43] obfuscate pointers with random-
ization, utilizing weak XOR-based encryption with the
same key across all types of pointers. Instruction Set
Randomization (ISR) [44–47] schemes use encryption to
protect code against injection attacks. Recent proposals of
ISR [48, 49] incorporate the idea of code randomization
and strong encryption to hide gadgets in order to thwart
code reuse attacks. A recent version of the ASIST [49]
ISR system re-encrypts code with a new key when
the process crashes. N-version systems [50–52] execute
programs with multiple versions, each with different
randomized layouts and then compare the outputs. An
attacker must infiltrate every version for a successful
attack. Shuffler [53] is a software-based moving target
defense (MTD) that periodically randomizes the code
layout during run-time, along with encrypting return
addresses. Phantom Name System (PNS) [54] creates
multiple random addresses for every instruction (or
coarser, such as every basic-block), forcing an attacker to
guess which is actually executed at run-time. PNS also
encrypts pointers when they are created and decrypts
them at the call site to prevent attackers’ tampering with
the return. Morpheus [1] is a hardware-based MTD with
strong encryption and fast run-time randomization of
code and pointers. We next describe Morpheus in detail
as its design is closest to Morpheus II.

C. Morpheus Summary

The Morpheus [1] architecture randomizes the seman-
tics of program execution below the language-level such
as code and data pointer addresses (relative and absolute),
code representation, and return pointers. Morpheus uses
encryption to implement this randomization, enabling
these undefined program semantics to be periodically
churned at configurable intervals. Periodically changing
these representations makes it infeasible for attackers to
utilize these semantics to perform attacks like control-
flow hijacking, even for unknown variations. Two bit
tags in the micro-architecture identify domains: code,
code pointers, data pointers, and other data. These
tags are stored alongside the register file, caches, and
a dedicated portion of DRAM. Relative distances of

pointers are protected using pointer displacement, which
offsets the code and data address spaces in the program
with randomly generated offsets. All of the Morpheus
defenses combined provide 504 bits of true random
entropy to thwart attackers. Since very fast churn rates
have significant overheads, an attack detector can be used
to only increase churn times when it observes suspicious
activity such as invalid code execution or jumps through
data pointers. The gem5 [8, 9] prototype of Morpheus had
overheads from 0.84% on average to 6.71% in the worst-
case (gcc) with a 50ms churn time. The gem5 evaluation
was done with system-call emulation mode, so overheads
associated with changes in the system call implementation
are not accounted for and the kernel is not protected. The
QARMA cipher was used for encrypting and decrypting
assets in Morpheus, with an estimated delay of 3.25ns.
These overheads are due to extra memory requests by
the churn unit and the pipeline potentially stalling during
churn with very fast rates.

III. THREAT MODEL

Memory errors are still among the most prevalent
software errors in the Mitre CWE top 25 [55]. Morpheus
II primarily protects against control-flow hijacking attacks
that arise from these memory errors such as return/jump-
oriented programming, double-free, counterfeit object-
oriented programming, return-to-libc, and more. In ad-
dition, Morpheus II’s always-on encryption throughout
the caches, RAM, and disk can prevent disclosure of en-
crypted code and pointers through vectors like cold-boot
attacks. We do not consider an attacker performing Denial-
of-service (DoS) attacks, fault injection, modifying the
boot sequence, or tampering with the random number
generator. Unlike the Morpheus [1] design, Morpheus
II does not protect against attacks that modify data
pointers to leak information or escalate privilege. The
trusted computing base (TCB) consists of the Morpheus II
processor core, compiler passes that generate appropriate
encrypted instructions, and a small amount of loader
code.

IV. THE MORPHEUS II ARCHITECTURE

Morpheus II is a refinement of the original Morpheus
design [1] built in real hardware. Morpheus II was
developed in the DARPA SSITH [56] program, which
had a requirement that designs be placed into the DARPA
FETT [2] program, where it was to be built on an FPGA
and red-teamed for potential vulnerabilities. Thus, while
the original Morpheus prototype in simulation provided
full code, code pointer, and data pointer encryption, the
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Figure 2: Processor Architecture with Morpheus II. Encrypted code from the I-Cache is decrypted during the fetch stage after
an I-Cache response. Instructions that source code pointers decrypt them during execute, while instructions that write code
pointers encrypt them during writeback.

goal of Morpheus II was to capture the main security
strengths of Morpheus defenses while being buildable and
performant. The Morpheus II architecture is implemented
as a RISC-V extension applied to the Rocket Core in-
order scalar pipeline [10].

Additionally, Morpheus II was tuned to primarily stop
remote code execution (RCE) attacks, which are a high-
value class of attacks that allow remote attackers to inject
code into vulnerable machines. For example, Morpheus II
RCE defenses would handily stop the Microsoft Exchange
Server RCE attacks that were in the news at the time of
this writing [57]. As another example, one of the largest
security breaches in US history, the 2017 Equifax breach,
was also initiated via an RCE attack on a vulnerability
in the Apache Struts library that would have been easily
stopped with Morpheus II defenses.

A. Morpheus II Architectural Features
Morpheus II implements always-encrypted code point-

ers. A twelve-round Simon cipher [58] uses a randomly
generated key to strongly encrypt all code pointers
(i.e., function pointers and return pointers). From the
programmer or attacker’s perspective, all code pointers
are encrypted all the time. As such, code pointers in
DRAM, caches, or registers are encrypted. Code pointers
are only decrypted during the execution of Morpheus II
jump instructions immediately before a function pointer
or return address is placed into the PC register and within
the pipeline during encrypted arithmetic instructions.

When code pointers are always encrypted, it com-
plicates the attacker’s ability to forge code pointers.
Additionally, relative address attacks become very difficult
to synthesize because the computation of a relative
address from an encrypted pointer is cryptographically
hard. Since virtually all RCE attacks involve some form
of code pointer injection or manipulation, these attacks
become significantly more challenging.

In addition, Morpheus II implements always-encrypted
code. Like code pointers, a twelve-round Simon ci-
pher [58] uses a randomly generated key to strongly
encrypt all instructions. Code remains always encrypted
in the binary, DRAM, and all caches. Thus, instructions
are only decrypted in the pipeline for execution. By
always encrypting code, it becomes very challenging for
attackers to identify code gadgets or synthesize new code
for injection.

Fig. 2 depicts the 5-stage Rocket pipeline with Mor-
pheus additions. For always-encrypted code, a Simon
cipher is placed in the Fetch stage between the I-Cache
and the fetch queue to decrypt instructions before they
are sent through the pipeline. Always-encrypted code
pointers are implemented with decryption in the Execute
stage after reading the source registers, and encryption
in the Writeback stage when writing a pointer. The final
Morpheus II design was optimized to place the twelve-
round Simon ciphers within the existing Rocket pipeline
stages, without impacting the baseline frequency.



Instruction Class Example Semantics
Arithmetic enc_add r1, r2, 4 r1 = enc(dec(r2) + 4)
Relational enc_sleq r1, r2, r3 r1 = dec(r2)  dec(r3)
Indirect Jump enc_jalr r2, LR LR = enc(PC), PC = dec(r2)
Jump enc_jal r2, TGT LR = enc(PC), PC = TGT

Table I: Morpheus II RISC-V ISA Extensions. Morpheus II
adds three classes of instructions: i) always-encrypted pointer
ALU operations, ii) decrypting pointer relational tests, and iii)
decrypting indirect jumps and returns. Note that the enc() and
dec() interfaces encrypt and decrypt always-encrypted pointers
within the pipeline.

IR Pass
• Identify pointer use
• Mark instructions

Backend Pass
• Emit encrypted pointers
• Replace returns

ELF Encryptor
• Encrypt instructions
• Produce final binary

Figure 3: Morpheus II Software support. The frontend
LLVM pass analyzes the Intermediate Representation to identify
and mark pointer manipulation instructions. The backend
emits instructions to initialize function pointers and replaces
pointer manipulation instructions and returns with the encrypted
version. Finally, a small program encrypts the instructions in
the resulting binary.

To thwart disclosures and side-channel attack, Mor-
pheus II churns encryption keys whenever the system
boots, reboots, or when a security violation has been
detected (e.g., segmentation fault or misaligned instruc-
tion fetch). On each of these events, the system is very
quickly warm-booted, which reloads the code under a new
encryption key, and reconstitutes all code pointers from
the original binary, again under a new encryption key.
The churn process ensures that any valuable information
gathered by attackers since the last churn cycle will be
lost due to the re-keying of the Simon ciphers. In addition,
by limiting churn to system warm boots, Morpheus II did
not require tagged memory, which significantly reduced
the complexity of the changes needed for the Rocket
core, which in turn led to a fast build time for a small
academic design team.

B. Morpheus II Software Support

Fig. 3 describes the Morpheus II compilation process
consisting of a LLVM frontend pass, backend pass, and
ELF encryptor to encrypt instructions in the final binary.
The frontend pass marks instructions that manipulate
pointers so that the backend pass can replace them with
the Morpheus II equivalent that performs encryption
and decryption as required. For example, the code that
generates the address for a function pointer will now
generate an encrypted address and jump to the function
using enc_jalr which performs decryption on the base
register. Morpheus II’s protections apply to both user and

kernel code—a RISC-V port of FreeRTOS [59] and the
newlib C library are fully supported.

C. Morpheus II Evolution

Morpheus [1] implemented moving target defenses
using a domain tagging mechanism to identify all
pointers in memory, pointer displacement to obscure
relative pointer distances, domain encryption to encrypt
all pointers, and a configurable runtime churn unit to re-
randomize the program by changing encryption keys. The
original Morpheus prototype was evaluated in simulation
using gem5 [8, 9] with average overheads under 1% and
worst-case under 7%, depending on the churn period.
In addition, the domain tagging mechanism required
microarchitectural support in the register file, caches,
and memory. Software support for Morpheus required a
complex LLVM pass to identify data pointers as well as
manual identification of pointers that access raw memory
(e.g., device drivers).

As we began to adapt similar protections for Morpheus
II in the RISC-V Rocket core, we quickly decided to
pursue a design without explicit tags in the microarchitec-
ture to simplify the modifications—instead domains can
be identified by the types of instructions that manipulate
them, expressed by the compiler. Table I details the
instruction classes the were added to support always-
encrypted pointers. Rocket provides a tightly-coupled
accelerator interface (RoCC) to easily add accelera-
tors running reserved RISC-V instructions. Our initial
Morpheus II implementation added a RoCC accelerator
to perform the encrypted variants of instructions that
manipulate pointers. In addition, we added an extra
pipeline stage to decrypt code as it is fetched from the
instruction cache. Unfortunately, the overheads associated
with the RoCC accelerator and extra pipeline stage
resulted in significant overheads (of up to 68%). Thus,
we refined the Morpheus II implementation by adding
direct support for our instructions to the Rocket pipeline.
We were also able to move the decryption of instructions
to between the instruction cache and the fetch queue,
eliminating the extra pipeline stage without impacting
the critical path. To simplify the compiler support and
software porting effort, we decided to focus on Remote
Code Execution (RCE) attacks and eliminated data pointer
protections. Note that Morpheus II hardware still supports
data-pointer encryption and we are currently adding
compiler support. Ultimately, the final Morpheus II design
eliminated runtime performance impacts and simplified
the microarchitecture while still protecting against control-
flow attacks.



V. EVALUATION METHODOLOGY

Xilinx Ultrascale FPGA
DDR4

UART

Morpheus II Core
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Figure 4: FPGA prototype of Morpheus II with a modified
Rocket core and peripherals.

Arch RV32IMAC
Frequency 50 MHz
Core 5-stage
Caches 4k I-cache / 4k D-cache
Mul/Div Pipelined 8-cycle
Memory 2GB DDR4
Devices Ethernet, UART
Morpheus II Crypto 12-Round Simon

Table II: Morpheus II and Baseline Hardware Configuration

We developed Morpheus II on a Xilinx UltraScale
Plus VCU118 FPGA as part of the DARPA SSITH [56]
program. Fig. 4 describes the VCU118 setup with
the RISC-V Morpheus II core, ethernet, UART, and
DRAM. Table II describes the specific parameters of the
baseline Rocket core processor [10] provided by DARPA,
which we modified to include support for Morpheus
II with a 12-round Simon [58] cipher. We used the
VCU118 FPGA for our internal performance and security
evaluation. In addition, in the summer of 2020, the
Morpheus II architecture was entered into the DARPA
FETT Challenge [2], along with six additional secure
CPU designs. The security firm Synack ran the challenge
with their crowd-sourced security researchers providing
red-team testing. The computer science research firm
Galois adapted FireSim [60] for the test harness, which
allowed the Morpheus II design to be deployed into an
Amazon AWS F1 cloud instance. When a researcher
wanted to attack one of our machines, they would spin
up an AWS F1 instance with FireSim, with the core
replaced with a DARPA SSITH secure core. All teams in
the DARPA FETT Challenge were required to provide a
challenge application with known software vulnerabilities.
We built the Mock Medical Database (M3DB) which was
a mock COVID-19 patient database for medical research,
with a network-facing REST interface for querying the
patient data in a differentially private manner. Attackers
had to penetrate this database and modify or exfiltrate
patient data to successfully attack the Morpheus II target.

All teams were requested to provide known software
vulnerabilities in the code base. This requirement grew
out of the DARPA SSITH program, which was focused on

hardware techniques for protecting vulnerable software. In
addition, each team had to make their build environment
available to the researchers, so they could install and build
their own code for testing and study purposes. Each team
also had to build a mission list, which was a step-by-step
guide detailing easy-to-hard attack scenarios. Bug bounty
payouts were gauged to the mission difficulty. DARPA
paid bug bounties for finding vulnerabilities, which were
never disclosed, but DARPA did say publicly that the
bounties went at least up to US $50k.

For our FETT deployment, attackers were given full
knowledge of our software stack containing vulnerabilities
that consisted of FreeRTOS [59], device drivers, and the
SQLite database used for M3DB. While attackers were
not given the deployed binary, they were provided with
a full toolchain to produce Morpheus II-enabled binaries
with a different boot-time key than the deployed system.
Attackers had access to a web server running a REST
interface to query M3DB, but they were not able to access
the UART or the JTAG to run a debugger.

VI. SECURITY ANALYSIS

In this section, we give details of the DARPA FETT
security evaluation and recount additional penetration
testing we performed on Morpheus II. Finally, we discuss
to what extent Morpheus II could stop other classes of
attacks.

A. Morpheus II Bug Bounty
During the three months of the FETT challenge,

the Morpheus II target had 535 researchers trying to
penetrate it. Despite being the second most attacked
target in the FETT program, the Morpheus II target
was never penetrated and no exploitable vulnerabilities
were discovered. By the end of the program, DARPA
disclosed that 10 vulnerabilities were discovered by the
researchers (on targets other than Morpheus II). Given
the deployment setup described in Section V, attackers
were expected to analyze the FreeRTOS and SQLite
code-base to find vulnerabilites, then exploit them by
sending maliciously crafted requests over the M3DB
REST interface. Unfortunately, the terms of the bug
bounty program did not permit us to interact with our
attackers to learn what barriers they were encountering.
However we expect that attempts to inject code were
thwarted by code encryption and ROP-style attacks were
stopped with code pointer encryption.

B. BlindROP Analysis
For further security analysis, we performed our own

penetration testing by exploring the utility of Blind



CWE Class Attack Scenario Result Defense Details

Buffer Overflow CWE-121: Stack-based buffer overflow Stopped Injected return address not encrypted
Permission, Privileges, CWE-257: Storing Passwords in a Recoverable Format Successful Requires password data to be encrypted

& Access Control
Resource Management CWE-416: Use After Free Stopped Injected code pointer not encrypted
Code Injection CWE-94: Improper Control of Generation of Code Stopped Injected return address and code not encrypted
Information Leakage CWE-209: Information Exposure through an Error Message Successful Disclosed pointer is an unencrypted data pointer
Numeric Errors CWE-190: Integer Overflow or Wraparound Stopped Injected return address and code not encrypted

Table III: Set of CWE attacks evaluated on Morpheus II.

Return Oriented Programming (BROP) [61] attacks on
the M3DB application. The BROP approach is suitable
for attacking closed-source proprietary services with
non-public binaries. BROP requires a stack overflow
vulnerability and a service which restarts after a crash
(for example, a web server or a database application),
both of which are represented in the Morpheus II-
protected M3DB target application. The attack works
by first breaking Address Space Layout Randomization
(ASLR) and then finding remote gadgets to call a write()
function, which leaks the binary from the memory to the
attacker over the network. The attacker then performs a
conventional ROP attack using knowledge of the leaked
binary. [61] provides further details about the various
gadgets required for a successful BROP attack.

For the baseline system without Morpheus II pro-
tections, scanning for a particular ROP gadget from
known start of code range until known start of stack
takes about 57,500 tries. The attacker runs curl to send
address that can overflow on stack. Given how the
application is designed, it takes the attacker 1.29 seconds
to determine that the attempt was unsuccessful. Moreover,
each unsuccessful attempt causes a soft reboot which has
a latency of 13.6s for the 50 MHz frequency of the
platform. It would thus take almost 10 days to probe
just for a single ROP gadget. Note that the M3DB web
server supports 20 requests in parallel, but unsuccessful
requests must be tried sequentially while the application
performs a soft reboot. After guessing the correct address,
the attacker successfully executes the gadget.

Once Morpheus II protections are turned on, the
attacker must guess the encrypted address of any and all
gadgets required to break ASLR, execute write, and then
execute ROP from the full 32-bit address range. Since the
encryption key changes at warm boots (rerandomizing
all key assets which BROP expects to be static across
reboots [61]), each attempt at an BROP will be a pure
random guess into the 32-bit address space. Given that
the expected number of trials (of a Bernoulli process)
for a domain of size N is N trials, a successful BROP

attack will require approximately 4 billion attempts for
each gadget. With each attempt taking 14.89 seconds,
one would expect an expected latency for this attack of
nearly 2000 years! In addition, any attempts which crash
the system would need to restart the entire probe process,
and wait for the M3DB application to restart, further
delaying the attempted hack.

C. Bare-metal CWE Evaluation
In addition to attacking the M3DB application, we

wrote a set of bare-metal tests described in Table III that
implement attacks from several CWE classes. Morpheus
II’s code and code pointer encryption were able to
sucessfully thwart all except for privilege escalation and
information leakage, which require data and data pointer
defenses.

D. Qualitative Security Analysis
Next, we describe additional modern attacks and how

Morpheus II would prevent them. Counterfit Object-
Oriented Programming (COOP) [62] is an advanced code-
reuse attack that relies on chaining gadgets from the
C++ virtual function table. Morpheus II stops COOP
by preventing injection of counterfeit objects (code
encryption) and requiring the attacker to forge encrypted
pointers for the addresses of gadgets in existing objects
(code pointer encryption).

Since brute-force attacks on Morpheus II cryptography
are infeasible, attackers must resort to side-channels
to leak information. Encryption keys are stored in the
hardware, and only utilized during the fixed-latency
encryption and decryption within the pipeline. In addition,
micro-architectural structures like caches never hold
plaintext pointer values as they never leave the pipeline
unencrypted. Similarly, cold-boot attacks on DRAM or
disk are unsuccessful as pointer values are fully encrypted
throughout the system.

JIT ROP attacks [21, 22] utilize gadgets generated
by the just-in-time compiler based on attacker controlled
inputs. If Morpheus II was extended to generate encrypted
JIT code, an attacker would not be able to disclose



Database Query Average Execution Time (seconds) 95% Confidence Intervals

Baseline Morpheus II � Baseline Morpheus II
HELP Page 0.0244 0.0254 0.0010 0.1047 0.161
avg(Recovered) 1.5293 1.5648 0.0355 0.0248 0.0728
avg(TestPositive) 1.5310 1.5504 0.0194 0.0551 0.0371
avg(RecentTravel) 1.5382 1.5281 -0.0101 0.0265 0.0286
avg(RecentTravel) where (gender==M") 1.4663 1.5158 0.0495 0.0680 0.0449
avg(RecentTravel) where (zipcode==48105
&& gender==\"M\"&& reqvent==1) 1.0349 1.0662 0.0313 0.0042 0.0305

Table IV: Morpheus II execution time (in seconds) for sample database queries compared to Baseline.

the plaintext code needed to mount the attack in [21].
While [22] doesn’t rely on disclosing plaintext code, the
encrypted code pointers in Morpheus II would prevent a
successful attack.

VII. POWER, PERFORMANCE, AND S/W IMPACTS

FPGA LUTs 1.29%
FPGA Regs 0.06%
Estimated Power 0.21%
Max Frequency 125MHz
LLVM Modifications 1K SLOCs
Rocket Chisel Modifications 369 SLOCs
Software Stack Modifications 3 SLOCs

Table V: Morpheus II Overhead Summary

Benchmark Morpheus II Slowdown
Coremark (2000 Iterations) 0.045%
adpcm decode -0.0228%
adpcm encode -0.0239%
aes -0.0018%
basicmath -0.0009%
blowfish -0.0003%
crc -0.0089%
fft -0.0098%
limits 0.0587%
qsort -0.0046%
randmath 0.0016%
rc4 -0.0042%
MiBench Avg -0.0022%

Table VI: Morpheus II Slowdown Compared to Baseline

The power increase due to the extra logic and ciphers
was only 0.21% for the entire Rocket Core design,
including the DRAM controller and the XDMA PCIE
bus controller. Area overheads were uniformly low, at
only a 1.29% increase in LUT (logic) resources and
0.06% increase in registers. The baseline Rocket system
provided for the DARPA FETT Challenge ran at 50MHz.
We successfully stress tested the frequency of Morpheus II
and the baseline Rocket to 125MHz before timing began
to fail at 150MHz in the debug module, confirming that
our pipeline changes were not on the critical path.

We evaluated Morpheus II on a suite of benchmarks in-
cluding Coremark [66], MiBench [67], and our deployed

M3DB application. The baseline Rocket-based system
was able to compile and run a subset of benchmarks
from MiBench 2: adpcm decode, adpcm encode, aes,
basicmath, blowfish, crc, fft, limits, qsort, randmath, and
rc4. As described in Section IV, no additional pipeline
stages were added to implement code and code pointer
encryption. Since the code decryption occurs between
the instruction cache and the fetch queue, there is no
overhead associated with our code protections. One
overhead for code pointer encryption is an additional
instruction to encrypt each function pointer when it is
initialized. Coremark and MiBench do not contain any
function pointers, while the M3DB application has around
27K. Section VI-C shows the execution time for a set
of example queries on the M3DB application. We see
that any Morpheus overheads are within the run-to-run
variation due to the network stack and I/O. Table VI
breaks down the overhead of Coremark and MiBench,
showing the overhead is essentially zero since there are
no function pointers.

Software and design impacts were also low. The
changes necessary to LLVM to support Morpheus II
compilation were less than 1k lines of code. In addition,
the changes to the Chisel code to accommodate the
Morpheus II extensions on the Rocket Core totaled
only 369 additional lines, including the cipher engine.
Finally, few software changes were required in the
software running on the Morpheus II system for the FETT
Challenge. Our platform, described in Section V, was
running the Mock Medical Database (M3DB) running on
a FreeRTOS web server with SQLite database, totaling
more than 200K lines of code. To accommodate Morpheus
II defenses, only three lines of code in the FreeRTOS
assembly files needed to be changed.

VIII. DISCUSSION

Morpheus II denies attackers the ability to forge or
analyze code and pointers using always-on encryption,
forcing attackers to use stochastic methods. By leaning
into strong cryptography and physical isolation, Mor-



System Real Hardware Overheads Area Power Software Mods Protections Randomization rate
Shuffler[53] Not required 14.9% N/A N/A Recompile Code pointer (relative and absolute) 50ms
Morpheus[1] Simulation 0.9% N/A N/A Recompile, manual porting User Code, code/data pointer (relative and absolute) 50ms
PNS[54] Yes 6% 2% N/A DBI/Recompile Code pointer (absolute) 10ns
MVU[63] No 0.034% N/A N/A None Code pointer (absolute) N/A
ASIST[45, 49] Yes <3% 10.6% Reg, 8.3% LUT (AES) N/A None User and kernel Code, return addresses Creation, exception[49]
PolyGlot[48] Yes <5% 72% LUT N/A None User and Kernel Code, return N/A
Isomeron[64] Not required 19% N/A N/A DBI User Code pointer (absolute) 1ms
PointGuard[42] Not required 10% N/A N/A Recompile Code/data pointer (absolute) N/A
ZeRØ[65] Cache-only Negligible 5.41% 3.37% DBI/Recompile Code/data pointer (absolute) N/A
Morpheus II Yes (deployed) Negligible 0.06% Reg, 1.29% LUT 0.2% Recompile User and Kernel Code, code pointer (absolute) Creation, exception

Table VII: Comparison of control-flow protection systems. Morpheus II has minimal area cost and the overhead for deployed
benchmarks on FreeRTOS was not perceivable within run-to-run variation.

pheus II provides durable security mechanisms. Our
FPGA deployment using 12 rounds of the Simon cipher
demonstrates the effectiveness of Morpheus II with almost
zero overhead. Further research into hardware efficient
ciphers is particularly relevant to scale Morpheus II to
a high-frequency ASIC design. While removing data
pointer encryption opens up Morpheus II to attacks like
data-oriented programming [68], information leaks, and
privilege escalations, our prototype is robust enough
to withstand a wide range of attacks with negligible
overhead.

Table VII compares Morpheus II to other systems that
aim to hide or obfuscate attack assets. Morpheus provides
the strongest protections, obfuscating both relative and
absolute addresses for code and all pointer types, but
with significant overheads, non-trivial compiler support
and software porting, no kernel protection, and a limited
evaluation in simulation. In addition, Morpheus is vulner-
able to side-channels that leak unencrypted pointer values
residing in the caches, while Morpheus II only operates
on unencrypted pointers within the pipeline. Instruction
set randomization proposals like ASIST [45, 49] provide
similar protections for code injection attacks as Morpheus
II’s always-on code encryption. The latest ASIST version
also provides the same encryption of the link register
upon a call and decryption upon return as does Mor-
pheus II, but does not prevent tampering with function
pointers. PNS [54] also implements strong-encryption
of code pointers like Morpheus II, utilizing special
instructions for encryption and decryption. Morpheus II
instead implements encrypted variants of existing address
generation and jump instructions, removing the extra
overhead of instructions specifically for encryption and
decryption. However, Morpheus II requires recompilation
while PNS can implement partial protections using binary
instrumentation. Concurrent work ZeRØ [65] uses special
instructions to provide code and data pointer integrity with
neglibile performance overhead, but does not protect code
and has higher area and power overheads than Morpheus
II due to cache modifications to track pointers.

Our current work includes extending Morpheus II to
a FreeBSD system where userland code is protected
by Morpheus II with minimal modifications to transfer
pointers between the kernel and applications. In addition,
we are exploring the use of always-on encryption for
non-pointer values. This facility could further extend the
security scope of Morpheus II, allow the defenses to
provide protections for information leakage and privilege
escalation attacks.

IX. CONCLUSION

This paper proposed Morpheus II, a RISC-V processor
that prevents control-flow hijacking attacks by encrypting
code and code pointers. We built and deployed a FPGA-
based system on AWS running a real-time operating
system, a full network stack with web server, and a
sensitive medical database—all of these components are
fully protected by Morpheus II’s always-on encryption.
Our internal security analysis shows that Morpheus II
offers strong protections against a wide-range of attacks
such as ROP, BROP, COOP, and JIT-ROP. In addition,
over 500 hundred security researchers unsuccessfully
attempted to infiltrate the medical database running on
Morpheus II over the course of three months. Morpheus
II accomplishes this without perceivable performance
impact and less than 2% area, all built by a small
academic team.
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